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AlGaN/GaN structures constitute a new class of 2D systems in that a large population of electrons 
can be produced without doping as a result of spontaneous and strain-induced polarization. Electron 
transport can, in principle, be mediated solely by phonon scattering and, for the first time, it is 
possible to realistically envisage the formation of a drifted Maxwellian or Fermi-Dirac distribution 
in hot-electron transport. We first describe a simple model that relates electron density in a 
heterostructure to barrier width and then explore electron-electron (e-e) energy and momentum 
exchange in some depth. We then illustrate the novel hot-electron transport properties that can arise 
when only phonon and e-e scattering are present. These include S-type NDR, electron cooling and 
squeezed electrons. 

1. Introduction 
The spontaneous and piezoelectric polarization exhibited by semiconductors that 

crystallize in the wurtzite structure can be exploited to induce large, quasi two-
dimensional (2D) electron populations [1,2] which, because they do not depend for their 
existence on donor impurities constitute, in fact, a new class of 2D electron systems. It is 
the purpose of this chapter to give an account of the physics that enters the description of 
these new properties. Inevitably, given the current state of the art of crystal growth, 
experiments on electron transport that have been carried out have been influenced by the 
presence of unwanted impurities and a high concentration of dislocations and, not 
surprisingly, there have been no reports of properties that we will be describing. Contact 
of theory with experiment must therefore await the production of purer and more perfect 
crystals and heterostructures. Since these are likely to be in the III-V nitride systems, 
given the technological interest in visible lasers and in high-power microwave transistors, 
we focus on these systems and, in particular, GaN and its alloys with A1N, though our 
analysis will apply to II-VI and other semiconductors. 

2. Polarization-Induced Electrons 
Wurtzite and other low symmetry crystal systems can exhibit spontaneous 

polarization directed along the c-axis as well as polarization arising out of barrier strain in 
heterostructures through the piezoelectric effect, and this has been quantified for the III-V 
nitrides [1,2] and exploited to produce a quasi-2D electron gas without deliberate doping 
in AlGaN/GaN heterostructures leading to successful FET devices [3, 4]. The questions 
arise: where do the induced electrons come from, and how is their density related to the 
polarization? 

The first task is, therefore, to explain the origin of polarization-induced electrons 
in undoped structures that are grown along the C-axis. (Growth along the A-axis would 
eliminate the effect of spontaneous polarization.) It has been argued that the source of 
electrons is the surface charge acquired by the structure from the adsorption of ambient 
ions and from changes in the charge trapped in surface states [5, 6,7] and this explanation 
will be adopted here. Thus, in this model, a free-standing slab of GaN will have zero 
internal electric field, the large field associated with spontaneous polarization having been 
entirely neutralized by surface charges. In the case of a heterostructure consisting of an 
AlGaN barrier on a GaN buffer layer, both grown along the C-axis, the upper and lower 

117 

In
t. 

J.
 H

i. 
Sp

e.
 E

le
. S

ys
t. 

20
01

.1
1:

47
9-

50
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 "
C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S,
 B

E
IJ

IN
G

 T
H

E
 L

IB
R

A
R

Y
" 

on
 1

1/
28

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
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surfaces have different total polarization charges induced due to the spontaneous 
polarization and piezoelectric strain field and, consequently, surface charges cannot 
entirely eliminate internal fields. In general, the surface charge on the upper surface will 
be different from that at the lower surface, and it is this difference that determines the 
induced electron density. Specifically, the upper Ga-face, AlGaN surface turns out to 
have a negative polarization charge which will attract a positive surface charge density, 
+a s i , and the lower, GaN surface will have a positive polarization charge which will 
attract a negative surface charge density, - a s 2 ; the induced electron density is then equal 
to (o s i - os2) for overall charge neutrality to obtain. The surface charge densities can be 
obtained from the known polarization charge densities by first deducing the fields from 
Gauss's equation and then requiring that the voltage difference across the structure 
vanishes. The voltage difference across the GaN will include the depth of the quantum 
well at the AlGaN/GaN interface which, in turn, will depend on the induced electron 
density. The solution, therefore, will have to satisfy a self-consistency condition. 

In typical practice at the present time, an AlGaN/GaN structure is grown on a 
thin nucleation layer of A1N deposited on a sapphire or SiC substrate. The lack of a 
lattice-matched substrate means that the nucleation layer is highly dislocated, and 
dislocations thread their way to the top surface, their density being of order 109 cm ^. 
These dislocations introduce deep states that capture electrons from donors inadvertently 
introduced during growth that will affect the mobility of electrons if not screened [8, 9]. 
As a consequence of this acceptor-like action, acting along with other acceptors 
inadvertently introduced, the heterostructure is heavily compensated with a mobile 
electron density of less than cm" j [10]. In nominally undoped material, therefore, 
screening of the sheet charges introduced by polarization, other than by the induced 2D 
gas, can be ignored. In some cases the barrier is doped n-type and, in general, this 
situation needs to be considered, though adding impurities destroys the unique features 
introduced by polarization. 

We illustrate our elementary electrostatic model for the case of an n-type, 
uniformly doped barrier that is entirely depleted of electrons [9]. Figure 1 depicts the 
electron-energy diagram. We assumed that the structure is in thermodynamic equilibrium 
with zero electric fields applied outside. We also assumed that the characteristic size of 
the area of surface and interface greatly exceeds the thickness of the layers, so that the 
electrostatic problem reduces to a one-dimensional one. The Fermi level is chosen to be 
e<p below the conduction band in the GaN buffer layer. In the case of a free GaN surface 
measurements of Schottky barriers suggest that the Fermi level is pinned by surface states 
such that <t>=l V. Though deviations from this magnitude may be expected to occur at the 
internal surface of GaN and the nucleation layer we will assume that the Fermi level 
remains deep in the forbidden gap, in accord with observation [10]. At the lower 
boundary of the 2D gas the transition from quantum well to bulk will be relatively rapid. 
For simplicity we assume that the 2D gas acts like a sheet charge of zero width exactly 
like all the other charges in the problem. 

Beginning on the left, at the surface, we assume without loss of generality, the 
existence of a surface charge +a s i (adsorbed ions/surface state population charge) in 
response to the polarization charge of the Ga face AlGaN, - d p i (spontaneous plus 
piezoelectric), and there will also be a surface-state charge -<J£>\ arising from the 
electrons from the donors in the barrier. If £j is the permittivity of the barrier, the field 
En immediately in the barrier is given by: £iEn = cr5l - cpi - oDi. Solving Gauss's 
equation for the depleted barrier gives the field E12 at the interface: 
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S\Ei2 - £j£ii +enDaiy where nrj> is the donor density and a\ is the barrier width. The 
field E2 in the buffer layer is then given by: e2E2 = £1^12 + °p\ ~" °p2 ~ aD2 " an -

AIGaN GaN 

' F -

+C*s1 -°s2 

Figure 1. Schematic conduction-band energy dependence through a AlGaN/GaN heterostructure. 
The AIGaN barrier is doped n-type and completely depleted, and the GaN is free of mobile charge. 
The sheet-charge densities are defined in the text. 

Here, e2 is the permittivity in the buffer layer, c>p2 is the magnitude of the 
polarization charge in GaN, oD2 is the charge contributed by the donors, and a n is the 
magnitude of the induced charge. Assuming zero field beyond the buffer layer, we obtain 
another equation for E2, i.e.: -e2E2 = op2 - as2 , where as2 is the magnitude of the 

negative charge at the lower boundary. It is then straightforward to show that 
°n = °s\ ~ Gs2* noting that aDl + aD2 = enDax. 

The voltage change across the barrier is obtained by integrating Gauss's 
equation, thus: V12 = Vn -Enax - (enDci\) 11£\ in obvious notation. The voltage 
change across the buffer layer is: -&/e-E2a2 and -E2a2-(j>, where A is the 
magnitude of the energy depth of the quantum well which is determined by the electron 
density in the well, and a2 is the width of the buffer layer. For simplicity, we assume all 
the electrons occupy the lowest sub-band, and obtain: A = (<JD2 + an)/ eNs where 

Ns=m */7th2 is the density of states per unit energy and m* is the effective mass of the 
electrons in GaN. Constraining the total voltage change across the structure to be zero 
allows us to obtain all the unknowns. In particular, the total 2D electron density, 

°tot = aD2 + <*n i s S i v e n by ; 

Gtot =(1+ t])~l[(Jpl -cp2 +0.5enDax -(e24/a2)(X + aj\9 (1) 

where t] = E\nh Ie m*a\ and a - S\a2 Is2aia 

This simple equation predicts that half of the doping electrons appear in the 2D 
gas and that the barrier width must exceed a minimum, given by the zero of Eq. (1), for a 
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482 B. K. Ridley & N. A. Zakhleniuk 

2D gas to be established. Figure 2 illustrates the barrier-width- and (^-dependences for 
doped and undoped, pseudomorphic AIQ^GCLQJN barrier on 2|im GaN with ex = 10.3£0, 

ex = 1 0 . 4 ^ apl = apl(spon) + apl(piezo) = (0.045 + 0.1 l)Cm~2
9 ap2=0.029Cm~2. 

2.0 

100 2 0 0 3 0 0 

Barrier Width (A) 

400 

Figure 2. Dependence of electron density on barrier width and Fermi level. The effect of doping 
with 10 *°cm~3 donors is shown for the case (J>=1V. 

Comparison with published data, e.g. Ref. 2, suggests that <t>=lV. The important 
point here is that in the absence of doping the induced electron density is still large. In 
what follows we will assume that impurities are entirely absent. 

In principle, therefore, we have a new situation in semiconductor physics, in 
which a substantial density of electrons can be created without adding donor impurities. 
As far as electron transport is concerned, this means that we can contemplate an ideal 
situation in which scattering by impurities and other defects is negligible, and only 
phonon scattering need be considered. Moreover, the presence at the same time of a large 
density of electrons means that transport will be markedly influenced by electron-electron 
(e-e) scattering. One interesting effect of this combination of circumstances is the 
possibility that under the influence of an applied electric field the distribution function of 
the electrons becomes a drifted Maxwellian, in the non-degenerate case, or a drifted 
Fermi-Dirac in the degenerate case. The usual case in semiconductor physics, where the 
effect of e-e scattering is countered by substantial impurity scattering, is one in which 
steady-state drifted distributions are unattainable, so the effect of polarization offers new 
possibilities. We need, therefore, to examine phonon scattering rates in order to compare 
them with the e-e scattering rate and in order to solve the Boltzmann equation. 

3. The Boltzmann Equation 
Provided that we are not interested in describing phenomena in ultra short times, 

over ultra short lengths or in very high electric fields, and provided that collisions are not 
too frequent, we can regard the electrons as occupying eigenstates of the unperturbed 
crystal, making infrequent transitions between those states as a response to perturbations 
associated with the vibrations of the crystal lattice. The statistical book-keeping can then 
be carried out via the Boltzmann equation which relates the rate of change of the 
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Transport in a Polarization-Induced 2D Electron Gas 483 

occupation probability, f(k), of the state with wavevector k to the volume rate and to the 
divergence of the probability current: 

^.[*m -v.(v(t)/(k», <2) 
dt V ot ) v o l 

where v(k) is the group velocity. The last term vanishes in the absence of spatial non-
uniformity and: 

I dt )vol { dt )fields I dt ) s c a t I dt ) 
We can dispense with the generation and recombination rates in the present context. The 
field term is obtained from the probability current flow in k-space and the acceleration 
theorem, dk/dt= eF/h, where F is the electric field and e carries the sign of the charge: 

(3) 
gentrec 

'fields 

The scattering rate has the form: 
(df(k)\ 

v—)M---^k'-v*um)---^m-

v. Ui Jscat 
(5) 

where the sum is over all scattering processes and S is the scattering-out rate i.e. the rate 

at which an electron is scattered out of the state k, and 5 + is the scattering-in rate. The 
Fermi Golden Rule applied to phonon scattering, in which the absorption or emission of a 
phonon causes a transition from state k to kf and vice versa, leads to the form: 

^ = j WW ,k)[{n(fl^) + l}/(k' ){1 - /(k)} - n(coq)f (k){l- / ( k )}] 

xS(£k . - £ k - ^ ) d k 

f ( 6 ) 

4j W^k)[/z(a^ 
x5(£k» - E k + hcoq)dku, 

where (Oq is the phonon frequency, n{coq) is the phonon occupation factor, and q is the 

phonon wavevector (q= k'- k or q = k - k" in the first or second integral, respectively). 
There are three rates with this form, those associated with optical-phonon, piezoelectric 
and deformation-potential acoustic-phonon scattering. (There will be a fourth if 
intervalley scattering is relevant.) 

Electron-electron scattering is different from the mechanisms just considered in 
that four electron states are involved: an incident electron with wavevector k i collides 
with a target electron with wavevector k2 and after scattering they occupy states with 
wavevectors k i ' and k2f. If electrons were classical particles we would think of k\ going 
to ki1 and k2 going to k2* and that would be it. But electrons are not distinguishable 
particles: the scattering event would look the same, ignoring spin, if the end states were 
exchanged, and this extra, possible process adds to the rate. But the exchange of fermions 
with the same spin changes the sign of the wavefunction, with the result that interference 
occurs between the two processes. The squared matrix element that enters the Fermi 
Golden Rule then consists of four components: 

M 2 = | [ (M 1
T

2
i ) 2 +(AfJ1

i)2 +(M1
T

2
T - A f f f ) 2 ] , (7) 
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484 B. K. Ridley & N. A. Zakhleniuk 

where the factor 1/2 takes into account the fact that in half of the collisions the spins are 
aligned and otherwise they are not aligned. The scattering rate is of the form: 

Seef&l) = JJJ [ WW 1, k' 2 , kx, k2 )/(k' x )/(k' 2 ){1 - f(kx )}{1 - / ( k 2 )} 

-W(kx, k2 , k'!, k' 2 )/(kj ) / (k2 ){1 - /(k1! )}{1 - / (k ' 2 )}]dk2dk'! dk' 2 • 
At the steady state the distribution function is to be obtained from: 

(8) 

(9) 
" t heat 

Under the influence of the field the distribution function consists of the sum of a 

symmetric part, / + - and an antisymmetric part, / " , and Eq. (9) becomes: 

e F . v ( k ) ^ Q ^ = 5/-(k), 
dt (10) 

^ . V k / " ( k ) = 5/+(k), 
n 

where v(k) is the electron group velocity. 
Further progress requires the explicit scattering rates for the e-e and phonon 

processes. The general complexity of the problem has driven most workers in this area to 
resort to purely numerical techniques, in particular, Monte Carlo methods. While 
adopting such an approach is inevitable if a particular experimental situation is to be 
modelled, it is not useful if a detailed understanding of the operation of the various 
processes involved is required. A particular problem is the incorporation of e-e scattering 
into the Monte Carlo simulation. Unlike other scattering mechanisms which can be 
regarded usually as one-electron processes, e-e scattering is a two-electron process that 
entails keeping information about two electron trajectories. Furthermore, taking into 
account the long range coulomb interaction and the simulation of screening processes 
calls for extremely sophisticated molecular-dynamic techniques. In the light of such 
numerical complexities it is useful to adopt a complementary analytical approach even if 
this involves the sacrifice of some accuracy, and we take this approach. In order to 
highlight the new physics as clearly and as briefly as possible it is necessary to adopt 
some approximations. Accordingly, we assume that the conduction band is spherical and 
parabolic and, to avoid the complexity of intersubband transitions, we assume that the 
electrons are all in the lowest subband of the quantum well. We will further assume that 
the electron gas is non-degenerate, which will be reasonably valid for hot electrons even 
for relatively high electron densities. All interactions will be dynamically screened by the 
dielectric response of the polar lattice and of the electron gas. Screening is a complicated 
process that deserves a chapter on its own. We will return to this topic later, but for 
simplicity we will ignore screening entirely. 

The scattering rates for phonons are reasonably straightforward provided the 
phonons are regarded as bulk-like and their interaction with electrons taken in an 
elastically isotropic, spherical approximation. The e-e scattering rates of interest are less 
familiar, and we begin with these. 

4. Electron-Electron Scattering 
Poisson's equation describes the interaction potential: 

VV(R) = - ^ ^ = ~ 5 ( R - R ! ) . (11) 
e e 

If this is expanded in Fourier series we get: 
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Q 
V(R) = f V(Q)eiQ ( R _ R ' } d Q ^ , , 

J (2ny 

5(R-R1)=fA ( R-R i>dQ-i 
J (2n 

(12) 

(2n)3 

Inserting into Poisson's equation, we obtain: 

eQ2Q. 

V(R) = -ej 
e iQ.(R-Ri) (13) 

dQ-
eQ2 (2;r)3 ' 

-eV(R2) = e2 — j j-dqfr: 

£ 

(14) 

(15) 

The energy of interaction with an electron at R=R2 is: 
_ f <Q(R 2 -Ri) i 

-eV(R2) = e2 - = dQ— - ^ - . 
2 J sQ2 (2n)3 

Introduce in-plane vectors r and q, Q=(q, qz). Then: 
"I-r12^zZl2 1 

s ~— dqdqz ~-, 

where r12 = r 2 - rx and z12 = z2 - Zi-
There is no conservation of crystal momentum in the z direction, so there is no special 
restriction on qz. Integration over qz can be carried out using: 

)-ooqL+qL
z q 

Thus: 

-*V(R2)= « | £ £ dq. (17) 

Let the incident electron have in-plane wavevector k i and wavefunction: 

yrl(r,z) = A-l/2eik^(Pl(z). (18) 
A is the area of the plane. The electron collides with an electron with wavevector k2« 
After the collision the wavevectors are k i ' and k2*. Following the Born approximation, 
we assume that the wavef unctions after collision are the unperturbed ones. For the 
moment, exchange and spin interference are ignored. The matrix element is: 

M\2 = J v4( r2>Z2)^r(ri,ZiM^ (19) 

Transforming to centre-of-mass and relative coordinates gives: 

rcm = ~ ( r l + r2)> r l2 = r2 " rl> dr2dr! = <*rcmdr12. (20) 

M = _ £ _ J e'(ki+k2-k1-k2).rcm^-i(k1-k1+k2-k2).r12/2 
11 Sn2A2 J 

x - ^ drcmdr12dq. 
Sq 

(21) 

The form-factor is given by: 

F(q) = J fe (*2)*T (^)^<7 ,Z l2 ,02(^2)0(^l)^l*2 - (22) 
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The integration over r c m leads to the conservation of in-plane crystal momentum in the 
case of N-processes (which are the only ones we need consider). The integration over 1*12 
specifies q. Thus: 

ki + k 2 - k i - k 2 =0, 
(23) 

kx - k j +k 2 - k 2 = 2q. 
Since q is defined, the integration over q yields a factor Arfi/A and the other integrations 
yield a factor A2. The matrix element becomes: 

We consider the case in which both electrons, before and after colliding, are in 
the lowest subband: 

W(k1,k2) = ^[\Ml2\
2S(E2^E{-E2-EOdk1dk27^. (25) 

n J (2 n) 
When the electron population is degenerate the integrand would contain the factor 
{1 - / (k x )}{1 - / ( k 2 ) } . We take k£ to be fixed by momentum conservation, and so: 

W(kvk2) = - £ — f ^ i l ^ ^ d k i . (26) 
S7tnA J e q 

where, for a parabolic band, 8(E) = slhi2 12m *}[k2 + k\2 - jfcf - ^ 2 ) | . 

4.1. The scattering rate 
At this point in the calculation it is usual to go on to obtain the bare scattering 

rate which is what is required as input to Monte Carlo simulations and to provide 
estimates of the dephasing rate. This is not the most useful rate for our purposes - we 
require energy and momentum exchange rates - but, for completeness, we continue along 
the usual lines. 

We now define relative wavevectors: 

gl2 = T (kl - k2) and ill = j ( k l ~ k2)' (2?) 

and observe that: 

gf2 = - (k\ +k%- 2kxk2 cos 0), |kx + k2 f = k\ +k\+ 2kxk2 cos 0, 

Similarly, 
2 - 2 - i k 1 + k 2 

2 ' U (29) 
whence it follows that the 8-function in Eq. (26) can be represented by: 

8(E) = 8{(ti2 I m*)(g\2
2 - g\2)}. (30) 

Furthermore, g12 = — {kx - (kx + k2 - kx)} = k^ - k c m , and, since k c m is a constant of 

the motion, we can change variables and replace k] / by gi2': 

(28) 

^i 2 2=^i 2 +^2 Z -~ |ki+k 2 | 
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w^^--^l^s\&^-Ms'^d6 .4 , p ^ > f .2 
2 2 

. 2* , (3D 

167th3A J e V 
0 

d6, 

where 0 is the angle between gi2 f and gi2- Since g2 = g12 + £n ~2g12g12cos0 anc i 

£l2 = £12» w e obtainq2 = 4g2
2 sin2(0 / 2). The total rate is obtained by integrating over 

the target-electron states, taking into account spin degeneracy, weighted by the 
probability of occupancy. 

9 9 9 

In the case of the exchange process, q = 4g12 cos (0/2). Strong interference 
effects, where the spins are parallel, will be confined to scattering angles around n/2. 
Ignoring interference altogether would double the rate in Eq. (31). However, when 
screening reduces the dependence on q, interference will be more important. Furthermore, 
many-body effects involving exclusion and correlation will limit the interaction between 
like spins. In view of these considerations, the contribution from collisions with like spins 
is often neglected, and it is assumed that M2 = M2

2, in which case Eq. (31) is the total 

rate including exchange. In what follows we focus on the squared matrix element M12, 
keeping in mind that the total rate subsequently deduced will be a factor of two larger 
when interference effects are negligible. 

4.2. Energy exchange 
The theory so far has focused on the total rate of scattering, given the 

wavevectors of the incident and target electrons. It tells us nothing, however, about the 
rate at which energy is exchanged in electron-electron collisions. This rate is important 
for understanding how fast thermalization occurs in a quasi-2D electron gas. In order to 
calculate this rate we have to focus on the wavevectors of the incident and scattered 
electrons rather than on the wavevectors of the incident and target electrons, which means 
integrating over k2 rather than l q \ Given k i and k i \ we must sum over all possible 
target states weighted by the probability that a target state is occupied. This statistical 
factor introduces the distribution function into the problem. 

We will continue to assume non-degenerate statistics and take the distribution 
function to be isotropic and Maxwellian described by an electron temperature Te: 

f{E) = ̂ - e - E / k ^ t N d = ^ ^ , (32) 
Nd nh 

where n is the areal electron density and Ntf is the effective areal density of states taking 
account of spin degeneracy. For intrasubband processes, Eq. (26) is replaced by: 

*<M<i> = v4nr \e'El'kBT' ^S(E)2dk2. (33) 
&7ihANdJ Elql 

where the factor 2 is included to account for spin degeneracy. The delta function 
conserving energy must now be expressed in a form convenient for integration over k2-
This can be done by noting that Eq. (23) implies that: 

q = k 2 - k 2 , 
•2 9 9 - ( 3 4 > 

h =k2+q*+ 2k2q cos Q2q. 
and so: 
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488 B. K. Ridley & N. A. Zakhleniuk 

8(E) = sllti2 12m *)(*j2 - k? + q2 + 2fc29COS 02^)} 

2TT 1 

Integrating over the angle, and noting that \ dO = 2 , we obtain: 
J J sin 6 

(35) 

- l 

W ( k 1 , k 1 ) = - i 4 ^ f g-*2*l^w«t,r€ F ( g ) dk, 
2nh*ANd 

*?min 

2 3 • j . l " v 2 , 

£ qJsm<p2q 

sin ^ =-i 1-

ftf-«!+t* 
2k2q 

(36) 

*2min 
*i2-*t2V 

2<7 
• ft-2 max 

Note that q = k j - k i and so it is independent of k2- Integration over k2 is 
straightforward: 

urnS ir ^ A ( 7 i m * ) 1 / 2 F2(q) J ft2 f i / 2 ^ , ^ 

<7 
(37) 

This rate is dependent on the angle between k]/ and k i through q. What is 
required is an average over angle: 

it 

W(k\,kl) = -{w(k\,kl)d<p. 
71 J 

(38) 

Clearly, the angle dependence is not straightforward, especially as screening, in general, 
is angle-dependent. Esipov and Levinson [11] approach the problem by putting F(q)=l, 
assuming static screening by the lattice (£ = £5), and defining the variable u as follows: 

<*?-*i2)1/2 (39) 

and we consider the case ki>ki/ for the present. The relation of u to the angle is obtained 
from: 

q2 = k\ + kx
2 - 2kxkx cos ?> = (*!- Jfci)2 + 4^*1 sin2(<p 12), (40) 

i.e.: 
il/2 

(41) 

H-hz 

2 2 4£ifci . ? / /^x * ! - * ! 

The energy difference can be embodied in the symbol tu = (Ex - Ex) I kBTe. Substitution 
into Eq. (38) and noting that: 

4fci*1=(*1
2-*i2)(y"2-y2) f (42) 

gives: 
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Transport in a Polarization-Induced 2D Electron Gas 489 

W(kl,k1) = Wl • J 
„G7/2 exp 

^ ' 2 f , xl -W 
11/2 

•rfw, 

(43) 

W = 
e /i/j 

%nxtle]m*(kBTe)
2A 

So far, cr > 0. The rate for cr < 0 can readily be obtained by using the principle of 
detailed balance (consistent with the equilibrium implied by the existence of an electron 
temperature). The expression for both cases is then: 

W(Mi) 
„G7/2 expi-VI" +"T 

N 3/2 

•,|(-,-^7-": 
1/2 •<fa. (44) 

Following Esipov and Levinson, we have put F(q)=l and assumed only static 
lattice screening. We note that for strictly 2D electrons the form-factor is unity, but it will 
be close to unity for quasi-2D electrons for quasi-elastic collisions. The rate becomes: 

W(kukx) = W0 fw(u)du, (45) 

where: 

jnll exp -
W(u)-

\m 2 1 

H 3/2 

«2{("2-r2{jr-"2) 
11/2 * (46) 

In such a case, Esipov and Levinson have shown that the integral in Eq. (44) can be 

obtained in terms of a modified Bessel function of the second kind, provided that y «1 

and y 2 / | n 7 | « l , 
-GT/2 

In terms of energy, the parameter y is given by: 

W 
1/2 

(E/kBTe)
U2+(E/kBTe)

U2' 

(47) 

(48) 

Thus, for quasi-elastic scattering, | tn |« l , Ki(|tu|/2)=2/|e|, and Eq. (47) becomes: 

"^'-"•jSFii^F- (49) 

In the case of a lower energy incident electron, the rate increases rapidly. For a 
thermal electron (E/kBTe=l), the quasi-elastic rate is obtained from an integrand that is 
concentrated around u=y, where, under these conditions, y =|m\l(4EI kBTe)«1. If, 
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490 B. K. Ridley & N. A. Zakhleniuk 

once again, we take the 2D limit of the integral in Eq. (38) and ignore screening, we 
obtain the result of Esipov and Levinson: 

W(kl9kx) = 2WQ—-re-E/k°T< erdt. (50) 

0 

As in the case of a fast electron, the rate diverges as |cr|~ . 
However, quasi-elastic scattering does little for energy and momentum 

exchange. Rates for these are going to be associated with strongly inelastic scattering in 

which |rjj |»l. In this case y is no longer small. When m{\- y)2 » 1 , most of the 
integral comes from the region around u=l and when E, Ei', |E-Ei' |»kBTe: 

F2(o v(GT/2~N/2> n-1^ 
W(kuk) = W0 7 1 / —\erf[ml/\Y-l-l)] + e,f[uj]/Hl-Y)}l (51) 

N (y -y) 2 L J 

where q\=y m(2m *kBT I ti ) , so for the downward transition (m > 0): 
1/2 F2, >, 

M*)-*.—H^XTJ"- ( 5 2 » 
and for the upward transition (tn<0): 

1/2 m F^(a 1 

Note that downward transitions are significantly emphasised via the Maxwellian factor. 
The form-factor has been taken to be determined by the condition u = 1. 

The energy-relaxation rate, Q, is obtained by integrating Eq. (45) over k\': 

G = - f ( E 1 - ^ ) l V ( ^ ^ 1 ) / : i ^ ; A / 2 ^ = - ^ 7 F 2 ( ^ ) , (54) 
J 32epi 

where we have introduced a mean value q± of q\ for the form-factor in order to facilitate 
comparison with the result of Esipov and Levinson. Since small energy-transfers are 
favoured, the form-factor is very roughly unity. An energy-relaxation time can be defined 
by Q = -E/ree: 

ree 32s;hE 
With a dielectric constant equal to 9, and taking the form-factor to be unity, the rate is 
2.09n/E s"l, where n is the areal number of electrons per cm2 and E is the electron energy 
ineV. 

4.3. Momentum exchange 
Esipov and Levinson do not discuss momentum relaxation, but this is readily 

derived. Returning to Eq. (44), we can define a momentum-relaxation rate, W m , by 
weighting the integrand by (l-cos9), where, from Eq. (40): 

l-cos0=2 (" ~ V , y « l , y 2 / H « l , (56) 
Y ~Y 

so that: 
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--»~i-JJW: w-2W«r S F U C "-• (57) 

by changing the variable to: 

K"2 +7)wC=H" (58) 

M 
The integral can be evaluated by changing the variable to: 

whence: 

z = -\u 

„G7/2 In 
Wm=2W0Y'^KQ(\w\l2)-^^W0 ^ (59) 

|CT| 4{t/kBle) 

where Ko(x) is the modified Bessel function. This is the momentum-relaxation rate for 
quasi-elastic scattering which, in the absence of screening, diverges logarithmically. 
With screening, quasi-elastic collisions will be inhibited. For strongly inelastic scattering, 
less affected by screening, the momentum-relaxation rate coincides with the energy-
relaxation rate given by Eq. (55). Thus, we take the Esipov-Levinson expression of 
Eq. (55) to quantify both energy and momentum exchange rates. 

5. Phonon Scattering 
The strength of e-e scattering plays an important role in determining the form of 

the distribution function under the influence of an electric field, but e-e scattering cannot 
relax momentum and energy of the whole electron system. These relaxation processes 
depend on there being other scattering mechanisms. Whereas all scattering mechanisms 
(apart from e-e scattering) can relax momentum, only inelastic processes can relax energy 
and, of these, phonon processes are in nearly all cases the most important. Here, we limit 
attention to the momentum and energy relaxation rates associated with scattering by 
phonons. 

There is first the problem of describing phonons in a quantum well, where the 
discontinuity of electrical and mechanical properties across the heterojunction between 
well and barrier materials affects the spectrum of lattice vibrations. This is a well-known 
problem that has been discussed at length elsewhere [12]. It has been found that, provided 
the well is not too narrow, an approximation can be adopted based on the assumption that 
the scattering rates are given without much error if the spectrum of phonons in the well is 
taken to that of the bulk material. Such an assumption would be wholly invalid for 
describing situations where individual phonon modes are observed, as in Raman 
scattering, but it works quite well for calculating scattering rates which entails summing 
over all modes. In what follows we exploit this approximate sum rule and work with bulk 
phonon modes. 

The net scattering rates that affect the occupation probability of a given electron 
state depend upon the occupation probabilities of states involved in the processes of 
absorption and emission of phonons. For the moment we will ignore this dependence and 
we will only consider scattering-out events. 

5.1. Polar optical phonons 
Because of the large optical-phonon energy, scattering by optical phonons is 

highly inelastic. Moreover, the net scattering rate associated with a particular electron 
state depends on scattering rates of states a phonon energy above and below. A ladder of 
scattering with rungs a phonon energy apart is therefore involved in order to calculate the 
momentum and energy relaxation rates associated with a given state, and this requires a 
knowledge of the distribution function. In the presence of an electric field, the distribution 
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492 B. K. Ridley & N. A. Zakhleniuk 

function, in general, cannot be found without taking into account momentum ana energy 
relaxation, so the problem is one of finding a self-consistent solution. This problem is 
usually solved by using Monte Carlo methods, but in some cases it is possible to use an 
analytical approach, and this will be adopted here. 

The scattering rate associated with an electron in the state with wavevector k and 
energy E is: 

W-HT) 
1/2 

' F(q) ^ f . ^ f F(q) 
(n(fi» + l) \-iyL-dq + n(<0) f— 

J <7Sin0. J qsi 
Q\ a3 

qsinO. 
dq (60) 

where n(co) is the optical phonon occupation factor and: 

e1 (2m*(o\m( 1 I"* 
W0= 1 

"s J 

qx=k 

q3=k 

;-('-sr] 
Hr-«; 

. <l2=k 

I ^4z=k 

K-r' 
[w*« (61) 

sin0± = J i -

The form factor is given by: 

m * (0 q 

hkq 2k 

a/2 a/2 

F(q)= j jdzdzy/2(z)y/2(z)e-q\z-z'K (62) 

-all-all 
where \j/(z) is the electron wavefunction, and we make the assumption that scattering is 
confined to the lowest subband in a square quantum well of width a. The estimation of the 
corresponding momentum relaxation rate can be obtained by weighting the emission 
integrand by (q/k)cos9+ and the absorption integrand by -(q/k)cos0_, thus: 

1 (h(o\vl 

W^2W{T) 

{n{(0) +1)7 JUli JL + fi!£LU + n(co)l 
K J }) qsmO+yik hkq J * J , 

m*(Q F(q) 
qsm6_{2k hkq 

dq 

1i °3 

(63) 

The energy-loss rate is: 

*-MT) 
1/2 

hco {n{co)+i)]^dq-nml-^-<iq 
J qsmv+ J qsm9_ 

(64) 
<7sin0_ 

These integrals must be evaluated numerically. They involve scattering-out rates only, 
and they are strictly valid only for a drifted Maxwellian distribution. 

5.2. Piezoelectric scattering 
In strongly polar materials the most powerful interaction with acoustic phonons 

at low energies is via the piezoelectric effect. The phonon energy in this case is small and 
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Transport in a Polarization-Induced 2D Electron Gas 493 

in most cases we can adopt a quasi-elastic approximation, and except at very low 
temperatures we can assume that equipartition holds for the phonon occupation factor. 
The scattering rate is then given by: 

2Jt 
F(q) 

W-
e2K2m*kBT f 

! W I - ( A / 2nesh
3k J q^ji-(q/2k)2(l + qs I q)' 

-dq, (65) 

where K is the electromechanical coupling coefficient averaged over direction, T is the 
lattice temperature, F(q) is the form factor of Eq. (62) and qs is the static screening factor, 
which for non-degenerate statistics is: 

e2nF(q) 
(66) 

2eskBT 
and n is the areal density of electrons. The momentum relaxation rate is obtained by 
weighting the integrand in Eq. (65) by (q/2k)~ 

e2K2m*kBT C qF(q) 
W = - f _ _ 

Snesh
3k3 J Jl-(0/2Jfc)2(l + qs I q)2 

dq. (67) 

In order to obtain the energy relaxation rate we must take into account the small 
but finite energy of the acoustic phonon, which means treating the emission and 
absorption integrals separately. Thus: 

hG){n((Q) + l}J(q,qz) 

WF = 
e2K2m*vs 

Anssh
2k 

• fOO 

\dqz 

f ft(Q{n((0) + 

l^l-\(q/2k) + { ^l-[(q/2k)+r,}2(l + qs Iqj-

2A+7J 

- J h(On{(Q)J{q,qz) 

[ ijl-[(q/2k)-1l}2a + qs Iq)-

-dq 

-dq 

(68) 

In this equation J(q, qz) is given by: 

J(q,qz)
: 

G2(qz); 

4 2 2 
1 +1z 

G2(qz), 

a/2 

-a/2 

{z)eiq*zdz\ 

(69) 

(70) 

and r)=2m*vs//i, where Vy is the averaged velocity of the acoustic waves. Once more one 
is faced with numerical integrations. 

For quasi-elastic processes such as scattering by acoustic phonons, involving 
only the scattering-out rates in the derivation of momentum and energy relaxation rates is 
more generally justified than it is for optical phonon scattering. 

5.3. Deformation-potential scattering 
In the case of non-polar scattering by acoustic phonons it is possible to obtain 

analytical solutions. The scattering rate is: 
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494 B. K. Ridley & N. A. Zakhleniuk 

oo 2k 

W = 
7Sm*kBT C r G\gz) 

2k)2(l + qs/q)2 
dqzdq, (71) 

where p is the mass density of the lattice, H is the deformation potential. For a deep well 
such that V|/(z)=cos(7iz/a): 

\ 
G2(qz)dqzl2n = ^-, (72) 

and the scattering rate is: 

W = 
3E2m' 

2h\2pa 
i.^Uca)2-" 

7lk\ l -cr l-cr 

where a=qs/2k and L(a) = rin(Vl-«2+l)W /Vl-cf 
The momentum relaxation rate, calculated as before, is: 

_3Z2m*kBT 
m 2h\2pa 

i 8 « ^ 2 
1 - — - + 60T-

n 
Aa* 

7t(l-az) 
( L ( a ) { 4 - a 2 } - l ) 

For the energy relaxation rate we need: 

(q + qz)
2G2(qz)dqz/27l = ^- + ^ -

la a 

(q + qz)G
2(qz)dqz/ 2xA 

2a 

(73) 

(74) 

(75) 

Then the energy relaxation rate is: 

-X WE = 
3E2m*2 

h4pa 

3 7c ̂  3 [ 1 -cr J 

8a J / 

^ 
*nr *£ 

+ 6 a 2 £ 

4-c r * 3L(a) + i^V 2 v 2 

2 1 \-a2 J 47r(l-a2) 1-a2 
^ a ) -

-Vl-a2 

1 + VT^2} 
where EQ=^^/2m*a^ is the subband energy. 

(76) 

6. Electron-Electron Scattering Dominated Transport of 2D Gas in GaN/AlGaN 
Quantum Wells 

In this section we will consider behaviour of a 2D electron gas in a square 
infinite quantum well (QW) in the presence of strong longitudinal electric field F. In line 
with previous discussions we deal with an ideal GaN/AIN QW as this double 
heterostructure is best suited in order to observe the some new physical effects which 
have not been discussed or studied before. Since the depth of the GaN/AIN QW is about 2 
eV it can accommodate a high density electron gas and the free electrons can be supplied 
not only via modulation doping but also via the doping effect of the intrinsic polarisation 
fields. Apart from this doping effect, polarisation fields will be ignored. The latter 
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property creates an exceptional situation when there is no direct correlation between the 
number of free electrons in the QW and the number of background and remote charged 
impurities. In such circumstances the scattering by the deformation acoustic (DA) 
phonons, the piezoacoustic (PA) phonons, and the polar optical (PO) phonons are the 
main scattering mechanisms besides the e-e scattering. In real structures it would be 
necessary to include scattering by background impurities, charged dislocations and 
interface roughness which usually determine the low-field electron mobility, but as here 
we mostly will focus on the high-field transport we do not include them. Also each one of 
these can be eliminated, whereas the scattering mechanisms we consider cannot be 
eliminated, although inclusion of the these mechanisms in our theory has no principal 
difficulties. 

It is useful to appreciate the magnitude of each of the main intrasubband 
scattering rates. The most rapid is that for PO phonon emission (-lO1 4*"1) when the 
electron energy is above the PO phonon energy; below the PO phonon energy, however, 
the rate is determined by the PO phonon absorption which becomes weak toward low 
lattice temperatures kBT« hco0. Due to high polarity of the III-V nitrides the PO 
phonons mediated scattering rate is about an order of magnitude higher in GaN than in 
GaAs. Because of this the PO phonon absorption considerably contributes to the electron 
mobility even at relatively low temperatures when the above condition is satisfied, for 
example at room temperature [13]. We will include the PO phonon absorption in 
calculating the PO phonon mobility. PA phonon scattering is always significant in 

wurtzite GaN especially at low temperatures (at T=50 K the rate is about 5 x 10 s for 
energies about kBT, decreasing with increasing energy). DA phonon scattering is slightly 

weaker, the corresponding rate being about 10 s~l). The e-e scattering rate depends on 
the electron density. At energy equal to the PO phonon energy (the worst case in the 
range we consider) the rate in a gas of density 10 cm is about 4x10 s . In the 
range of the electron energies 0 - 100 meV it is easy for the e-e scattering to dominate 
both the energy and momentum rates randomisation at densities above 10 cm . Such 
densities are easy obtained in GaN/AlGaN structures [1, 2]. Here we will deal with the 
case in which the electrons occupy only the ground QW state with the quantization 
energy E0, and the lattice temperature T is small in comparison with the PO phonon 
energy h(00, kBT«h(0o <3E0. These conditions are easily satisfied within a wide 
range of lattice temperature in GaN-based QWs, where hco0 = 92.8 meV, and for the QW 
thickness d=70 A. We ignore the electron gas degeneracy. Of course, at high electron 
densities this effect is important, but with increasing electric field its importance will not 
be so significant as the electron gas will occupy the high energy states, and therefore the 
degeneracy will be partially or completely removed. 

The strength of the electron-electron (e-e) interaction is a key parameter which 
defines the distinctively different regimes of energy and momentum relaxation and non-
equilibrium electron kinetics in semiconductors [14]. Because the integral operator of the 

inter-electron scattering Ie€\f(k\f(k' ) \ is a bilinear functional of the electron 

distribution function f(k) of the interacting electrons in the states with the wavevectors 

k, k\ the magnitude of the transition probability Wee(k,k' )is proportional to the 
electron density n, as it can be seen from Eq. (33). Screening can be expected to modify 
the linear dependence. Indeed, for collisions involving small energy exchanges, which 
can be taken to be screened statistically, an increase of rate with density is countered by 
an increase of screening, so little dependence on density occurs. But, as discussed in 
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496 B. K. Ridley & N. A. Zakhleniuk 

discussed in Section 4.2, small quasi-elastic collisions are not important for relaxing 
energy. Highly inelastic collisions are the more significant, and for these, screening is no 
longer a static process but rather a dynamic one. To give full treatment of the dynamic 
screening of the e-e interaction is beyond the scope of this work, but preliminary 
indicators are that anti-screening effects become important at energy exchange of order of 
the optical phonon energy. The interplay of screening and anti-screening is therefore 
complex in the dynamic regime, which is just the regime we are interested in. Pending a 
full study we will assume that there is sufficient balance between screening and anti-
screening for us to ignore the screening of the e-e interaction altogether. Therefore the e-e 
scattering contribution to the relaxation processes can be ignored only when the electron 
density is very low, otherwise e-e scattering will control the electron energy relaxation (at 
intermediate electron densities) or both the energy and momentum relaxations (at high 
electron densities). In the last two cases the electron system can be described by means of 
the electron temperature Te. 

Due to dependence of the e-e scattering operator on the electron density it is 
possible in principle to distinguish between three physically different situations [15]. Case 
I, which can be called the partial energy control case, takes place at the intermediate 
electron densities when the e-e scattering controls the energy relaxation only within the 
passive energy region E<h(00. In the active energy region E>hco0 the PO phonon 
scattering is stronger than the e-e scattering. Case II, which can be called the full energy 
control, takes place at higher electron densities when the e-e scattering is responsible for 
the energy relaxation at all energies, but the electron momentum relaxation in the active 
region is still controlled by the PO phonon scattering. Case III, which can be called the 
electron momentum-energy control, takes place at yet higher electron densities when the 
e-e scattering controls both the electron energy and the momentum relaxation at all 
energies. The most interesting physical situation belongs to the case III which is 
characterised by a unique strongly non-linear regime with a non-monotonous behaviour 
of the electron temperature Te as a function of an applied electric field F. But for 
completeness we carry out below the kinetic equation based analysis of the all above 
three cases. 

6.1. Electron kinetics and the electron temperature at the partial energy 
relaxation control by the e-e scattering 

In this case in the passive energy region the energy relaxation rate due to the e-e 
scattering is higher than the energy relaxation rate due to any other scattering mechanism, 
but the electron momentum relaxation is controlled by other mechanisms (in our case by 
the DA and PA phonon scattering). It is obvious physically that the distribution function 
in this region will be very close to the Maxwellian function, 
/ ( £ ) = FT(E) = A0exp(-£IkBTe), with the electron temperature Te (A0 is a 
normalisation constant, see Eq. (32)). Since the deviation from the Maxwellian function 
will take place near the PO phonon energy only, as the PO scattering dominates the e-e 
scattering at this energies, it may appear that since this region is quite small it would be 
possible to neglect the effect of the PO phonon scattering altogether. But such a neglect 
would be wrong. This is because the interaction with PO phonons is extremely inelastic 
process which results in large change in the electron energy. It is physically obvious that 
the intensity of this interaction depends strongly on the electron population (electron 
distribution function) at the energies near the threshold energy E = hco0. Therefore much 
care should be taken in calculating the distribution function at these energies even if the 
majority of the electrons still are in the passive energy region. The emission of the PO 
phonons even by the relatively small number of the electrons could be very effective 
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channel of the electron energy loss for the whole electron gas due to large magnitude of 
the PO phonon energy. Although the emission of the PO phonons takes place only at the 
energies E > hco0 this process will effect the electron distribution function not only at 
these energies but it will also have a profound effect on the electron distribution function 
at the energies E < hco0 just below the PO phonon energy. This is because any electron 
which is in the state just below the threshold energy may acquire the necessary excess of 
the energy from the other electrons due to the e-e scattering. In this case this "lucky" 
electron will leave the passive energy region and will never come back into this region by 
means of losing the excess of the energy due to e-e scattering. This is because the PO 
scattering is stronger than the e-e scattering in the active energy region and any electron is 
transferred from the active energy region into the passive energy region due to the PO 
phonon scattering. Therefore, the e-e scattering acts as some kind of pump which supplies 
the electron into the active energy region but which does not transfer them back. As a 
result of this asymmetry the electron distribution function will be depleted at the energies 
just below the PO phonon energy. 

This case was analysed in detail by Levinson and Esipov [11, 16] for 
photoexcitation but in the absence of the electric field. They shown that the competition 
between the e-e and the PO phonon scattering near E = hco0 can be described by the 
parameter k0 which is proportional to the ratio of the characteristic e-e scattering rate and 

the PO phonon sca t te r ing ra te near the th resho ld , 

X0 =2<yjh(00/ nkBTe vee(tico0)/ vpo(Tioo0), where vee(hco0) = n2e4nf £2h2(00 is the 

e-e scattering frequency (e s is the static dielectric constant), vpo(h(0o) = naF0)o is the 

PO phonon collision frequency (ccp is the Frohlich constant). The regime in question 

takes place if X0 «1. For a GaN QW X0 = 0.02 when n = 1011 cm'2. 
The determination of the distribution function f(E) in this case requires the 

solution of an integral kinetic equation [16] which explicitly includes the e-e and the PO 
phonon scattering operators: 

oo 

\dE NS(E )\w(E ,E)f(E ) - W(E,E ) / (£)] 
J I J (77) 

= vpo(h(Oo)(No + l)f(E)9{E-hc0o), 

where W(F, E) is given in Eq. (44), Ns(E) = m Allnh is a 2D density of states (A is 

the area of the QW), N0 = fexp(/i6)^ / kBT) -1] is the PO phonon distribution function 

at equilibrium, and ©(JC) is the step-function. It is necessary to note that in deriving the 
above kinetic equation we assume that the rate of the electron transfer from the passive 
into the active energy region due to gain of the energy directly from the electric field is 
small in comparison with the rate of the transfer due to the e-e scattering near the 
threshold energy. This assumption imposes an additional limit on the strength of the 
electric field F. By the direct comparison of the corresponding terms in the kinetic 
equation we obtain the following approximate criterion for the electric field: 

e2F2TJhci)0)Tee(hCQ0) p / ee ° « 1 , (78) 
m fi(0o 

where xp{h(D0) and Tee(hcQ0} are the electron momentum scattering time due to DA 

and PA phonons and the e-e scattering time, respectively, at the PO phonon energy. 
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498 B. K. Ridley & N. A. Zakhleniuk 

A considerable complication in a 2D case in comparison with the 3D case arise 
because the e-e scattering in a 2D gas cannot be considered as a diffusion in the energy 
axis [16]. As a result of this the above integral equation cannot be transformed to the 
differential form as it was the case in a 3D electron gas. 

The integral equation (77) has been solved analytically in Ref. 16 using the 
Wiener-Hopf method. The obtained solution is: 

\(2A0f\ M«A0, 

f(E) = A£x 0- -1 /2 ] ,-1/2 -t 2n A0t e , 

*~V(VM), 

f>0, t»X0, 

t<0, | f | » A 0 , 

(79) 

where t = (E-hco0)/kBTe, and A+ = FT(E = hco0) = A0zxy{-Ti(0o lkBTe). It follows 
from Eq. (79) (the third line) that deep into the passive energy region (|t| » 1) the 
distribution function is indeed equal to the Maxwellian function FT(E) as we pointed out 
earlier. In the important part of the active energy region the distribution function can be 
presented as (second line in Eq. (79)) F+(e) = FT(e)2A0^(e-hco0)f nk0Te . 

The distribution functions obtained above should be used in the energy balance 
equation for the electron temperature Te and for the calculation of the electron drift 
velocity vd. The energy balance equation is derived from the kinetic equation (9) by 
multiplying it by the electron energy E(k) and summing up over all k. For a 2D electron 
gas interacting with unscreened DA, PA, and PO phonons in the square QW the balance 
equation is 

~F2H(Te) = ^r 1 - — 
T , 

i+2-
E„ T 

3 kBT Tt 

2 si 
+ — -

Xa 

e J 5 si sTr T 
pa le 

8 . vop(tico0)Aa kBT 

3n VQ 2m si 
jP(w0)(N0 + l)\- + 

1 Ti(Dn 

We) 

hcon *<0 
kBT 

(80) 

As we see the last term in Eq. (80) is proportional to the parameter X0 which in its turn is 
proportional to the rate of the e-e scattering, i.e. the e-e scattering rate is explicitly enters 
the balance equation. Here we introduced the following notations for the dimensionless 

electric field F and dimensionless electron mobility ft, and the form-factor P(w0) for 
interaction between the 2D electrons and the PO phonons, respectively: 

-r2 _ JeFkay 
9m*slE, 

3/2 -x 

:-«r',-(,tr*)"'J^7 172"> R(Te)-~ 

r pa kBTe 

3 1 + y 
,(81) 

po 

P(*o)^ 
1 1 l-e -27tW„ 

w2
0 ' l + w | nw3

0a + wh2 I w„ = 
hcog 

4E„ 
(82) 

The electron mobility is: 

fi(Te) = (l + Yop)^-fi(Te) (83) 
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Figure 3. Variation of (a) electron temperature Te and (b) drift velocity vd with electric field F in 

a GaN square QW at the intermediate electron densities n0 corresponding to the partial control of 

the electron energy relaxation by the e-e scattering for different lattice temperatures T0. 
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500 B. K. Ridley & N. A. Zakhleniuk 

In Eq. (83) r ^ = 2>VQ 12Xa is the DA phonon scattering time for the 2D electrons, 

Xa = 7thAps\ I m*2E2kBT is the electron mean free path in a bulk material due to DA 

phonon scattering, p is the material density, E is the DA potential constant, s^ is the 

longitudinal (k = L) or transverse (X = T) acoustic velocity, VQ = ^2E0 / m* , 

Yop = 2N0vop(h(D0)ka 13v0, and Ypa = ( * A / E0sTTpa)(l6 + 12s$ I s2
L)l 35 are the 

dimensionless coefficients, rpa = 2nph2sT I m*e2h2
4 is the characteristic scattering time 

for the bulk material due to PA phonons, /i14 is the piezoelectric constant. 
The balance equation (80) has been solved numerically in order to obtain the 

electric field dependences of the electron temperature Te(F) and the drift velocity 
vd(F) = iu(Te)F using the following parameters for the electrons in a square GaN/AIN 

QW (the well width was 70 A with the ground state energy £„=70meV): m =0.2lmo, 

E=10.1eV, /z1 4=4.24xl07 VIcm, p = 6.1 gfcrn3, aF = 0.45,(0o = 1.41 xlO14 s~\ 

sL = 4.57 x 105 cm I s, and sT = 2.68 x 105 cm/ s. The obtained dependences are shown 
in Figures 3 (a, b). 

The most remarkable feature of these dependences is the sharp increase of Te 

and vd with F at low lattice temperatures (T0 < 50 K) and the smooth behaviour of 
these dependences at higher temperatures. This is the result of competition between PA 
phonon and DA phonon scattering where the PA scattering dominates at low temperatures 
and the DA scattering dominates at high temperatures. 

6.2. Electron temperature of the hot electrons for the case of full energy 
control by the e-e scattering 

This case means that the e-e scattering dominates the energy relaxation at all 
electron energies. This takes place in a QW when n0 >10 cm . The distribution 
function is F(E) = FT(E) in the whole energy region. 

It is necessary to note however, that the real material parameters of the GaN QW 
are such that probably this regime cannot be realised in practice. The necessary increase 
in the electron density leads to fast increase of the e-e scattering rate in such a way that at 
the above densities the e-e scattering will control not only the energy relaxation but also 
the momentum relaxation as well. (This case is considered in the next Section). For 
consider this case here for completeness only. The energy balance equation corresponding 
to this case can be obtained in the same way as the Eq. (80) in the previous section. The 
only difference is that in this case the e-e scattering rate does not enter the balance 
equation. Direct calculation shows that the balance equation in this case has the same 
form as the balance Eq. (80) with only one difference: the parameter X0 in the last term 
in Eq. (80) has to be formally substituted by the factor (1/2). 

The electron temperature and the drift velocity are shown in Figures 4 (a, b) as 
functions of F (solid lines). For comparison, we also show the Te(F) and vd(F) 

dependences for the previous case (X0 «1) for two different densities n0 = 10 cm" 

and n0 = 5-1011 cm"2. The main difference between cases I and II is that the electron 
temperature and the drift velocity in case I do depend explicitly on the electron density 
n0 while in case II there is no explicit dependence on n0. 
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Figure 4. Variation of (a) electron temperature Te and (b) drift velocity v^ with electric field F in 
a GaN square QW at the electron densities corresponding to the full control of the electron energy 
relaxation by the e-e scattering for different lattice temperatures T0 (solid lines). The rest of the 
curves correspond to the case of the partial energy control. 
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6.3. The 2D electron gas cooling and squeezed electron distributions 
Physically most interesting and unique case arises at high electron densities 

which are sufficient o allow the e-e collisions to control both the energy and the 
momentum relaxation. Our calculation shows that this takes place if n0 > 5 • 10 cm . 
The distribution function in this case is a Maxwellian drifted function 
F(k) = A0exp{-e(k -k)/k0T€], where k is the displacement wavevector. It is 
necessary to note that usually the drifted distributions are inhibited by the presence of 
impurity and other scattering mechanisms which tend to control the electron momentum 
relaxation. This is because in order to obtain the necessary high electron density one has 
to use the highly doped materials. In this case the high electron density comes together 
with the high ionised impurities density and both the electron-electron and the electron-
impurity scattering rates will have the same order of the magnitude. As result of this the 
e-e scattering alone is unable to dominate the electron momentum relaxation. (At the 
same time the e-e scattering is able to control the energy relaxation due to considerably 
lower rate of the energy relaxation in comparison with the momentum relaxation rate. 
Physically this is because it is enough only a few collisions in order to change the electron 
momentum direction, but it is necessary considerably more collisions in order to change 
the electron's energy if the collisions are quasielastic.) So far the only experimental 
possibility to obtain the drifted distributions were realised at the intensive photoexcitation 
conditions where the high electron density can be obtained through the interband 
excitation. This usually correspond to the transient regime. Here we want to point out that 
the piezoelectric field doping in III-V nitride-based heterostructures open physically new 
possibility to establish the electron drifted distributions at the steady-state conditions. And 
this leads to novel transport properties, including absolute cooling and a squeezing of the 
distribution in the direction of drift. Due to strong interaction with the PO phonons the 
electrons encounter the strong phonon emission barrier when the average kinetic energy 
approaches the PO phonon energy. 

In order to investigate the non-equilibrium electron kinetics with drifted 
distribution it is necessary to derive two balance equation (the energy conservation and 
the momentum conservation). In the presence of the external electric field F the electron 
system gains from the electric field both the momentum and the energy. It is important to 
point out that since the e-e scattering is the fastest scattering mechanism in the system, the 
energy and the momentum gained from the electric field by each individual electron will 
be first distributed within the whole electron gas without substantial loss to the other 
scatterers. At some point the balance will be established between the whole electron gas 
and the thermal bath. As a result the electron gas will acquire the drifted (macroscopic) 
momentum hk. The average kinetic energy of the gas, which is described by the electron 
temperature Te, will also change. Usually both these parameters increase when the 
electric field increases. Here we want to point out that this is not the case any more if a 
strong inelastic scattering mechanism is present. In the case considered such a mechanism 
is mediated by the interaction with the PO phonons. Due to large magnitude of the PO 
phonon energy in GaN, the majority of the electrons will interact with the PO phonons 
only at relatively high electric field (~1 kV/cm). Until these fields will be reached the 
electron gas will interact mainly with the PA and DA phonons. This interaction is 
quasielastic [17] and it does not prevent both fik and T€ to grow when F increases. At 
higher electric fields, when the interaction with the PO phonons dominates over the PA 
and DA phonon interaction, the electron gas looses its energy by large portions ( - hco0). 
This effectively hinders the further growth of the electron temperature. Due to the large 
coupling constant in GaN the optical phonon energy level acts as a "hard wall" for the 
electrons, which prevent the electrons from penetrating to the higher energy. In general 
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the above parameters k and T€ are found from the system of two balance equations 
which describe the momentum and the energy conservation. Using the above drifted 
Maxwellian function we have derived two balance equations for 2D electrons. The only 
assumption that has been made is that k0Te «fico0. The equations in question are: 

eF 
• = K\ 

J _ ^ L j T ^(K) 

xda Tpa ^2m*sjkBTe 

< ft(o„ 

+ (N0 +!)/>( w0)\ 
vpo 

* 2, 

tMo+liA 

e kBT +x¥2M
e keTe 

etl
 KF=Am SLEo 

3kBTe 

1 .+JLL |2(*rW 
Tda 1 0 rpa \ »l SLE0 J 

l-I-iW 

+ — h a > 0 ( N 0 + l ) P M 
*po 

V3Me 

ha)0+eK hci)n\ 

^B^e __ e kBT 

(84) 

(85) 

Here eK = h2K2 12m* is the electron drift energy and rpo = vp
x
o{h(0o). The function 

"po\ 

are 

i 

T^K:) in Eqs. (84), (85) is defined as -u du, where (pt (u) 

0 

given by the expressions q>\(u) = exp(-EKu IkBT€), (Pi(u) = ch(2u^jsKhco0 IkBTe\, 

and (p$(u) = (p2(u)f 2(1-u ). The above equations have been solved numerically with 
the same parameters which we used in the previous sections in order to obtain k and Te 

as a function of F. 
First we calculate the electric field dependence of the electron temperature Te 

and the drift velocity vd =TIKI m* of 2D electrons which are shown in Figure 5 for 
different lattice temperatures T. 

The most interesting feature of these dependences is that the electron 
temperature Te is a non-monotonous function of the electric field. Another interesting 
results concerns the field dependence of the drift velocity: vd(F) has the regions which 
obey an S-type dependence. These regions exist only at low lattice temperatures (T~ 10-20 
K) and they disappear when T increases. This behaviour is a result of a complicated In­
dependent competition between PA and DA phonon scattering [18]. At higher lattice 
temperatures the DA scattering dominates over the PA scattering and the S-type regions 
disappear. Another interesting feature is a saturation of vd at high electric field (F order 
of 1-10 kV/cm). This effect is completely due to the e-e and PO phonon scattering. The 
PO phonon scattering effectively limits any further increase of the drift electron 
momentum since every time that an electron emits the optical phonon it loses almost all 
the energy and the momentum. 
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Figure 5, Variation of (a) electron temperature Te with drift energy eK ~h2K2 12m* and (b) 
drift velocity vd with electric field F for different lattice temperatures T0. 
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The existence of the S-type regions and the saturation of the drift velocity is 
evident also from the electric field dependence of the electron mobility 
//(F) = v^(F) / F, which is shown in Figure 6. 

CO 

CM 

£ 
10" 

1000 

[ T=10K 
o 

T =20K 

_j i i_ _ J — i — i i i i 

10 100 1000 
F (V cm"1) 

Figure 6. Mobility as a function of the electric field for different lattice temperatures T0. 

It is necessary to note that usually the drift velocity saturation and decrease of 
the mobility at high electric field take place in the streaming regime [19], when the 
electrons move ballistically in the momentum space until they reach the optical phonon 
energy, emit the optical phonon and repeat the ballistic motion again. But in our case the 
streaming regime does not take place because for the range of electric field considered the 

acceleration time [19] TF = ̂ 2m*h0)o I eF necessary to reach the PO phonon energy, 

is much longer (rF ~ 5 x 10~125_1) in comparison with the e-e scattering time. 
The electric field dependence of the total mean electron energy <E>Js shown in 

Figure 7. The total mean energy of the electron is a sum of the mean kinetic energy 
< Ek >= kBTe and the drift energy eK: <E>= kBTe + eK. 

We see that at low T the electric field dependence of <E> has more complicated 
character than at higher T. At low T the PA phonon scattering is very strong in GaN and it 
suppresses increase of <E>. When F increases the electrons penetrates into the higher 
energy region where the PA scattering is weak. This results in a steep increase of <E> 
when F increases. At higher T the intensity of the PA scattering is small in comparison 
with the DA scattering and the region of steep increase of <E> disappears. Note that this 
region corresponds to the same range of F where the drift velocity obeys the S-type 
dependence as was shown in Figure 5 (b), and Figure 6. 
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Figure 7. Variation of the total mean electron energy <E> with electric field F for different lattice 
temperatures TQ. 
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Figure 8. Variation of the electron temperature Te with the drift energy eK for different lattice 
temperatures T0 . 

144 

In
t. 

J.
 H

i. 
Sp

e.
 E

le
. S

ys
t. 

20
01

.1
1:

47
9-

50
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 "
C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S,
 B

E
IJ

IN
G

 T
H

E
 L

IB
R

A
R

Y
" 

on
 1

1/
28

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



Transport in a Polarization-Induced 2D Electron Gas 507 

Increase in the total energy <E> does not mean that the electron temperature Te 

increases as well when F increases. Figure 8 shows variation of the electron temperature 
Te with the drift energy eK for different lattice temperatures T. 

As we see this dependence is a non-monotonous function which has a region 
where the electron temperature decreases. This region corresponds to the electron cooling 
effect because the electron temperature Te decreases with increase of the electric field. It 
is even possible to obtain at high electric field an electron temperature Te which is 
smaller than the lattice temperature T - the absolute cooling effect. Of course, the total 
energy of the electron gas increases, as it should be, due to increase of the drift energy 
£K. The physical reason of the electron gas cooling is the intensive emission of the 
optical phonons when the total energy of the majority of the electrons is close to the PO 
phonon energy hco0. 

It is interesting to investigate behaviour of the electron distribution function with 
the increase of the electric field F. This is shown in Figure 9 for two different lattice 
temperature T=10 K and T=100 K. The numbers near each curve are the values of the 
drift energy eK. 

As the drift energy is a monotonous function of the electric field the higher drift 
energy corresponds to the higher electric field. Figure 9 shows that at very small electric 
fields the electron distribution function is close to the Maxwellian equilibrium distribution 
function which is a maximum at zero kinetic energy. When the electric field increases the 
distribution becomes wider in the momentum space. This corresponds to an increase of 
the electron temperature T€. At the same time the distribution function is no longer 
centered at zero energy but has shifted along the electric field, a shift that corresponds to 
the drift of the electron gas as a whole. This behaviour continues with increase of the 
electric field until the electrons start to penetrate to the optical phonon energy. Strong 
inelastic scattering prevents the electrons from any further increase of their kinetic 
energy. As a result the electron distribution becomes more narrow or squeezed. This 
corresponds to a decrease of the electron temperature. At the same time the centre of the 
distribution function continues its shift when the electric field increases, which means 
increase of the electron drift energy. The most interesting physical consequence of this 
behaviour is that the electron distribution function is inverted in the momentum space n a 
majority of the electrons populate the high-energy region. Another interesting 
consequence of the decrease of the electron temperature with increase of the electric field 
is that the non-equilibrium electron gas becomes "less randomized". This should give, for 
example, a decrease of the electron noise temperature. 
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Figure 9. Squeezing of the distribution function F0 (k) of hot electron gas for two different lattice 

temperatures 7^=10 K and 7^=100 K at different values of the drift electron energy SK 

(numbers near each curve). 
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7. Summary 
AlGaN/GaN structures constitute a new class of 2D systems in that a large 

population of electrons can be produced without doping as a result of spontaneous and 
strain-induced polarization. We have shown how a simple electrostatic model can 
describe the dependence of the induced electron density on barrier width in a AlGaN/GaN 
heterostructure. Large electron densities mean that a complete description of electron 
transport must include the effects of degeneracy, electron-electron scattering and dynamic 
screening. Such a description does not exist as yet, but an approach that ignores 
degeneracy and screening has a certain validity in the hot-electron regime. The effect of 
electron-electron scattering, in the absence of scattering by impurities and other defects, 
can then be regarded as establishing a drifted Maxwellian distribution. Accordingly, we 
have illustrated some consequences of the possibility of impurity-free hot-electron 
transport in perfect AlGaN/GaN heterostructures. These include S-type negative 
differential resistance, carrier cooling and squeezed electrons, novel properties that appear 
most strongly in the temperature range 100K and below. These properties should become 
accessible to experiment as material quality improves. 
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