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TRANSPORT IN A POLARIZATION-INDUCED 2D ELECTRON GAS
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AlGaN/GaN structures constitute a new class of 2D systems in that a large population of electrons
can be produced without doping as a result of spontaneous and strain-induced polarization. Electron
transport can, in principle, be mediated solely by phonon scattering and, for the first time, it is
possible to realistically envisage the formation of a drifted Maxwellian or Fermi-Dirac distribution
in hot-electron transport. We first describe a simple model that relates electron density in a
heterostructure to barrier width and then explore electron-electron (e-e) energy and momentum
exchange in some depth. We then illustrate the novel hot-electron transport properties that can arise
when only phonon and e-e scattering are present. These include S-type NDR, electron cooling and
squeezed electrons.
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1. Introduction

The spontaneous and piezoelectric polarization exhibited by semiconductors that
crystallize in the wurtzite structure can be exploited to induce large, quasi two-
dimensional (2D) electron populations [1, 2] which, because they do not depend for their
jexistence on donor impurities constitute, in fact, a new class of 2D electron systems. It is
the purpose of this chapter to give an account of the physics that enters the description of
these new properties. Inevitably, given the current state of the art of crystal growth,
experiments on electron transport that have been carried out have been influenced by the
¢ presence of unwanted impurities and a high concentration of dislocations and, not
surprisingly, there have been no reports of properties that we will be describing. Contact
of theory with experiment must therefore await the production of purer and more perfect
crystals and heterostructures. Since these are likely to be in the III-V nitride systems,
given the technological interest in visible lasers and in high-power microwave transistors,
we focus on these systems and, in particular, GaN and its alloys with AIN, though our
analysis will apply to II-VI and other semiconductors. '
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72. Polarization-Induced Electrons
Waurtzite and other low symmetry crystal systems can exhibit spontaneous
Wpolarization directed along the c-axis as well as polarization arising out of barrier strain in
4 & heterostructures through the piezoelectric effect, and this has been quantified for the ITII-V
6("5 nitrides [1, 2] and exploited to produce a quasi-2D electron gas without deliberate doping
mZin AlGaN/GaN heterostructures leading to successful FET devices [3, 4]. The questions
g Warise: where do the induced electrons come from, and how is their density related to the
£5 polarization?
- The first task is, therefore, to explain the origin of polarization-induced electrons
£®in undoped structures that are grown along the C-axis. (Growth along the A-axis would
Z eliminate the effect of spontaneous polarization.) It has been argued that the source of
_5 electrons is the surface charge acquired by the structure from the adsorption of ambient
zions and from changes in the charge trapped in surface states [5, 6, 7] and this explanation
will be adopted here. Thus, in this model, a free-standing slab of GaN will have zero
internal electric field, the large field associated with spontaneous polarization having been
entirely neutralized by surface charges. In the case of a heterostructure consisting of an
AlGaN barrier on a GaN buffer layer, both grown along the C-axis, the upper and lower
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480 B. K. Ridley & N. A. Zakhleniuk

surfaces have different total polarization charges induced due to the spontaneous
polarization and piezoelectric strain field and, consequently, surface charges cannot
entirely eliminate internal fields. In general, the surface charge on the upper surface will
be different from that at the lower surface, and it is this difference that determines the
induced electron density. Specifically, the upper Ga-face, AlGaN surface turns out to
have a negative polarization charge which will attract a positive surface charge density,
+05], and the lower, GaN surface will have a positive polarization charge which will
attract a negative surface charge density, —0¢?2; the induced electron density is then equal
to (0g] — Og2) for overall charge neutrality to obtain. The surface charge densities can be
obtained from the known polarization charge densities by first deducing the fields from
Gauss's equation and then requiring that the voltage difference across the structure
vanishes. The voltage difference across the GaN will include the depth of the quantum
well at the AlGaN/GaN interface which, in turn, will depend on the induced electron
density. The solution, therefore, will have to satisfy a self-consistency condition.
In typical practice at the present time, an AIGaN/GaN structure is grown on a
thin nucleation layer of AIN deposited on a sapphire or SiC substrate. The lack of a
slattice-matched substrate means that the nucleation layer is highly dislocated, and

Sdislocations thread their way to the top surface, their density being of order 109 cm2.
#These dislocations introduce deep states that capture electrons from donors inadvertently
E ﬁsmtroduced during growth that will affect the mobility of electrons if not screened [8, 9].
BAs a consequence of this acceptor-like action, acting along with other acceptors
—inadvertently introduced, the heterostructure is heavily compensated with a mobile

electron density of less than 1014 cm=3 [10]. In nominally undoped material, therefore,
screening of the sheet charges introduced by polarlzatlon, other than by the induced 2D
gas, can be ignored. In some cases the barrier is doped n-type and, in general this
situation needs to be considered, though adding impurities destroys the unique features
: introduced by polarization.
We illustrate our elementary electrostatic model for the case of an n-type,
uniformly doped barrier that is entirely depleted of electrons [9]. Figure 1 depicts the
electron-energy diagram. We assumed that the structure is in thermodynamic equilibrium
with zero electric fields applied outside. We also assumed that the characteristic size of
the area of surface and interface greatly exceeds the thickness of the layers, so that the
electrostatic problem reduces to a one-dimensional one. The Fermi level is chosen to be
> me¢ below the conduction band in the GaN buffer layer. In the case of a free GaN surface
s “ measurements of Schottky barriers suggest that the Fermi level is pinned by surface states
— &ysuch that ¢=1V. Though deviations from this magnitude may be expected to occur at the
8 themal surface of GaN and the nucleation layer we will assume that the Fermi level
8rcmams deep in the forbidden gap, in accord with observation [10]. At the lower
ﬁéboundary of the 2D gas the transition from quantum well to bulk will be relatively rapid.
% < For simplicity we assume that the 2D gas acts like a sheet charge of zero width exactly
o olike all the other charges in the problem.

9 Beginning on the left, at the surface, we assume without loss of generality, the
T gemstencc of a surface charge +0g] (adsorbed ions/surface state population charge) in
HHresponse to the polarization charge of the Ga face AlGaN, —op] (spontaneous plus
_zpnezoelectnc) and there will also be a surface-state charge —op; arising from the

Gelectrons from the donors in the barrier. If £ is the permittivity of the barrier, the field

2 E;| immediately in the barrier is given by: £ E; = 05 — 0p; — Op;. Solving Gauss’s

equation for the depleted barrier gives the field E;, at the interface:
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Transport in a Polarization-Induced 2D Electron Gas 481

€1E, = § E(, +enpay, where np is the donor density and gy is the barrier width. The
field E, in the buffer layer is then given by: &,E, = €1Ej3 + Op1 =03 —Opp

AlGaN GaN

_‘_‘m

+
Q

]

—_

=Og2

< 2, b >

igure 1. Schematic conduction-band energy dependence through a A1GaN/GaN heterostructure.
he AlGaN barrier is doped n-type and completely depleted, and the GaN is free of mobile charge.

e sheet-charge densities are defined in the text.

1@8{&2. For personal use only.
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Here, €, is the permittivity in the buffer layer, op2 is the magnitude of the
olarization charge in GaN, o, is the charge contributed by the donors, and oy, is the
agnitude of the induced charge. Assuming zero field beyond the buffer layer, we obtain
other equation for E2, i.e.: —€,E; =03 — 05y , Where Oy, is the magnitude of the
egatlvc charge at the lower boundary. It is then straightforward to show that
= 05 — Oy, noting that op; + Op, =enpay.

The voltage change across the barrier is obtained by integrating Gauss's
quation, thus: Vi, =Vq; - Ejj1q9 —(enDalz)/Zal in obvious notation. The voltage
hange across the buffer layer is: ~A/e— Eya, and —Eja; = ¢, where A is the

4 u_magnitude of the energy depth of the quantum well which is determined by the electron
odensnty in the well, and a, is the width of the buffer layer. For simplicity, we assume all

§thc electrons occupy the lowest sub-band, and obtain: A =(op; +0,)/eN; where

‘%< Ng=m*/ mh? is the density of states per unit energy and m* is the effective mass of the

O
<clectrons in GaN. Constraining the total voltage change across the structure to be zero

*—Hallows us to obtain all the unknowns. In particular, the total 2D electron density,
Z Ot = Opy + Oy, is given by:

Oror =1+ )01 = 02 +0.5enpay (620 / ap)(1+ ), 1)
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where n = g;7h Iezm*a, and a=ga; ! £,4q.
This simple equation predicts that half of the doping electrons appear in the 2D
gas and that the barrier width must exceed a minimum, given by the zero of Eq. (1), for a
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2D gas to be established. Figure 2 illustrates the barrier-width- and ¢-dependences for
doped and undoped, pseudomorphic Aly 3Gagy 7N barrier on 2um GaN with £; =10.3¢,

£ =10.48y, 0,1 = 0, (spon) + 6,y (piezo) = (0.045+0.11)Cm ™2, 7,5 =0.029Cm ™
2.0
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I_%Floure 2. Dependence of electron density on barrier width and Fermi level. The effect of doping

ith 1018cm3 donors is shown for the case o=1V.
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Comparison with published data, e.g. Ref. 2, suggests that ¢=1V. The important
oint here is that in the absence of doping the induced electron density is still large. In
hat follows we will assume that impurities are entirely absent.

In principle, therefore, we have a new situation in semiconductor physics, in
which a substantial density of electrons can be created without adding donor impurities.
As far as electron transport is concerned, this means that we can contemplate an ideal
situation in which scattering by impurities and other defects is negligible, and only
Ophonon scattering need be considered. Moreover, the presence at the same time of a large

2 Zde ensity of electrons means that transport will be markedly influenced by electron-electron

& ti(e-e) scattering. One interesting effect of this combination of circumstances is the
< ¢ipossibility that under the influence of an apphed electric field the distribution function of
= Sthe electrons becomes a drifted Maxwellian, in the non-degenerate case, or a drifted
S LHFerml Dirac in the degenerate case. The usual case in semiconductor physics where the
effect of e-e scattering is countered by substantial impurity scattering, is one in which
OSteady state drifted distributions are unattainable, so the effect of polarlzatxon offers new
o Zpossibilities. We need, therefore, to examine phonon scattering rates in order to compare
(%gthem with the e-e scattering rate and in order to solve the Boltzmann equation.
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~ I_|_|3 The Boltzmann Equation
Provided that we are not interested in descnbmg phenomena in ultra short times,
Zover ultra short lengths or in very high electric fields, and provided that collisions are not
:5too frequent, we can regard the electrons as occupying eigenstates of the unperturbed
zerystal, making infrequent transitions between those states as a response to perturbations
associated with the vibrations of the crystal lattice. The statistical book-keeping can then
be carried out via the Boltzmann equation which relates the rate of change of the
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occupation probability, f(k), of the state with wavevector k to the volume rate and to the
divergence of the probability current:

Ifk) _(Ifk))
v -( r )wﬂ V.(v(K) f(K)), @

where v(Kk) is the group velocity. The last term vanishes in the absence of spatial non-
uniformity and:

(Bf(k)) =(3f(k)) (Bf(k)) +(3f(k)] G
dt vol dt fields dt scat dt gen,rec.

We can dispense with the generation and recombination rates in the present context. The
field term is obtained from the probability current flow in k-space and the acceleration
theorem, dk/dt= e F/k, where F is the electric field and & carries the sign of the charge:

dIf (k dk
(—f;,‘—’) = Vb =—Vk( f(k)) = -2V (w) @
T fields
The scattering rate has the form:

(8f;tk)) =¥ 5= 6 +50. ®)
scat i i

here the sum is over all scattering processes and S~ is the scattering-out rate i.e. the rate

s§1al use only.
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which an electron is scattered out of the state k, and § $* is the scattering-in rate. The
rmi Golden Rule applied to phonon scattering, in which the absorption or emission of a
onon causes a transition from state k to k' and vice versa, leads to the form:

§ = [ Wi Kol tnc0,) + 10 - F1O1-n(0,) AL~ £(K )]
x 8(Ey: — Ey — hy)dK

=

(©)
+ [ Wi o) (k1= 00} = {(@0g) + 101 - (k"))

X8(Ep —Ep + hog)dk",
here @, is the phonon frequency, n(®,) is the phonon occupation factor, and q is the
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honon wavevector (q= k'- k or q = k - k" in the first or second integral, respectively).
here are three rates with this form, those associated with optical-phonon, piezoelectric
and deformation-potential acoustic-phonon scattering. (There will be a fourth if
ntervalley scattering is relevant.)
Electron-electron scattering is different from the mechanisms just considered in
electron states are involved: an incident electron with wavevector ki collides
q”xth a target electron with wavevector k2 and after scattering they occupy states with
Ewavevectors k1' and k2'. If electrons were classical particles we would think of k1 going
& "o k1' and k2 going to k2' and that would be it. But electrons are not distinguishable
I %)artlclcs the scattering event would look the same, ignoring spin, if the end states were
2 . dexchanged, and this extra, possible process adds to the rate. But the exchange of fermions
= Wyith the same spin changes the sign of the wavefunction, with the result that interference
Toccurs between the two processes. The squared matrix element that enters the Fermi
< Golden Rule then consists of four componentS'

=—[( Y2+ (MIE)? + () M}J)z], )

&>
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484 B. K. Ridley & N. A. Zakhleniuk

where the factor 1/2 takes into account the fact that in half of the collisions the spins are
aligned and otherwise they are not aligned. The scattering rate is of the form:

5eef(k1)=ﬂf[W<k'1,k'z,kl,kz>f<k'1)f(k'z){1—f<k1)}{1—f<kz>}

®)
-Wkp.kay, KK ) f(k) fp {1 = F(K'HL= £(K )} ]dk,dk' K, .
At the steady state the distribution function is to be obtained from:
af(k
—V kf(k)= ( il )) . &)
8t scat

Under the influence of the fleld the distribution function consists of the sum of a
symmetric part, f* and an antisymmetric part, f~, and Eq. (9) becomes:

v Y E) "f (E) = 5 (k).
(10)

—-ka‘<k> = §f* (k),

Bwhere v(k) is the electron group veloc1ty

Further progress requires the explicit scattering rates for the e-e and phonon
rocesses. The general complexity of the problem has drlven most workers in this area to
esort to purely numerical techniques, in particular, Monte Carlo methods. While
zgidoptmo such an approach is inevitable if a particular experimental situation is to be
£ gmodelled, it is not useful if a detailed understanding of the operation of the various
‘ (L\"processcs involved is required. A particular problem is the incorporation of e-e scattering
Snto the Monte Carlo simulation. Unlike other scattermg mechanisms which can be
: Sregarded usually as one-electron processes, e-e scattering is a two-electron process that
‘;.Entalls keeping information about two electron trajectories. Furthermore, taking into
ccount the long range coulomb interaction and the simulation of screening processes
alls for extremely sophlstlcated molecular-dynamic techniques. In the hcht of such
umerical complexities it is useful to adopt a complementary analytical approach even if
Tthis involves the sacrifice of some accuracy, and we take this approach. In order to
Lhighlight the new physics as clearly and as briefly as possible it is necessary to adopt
'L_.,some approximations. Accordingly, we assume that the conduction band is spherical and
 Zparabolic and, to avoid the complexity of intersubband transitions, we assume that the
gelectrons are all in the lowest subband of the quantum well. We will further assume that
¥ (ihe electron gas is non-degenerate, which will be reasonably valid for hot electrons even
' ifor relatively high electron densities. All interactions will be dynamically screened by the
2 &dielectric response of the polar lattice and of the electron gas. Screening is a complicated
v gprocess that deserves a chapter on its own. We will return to this topic later, but for

ﬁ%mmphcny we will ignore screening entirely.
&> The scattering rates for phonons are reasonably straightforward prov1ded the
oEphonons are regarded as bulk-like and their interaction with electrons taken in an
) Celastically isotropic, spherical approximation. The e-e scattering rates of interest are less

T Hamiliar, and we begin with these.
'_)

X!
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z4 Electron-Electron Scattering
Poisson's equation describes the interaction potential:

VZV(R)=-P—(E&=;6(R—R1). (11)

by "CHIl

If this is expanded in Fourier series we get:
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V(R)= fV<Q>e‘°“‘ RigQ—2.

27 3’
( ) (12)
S(R-Ry)= J' QR-RIIQ——
2 n)
Inserting into Poisson's equation, we obtam.
V(Q)=
Q 20’
Q(R-Ry) 1 13)
V(R) = —ef dQ .
&0’ @)’
The energy of interaction with an electron at R=R3 is:
" &Q(R2-Ry) 1
—-eV(Ry)=e I dQ . (14)
2 £0? @ny’
Introduce in-plane vectors r and q, Q=(q, qz). Then:
= "l 12 ,i4:21
[=4 2 e 1
5 —eV(Ry)=e f dadg , (15)
8 elg*+q7) @y
Bwhere ry; =ry-ryand g5 =25 -

eL?on

here is no conservation of crystal momentum in the z direction, so there is no special

grestnctlon on qz. Integration over qz can be carried out using:
LL. oo lq,le
o 'f ~dg, = Zedkwl, (16)
%r =g’ + q; q
< hus: P A
: T2
% —eV(Ry) = —— J' A dq. (17)
& 87 &g
DL et the incident electron have in-plane wavevector k1 and wavefunction:
Yi(r2)= 472N Mg (2). (18)

GTHE

A is the area of the plane. The electron collides with an electron with wavevector k2.
SAfter the collision the wavevectors are k1' and k2'. Following the Born approximation,
e assume that the wavefunctions after collision are the unperturbed ones. For the

%EI%N
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5 Ymoment, exchange and spin interference are ignored. The matrix element is:
% M, = J‘ l//z- (ry,23) V’l' (r1,z){—eV(R)} o (ra,25) ¥y (ry, 21 )dradrydzydz; . (19)
&)’l‘ransforming to centre-of-mass and relative coordinates gives:
% Tem = %(rl +ry), rjp =ry —ry, dradry =drg,dry,. (20)
g My = o J‘ ik +Ky =k —K3 )Xo e-i(kl—k',+k'2—k2).ru/2
i F(g)e'd™2 D
g X Tdrcmdrlqu.
ZThe form-factor is given by:

F(g)= f 02 (22)0r e 100, (25)0(2 )y 22)
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The integration over repy leads to the conservation of in-plane crystal momentum in the
case of N-processes (which are the only ones we need consider). The integration over r12
specifies q. Thus:
k; +k, —ky —ky =0,
k; —k; +k; —k; =2q.
Since q is defined, the integration over q yields a factor 4m2/A and the other integrations
yield a factor AZ. The matrix element becomes:
2
2Aeq

We consider the case in which both electrons, before and after colliding, are in
the lowest subband:

(23)

2=

A2
W(kl,kz)-—I|M12| 8(Ey' +E' —E, — E;)dk;dk, o

(25)

e

hen the electron population is degenerate the integrand would contain the factor
(1- f (kl MHI-f (kz )}. We take k3' to be fixed by momentum conservation, and so:

se onl

2 .
W(ky, k) = "—J‘ F 2(‘? S(E)dk; . (26)

where, for a parabolic band, () = 5{(h I12m )(k'22 +E2 k2 - kf)}.

J£8/12 Fgr personal u

.1. The scattering rate

At this pomt in the calculation it is usual to go on to obtain the bare scattering
ate which is what is required as input to Monte Carlo simulations and to prov1de
stimates of the dephasing rate. This is not the most useful rate for our purposes - we
equire energy and momentum exchange rates - but, for completeness, we continue along
e usual lines.

Y.onl

5

RA

B

=2
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¢ We now define relative wavevectors:
5 1 * 1 . .
e g1z = 5 (ki —kp) andgyp = 2 (ky = k2), 27
Wand observe that:
&4 gh = %(kl2 +h3 —2kkycos @), kg +ky|* = kE + k3 +2kk; cos g,
ﬁ 1 1 2 @8)
3 gk =—(k2+k2——k +k )
w 812 G ER | 1 2|
>Similarly,
: g5 = l(k'z e 1|k' +K |2)
12 =5 % 2 — iK1t K2 )
) 2 (29)
ﬁwhence it follows that the 8-function in Eq. (26) can be represented by:
%]
Z 8(E) = 8{(h* 1 m*)(g13 - glz)}. (30)
I
;Eurthermore g12 = —{kl (kg +ky - kl)} Kem, and, since ke is a constant of

the motion, we can change variables and replace k1 by g12":
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4 2
e F (q)
Wkq,ky) = dgy,d6
(k1.k3) saia ) e { (812 812)}812 212
3D
ém* TR
= 34 ) 22 —5 5 db,
167h° A 0 £°q

where 8 is the angle between g12' and g12. Since g2 = 8122 + 8122 —2g'12g12 cos6 and

gé = g122 , we obtaing? = 4g122 sin?(6/2). The total rate is obtained by integrating over
the target-electron states, taking into account spin degeneracy, weighted by the
probability of occupancy.
In the case of the exchange process, q2 = 4g122 cos?(6/2). Strong interference
effects, where the spins are parallel, will be confined to scattering angles around /2.
Ignoring interference altogether would double the rate in Eq. (31). However, when
screening reduces the dependence on q, interference will be more important. Furthermore,
smany-body effects involving exclusion and correlation will limit the interaction between
Hike spins. In view of these considerations, the contribution from collisions with like spins

Bs often neglected, and it is assumed that M2 = M,zz, in which case Eq. (31) is the total

om

ﬁ
8 §rate including exchange. In what follows we focus on the squared matrix element Mlz,
= gceepmg in mind that the total rate subsequently deduced will be a factor of two larger
q y

=

k) {Pwhen interference effects are negligible.

.2. Energy exchange

The theory so far has focused on the total rate of scattering, given the
avevectors of the incident and target electrons. It tells us nothing, however, about the
ate at which energy is exchanged in electron-electron collisions. This rate is important
for understanding how fast thermalization occurs in a quasi-2D electron gas. In order to
alculate this rate we have to focus on the wavevectors of the incident and scattered
lectrons rather than on the wavevectors of the incident and target electrons, which means
integrating over k2 rather than k1'. Given k1 and kj', we must sum over all possible
arget states weighted by the probability that a target state is occupied. This statistical
Sfactor introduces the distribution function into the problem.

gn 11/@/12

RARY"
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2 We will continue to assume non-degenerate statistics and take the distribution
gfuncnon to be isotropic and Maxwellian described by an electron temperature Te:

4 n - m*kgT,

! f(B)=——e Elksle Ny=T—DBe, (32)
3 Ny h

’Gwhere n is the areal electron density and Ny is the effective areal density of states taking
 Zaccount of spin degeneracy. For intrasubband processes Eq. (26) is replaced by:

e syst. 2001.11:479-509. Downloaded from www.worldsci

g?m e*n E, IkgT, F? (q)
k ,k “E2l%Bte 12 §(E)2dk, ,
Wik Kp) = — Ndfe (E)2dk, (33)

-"“where the factor 2 is included to account for spin degeneracy The delta function
- zconservmg energy must now be expressed in a form convenient for integration over k2.

UThlS can be done by noting that Eq. (23) implies that:
q=kz -k,
k2 =k2 +q +2k2qCOS¢2q,

by

(34

and so:
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S(E) = 5{(&2 12m*)(i52 - kF + 47 +2kpq cos ¢2q)} (35)
2z 1 d 0
Integrating over the angle, and noting that J‘de =2 &—), we obtain:
sin
0 -1
4 * kZmax 2,2 F2
W(klak'l) = € ’;"l .[ e—h LZ- /ZIPI*kBTt (Q) dkz,
2mh” ANy £°q7sin gy,
2min
. 2
. K2 k2 + g2
sin =,/1-| —1, 36
¢2q J ( ) kzq (36)
K212 442
k3 min = —1—2'—(]‘, k3 max =
q

=Note that =k, -k; and so it is independent of k. Integration over kp is
Sstrai ghtforward:

. 4 #)1/2 2 2 242, 2
WKy Ky) =~ F (q)exp{— r (k‘ kg )} @37
q

Se

23212 (kgT, )2 A €243 8m*kgT,
This rate is dependent on the angle between kj' and ki through q. What is
;Tequired is an average over angle:

Wik k) ——j W(Ky ky)do. (38)

Clearly, the angle dependence is not strawhtforward especially as screening, in general,
is angle-dependent. Esipov and Levinson [11] approach the problem by putting F(q)=1,
assuming static screening by the lattice (€ = &), and defining the variable u as follows:

q
e .

and we consider the case kj>k ' for the present. The relation of u to the angle is obtained
) fro
2_ ;.2 ‘2 ! _ '\2 )
qg = kl + kl - 2k1k1 CosQ = (kl - kl) + 4k1kl sin“(¢@ 12), (40)
ie.:
. 1/2
2 2 Akk ky - kl

41)

1 a2
uc =y +———5sin“(@/2),
4 klz —k12 ¢ r= kl +k1

The energy difference can be embodied in the symbol @ = (E; - El )/ kgT,. Substitution
into Eq. (38) and noting that:
Ak = -k r 2 -7), (42)

Int. J. Hi. Spe. Ele. Syst. 2001.11:479-509. Downloaded from www.worldscientific.com

by "CHINESE ACADEMY OF SCIENCES, BEIJING THELIBRARY" on 11/28/12. For persona u:

gives:

126



Transport in a Polarization-Induced 2D Electron Gas 489

-1 o 2 1
W/Z €xp "‘:1— u +;2- .

W(kl s kl ) W J u,

73
Y 12{(142 -y )[%—uz)} (43)

e*nh
8n"2£s2171*(k3Te)2A '
So far, @>0. The rate for @ <0 can readily be cbtained by using the principle of

detailed balance (consistent with the equilibrium implied by the existence of an electron
temperature). The expression for both cases is then:

-1 ICUI 2 1
14 K2 eXp{—T(lt +7)}

W, =

W (ky,ky) = W j L = du. (44)
¥ 2)(,2_.2\ 1 _ 2
) ‘ {(u 2l 5
=
; Following Esipov and Levinson, we have put F(q)=1 and assumed only static
;lattice screening. We note that for strictly 2D electrons the form-factor is unity, but it will
> gbe close to unity for quasi-2D electrons for quasi-elastic collisions. The rate becomes:
2] !
W(ky. k) =W, IW(u)du, (45)
Y

where:

af 2, 1
ew/2 CXP 4 u +u2
W(u)= |w|3’2 7z
uz{(uz_yz)(%_uz]}

In such a case, Esipov and Levinson have shown that the integral in Eq. (44) can be

(46)
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U_J”’obtamed in terms of a modified Bessel function of the second kind, provided that y <<1
< and v l|mj<<1,
@) . em/2
@ Wk, k) = W‘)FP’—”K‘(‘ @|/2). (47)
gln terms of energy, the parameter ¥y is given by:

1/2
> |l
= = . (48)
o 4 (E!kgT,)'? +(E IkgT,)?
§T hus, for quasi-elastic scattering, |m|<<1 Ki(|w|/2)=2/|@], and Eq. (47) becomes:
1 1 1
i W(ky.kp) = (49)
2 L) =W o T
5 In the case of a lower energy incident electron, the rate increases rapidly. For a

hermal electron (E/kBTe=1), the quasi-elastic rate is obtamed from an integrand that is
concentrated around u=y, where, under these conditions, y2 =| @|/(4E | kgT,)<<1. If,

by, "

127



490 B. K. Ridley & N. A. Zakhleniuk

once again, we- take the 2D limit of the integral in Eq. (38) and ignore screening, we
obtain the result of Esipov and Levinson:

o) ETkgT,
W(ki,k1)=2W0|£—|2—e’E/kBTf je"dz. (50)
o
0

As in the case of a fast electron, the rate diverges as Im]_z.

However, quasi-elastic scattering does little for energy and momentum
exchange. Rates for these are going to be associated with strongly inelastic scattering in

which [@[>>1. In this case y is no longer small. When @(1-7)? >>1, most of the
integral comes from the rcgion around u—l and when E, E1', |[E-E]']>>kBTe:

where we have introduced a mean value g; of g for the form-factor in order to facilitate

comparison with the result of Esipov and Levinson. Since small energy-transfers are
ofavoured, the form-factor is very roughly unity. An energy- rclaxatlon time can be defined

Wik = Wo =t [erf[w”2 T -Dl+efla2a-p), Gy
| @] -7)
where g, =/ @(2m *kgT 1 h%), so for the downward transition (> 0):

> 1/2 2
5 y T F~(q1)
S W(ky, k) =W, . , (52)
gand for the upward transition (@<0):
: WK ) = L S 1 S (53)
L |w1 (Ey ! kgT,)
% ote that downward transitions are significantly emphasised via the Maxwellian factor.
- SThe form-factor has been taken to be determined by the condition u = 1.
“g' The energy-relaxation rate, Q, is obtained by integrating Eq. (45) over k1"
: 4
S . . C o en —
E Q=“J‘(E1 _El )W(kl,kl)kldeA/2ﬂ= - p) Fz(ql), (54)
g 32¢e5h
@
-
L
T
'—
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Zby Q=-El7,:

E 4

) 1 en 2,

— —= F* (@) (55)
4 e 3262HE D

ﬁWith a dielectric constant equal to 9, and taking the form-factor to be unity, the rate is
§32.090/E s~1, where n is the areal number of electrons per cm? and E is the electron energy
"SineV.

2,

4.3. Momentum exchange

g Esipov and Levinson do not discuss momentum relaxation, but this is readily
Edenved Returning to Eq. (44), we can define a momentum-relaxation rate, Wp,, by
: @ weighting the integrand by (1-cos6), where, from Eq. (40):

zZ

5 1-cos@= —(:Z——Y)— y<<1, y?/|o]<<1, (56)
2 vy —Y

so that:
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(-3
@/2 poo - u+—
W =2Wyy> < LU g, 7)

|IHI3/2 0 u

The integral can be evaluated by changing the variable to:

()t [7=f 4]
z=—|u"+—| and =| +| , 58
‘ 2( u? o Jo ©8)

4

£/2 =0 In -
=2Woy” —=7 Koo/ 2) ——— W, .

o)’ o(@] 04(E/kBTe)3/2
where Kq(x) is the modrﬁed Bessel function. This is the momentum-relaxation rate for
quasi-elastic scattering which, in the absence of screening, diverges logarithmically.
With screening, quasi-elastic collisions will be inhibited. For strongly inelastic scattering,
less affected by screening, the momentum-relaxation rate coincides with the energy-
relaxation rate given by Eq. (55). Thus, we take the Esipov-Levinson expression of
>Eq (55) to quantify both energy and momentum exchange rates.

whence:

(59

I)l

e!"use

. Phonon Scattering
The strength of e-e scattering plays an important rdle in determining the form of
he distribution function under the influence of an electric field, but e-e scattering cannot
elax momentum and energy of the whole electron system. These relaxation processes
idepend on there being other scattering mechanisms. Whereas all scattering mechanisms
(apart from e-e scattering) can relax momentum, only inelastic processes can relax energy
and, of these, phonon processes are in nearly all cases the most important. Here, we limit
attention to the momentum and energy relaxation rates associated with scattering by
S-phonons.

There is first the problem of describing phonons in a quantum well, where the
discontinuity of electrical and mechanical properties across the heterojunction between
well and barrier materials affects the spectrum of lattice vibrations. This is a well-known
2 Zproblem that has been discussed at length elsewhere [12]. It has been found that, provided
e othe well is not too narrow, an approximation can be adopted based on the assumption that
85 SZthe scattering rates are given without much error if the spectrum of phonons in the well is

Weaken to that of the bulk material. Such an assumption would be wholly invalid for
o mdescnbmg situations where individual phonon modes are observed, as in Raman
g cZJscattenng, but it works quite well for calculating scattering rates which entails summing
S Wover all modes. In what follows we exploit this approximate sum rule and work with bulk
@ thonon modes.
The net scattering rates that affect the occupation probabllrty of a given electron
& Zstate depend upon the occupation probabilities of states involved in the processes of
I-IJabsorptron and emission of phonons. For the moment we will ignore this dependence and
<we will only consider scattering-out events.

%‘F_gr person:

nloaded from www.worldscientific.com
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£ H5 1. Polar optical phonons
Because of the large optical-phonon energy, scattermg by optical phonons is
ohrghly inelastic. Moreover, the net scattering rate associated with a particular electron
zstate depends on scattering rates of states a phonon energy above and below. A ladder of
scattering with rungs a phonon energy apart is therefore involved in order to calculate the
momentum and energy relaxation rates associated with a given state, and this requires a
knowledge of the distribution function. In the presence of an electric field, the distribution
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492 B. K. Ridley & N. A. Zakhleniuk

function, in general, cannot be found without taking 1nto account momentum and energy
relaxation, so the problem is one of finding a self-consistent solution. This problem is
usually solved by using Monte Carlo methods, but in some cases it is possible to use an
analytical approach, and this will be adopted here.

The scattering rate associated with an electron in the state with wavevector k and
energy E is:

12 a2
w=1 WO(”_‘") (n(@)+1) [ X9 4q + n(w) '[ (") ~dg | (60)
2 E gsin6,

qQ
where n(w) is the optical phonon occupation factor and:

(2171*0))1/2 1 1
Wo=—— — =,
4nh h € &

-2
|

q

>

5 172 172 61)
8 T PPN L E“_’)

é q3 k[(l + E ) 1 4 k[(l + E + l}

: 2

o

o sin6i=\/1~("; __q_) .

o kg k

@The form factor is given by:

El' al2 al2

s _ o2 2,.y,—qlz=7|

: Fa= [ [z v @y, ©
E —al2-al2 ’

%where Y(z) is the electron wavefunction, and we make the assumption that scattering is
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—confined to the lowest subband in a square quantum well of width a. The estimation of the
‘Feorresponding momentum relaxation rate can be obtained by weighting the emission
5 integrand by (q/k)cos6 and the absorption integrand by —(q/k)cos6., thus:

2 Z Ao\ V2

5 0)

% Wi = ) WO( E)

i}

8 o . “ . (63)
= X (n(a))+l)J. _(q) 4q,mo dq+n(w)J‘ _(q) g _mno dq

3 gsin@,\ 2k  hkq gsin@_\ 2k  hkq

LOL qQ a3

EThc energy-loss rate is:

L

a) 1/2

3 = _wo("“’) ho| (n(w)+1) j F(") (w)‘[ (") L (64)
< 2 E

&

ZThese integrals must be evaluated numencally They involve scattermg -out rates only,
cI)and they are strictly valid only for a drifted Maxwellian distribution.

by "

5.2. Piezoelectric scattering
In strongly polar materials the most powerful interaction with acoustic phonons
at low energies is via the piezoelectric effect. The phonon energy in this case is small and
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in most cases we can adopt a quasi-elastic approximation, and except at very low
temperatures we can assume that equipartition holds for the phonon occupation factor.
The scattering rate is then given by:

2.2 2k
e“K“m*kgT F(q)
3
27Ek < g1~ (q/2k)? (1+ g, / )
where K is the electromechanical coupling coefficient averaged over direction, T is the

lattice temperature, F(q) is the form factor of Eq. (62) and g is the static screening factor,
which for non-degenerate statistics is:

dq, (65)

_ e2nF (q)
5 = Qe hgT’
and n is the areal density of electrons. The momentum relaxation rate is obtained by
weighting the integrand in Eq. (65) by (q/2k)2

eKm> kgl I af(g) dq. 67)
8me i’k \/1 (q/2k)* (L+q, 1 q)?

(66)

m=

s faced with numerical integrations.

For quasi-elastic processes such as scattering by acoustic phonons, involving
nly the scattering-out rates in the derivation of momentum and energy relaxation rates is
ore generally justified than it is for optical phonon scattering.

DEM

=

=

(]

8 In order to obtain the energy relaxanon rate we must take into account the small
£ ®ut finite energy of the acoustic phonon, which means treating the emission and
§ %bsorpuon integrals separately. Thus:

5o [2k-n ]
ohs ho{n(w) +1}J(q.9;)

29 > 5 dq
29 2Kty ) 1-[(q/ 26+ 0} L+, 1 9)

N S
= Wg=——5—+ I 9z . (68)

2 4reh“k +n
§ & han(w)J(q.q,)
£> 2 2 dq
se 3 V1-[(g/26)- > (1+ 4,/ )
ik
%gn this equation J(q, qz) is given by:
o=
5o H(9.9.) =5 G*(4,), (69)
8. E q”t4q,

[«

S ar2 2

%ug G*(q)= J v (2)edy (70)
N 5 ~al2

%3

o :

& >and n=2m*vg/h, where vy is the averaged velocity of the acoustic waves. Once more one
i

I

e}

E

.3. Deformation-potential scattering
In the case of non-polar scattering by acoustic phonons it is possible to obtain
analytical solutions. The scattering rate is:

by "g;lINEgE éCA
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o 2k

E’m* kgl I j G%(q;) dq.dq (71
T2k 2 A
P 1-(q/2k)2 (1+ 4,/ q)

where p is the mass density of the lamce, Z is the deformation potential. For a deep well
such that y(z)=cos(nz/a):

) 3
IG (4;)dg, 1 270 =—, (712)

and the scattering rate is:

=2 o?
W= 3= r;z 2kBT qs L(x ) 1 1 73)
2h7vgpa -«
where 0=qg/2k and L(@) = [ln(\}l —a?+ 1)}/ V1-a?.

The momentum relaxation rate, calculated as before, is:
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> =2 3
5 32°m* kgT 8a 2 4a 2
W, =2 "B 122 62 -—2%  (L(a)4-a?}-1)| 74
5 e | na-a2>( (@d-a?}-1)| (T4
gFor the energy relaxation rate we need:
5 [(@+a?6* g, 127 =22+ 22,
N 2a a
— —00
§ (75)
3
. [@+a26%@)da, 127= 32
?E —00
<Then the energy relaxation rate is:
a 3._ m *2
o We
T
'—
2 2 L(a)-1 5
% E+ E ——(4E+3E0{L(a)— ~ } 2kBT)+6a E » (76)
m 2 ’
% 8a 3L( )+L(a)—;l}+ kgT 4- L(a)_ -«
0 l-a 4n(l-a ) 1+*,1—a2
’Gwhere Eo—h2n2/2m*a2 is the subband energy.
>
=
éJG Electron-Electron Scattering Dominated Transport of 2D Gas in GaN/AlGaN
<<.(>Quantum Wells
u In this section we will consider behaviour of a 2D electron gas in a square
Winfinite quantum well (QW) in the presence of strong longitudinal electric field F. In line

Twith previous discussions we deal with an ideal GaN/AIN QW as this double
Pheterostructure is best suited in order to observe the some new physical effects which
Bhave not been discussed or studied before. Since the depth of the GaN/AIN QW is about 2
eV it can accommodate a high density electron gas and the free electrons can be supplied
not only via modulation doping but also via the doping effect of the intrinsic polarisation
fields. Apart from this doping effect, polarisation fields will be ignored. The latter
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property creates an exceptional situation when there is no direct correlation between the
number of free electrons in the QW and the number of background and remote charged
impurities. In such circumstances the scattering by the deformation acoustic (DA)
phonons, the piezoacoustic (PA) phonons, and the polar optical (PO) phonons are the
main scattering mechanisms besides the e-e scattering. In real structures it would be
necessary to include scattering by background impurities, charged dislocations and
interface roughness which usually determine the low-field electron mobility, but as here
we mostly will focus on the high-field transport we do not include them. Also each one of
these can be eliminated, whereas the scattering mechanisms we consider cannot be
eliminated, although inclusion of the these mechanisms in our theory has no principal
difficulties.

It is useful to appreciate the magnitude of each of the main intrasubband

scattering rates. The most rapid is that for PO phonon emission (~ 10" 57!) when the
electron energy is above the PO phonon energy; below the PO phonon energy, however,
the rate is determined by the PO phonon absorption which becomes weak toward low
lattice temperatures kpT << hw,. Due to high polarity of the III-V nitrides the PO
phonons mediated scattering rate is about an order of magnitude higher in GaN than in
9GaAs. Because of this the PO phonon absorption considerably contributes to the electron
:mobility even at relatively low temperatures when the above condition is satisfied, for
E Sexample at room temperature [13]. We will include the PO phonon absorption in
_° alculating the PO phonon mobility. PA phonon scattering is always srgmﬁcant in

urtzite GaN especially at low temperatures (at T=50 K the rate is about 5 x 10'2 57! for
nergies about kgT, decreasing with increasing energy) DA phonon scattering is slightly

I%F% pek 0 se nlég

eaker, the corresponding rate being about 10'2 571). The e-e scattering rate depends on
he electron density. At energy equal to the PO phonon energy (the worst case in the

ange we consider) the rate in a gas of densrty 10'" em™2 is about 4x10'2 571, In the
ange of the electron energies 0 - 100 meV it is easy for the e-e scattering to dominate

oth the energy and momentum rates randomisation at densities above 10'% ¢m™2. Such
Zdensities are easy obtained in GaN/AlGaN structures [1, 2]. Here we will deal with the
ase in which the electrons occupy only the ground QW state with the quantization
nergy E,, and the lattice temperature T is small in comparison with the PO phonon

nergy ho,, kgT <<hw, <3E,. These conditions are easily satisfied within a wide
range of lattice temperature in GaN-based QWs, where #w, = 92.8 meV, and for the QW

thickness d=70 A. We i ignore the electron gas degeneracy Of course, at high electron
ensities this effect is important, but with increasing electric field its importance will not
gbe so significant as the electron gas will occupy the high energy states, and therefore the
degeneracy will be partially or completely removed.

The strength of the electron-electron (e-¢) interaction is a key parameter which
efines the distinctively different regimes of energy and momentum relaxation and non-
gequrlrbnum electron kinetics in semiconductors [14]. Because the integral operator of the

_‘on ;Ll/2€8/
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mter-electron scattering Iee{ f(k) f(k )} is a bilinear functional of the electron
LIJ

E LéJdistribution function f (k) of the interacting electrons in the states with the wavevectors

gk, k', the magnitude of the transition probability W,,(k,k')is proportional to the
fgelectron density n, as it can be seen from Eq. (33). Screening can be expected to modify
the linear dependence. Indeed, for collisions involving small energy exchanges, which
can be taken to be screened statistically, an increase of rate with density is countered by
an increase of screening, so little dependence on density occurs. But, as discussed in
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discussed in Section 4.2, small quasi-elastic collisions are not important for relaxing
energy. Highly inelastic collisions are the more significant, and for these, screening is no
longer a static process but rather a dynamic one. To give full treatment of the dynamic
screening of the e-e interaction is beyond the scope of this work, but preliminary
indicators are that anti-screening effects become important at energy exchange of order of
the optical phonon energy. The interplay of screening and anti-screening is therefore
complex in the dynamic regime, which is just the regime we are interested in. Pending a
full study we will assume that there is sufficient balance between screening and anti-
screening for us to ignore the screening of the e-e interaction altogether. Therefore the e-e
scattering contribution to the relaxation processes can be ignored only when the electron
density is very low, otherwise e-e scattering will control the electron energy relaxation (at
intermediate electron densities) or both the energy and momentum relaxations (at high
electron densities). In the last two cases the electron system can be described by means of
the electron temperature T,.

Due to dependence of the e-e scattering operator on the electron density it is

possible in principle to distinguish between three physically different situations [15]. Case
J, which can be called the partial energy control case, takes place at the intermediate
‘Electron densities when the e-e scattering controls the energy relaxation only within the
Ppassive energy region E <hw,. In the active energy region E >Fhw, the PO phonon

g Sscattering is stronger than the e-e scattering. Case II, which can be called the full energy

gcontrol takes place at higher electron densities when the e-e scattering is responsible for
£ Sthe energy relaxation at all energies, but the electron momentum relaxation in the active
I-?reomn is still controlled by the PO phonon scattering. Case III, which can be called the
‘Q'elcctron momentum-energy control, takes place at yet higher electron densities when the
-e scattering controls both the electron energy and the momentum relaxation at all
nergies. The most interesting physical situation belongs to the case III which is
Scharacterised by a unique strongly non-linear regime with a non-monotonous behaviour

f the electron temperature 7, as a function of an applied electric field F. But for

ompleteness we carry out below the kinetic equation based analysis of the all above
hree cases.

ont_g.:l./gB/

%Y

.1. Electron kinetics and the electron temperature at the partial energy
elaxation control by the e-e scattering
In this case in the passive energy region the energy relaxation rate due to the e-e

cattering is higher than the energy relaxation rate due to any other scattering mechanism,
ut the electron momentum relaxation is controlled by other mechanisms (in our case by
§ Zithe DA and PA phonon scattering). It is obvious physically that the distribution function
gln this region will be very close to the Maxwellian function,
ﬁu- f(E)= Fr(E)=A,exp(—E ! kgT,), with the electron temperature T, (A4, is a

o >normallsatlon constant, see Eq. (32)). Since the deviation from the Maxwellian function
(%_LIJWI“ take place near the PO phonon energy only, as the PO scattermg dominates the e-e
<scattermg at this energies, it may appear that since this region is quite small it would be
= <poss1ble to neglect the effect of the PO phonon scattering altogether. But such a neglect
£ wwould be wrong. This is because the interaction with PO phonons is extremely inelastic
- zprocess which results in large change in the electron energy. It is physically obvious that
6the intensity of this interaction depends strongly on the electron population (electron
dxstnbutlon function) at the energies near the threshold energy E = hiw,. Therefore much
“care should be taken in calculating the distribution function at these energies even if the
majority of the electrons still are in the passive energy region. The emission of the PO
phonons even by the relatively small number of the electrons could be very effective
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channel of the electron energy loss for the whole electron gas due to large magnitude of
the PO phonon energy. Although the emission of the PO phonons takes place only at the
energies E > hw,, this process will effect the electron distribution function not only at

these energies but it will also have a profound effect on the electron distribution function
at the energies E < hw,, just below the PO phonon energy. This is because any electron

which is in the state just below the threshold energy may acquire the necessary excess of
the energy from the other electrons due to the e-e scattering. In this case this "lucky"”
electron will leave the passive energy region and will never come back into this region by
means of losing the excess of the energy due to e-e scattering. This is because the PO
scattering is stronger than the e-e scattering in the active energy region and any electron is
transferred from the active energy region into the passive energy region due to the PO
phonon scattering. Therefore, the e-e scattering acts as some kind of pump which supplies
the electron into the active energy region but which does not transfer them back. As a
result of this asymmetry the electron distribution function will be depleted at the energies
2 just below the PO phonon energy.
This case was analysed in detail by Levinson and Esipov [11, 16] for
> photoexcitation but in the absence of the electric field. They shown that the competition
between the e-e and the PO phonon scattering near E = Aw,, can be described by the

se onl

com

parameter A, which is proportional to the ratio of the characteristic e-e scattering rate and
PO phonon scattering rate near the threshold,

=2\hw, I ThpT, Voo (h10,) [ Vo (h,), Whete Voo(hw,) = n’e*n/ €20, is the

e-e scattenng frequency (& is the static dielectric constant), v,,(hw,) = T rw, is the

-
>':r
)

PO phonon collision frequency ( ¢t is the Frohlich constant). The regime in question

takes place if A, <<1.ForaGaN QW A, =0.02 when n=10"! em™2.
The determination of the distribution function f(E) in this case requires the

solution of an integral kinetic equation [16] which explicitly includes the e-e and the PO
phonon scattering operators:

J‘dE‘ Ny(E )[W(E' JEYf(E)-W(E,E )f(E)]
0
= Vo (ht26)(N, +1) f(E)O(E — haw,y),

5 where W(E', E) is given in Eq. (44), N,(E)=m *Al27h? is a 2D density of states (A is

)
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o the area of the QW), N, = [exp hw, / kBT l] is the PO phonon distribution function

2 at equilibrium, and ©(x) is the step-function. It is necessary to note that in deriving the
B0 ’Q above kinetic equation we assume that the rate of the electron transfer from the passive
I 2 into the active energy region due to gain of the energy directly from the electric field is
=4 w small in comparison with the rate of the transfer due to the e-e scattering near the
=U threshold energy. This assumption imposes an additional limit on the strength of the
T electric field F. By the direct comparison of the corresponding terms in the kinetic
equation we obtain the following approximate criterion for the electric field:

EF21,(hw,) T, (hw,)
m*ho,
where 7,(hw,) and 7, (hw,) are the electron momentum scattering time due to DA

eEI

N

by "Cl

<<1, (78)

and PA phonons and the e-e scattering time, respectively, at the PO phonon energy.
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A considerable complication in a 2D case in comparison with the 3D case arise
because the e-e scattering in a 2D gas cannot be considered as a diffusion in the energy
axis [16]. As a result of this the above integral equation cannot be transformed to the
differential form as it was the case in a 3D electron gas.

The integral equation (77) has been solved analytically in Ref. 16 using the
Wiener-Hopf method. The obtained solution is:

A,)"2, lf]<< A,
FE)=AF x{27a7V2), 7 V27t 150, 1>>2,, (79)
e~ terf(V]1]), 1<0, [f>>4,,

where t=(E-haw,)/ kgT,, and A} = Fr(E =hw,)= A, exp(-hw, | kgT,). It follows
from Eq. (79) (the third line) that deep into the passive energy region (Jt| >> 1) the
distribution function is indeed equal to the Maxwellian function Fp(E) as we pointed out
earlier. In the important part of the active energy region the distribution function can be
>}\)resented as (second line in Eq. (79)) F )= Fr(e)24, \[(8 -hw,)/! nk,T, .
5 The distribution functions obtained above should be used in the energy balance
&quation for the electron temperature T, and for the calculation of the electron drift
Delocity vy. The energy balance equation is derived from the kinetic equation (9) by

%nultlplymg it by the electron energy E(k) and summing up over all k. For a 2D electron

=gas interacting with unscreened DA, PA, and PO phonons in the square QW the balance

7 pquation is

—l

a -~

& - (1-1) (1+3 E, TJ 2 sT Aa_ T

< T T, 3kgT T, 5 sL 5TTpa Te

% 2 hw, _ho, (80)
8 . Voplhwp)A, kgT 1 ho, | kT,

g +1—Ro o - ot B P( Wo)(No + 1) =+~ 75’ e keTe _g kol

3 Q B

L

EAS we see the last term in Eq. (80) is proportional to the parameter A, which in its turn is

roportional to the rate of the e-e scattering, i.e. the e-e scattering rate is explicitly enters

JBG
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ghe balance equatxon Here we introduced the following notations for the dimensionless
melecmc field F and dimensionless electron mobility fi, and the form-factor P(w,) for
i Unteraction between the 2D electrons and the PO phonons, respectively:
§ 14 2
0 -5 (eFA,)? 1 x2e ¥ dx 2 "P*\ kpT,
b P T =(iey ) [ R =2
z Im"s (1709 L R(T )+ 3 ey,
L
a
8 27w,
< —e o
u P(Wo)_—_&l:__zf_i_ 1 5 _1_ 13 e 5 2:| > = zwo . 82) ‘
4 41wy, 1+w, Tw,(1+wy) E,
I
o
EThe electron mobility is: o
H(T,)=(1+ yo,,) —4 (T,). (83)
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0 200 400 600 800 1000

vV, (cm s7)

0 200 400 600 800 1000

Figure 3. Variation of (a) electron temperature T, and (b) drift velocity v, with electric field F in
a GaN square QW at the intermediate electron densities n, corresponding to the partial control of
the electron energy relaxation by the e-e scattering for different lattice temperatures T,,.
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In Eq. (83) Tda =3vp /24, is the DA phonon scattering time for the 2D electrons,

Ag = i ps / m*2"2kBT is the electron mean free path in a bulk material due to DA
phonon scattering, O is the material density, E is the DA potential constant, s, is the

longitudinal (A = L) or transverse (A = T) acoustic velocity, vQ=\/2E Im*,
Yop = 2NoVop (h0,)Aq 1 3vg, and ¥ g = (kgTAg | EysyTya)(16+ 1257 /57135 are the

dimensionless coefficients, 7, = 27rph2sT I'm e2h14 is the characteristic scattering time

for the bulk material due to PA phonons, k4 is the piezoelectric constant.

The balance equation (80) has been solved numerically in order to obtain the
electric field dependences of the electron temperature T,(F) and the drift velocity

v4(F) = u(T,)F using the following parameters for the electrons in a square GaN/AIN
QW (the well width was 70 A with the ground state energy E,=70 meV): m* = 0.21m,,
E=10.1eV, hyy =4.24x107 V/cm, p=6.1g/cm>, op =0.45, w, =1.41x10" 571,

=
Ssp =4.57x 105 cm/s ,and st =2.68x 103 ¢m/ s. The obtained dependences are shown

Bin Figures 3 (a, b).
The most remarkable feature of these dependences is the sharp increase of T,

pgrsonal

nd Va with F at low lattice temperatures (T, <50 K') and the smooth behaviour of
ese dependences at higher temperatures. This is the result of competition between PA
onon and DA phonon scattering where the PA scattering dominates at low temperatures
nd the DA scattering dominates at high temperatures.

i3 '

.2. Electron temperature of the hot electrons for the case of full energy

ontrol by the e-e scattering
This case means that the e-e scattering dominates the energy relaxation at all

lectron energies. This takes place in a QW when n, 2 10'2 cm™2. The distribution
unction is F(E) = Fy(E) in the whole energy region.

It is necessary to note however, that the real material parameters of the GaN QW
@ Zare such that probably this regime cannot be realised in practice. The necessary increase
o |_um the electron density leads to fast increase of the e-e scattering rate in such a way that at
S thc above densities the e-e scattering will control not only the energy relaxation but also
‘-'('-'jthe momentum relaxation as well. (This case is considered in the next Section). For
§ gronsider this case here for completeness only. The energy balance equation corresponding
% GJto this case can be obtained in the same way as the Eq. (80) in the previous section. The
ﬁ%only difference is that in this case the e-e scattering rate does not enter the balance
& >equatxon Direct calculation shows that the balance equation in this case has the same
(%_Luform as the balance Eq. (80) with only one difference: the parameter A, in the last term

<1n Eq. (80) has to be formally substituted by the factor (1/2).
= I3 The electron temperature and the drift velocity are shown in Figures 4 (a, b) as

g‘mfunctlons of F (solid lines). For comparison, we also show the T,(F) and v;(F)
-2

. Downloaded from www.worldscientific.com
gq 11/

G TI—[& LIPRARY"

%dependences for the previous case (4, <<1) for two different densities n, = 10! em

o
fggmd n,=35- 10" cm™2. The main difference between cases I and II is that the electron

temperature and the drift velocity in case I do depend explicitly on the electron density
n, while in case II there is no explicit dependence on n,,.
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< Figure 4. Variation of (a) electron temperature T, and (b) drift velocity v; with electric field F in
a GaN square QW at the electron densities corresponding to the full control of the electron energy
relaxation by the e-e scattering for different lattice temperatures T, (solid lines). The rest of the

curves correspond to the case of the partial energy control.

by
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6.3. The 2D electron gas cooling and squeezed electron distributions
Physically most interesting and unique case arises at high electron densities
which are sufficient o allow the e-e collisions to control both the energy and the
momentum relaxation. Our calculation shows that this takes place if n, >5- 10'2 cm2.
The distribution function in this case is a Maxwellian drifted function
F(k)=A,exp{—€&(k —K)/ k,T,}, where K is the displacement wavevector. It is
necessary to note that usually the drifted distributions are inhibited by the presence of
impurity and other scattering mechanisms which tend to control the electron momentum
relaxation. This is because in order to obtain the necessary high electron density one has
to use the highly doped materials. In this case the high electron density comes together
with the high ionised impurities density and both the electron-electron and the electron-
impurity scattering rates will have the same order of the magnitude. As result of this the
e-e scattering alone is unable to dominate the electron momentum relaxation. (At the
same time the e-e scattering is able to control the energy relaxation due to considerably
lower rate of the energy relaxation in comparison with the momentum relaxation rate.
Physically this is because it is enough only a few collisions in order to change the electron
‘gmomentum direction, but it is necessary considerably more collisions in order to change
%;the electron's energy if the collisions are quasielastic.) So far the only experimental
=possibility to obtain the drifted distributions were realised at the intensive photoexcitation
gconditions where the high electron density can be obtained through the interband
Zexcitation. This usually correspond to the transient regime. Here we want to point out that
Sthe piezoelectric field doping in III-V nitride-based heterostructures open physically new
opossibility to establish the electron drifted distributions at the steady-state conditions. And
N
&

IS

Ol
N,

S

f

this leads to novel transport properties, including absolute cooling and a squeezing of the
- Adistribution in the direction of drift. Due to strong interaction with the PO phonons the
lectrons encounter the strong phonon emission barrier when the average kinetic energy
$-approaches the PO phonon energy.
x In order to investigate the non-equilibrium electron kinetics with drifted
istribution it is necessary to derive two balance equation (the energy conservation and
5'the momentum conservation). In the presence of the external electric field F the electron
Isystem gains from the electric field both the momentum and the energy. It is important to
) opoint out that since the e-e scattering is the fastest scattering mechanism in the system, the
§ =energy and the momentum gained from the electric field by each individual electron will
© Whe first distributed within the whole electron gas without substantial loss to the other
Y uiscatterers. At some point the balance will be established between the whole electron gas
i L . . . A
= gand the themi\l bath. As a result the electron gas will acquire the drifted (macroscopic)
& Umomentum #K. The average kinetic energy of the gas, which is described by the electron
g ﬁtemperature T,, will also change. Usually both these parameters increase when the

; Oelectric field increases. Here we want to point out that this is not the case any more if a

, Estrong inelastic scattering mechanism is present. In the case considered such a mechanism
f@y}%is mediated by the interaction with the PO phonons. Due to large magnitude of the PO
£ Sphonon energy in GaN, the majority of the electrons will interact with the PO phonons
~ <only at relatively high electric field (~1 kV/cm). Until these fields will be reached the
Eﬁelcctron gas will interact mainly with the PA and DA phonons. This interaction is
%quasielastic [17] and it does not prevent both %k and T, to grow when F increases. At

Shigher electric fields, when the interaction with the PO phonons dominates over the PA
Zand DA phonon interaction, the electron gas looses its energy by large portions ( ~ ha,).
This effectively hinders the further growth of the electron temperature. Due to the large
coupling constant in GaN the optical phonon energy level acts as a "hard wall" for the
electrons, which prevent the electrons from penetrating to the higher energy. In general
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the above parameters kK and 7, are found from the system of two balance equations

which describe the momentum and the energy conservation. Using the above drifted
Maxwellian function we have derived two balance equations for 2D electrons. The only
assumption that has been made is that £,T, << h@, . The equations in question are:

eF 1 m kT

& (k)
h Tda  Tpa +2m"s}kyT,

_how, _ho,te, (84)
2N, +)Pw,) e *T 4y k)e KoTe ||
Tpo
* 2 - Ex
ﬂ F_4m siE, __l__+ 9 1 2(sTkBT) 1— le kgT,
m* 3kpT, | Tga 10 7Tp | m SLE,, T,

85
hw,+€, ho, ®3)

kyT, kgT

+=2 hw, (N, +1)POr,)| Ws(K)e
Tho

—-e

& For personal use only.

ere £, = h*k? 1 2m" is the electron drift energy and 7, = ;(',(hwo). The function
1

¥;(x) in Egs. (84), (85) is defined as ¥;(x)=4/x (0,(u)\/1 u?du , where @;(u) are

0

iven by the expressions ¢ (u) =cxp(—£,\.u2 1 kgT,), @y(u) =ch(2uW/£Khw ! kgT, )

nd @3(u)=@(u)/2(1-u ) The above equations have been solved numerically with
e same parameters which we used in the previous sections in order to obtain K and T,

a function of F.
First we calculate the electric field dependence of the electron temperature T,

n 11/28/1,

7]

ES BEIJING gl_ﬂ%LIBBﬁRY' ol

and the drift velocity vy =hx/ m" of 2D electrons which are shown in Figure 5 for
ifferent lattice temperatures 7.

The most interesting feature of these dependences is that the electron
emperature T, is a non-monotonous function of the electric field. Another interesting
Oresults concerns the field dependence of the drift velocity: v4(F) has the regions which

@ aabey an S-type dependence. These regions exist only at low lattice temperatures (T~10-20
5‘ <(K) and they disappear when T increases. This behaviour is a result of a complicated T,-
I Sdependent competition between PA and DA phonon scattering [18]. At higher lattice
2 ('-Htemperatures the DA scattering dominates over the PA scattering and the S-type regions
= desappear Another interesting feature is a saturation of v, at high electric field (F order
50f 1-10 kV/cm). This effect is completely due to the e-e and PO phonon scattering. The
2PO phonon scattering effectively limits any further increase of the drift electron
“momentum since every time that an electron emits the optical phonon it loses almost all
the energy and the momentum.
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IEI\&C_Z

@

st
'SC

141



504 B. K. Ridley & N. A. Zakhleniuk

200

150 -

T

= 100

10

-
(=]
®

—_
o
~

V, (cm s

- ,"
e A PR |

T S T B |

100

i . 1000
(Vem?)

10°

Int. J. Hi. Spe. Ele. Syst. 2001.11:479-509. Downloaded from www.worldscientific.com
HINESE ACADEMY OF SCIENCES, BEIJING THE LIBRARY" on 11/28/12. For personal use only.

S:\Figure 5. Variation of (a) electron temperature T, with drift energy €, = h%Kk2 /2m* and ®)
= drift velocity v4 with electric field F for different lattice temperatures T,,.
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The existence of the S-type regions and the saturation of the drift velocity is
evident also from the electric field dependence of the electron mobility
U(F)=vy(F)/ F, which is shown in Figure 6.

T T T Ty

I S W S|

wem?V's)
=)

1000 L I I W | 1 T I S B ' [ R A W W

10 100 1000
F(Vem™)

Figure 6. Mobility as a function of the electric field for different lattice temperatures T,.

It is necessary to note that usually the drift velocity saturation and decrease of

the mobility at high electric field take place in the streaming regime [19], when the

electrons move ballistically in the momentum space until they reach the optical phonon
 energy, emit the optical phonon and repeat the ballistic motion again. But in our case the

streaming regime does not take place because for the range of electric field considered the

acceleration time [19] 7 = \/Zm hw, | eF necessary to reach the PO phonon energy,

is much longer (7p ~Sx 107125~ ) in comparison with the e-e scattering time.

The electric field dependence of the total mean electron energy <E> is shown in
Figure 7. The total mean energy of the electron is a sum of the mean kinetic energy
< Ey >=kgT, and the drift energy €,: < E>=kpT, + €.

We see that at low T the electric field dependence of <E> has more complicated
t character than at higher T. At low T the PA phonon scattering is very strong in GaN and it
z suppresses increase of <E>. When F increases the electrons penetrates into the higher
G energy region where the PA scattering is weak. This results in a steep increase of <E>
>,whe,n F increases. At higher T the intensity of the PA scattering is small in comparison
= with the DA scattering and the region of steep increase of <E> disappears. Note that this
region corresponds to the same range of F where the drift velocity obeys the S-type
dependence as was shown in Figure 5 (b), and Figure 6.
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Figure 7. Variation of the total mean electron energy <E> with electric field F for different lattice
temperatures T,,.
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Figure 8. Variation of the electron temperature T, with the drift energy €, for different lattice
temperatures T, .
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Increase in the total energy <E> does not mean that the electron temperature T,

increases as well when F increases. Figure 8 shows variation of the electron temperature
T, with the drift energy &, for different lattice temperatures T.

As we see this dependence is a non-monotonous function which has a region
where the electron temperature decreases. This region corresponds to the electron cooling
effect because the electron temperature T, decreases with increase of the electric field. It

is even possible to obtain at high electric field an electron temperature T, which is

smaller than the lattice temperature T - the absolute cooling effect. Of course, the total
energy of the electron gas increases, as it should be, due to increase of the drift energy
€,. The physical reason of the electron gas cooling is the intensive emission of the

optical phonons when the total energy of the majority of the electrons is close to the PO
phonon energy hw,,.

It is interesting to investigate behaviour of the electron distribution function with
the increase of the electric field F. This is shown in Figure 9 for two different lattice
temperature T=10 K and T=100 K. The numbers near each curve are the values of the

drift energy €,.

5 As the drift energy is a monotonous function of the electric field the higher drift

&nergy corresponds to the higher electric field. Figure 9 shows that at very small electric

g"elds the electron distribution function is close to the Maxwellian equilibrium distribution
unction which is a maximum at zero kinetic energy. When the electric field increases the

Sih stribution becomes wider in the momentum space. This corresponds to an increase of

3 (the electron temperature T,. At the same time the distribution function is no longer

%cc ntered at zero energy but has shifted along the electric field, a shift that corresponds to
: She drift of the electron gas as a whole. This behaviour continues with increase of the
—tlectric field until the electrons start to penetrate to the optical phonon energy. Strong
elastic scattering prevents the electrons from any further increase of their kinetic
nergy. As a result the electron distribution becomes more narrow or squeezed. This
ccorresponds to a decrease of the electron temperature. At the same time the centre of the
Ristribution function continues its shift when the electric field increases, which means
ncrease of the electron drift energy. The most interesting physical consequence of this
haviour is that the electron distribution function is inverted in the momentum space fi a
ajorlty of the electrons populate the high-energy region. Another interesting
onsequence of the decrease of the electron temperature with increase of the electric field
s that the non-equilibrium electron gas becomes “less randomized". This should give, for
xample, a decrease of the electron noise temperature.
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7. Summary

AlGaN/GaN structures constitute a new class of 2D systems in that a large
population of electrons can be produced without doping as a result of spontaneous and
strain-induced polarization. We have shown how a simple electrostatic model can
describe the dependence of the induced electron density on barrier width in a AlIGaN/GaN
heterostructure. Large electron densities mean that a complete description of electron
transport must include the effects of degeneracy, electron-electron scattering and dynamic
screening. Such a description does not exist as yet, but an approach that ignores
degeneracy and screening has a certain validity in the hot-electron regime. The effect of
electron-electron scattering, in the absence of scattering by impurities and other defects,
can then be regarded as establishing a drifted Maxwellian distribution. Accordingly, we
have illustrated some consequences of the possibility of impurity-free hot-electron
transport in perfect AlIGaN/GaN heterostructures. These include S-type negative
differential resistance, carrier cooling and squeezed electrons, novel properties that appear
most strongly in the temperature range 100K and below. These properties should become
accessible to experiment as material quality improves.
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