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transitions in F-centres

By Kux Huang AND AvrIL REYS

Department of Theoretical Physics, University of Liverpool

(Communicated by N. F. Mott, i R.8.—Received 1 August 1950)

A quantitative theory for the shapes of the absorption bands of F-centres is given on the basis
of the Franck-Condon principle. Underlying the treatment are two simplifying assumptions:
namely, (@) that the lattice can be approximately treated as a dielectric continuum; (b) that
in obtaining the vibrational wave functions for the lattice, the effect of the F-centre can be
considered as that of a static charge distribution. Under these assumptions, it is shown that
the absorption constant as a function of frequency and temperature can be expressed in terms
of the Bessel functions with imaginary arguments. The theoretical curves for the absorption
constant compare very favourably with the experimental curves for all temperatures.

Also considered in the paper are the probabilities of non-radiative transitions, which are
important in connexion with the photo-conductivity observed following light absorption by
F-centres. The treatment given differs from the qualitative considerations hitherto in one
important aspect, namely, the strength of the coupling between the electron and the lattice -
is taken into account. The adiabatic wave functions for the F-centre electron required for the
discussion are obtained by perturbation methods. The probability for an excited F-centre
to return to its ground state by non-radiative transitions is shown to be negligible; similar
transitions to the conduction band are, however, important if the excited state is separated
from the conduction band by not much more than 0-1 eV. The temperature dependence of
such transitions is complicated, but, for a wide range of temperatures, resembles e—"/x7,
Tentative estimates show that the result is consistent with the observed steep drop of the
photo-conductive current with temperature.

1. INTRODUCTION

It has long been recognized that the considerable widths of the characteristic
absorption curves of F-centres (Pohl 1937) are caused by the coupling of the electronic
motion in the F-centre to the ionic lattice. Owing to the coupling, while an F-centre
electron is making a transition, a number of lattice vibration quanta can be created
or annihilated. Thus for the same electronic transition a certain latitude in the
absorption frequency results, corresponding to a greater or lesser number of
vibrational quanta being annihilated or created during the absorption act.
Although the basic mechanism underlying the absorption is clear, no quantitative
theory of the absorption curves has hitherto been given. The usual interpretation of
the optical properties of F-centres is based upon a schematic application of the
Franck-Condon principle, whereby a single parameter is used to specify schematically
the lattice configuration (von Hipple 1936; Seitz 1939; Mott & Gurney 1948). Apart
from the natural limitations of the procedure, the principle is often indifferently
interpreted so that important features could well be missed (no account, for instance,
is usually taken of the detailed nature of the vibrational wave functions, which are,
however, well known to be important for an understanding of the intensity dis-
tributions of the absorption spectra of molecules (cf. Finkelnburg 1938)). In a recent
paper Muto (1949) has attempted to give a quantitative treatment of the problem.
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He has, however, proceeded no further than giving the general expressions for the
transition probabilities. His results remain so formal that no actual comparison with
experiments can be made. The only concrete conclusion he has drawn from the theory,
namely, that the maximum of absorption corresponds to no change in the vibrational
quanta, is in fact, as we shall see, incorrect.

General references in this connexion have not infrequently been made to the
works of Frenkel (1936) and Peierls (1932), which are mainly concerned with
a different problem, namely, the absorption by pure crystals. Animportant difference,
however, exists between an impurity centre such as an F-centre and an exciton
which is responsible for absorption in pure crystals. Owing to the high mobility of
the latter and its internal motion shared by both the positive hole and the electron,
an exciton cannot polarize the lattice to an appreciable extent. An impurity centre,
on the other hand, is practically immobile; purely as a static charge distribution, it
can polarize strongly the lattice in its neighbourhood. It is our belief that such
a polarizing effect of the F-centre is mainly responsible for the observed course of
absorption.

In this paper we shall give a quantitative theory of the absorption constant on the
basis of the Franck-Condon principle, the effect of the F-centres on the lattice being
considered as that of static charge distributions. It is found that if the lattice is
treated approximately as a dielectric continuum, the result contains but few
constants that cannot be reliably calculated on purely theoretical ground. Once the
values of these constants are assigned, the absorption constant can be calculated for
all temperatures and frequencies. The theoretical absorption curves are found to be
in good agreement with the experimental curves (Pohl 1937).

The light absorption by F-centres is known experimentally to be associated with
photoconductivity (Pohl 1937). But below a certain temperature in the liquid-air
region, the photo-current is observed to drop very steeply with temperature. The
problem has been discussed by Mott and Gurney (Gurney & Mott 1938; Mott 1938),
who suggest that an F-centre electron raised to the excited state by light absorption
can be thrown into the conduction band by lattice vibrations before it has the
opportunity to return to the ground state. These authors have tentatively assumed
that such non-radiative transitions vary with temperature as exp (— W/kT'). By an
extension of the above theory, the transition probabilities can be calculated. It will
be seen that for a wide range of temperatures the probabilities follow closely the
exponential form. The results in general are in agreement with the experiments on
photoconductivity.

2. GENERAL EXPRESSION FOR THE ABSORPTION CONSTANT

Consider generally an absorption centre in vacuum, upon which falls a nearly
homogeneous beam of radiation of unit cross-section, with p(v) practically uniform
in the frequency range v— v+ Av and vanishing at other frequencies (p(v) denotes as
usual the energy density per unit frequency range). The rate of energy absorption
is then given by

< <v+AODy

83—72”1/;)(1)) ; |<i|M|f>]3 (2:1)
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where <i|M|f> is the matrix element of the electric moment between the initial
state ¢ and a final state f of the absorption centre; as indicated, the summation is
over such final states that the transition frequency v, lies within the relevant range.
However, if the absorption is imbedded in a refractive medium, p(v) should be
identified with (E?/47r) rather than the energy density. In a medium with refractive
index 7, the intensity of radiation is given by

_ ncE?2
T oAy

(2-1) can thus be written as

Sm3vl (1 y<vi<v+Ap .
S a5 I<iIMIz= . 22)

Let us consider a single F-centre in the lattice. A state of the whole system is
specified by two quantum numbers: x for the electronic states of the F-centre and
n for the vibrational states of the lattice. The energy of a state will thus be written
as K ,,. Following the usual approximation in the quantum-mechanical application
of the Franck-Condon principle (Condon & Morse 1929), we write

<z]M|f>—><,u |ex|p” >fX ,(X X e (X)dX, (2-3)

where <’ |ex|p”> is the matrix element of the electric moment of the F-centre
electron between the two electronic states ', 4" of the F-centre which are assumed
responsible for the observed absorption. X in the formula stands symbolically for
the nuclear co-ordinates specifying the lattice configurations, and X, X .- are the
vibrational wave functions of the lattice, when the F-centre is respectlvely in its
initial and final states. If there are a number of F-centres present, their energy
absorptions can clearly be considered additively. Let C be the number of centres
per unit volume and z the direction of the incident beam. On combining (2-3) and
(2-2), one obtains the rate of absorption in a layer of thickness dx in the following
form:

-—dl'~ ]<,u |ex|p” > |2vF(v) Idz, (2-4)

where F(v) is the function of frequency defined by

(v—r+Ar)

F) = Zl;

J X X)X (X)X | (2:5)

n

n’ is summed over final vibrational states with frequencies b Epe— E,,) within
a range Av about v. The absorption constant is thus given by

3
k(v) = 83—727—%0—'0| <p'|ex|p” > [2vF(v). (2:6)

The absorption curves depend essentially on F(v), which, we notice, depend in turn
on the overlap integrals between vibrational wave functions of the lattice for two
different states of the F-centre.
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3. CONTINUUM APPROXIMATION FOR THE LATTICE AND THE VIBRATIONAL
WAVE FUNCTIONS

We shall assume that the effect of the F-centre on the lattice is due purely to the
Coulomb field &,(or&,.) of the average charge distribution in the F-centre; the
suffix to the field indicates the state of the F-centre. To avoid introducing many
unknown parameters into the theory, we shall consider the lattice essentially as
a dielectric continuum. The behaviour of such a continuum lattice is completely
described by a pair of equations given by Huang (1950). In the continuum approxi-
mation, apart from purely elastic deformations which are irrelevant here, the
lattice configuration is specified by giving over all positions r in the lattice the
displacement vector u(r) of the positive ions relative to the negative ions. Using
Huang’s equations and following the method exemplified in his paper, it is not
difficult to show that the total energy of the lattice (potential energy counted from
the configuration u(r) = 0) in the presence of an external electric field & ,(r) is given by

M dv | M (1 1 l*
32 4+ w2u? + 0l 22 , .
9 J{ul Wy + Uy + g ut} v, Wy 70, ( e 60) fu,. 3 ¥ dv, (3:1)

where u,(r) and u,(r) are respectively the irrotational and solenoidal parts of u(r), and
€, = static dielectric constant,
€, = high frequency dielectric constant,
w, = infra-red dispersion frequency (circular),
M = reduced mass of the ions in the cell M M_[(M +M_), ( (3-2)

v, = volume of unit cell,

Wy = (€g/€x)* Wo. J

We observe that u,(r) is not coupled to the F-centre field; this part of u(r) gives rise
to independent modes of vibrations (transverse waves) irrelevant for our discussion,
and will henceforth be ignored.

The energy expression (3-1) can be normalized to a finite volume by imposing the
Born-K4rmén boundary conditions on a region containing L x L x L = N cells and
restricting the volume integrations in (3-1) to the same. Thus it is convenient to write

3
JNur) = (}W—) Q) /] ) exp L2y ., (3:3)

where we have resolved u(r) into longitudinal waves; this is possible because of the
irrotational character of u(r). The condition of reality permits us to write

Q) = 5+ i) = = @*(~Y). (3-4)

The Born-Kdrméan conditions can be expressed by restricting the values of y as
follows:
y = L7Y(h'b, + h*b,+h*bg) | k| = integers < 1L, (3-5)

where b, b2, b3 are the reciprocal basic vectors of the lattice (only in a genuine
continuum does |A?|>3L lead to further distinet modes of displacements). On
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substituting (3-3) in (3-1), ignoring u(r), and carrying out the volume integration
over the region of IV cells, one obtains

A—Z, % (Qy/\ —+ Wy Qy)\) ,\/N %‘1 Ay/\ qwu (3'6)
, 1
where Ay = w,[—z-;r—; (€~ ~——):] f(y/ |y |).& () cos 2mry . v dv,
a 0

Ay =“@z[‘“l‘ (~—~-)] f (¥/|¥])- & p(r)sin 27y . r d. o

2mv, \€o

Owing to the combination of terms arising from @(y) and @(—y), the summation over
y now extends over the values of y lying on one side of an arbitrary plane through the
origin of the y-space; in this way only one of a pair y, —y is counted. For simplicity,
we introduce a single index j for yA; (3-6), for instance, becomes

1
H=1S(%+wig?)——=> A4%q.. 3-8
572(% i) JN? i% (3-8)

“In the absence of the F-centre, the linear term in (3-8) drops out. The Hamiltonian
describes then a system of independent oscillators, all having the same frequency
w, (circular). g; are thus the normal co-ordinates of the perfect lattice; the corre-
sponding modes have the form of longitudinal waves.

We notice that the linear terms in (3-8) represent the coupling between the
F-centre and the lattice and are proportional to 1/,/N. It is thus mathematically
important to have normalized the lattice to a finite volume. In the result, we can,
of course, let N — o0, as we are not concerned with surface effects.

When the F-centre is present and in the state u', the following modified normal

co-ordinates can be introduced: ,
, 1 A,
9% =9 JN w2 (3+9)
For on substituting (3-9) in (3-8), one finds
. 42
H= %Ej‘.(qurw” 2)“51"\? wz (3-10)

The Hamiltonian is again that of a system of simple oscillators, apart from the last
term, which represents the equilibrium potential energy between the F-centre and
the lattice. Tt is usual to include the latter as part of the electronic energy of the
state u’ of the F-centre. Thus the first part alone in (3:10) will be considered as the
lattice vibration energy. '

¢; is classically the canonical conjugate momentum of ¢j; thus on going over to
quantum mechanics, the vibrational Hamiltonian of the lattice becomes

0? ,
Hoyp, = %Z(—%Za—q{2+w%q,-2)- (3:11)
J 7
The corresponding wave functions are the products of the oscillator wave functions
IT Xo0(a5), (3:12)
J

where 7} is the quantum number for the oscillator j; the corresponding vibrational
energy is the sum TS, (n}+3). (3-13)
K
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4. CALCULATION OF F(v)

Consider the overlap integrals required for constructing the function F(»):

[Xtn X = 11 X)X, s (41)

where the vibrational wave functions (3- 12) have been substituted and g;, gj refer

respectively to the modified normal co-ordinates of the lattice when the F'- centre is
in state u’ and state p”.

Remembering that 1 4 1 4]
’. = ) ———e _—_? ,f = y — e
QQ Q3 .\/N (()? ’ Q3 qj '\/N (()? )

we expand the oscillator wave functions in (4:1) about g;, thus

[Xuap X i

NERUR TR

<[ Xugta) -y Kt + 3 () Xogtar+o JJone @)

‘When the multiplication of the two series is carried out, one observes that the terms
of order (1/4/N)? are associated with integrals of the form

f X(t) Xﬁf,,‘” dq,'

(superscripts indicate the order of derivative), all of which can, by integration by
parts, be expressed in terms of

f X, Xg, dg;.

This integral vanishes, whenever the difference between »; and n; is numerically
greater than s. Thus if | nj—nj | = s, the leading term of the integral (4-2) is of the
order (1/4/N)s. As we shall later see, it follows from this fact that all transitions in
which any of the vibrational quantum numbers changes by more than one can be-
ignored.

For the case An; = nj —n; = * 1, one finds on multiplying out the seriesin (4-2) that

[Xutap Xn/ﬂ(q;f) dgy
= «/N 2 |:A/ J\Xn’ q’) X w1 Qj) dq; A” JVX (qj) X'n’:l:l(%) dqj] + ON, ete.

The leading term is the only one that we shall require.

Let B, be the difference of electronic energies between the states u” and x'. The
transﬂ;lon frequency for a particular transition u'n’—>u"n" is given by (cf. (3-13))

hv = B, +%o, § An;, where An;=n;—mn;. (4-4)

27-2
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In our simplified model, thus v depends only on the change in the total number of
vibrational quanta, and, moreover, v does not cover a continuum when »” goes
through all possible final vibrational states, but only takes on the discrete values

) )

where p is an integer, equal to X An;. The function F(v) as defined in (2:6) can
7

obviously be rewritten in this case as

Fy) = {

JX ‘n’ X,l/, 7 dX (4'6)

}EA’nj=_’p

As indicated, the summation over n” is restricted by the condition ¥ An; = p, where
p and the absorption frequency v are related by (4-5). ’

Consider first transitions in which no | An;| is greater than one. Transitions of
this type that contribute to (4-6) are made up of s oscillators going down by one
quantum and s + p oscillators going up by one quantum. Let us consider a particular
transition of this type, where the oscillators going up and down are respectively
U0, ..,1st® and ¥, k", ...,k®. The square of the overlap integral (4-1) for this
transition can be written as

{1 )

”X Aq) X '+1(€Iz)d91 UX% 9%) Xy, —1((lk)d%

fX Aq7) X Qz)d% fX (q) X Qk ) dqy,

|fX X dX

f X 05) X, (0}) gy

(4:7)

2 b

where the products range respectively over all the oscﬂlators, and the oscillators
U, 0",...and &', k", .... For given p and s, there are a large number of distinct transi-
tions, corresponding to different choices of the oscillators I’,1", ... and k', k" .... Their
total contribution can be obtained by summing (4-7) over all the indices 7',7", ...
and k', k”, ... and dividing afterwards by s!(s+ p) !; the latter division takes account
of the repetition of each distinct transition implied in the straightforward summa-
tion. The summation obtained in this way formally also includes terms corresponding
to some of the indices I,1”,..., k', k", ... being equal, which is meaningless. But
it will become evident that these terms can make no finite difference to theresult. Thus
we find that the total contribution to F(v) by transitions in which s + p oscillators go
up by one quantum and s oscillators go down by one quantum can be written as

2
sz’(SHO { fX (@)X q’)dq’}
2\ s+p
UX (91 Xz q:)dql

fX (q7) X, (QZ d%

'28

’ f Xt (90) Xny-1(Tk) A |

2
Rt Xogta aa

pX (4-8)
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The summations over [ and k are both extended over all the lattice oscillators; if we
return to the indices y, A for the lattice oscillators the summations can be replaced
by the integrations

S>3 [amdnrdis = No, 3 fdy (49)

yA

The leading term of the corresponding integrand

2
JXta Xopaatatr 2

[Xugtai x4

2

is, according to (4-2), (4-3), given by

(A] —AD2( %\ [nj+1
nind il 2 B ‘1
¥ \zod)ln; - (10
N in the denominator cancels the factor outside the y-integral (4-9) and leads thus
to a finite contribution; besides the leading term the rest of the expansion con-
tributes only by terms of order (1//N) or higher, and may thus be ignored. Therefore
(4-8) can be written as

2 2
0, 81(s+p)! s+p)' HUX () Xny(q5) dg; | 8PS, (4-11)
where S are the following integrals:
+1
8y =3 3Zf { T dy. (4-12)
y)t

As regards transitions involving certain oscillators changing by more than one
quantum, let us consider, for instance, transitions in which certain s’ oscillators go
up by two quanta. Corresponding to (4-8), we would obtain an expression in which
appears the factor '

Xuir@52) X, (@) g |2
N fd , NyA\ 1y A NyA+s ”Y V. } .
{ x| l Xn{y,\(Qy/\) Xn§A(Qy)t) de/\ ,2

It follows from our earlier explanations that the integrand of the y-integration will
be of the order (1/N)2; thus the integral will be of order (1/N). Results of even higher
orders will be obtained, if one considers some oscillators changing by more than two
quanta. Hence no finite contributions arise from such transitions.

All relevant contributions to F(v) are thus included, if we sum (4-11) over various

values of s:
ot " 22 S-?}_—%I)S-i
x| 5

2
Fy) =" SEPS
0 =320 Z5lstp)]

(4-13)

where, we remember, v and p are related by (4-5). The sum can be expressed in terms
of the Bessel function Wlth imaginary argument of order p (Whittaker & Watson

1946), for S5+ 88 ('S:t)h) © (9.8 ) +<}p_(&)i
osls+p)!  \8) Sosls+p)! \S

Ip(2 \/(S+S—))- (4-14)
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Hence (4:13) may be written alternatively as

Fo) =2 {11

We have tacitly assumed that p > 0, i.e. the number of oscillators going up equals
or exceeds the number going down. For p <0, i.e. the number of oscillators going
down exceeds the number going up by | p | = —p, the previous arguments apply, if
we interchange the roles of the two sets of oscillators; the net effect on the result is
equivalent to interchanging 8, and S_. Thus for p < 0, we would obtain

= %T :1]1 l f X 0) X (a7) s 2} (g—;)_ip {-p(2 J(8,:82))

However as I, = I, (Whittaker & Watson 1946), this formula is identical with
(4-15) which holds thus equally for positive and negative values of p.

The value of the product 2
11| (X0 X

o) () Levss. @)

(4-16)

remains to be evaluated. With the help of (4-2), one can express

XX g
in a series in (1/N):

4 I ﬁ
2N(A )( )(Zn +1)+0N2’ ete.

On squaring the series, one finds

2
] [Xtap X.gtap o

- 1—}\,@4” A )2( )(2n + 1)+0N2, oto. (417)
When the factors in (4-16) are expanded in this way, it is readily seen on multiplying
out the factors that terms of order (1/N)? or higher in the factors can be ignored
without making any finite difference to the result. Thus retaining in each factor only
the two terms, which are explicitly given in (4-17), one finds that the considerations
required for working out the product in (4-16) reduce to essentially the same as that
used earlier in this section. It is easily verified that the result is

(_S+_S—-)t
¢!

2

IT an;(q;) Xn(47) 44

- téo = exp[— (8. +8)] (418)

When (4-18) is substituted, (4-15) becomes

ip
) = 2—"(§+) exp[— (8, + 801 L, (2 J(S,5.) (419)
w, \S_
When we average the initial state over the thermal distribution, the quantities
8., 8_ defined in (4-12) become
8, = S{ w(T)+1

AT (4-20)
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where S is the constant integral
}iv n /
8 = s S (A= Ay, (+:21)
Wy A

and 7(7T') is the thermal average of the vibrational quantum number which is the
same for all oscillators in our case:

7(T) = {exp [fiw,/ET]—1}72. (4-22)

When the expression (4-19) for F(v) is substituted in (2:6) and S are expressed
in terms of § and 7(7") by (4-20), we obtain eventually the following expression for
the absorption constant as a function of frequency and temperature:

_ 7w+ 1\¥ _
k(v) = Avexp[—S(2n+1)] (T) L,(28 |J[7(7@ +1)]). (4-23)
1674C

_ ’ " 2
= S| <t ex| ">

5. COMPARISON WITH EXPERIMENTAL RESULTS

We can disregard for a moment the absolute frequency scale, if we divide the
absorption constant k by v:
n+1
w

klv=Aexp[—-8(2mn+ 1)]( )%pIp(ZS JE@+1)]), (5:1)
and plot k/v against pfiw,. For the large arguments of I,, with which we shall be
concerned (8 ~ 20), no tabulated values or satisfactory asymptotic formulae for the
function are available for the whole desired range for p. The values of the function
have thus to be obtained by laborious computations; and we have confined our
comparisons to the often-quoted absorption curves for KBr due to Pohl (1937).

As Pohl’s curves are plotted on an arbitrary scale, for the comparison the constant
A in (5-1) serves merely as an arbitrary scale factor. It is found that with the value
of § suitably chosen (S = 22-4) the theoretical curves for k/v can be fitted on to
Pohl’s curves (reduced by v) with excellent agreement for all temperatures. The
arbitrary scale constant A4 is of course kept at the same value for the theoretical
curves corresponding to different temperatures.

I, as a function of its order (for fixed argument), has a maximum at p = 0. The
maximum is shifted towards positive values of p, after the multiplication by
[@(T)+ 1)/m(T)]t*. When the value of 7(7’) is raised by temperature, the latter
factor approaches nearer to unity; however, owing to the raised value of the
argument 2S[7n(% + 1)]%, I, itself has a flatter maximum, and one finds in fact that
the maximum of the curve k/v ~ pfiw, occurs practically at the same value of p(~ 22)
for all the temperatures considered. Since the maxima of Pohl’s curves shift with
temperature, it becomes evident that no choice of the difference £, of electronic
energies (cf.(4-5)) will bring agreement between the absolute positions of the
theoretical and experimental curves on the frequency scale. Owing to the otherwise-
satisfactory agreement between the two sets of curves, one expects that the dis
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crepancy must be due to circumstances not affecting the substance of the above
theory.

The maxima of k and k/v as function of v do not greatly differ; thus it follows from
our result that the maximum of absorption corresponds to the net creation of about
20 vibrational quanta for all temperatures. This, as we have mentioned, directly
contradicts Muto’s conclusion that the maximum of absorption corresponds to no
change in the vibrational quanta; the nature of his argument is not clear to us,
however, it appears that it must amount to ignoring the difference between 7 + 1

k(v) (arbifrary scale)

22 1-8 1-4
energy (eV)

Ficure 1. Theoretical and experimental absorption curves for F-centres in KBr. — experi-
mental, — ——— theoretical. S=22-4; w;=3-0x 10%3/sec.; E/,,ﬂ,= 1-67eV; B=—0-1¢eV.

and 7, or the difference between the probabilities of an oscillator going up and down.
Owing to his conclusion, however, he also finds it necessary to explain the shift of
the absorption maximum with temperature; we believe that the explanation given
by him correctly accounts for most of the discrepancy in the absolute positions in the
absorption curves. We can put the idea as follows: when an F-centre changes its
state, the lattice frequency is on the average altered by an amount of the order 1/N,
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although this does not appear in the harmonic forces approximation, which we have
effectively used as regards the lattice. The total energy change associated with
a transition is thus given by

W = Eﬂ,ﬂ,+A]Z(nj+%;)hw, (5-2)
=B+ hw,; An; + § (n; + %) BIN

= B, +plo+B®+}).

If this idea is correct, (5-2) should take the place of (4-5) as the relation between p and
the absorption frequency ». :

With suitable choice of the constants £, - and B, we have plotted the theoretical
curves for k on the absolute frequency scale in figure 1, in the same figure are also
given the experimental curves of Pohl. The values used for the constants are given
under the figure; w; has been calculated from the experimental values of ¢, €4, W,
(cf. Szigeti 1949). The agreement between the two sets of curves is seen to be
satisfactory.

8§ is by far the most important constant in the theory. Once the wave functions of
the F-centre electron in the ground and excited states are known, the electric fields
&,, &, can be calculated and hence also the value of § (cf. (3-7), (4-21)). We have
made calculations of S, using wave functions given by Simpson (1949) for the NaCl
lattice. Simpson considered two models for a positive impurity centre, namely,
a vacant negative-ion site and a positive interstitial ion; the wave functions of the
trapped electron are relatively more extended in the latter than the former. From
the wave functions for the vacant negative-ion site, the value calculated for § is 3-6,
which is small compared with the value 22-4 (for KBr!). Simpson, however, explained
that the 2p wave function in this case is expected to be much too compact, therefore
we repeated the calculation, using the 2p function for the interstitial ion model, with
the result S = 16. '

It isinteresting to remark that theoretically an upper limit exists for the value of S.
This corresponds to the case when the ground-state wave function is so localized
that the field of the positive centre is completely screened off and the excited state
wave function is so diffuse that the lattice is completely exposed to the field of the
centre. The value of this upper limit is found to be § = 55.

6. PROBABILITY FOR NON-RADIATIVE TRANSITIONS

For the discussion of the non-radiative transitions, a closer description of the
wave function for the complete system: F-centre + lattice is necessary. The natural
characterization of the states does not correspond to true stationary states, but
follows from the Born-Oppenheimer approximation, according to which the wave
functions can be written in the following form:

W n(X, X, 1) = exp [ — 0y, 1] Yo (X, X) X,,(X), (6-1)
where x, X stand respectively for the co-ordinates of the F-centre electron and the

lattice particles, and a,n are the respective quantum numbers for the electronic
motion in the F-centre and the lattice vibrations.
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The Hamiltonian for the whole system can be written as
H(xX) = K(x)+ V(x)+ K(X)+ V(X)+ V(xX), (6-2)

where  K(x) = kinetic energy of the F-centre electron,
V(x) = interaction between the electron and the impurity centre,
K(X) = kinetic energy of the lattice particles,
V(X)) = potential energy of the lattice,

V(x, X) = interaction between the F-centre and the lattice.
The Born-Oppenheimer wave functions satisfy the following equations:
{Kx)+ V(x)+ V(xX) — B, (X)},(xX) = 0, (6-3)
{K(X)+ V(X) + B (X) = B} X (X)) = 0. (6-4)

(6-3) is the wave equation of the electron with the nuclei held in the configuration X.
The corresponding eigenvalue E, (X) is a function of X and acts as an effective
potential for the lattice motion in equation (6-4).

As the states are not strictly stationary, transitions can occur between states of
equal energy. As pointed out long ago by Kronig (1928), in cases such as this, when
there is no perturbation term, the transition probabilities can still be obtained by
perturbation methods. In fact, so long as the approximate wave functions are
strictly orthogonal, one can apply Dirac’s perturbation method in the usual way
and show that the total transition probability from an initial state ¢ to final states of
approximately the same energy is given by

0<vp<Av
“%’31; S <f|H-B,|i> |3 (6:5)
where the summation over f is restricted by the frequency condition 0 <v;; <Av and
E, is the eigenvalue of state 4.
In the present case, the matrix element in (6-5) can be expressed in a form suitable
for calculation as follows: Multiplying (6-3) and (6-4) respectively by X, (X) and.
¥, (xX) and adding the equations, one obtains

(H—=E,,) Yo (xX) X (X) = K(X) Y, (xX) X, (X) — P, (xX) K(X) X, (X).  (6:6)
Writing K(X) in terms of the normal co-ordinates g;,

o2
K(X) =~ 2% 1,
R
and ignoring the second derivatives of v, (xX) with respect to g;, one obtains from
(6-6) the following expression for the required matrix element:

<pn | A= B,y |an> =13 X%,(X) a%jX“"(X) dx I: f PE(xX) 5;-;- ¥ (xX) ¢ij .

(6:7)
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Following the same approximation as that already used in applying the Franck-
Condon principle (Condon & Morse 1929), we shall take the electronic integral
outside the integration over the lattice co-ordinates. If, for simplicity, we write

B = { [u3( xX)a V.(xX) dx), (6:9)
the transition probability (6-5) from the state o to the state f of the I'-centre becomes
B2 (0—>Av) 2

s 3 | Sl [XOXa@ax, 09

where the summation over the final vibrational states is restricted by the transition
frequency which must lie within the range 0> Av.

When the vibrational wave functions (3-12) are substituted in (6-9), we can once
more consider all the transitions in which the number of oscillators going up exceeds
the number going down by p and replace Av in (6-9) by w,/27; here as the transition
frequency is in the neighbourhood of zero, so we are only concerned with the value
of p given by phioy+ By, = 0. (6°10)
The essential considerations required to work out (6-9) are the same as in §4; they
are more involved, because the matrix element in (6-9) is a sum of overlap integrals
rather than a single term asin §4. To save space, we shall not reproduce the arguments
but write down the result directly:

{‘Z By + (m+1) By ) +|Y [P[(m+ 3+ i0@m+ 1)] B,

—| Y |2a+3) AR, +@+1)R, j1+%| Y |*[#*R,p+ @+ 1)2 R, 5]}, (6-11)

where R, =exp[—(27m+1)8] (n-l— 1) L,(28 J[m(®@+1)]), (6:12)
2= (") 3 [ Bt iy (6:13)
Y= %’@ 3 | Ba(f) (46~ 4z)dy (6:14)

7. DISCUSSION OF THE NON-RADIATIVE TRANSITION PROBABILITIES

We shall ignore the small differences in the indices of R in (6-11). Thus we have

2
;);(ﬁ+%) Z2R,, (7-1)

which we shall use as the basis for discussion in this section.

The value of Z2 depends on the quantities F,,(f«) defined in (6-8) which can be
obtained readily with the help of the usual perturbation theory. To the normal
modes are associated the electric field (Huang 1950):

&(r) = wl[gﬂ( o I)T \/N{ 2 (/| y|) cos 2my.x + X gua(y[| y |) sin 2y r}
(7-2)
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Taking this as a perturbing field on the F-centre electron and assuming it to be
roughly uniform over the F-centre, one can immediately write down the first-order
perturbed wave function for the F-centre electron in state «. It follows readily from
the definition of F,,(fa) that the coefficient of the f-component of the perturbed
wave function of the a-state should be identical with

1
I 2t
In this way one obtains .
8w

|'PS'1|2+|'Py2l2 = C‘)lz[,v
a

(i_l_) |<ﬁ'|ex.y|oc>|2. (7-3)

€ 6‘0 | y le %’a
Z2 defined in (6+13) is thus given approximately by

8nwf (1 1\|<p|ex|a>|?
2 _ [ Bl .
Z 3w, (ew eo) B3, ) (7:4)

Substituting (7-4) in (7-1), we obtain the following expression for the probability
for an F-centre making a non-radiative transition from the state o to f:

16ﬂ2hw,2(l_1)| <plex|a> |?

v, \€n € B3,

(m+4) B, (7-5)

It is our purpose to compare the non-radiative with the radiative transitions. The
total radiative transition probability from an initial state ¢ to final states fis given
generally by

4 ,
go 2 | <ilex|f>[2wp. (7-6)

Following the same approximation as before, we can thus write the probability for
an F-centre electron to return from the excited state #” to the ground state x4’ as

4 4 n | 2
3763|<,u |ex|p >|2§!J‘Xj,n,(X)Xﬂanﬁ(X)dX O, - (7-7)

When the vibrational wave funetions (3-12) are substituted, the terms in the latter
factor reduce to the overlap integrals already considered in §4. Since for all transitions
in which the net number of vibrational quanta created is p, the radiation frequency
W, e, e DAS the same value:
B,

w(p) = Oyrn,yms = % —Dpw. (7-8)
It follows immediately from the results obtained in §4 that the probability (7-7) can
be written as

4 7 ”n
%| <p|ex|p"> |2§Rpa)3(p). (7-9)

R, we remember, has a maximum at p ~ 22, (7-9) can thus be written approximately

as 4

% | </I/I [ ex | /,0” > l2 [E/L"/L'_ 22%(01]321327
»
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Using the series for I, it is easy to show that
Y R,=1
p=—0c0

Hence the probability of radiative transitions is given approximately by
4 7 n
gﬁfng l <MK l ex | no> l2 [Eﬂu//—— 22%(1)1]3. (7' ].0)

An F-centre electron, raised to the excited state by light absorption, can either
return to the ground state by (i) radiative transitions or (ii) non-radiative transitions,
or (iii) be thrown into the conduction band by lattice vibrations. Mott (1938) has
considered it possible that (ii) might jointly with (i) compete with the process (iii),
which alone leads to photo-current. Thus let us consider first the relative probabilities
of (i) and (ii). Putting in (7-5)

B=u, a=p" and p=E., (o) (cf (6:10)

and dividing the result by (7-10), we obtain the ratio of the probabilities for (ii)
and (i): (2m)3 HwEc? ( 1 1 @+3) R,

€wo eo) B (B — 22h0y)?

On putting in the numerical values (for KBr, £, as given in figure 1), one finds

o (7-11)

4 x 1057 + %) Rg;. (7-12)
From the following values of this ratio:
T —245°C 20°C 200° C 600°C
ratio (ii)/(i) 4x 10719 2x 10-9 2x10-8 0-8

it is seen that in the temperature range of interest, an excited F-centre returns to
the ground state mainly by radiative transitions.

Consider next the relative magnitudes of (iii) and (ii). Let us represent a wave
function of the electron in the conduction band approximately by

exp (2mik.r). (7-13)

The corresponding state has the energy (A2k?/2m) and will be specified by the index k.
Since an electron in state u” can be thrown into any state in the conduction band by
absorbing the appropriate number of vibrational quanta, in order to obtain the
probability for (iii), we have to put & = #”, # = k in (7-5) and sum the expression
over all states k. Supposing that the excited state x” is W below the bottom of the

conduction band, we have 72k2
Ek,u” = W‘l‘ 2’”’[, . (7'14)
It follows thus that the probability for (iii) is
1672hw? (1 1) _ |<k|ex|p">|?
i ny SRS 7] .
3v, (600 eo) @+ 2)§ (W +#h2k2[2m)2 ~ %’ (7-15)

where p is related to k& by (cf. (6-10))
P = — By|(hoy). (7-16)
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If the k-state wave function used in evaluating the matrix element is normalized
as in (7-13), the summation over k becomes simply an integration over Kk-space
(i.e. with unit weight function), so that (7-15) becomes

1672hw} |<k|ex|p">|? )
o, () 0 | G e o T

The matrix element of the electric moment does not depend appreciably on K, so long
as the corresponding wave-length 1/| k | is large compared with the x”-orbit; in fact,
the other factor in the k-integral falls off with % so rapidly, only such values of k are
relevant. Hence we write the probability as

167T2k(l)l L l 2 D .
- (600— )|<O|ex],u > n+2)f————-———W+ﬁ2k2/2m & (19)
8m (1 —p—py)*

where we have changed the integration variable from k to p with the help of (7-16)

and p, is given by
Do = W|(fiw).

Dividing (7-19) by (7-10), we obtain the ratio of (iii) to (ii):

2
o (1 1 “-zp//xdx
m(é;_%)

v 2
[ Yy, dx

(2’]’)’&%(01)% (%4— —%) —'ﬁoR (_p _po)lg dp-

(7-20)
=220 ) TP p?

a

Assuming with Simpson (1949) the following radial functions respectively for the
states u” and u": 455
( 5 ) ro-uer, (4ot o, (7:21)

one finds

27rc3<1 1)(oc 0,1 (2mie)t (7 + )J‘“"’R (=p=p),

. 7-22)
405/3; oc}}’ [‘ oy 22fiw, |3 p? P ( )

When the values (Simpson 1949)

o, = fou,, = 0-66 atomic units,
for a,., o, as well as the numerical values for the other constants are put in, (7-22)
becomes B B0 (—p—po)t
17 x 10%(m+ %) _prpo. (7-23)

In order to estimate this ratio, the coupling constant § for the transition from
#" to the ionized state has to be known. We have tentatively used the value for the
#'—p” transition, namely, 22-4. The logarithm of the ratio calculated is plotted
against 1/7 for W = 0-1, 0-2 and 0-4eV in figure 2. Apart from the highest temper-
atures, the curves are practically straight. The curve for W = 0-1eV cuts the axis
at ~130°K (or ~ —140°C). At this temperature, the probabilities of (i) and (ii) are
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comparable; but at ~ 100°K the non-radiative transitions have fallen by a factor
~1000. Thus the situation represented by this curve resembles quite closely the
observed course of photo-current in NaCl and KCI (Pohl 1937). It is however to be
borne in mind that the value for 8 used in calculating (iii) is only very tentative.

8k

Z -
0-01 O-?OS

. . - »
100/12%‘ y 250 500 T

]

eS|
|

i?) -
Ficure 2. Logarithm of the ratio of the non-radiative to radiative transitions as
function of 1/71' (excited level of F-centre W below bottom of conduction band).
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