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In this paper, we systematically investigate the transmission enhancement through nanoscate metal-
lic slit arrays in the wavelength range from visible to mid-infrared. The far-field transmittance of
the periodic structure is calculated using the rigorous coupled-wave analysis {(RCWA). The electro-
magnetic field distribution in the near-field regime is analyzed to elucidate three mechanisms for
tfransmission enhancement. Depending on the spectral region, the enhanced transmission can be
attributed to Wood's anomaly, cavity resonance, and the effective-medium behavior. The effects of
grating/slit geometry, polarization, and the plane-of-incidence orientation on the radiation transmis-

sion are also examined.
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1. INTRODUCTION

Transmission enhancement through subwavelength hole
arrays tn an optically thick metal film has drawn much
attention due to its potential in modulating the light path
at nanometer scales.'™ The transmission through the peri-
odic subwavelegnth apertures can overcome the diffraction
limit of an individual aperture. In fact, when subwave-
length apertures form a periodic two-dimensional (2D)
array, the transmitted energy through an individual hole
may be greater than the incident energy on the same area at
certain wavelengths. Furthermore, plasmonic nanolithog-
raphy has been demonstrated with 2D hole arrays.® The
transmission enhancement through one-dimensional (1D)
gratings or slit arrays has also been intensively studied,
especially when the plane of incidence (Pol) is perpen-
dicular to the grating grooves. The physical origin of the
transmission enhancement can be attributed to one or more
effect(s) of surface plasmon polariton (SPP} excitation,’>-®
cavity resonance,” and Wood’s anomaly,'>!!

It is well known that SPP can be excited in grating
structures by propagating waves in air and the excita-
tion results in enhanced absorption or transmission, espe-
cially for shallow gratings.'*'? To excite SPP in gratings, a
magneltic-field component parallel Lo the grating grooves is
required.” A nonzero magnetic-field component exists in
both the transverse magnetic (TM) and transverse electric
(TE) waves, unless the Pol is either perpendicuiar or paral-
lel to the grating grooves. When the Pol is perpendicular to
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grooves, only TM waves can excite SPPs; when the Pol is
parallel to the grooves, only TE waves can excite SPPs. If
the grating is sufficiently deep, cavity resonance caused by
interference effects inside the 1D slits or 2D holes can also
enhance the transmission.’ In addition to the SPP excita-
tion and cavity resonance, Wood’s anomaly affects radia-
tive properties and cause abrupt changes in the reflectance,
transmittance, and absorptance spectra.!! Wood’s anomaly
occurs when a diffraction order emerges or disappears
at the grazing angle. The transmitiance through a 1D
slit array can be either enhanced or suppressed due to
Wood’s anomaly. Since Wood’s anomaly occurs as a result
of diffraction, both polarizations may exhibit such an
anomaly. For shallow gratings when the Pol is perpen-
dicular to the grooves, however, Wood’s anomaly is not
obvious for TE waves, and thus, initial studies only dealt
with the anomaly for TM waves.!®

Most of the previous studies dealt with transmission
enhancement in the wavelength region from ultraviolet to
near-infrared. For wavelengths much longer than the grat-
ing period, such as in the mid-infrared (IR}, it is found
that the transmission is large but cannot be attributed o
any of the above mechanisms because the enhancement
occurs in a wavelength-insensitive manner. Such trans-
mission enhancement can be explained by the effective
medium theory (EMT), in which the grating structure is
viewed as a homogeneous medium if the wavelength is
much longer than the grating period.” Based on rigor-
ous electromagnetic wave modeling, we have previously
shown a near-field localization effect of metallic slit arrays
in the mid-IR region.'®
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The objective of the present study is to systematically
investigate the far-field transmission enhancement from
nanoscale metallic slit arrays in the wavelength regions
from the visible to mid-IR with an emphasis on rigorous
modeling. An effort is put to elucidate the transmission
enhancerent mechanisms by considering the electromag-
netic field distribution in the vicinity of gratings, i.e., the
near-field region. The transmittance of 1D pericdic grat-
ings is modeled based on the rigorous coupled-wave anal-
ysis (RCWA) algorithm. The enhanced transmission is
explained by Wood’s anomaly, cavity resonance, and effec-
tive medium behavior depending on the spectral region.
The behavior of each mechanism is discussed in detail
for nanoscale free-standing Ag gratings. Moreover, since
the Pol is not necessarily perpendicular to the grooves,
we have further examined the effect of non-zero azimuthal
angle (i.e., conical diffraction). The RCWA formulation for
conical diffraction is modified to improve the convergence
efficiency.

2. RIGOROUS COUPLED-WAVE ANALYSIS
FOR CONICAL DIFFRACTION

RCWA is a numerical modeling algorithm for calculat-
ing diffraction efficiencies of periodic gratings by solving
Maxwell’s equations. For 1D gratings, the RCWA algo-
rithm is well established when the Pol is perpendicular
to the grating grooves."” In this case, a modification to
enhance the convergence efficiency has been proposed by
Li for TM waves.'® When the Pol is not perpendicutar
to the grating grooves, diffracted waves do not lie in the
Pol except the zeroth order, and all the reflected waves
lie on a conical surface (i.e., conical diffraction), whose
center line is parallel w the grating grooves.'” Similarly,
all the transmitted waves also lie on the surface of another
cone with a radius depending on the refractive index of
the medium. Since most RCWA formulations for coni-
cal diffraction'™%?° were not modified according to Li's
work,'® the modified equations are summarized below.
Figure | shows a plane wave with wavevector k inci-
dent on a binary grating, where the space is divided into
three regions: Region 1 (vacuum), Region II (grating),
and Region IIT (substrate). The dielectric function (&) of
Regions I and III are given by & = nf =1, x; =0, and
gy = (nyy+ iy )% where n is the refractive index and  is
the extinction coefficient. Since the grating region is com-
posed of media A and B, its dielectric function, composed
of £, and &y, is a periodic function of x. The geometry of
gratings is defined by the period {A), thickness (d), and the
slit width (w). The filling ratio of medium A is given by
f=1—w/A. The direction of incident wave is expressed
by the azimuthal angle (¢) and the zenith angle (8). The
Pol is conventionally defined by the direction of incidence
and the z axis. This definition resuits in infinite numbers
of Pol at normal incidence. To remedy this drawback, we
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Fig. 1. Schematic of a binary LD grating, whose geometry is defined
by the period (A), thickness (<), and slit width (w). The direction of the
incident plane wave is defined by the zenith angle 8 and the azirnuthal
angle ¢, and 1 represents the angle between the oscillation direction of
electric field and the plane of incidence.

can uniquely define the Pol by the z axis and the vector
(cos ¢, sin ¢, 0), which lies in the x-y plane. In practice,
it is convenient to define the Pol for normal incidence
by setting sin¢ = 0. This way, the Pol is perpendicular
to the grooves. For linearly polarized incident wave, the
polarization status is determined by ¢, which is the angle
between the electric field vector and the Pol, as shown in
Figure 1. In Region I, after omitting the time harmonic
term exp(—iw?), where w is the angular frequency, the
normalized incident electric-field vector E is given by

E=Eexp (ikxx+ik}.y+ikzz) 1y

where E, is the incident electric field vector at the origin,
and the components of the incident wavevector are given
by k, = ksinficos ¢, k, = ksin@sin¢, and k, = kcosb,
with k =27 /A. In the present study, A denotes the vacuum
wavelength. The incident electric field can be normalized
so that the unit vector E; is expressed as follows:

E, = (cos yrcos f cos ¢ — singrsin p)x
+ (cos i cos @sin ¢ +sin ¢ cos P)y
—costsin 6z (2)

According to the Bloch-Floguet condition,”! the wave-
vector components of the jth diffraction order in Region [
are given by

2 2
kxj—_-—f\isinﬂcosd)%- %j (3a)
29 .
k= — sin Asing {(3b)
[l it -k, K>k
ki, = (3C)

zj -
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As required by the phase-matching condition, the parallel
components of wavevector & ; and k, must be the same for
the diffracted waves in all three regions. In Eq. (3c), super-
script r refers to the reflected diffraction. We may denote
the reflected wavevectors by k,; = (k,;. k,, k7;) and the
transmitted wavevectors by k,; = (k;, &, k;;). For trans-
mitted diffraction, k[, can be replaced by & after sub-
stituting &y, = k. /&y, for & in Eq. (3c). Figure 2 shows
the wavevectors of the incident wave and diffracted waves
in 3D k-space and their projections on the & —_ plane.
Notice that the wavevector magnitude for incident and
refracted waves (medium 1) is k. The wavevector magni-
tude for the transmitted waves is &, which is assumed
to be greater than k. From Eq. (3b), the y component
of the wavevector is the same for all diffraction orders,
Hence, the wavevectors for all the diffracted wavevectors
end on the semi-circles, which are intersects of the plane
k.= (2ar/A)sinBsin ¢ and hemispherical surfaces in each
half plane. Talking k, < 0 or Region I for example, all
the reflected waves lie on a half-conical surface, as illus-
trated in Figure 2(a) for conical diffraction. Furthermore,

Region |

- ky

Region 1Nt

k

(b) Projected to k&, plane

Fig. 2. IMustrations of a conical diffraction from a 1D grating in: () 3D
k-space; (b) projected to k,~k, plane.
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the x components of the wavevectors vary by multiples of
27 /A according to Eq. (3a). The dashed vertical lines in
Figure 2(b) indicate 27/ A difference in &k, among adjacent
diffraction orders. For higher diffraction orders, the z com-
ponent of the wavevector becomes purely imaginary, such
that the diffracted waves are evanescent. If the Pol is per-
pendicular to the gratings, ¢ = 0° or 180°, then, both
sing and k, become zero; subsequently, all the reflected
and transmitted ditfraction rays lie in the same plane as
the Pol.

Sufficient diffraction orders must be employed in the
RCWA calculation such that j =0,41,+2, ... +g, with
a total of N =2¢+1 terms. The electric field in Regions
I and Il can be expressed as

E((x,y,2) = E;exp(ik x + ik, y +ik.z)
+ 3 B exp(ik x+ik,y— ik z) (4a)

4

and

Ey(x,y,2) =) E jexp(ik x+ik,y+ikiz) (4b)
j

where E; = (E};, E};,
magneltic fields in Regions I and ITI can be obtained from
Maxwell’s equation, H = (1/iwu,)V x E where g is the
magnetic permeability of vacuum. In Region II, the elec-
tric and magnetic fields can be expressed as a Fourier
series:

E7) and E, = (E';, E!, E.)). The

Ey(x, y.2) = 2 _[xy (D% +x, (2)¥
J
+ x,;(2)zlexplik ;x+ik,y)  (5a)
k

Hy(x,y,2) =i—3 [v,;(2%+ 1,(2)§

Q

+ v, (] explikyx +ik,y)  (Sb)

where y,;, x,;. and x,; are the vector components for the
jth space-harmonic electric field, and Y+ Yy and y,; are
the vector components for the jth space-harmonic mag-
netic field in the grating region. Due to the periodicity, the
dielectric function in Region II can also be expressed in a
Fourier expansion

g (x) =s(x) =) elexp (i 25)\17 x) (6a)

It is essential to express the inverse of the dielectric func-
tion in Region II as a separate Fourier expansion, i.e.,

gin\r(x) — s_(lx_) — % 8;;1\' exp (1 ziﬂ'x) (6b)

where €% and €l are the pth Fourier coefficient for
the ordinary and inverse of £(x) as defined in Egs. (6a)
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and (6b), respectively; and in general, sj;“’ #1 /s;’d. In the
numerical calculation, an upper limit of p can be set such
that p =0, +£1.4+2, ..., £24, which means that there are
a total of 2¢ + 1 terms in the Fourier series. The choice
between Eqgs. (6a) or (6b) is crucial to the modified RCWA
formulation.

The next step is to substitute the electric and mag-
netic fields given in Egs. (5a) and (5b), respectively, into
Maxwell’s equations in Region 1I: V x Ey — iwugH, =0
and V x Hy, + iwg e(x)E, =0, where g is the electric per-
mittivity of vacuum. The key is to arrange Maxwell’s equa-
tions into a summation of exp(ik, x +ik,y) and then set its
coefficients to zero for each j. However, one must be very
cautious when factorizing exp(ik;x +ik,y), because both
£(x} and £™(x) are Fourier expansions of exp(ik ;x).
The mathematical rules discussed in the work of Li'®
must be properly applied. Failure of doing so can result
in slow convergence and even erroneous solutions. After
collecting all the terms, four sets of coupled differential
equations can be obtained for the tangential components
of the electric and magnetic fields: X,;. Xy Vs and ¥,
since the normal components X,; and v,; can be related to
the tangential components. After some tedious derivations,
the differential equations can be expressed in the maltrix
form:

XY /oz
1| ax¥/dz
k| ar? ez
ar*/az
0 0 K'EVKY I-K'E'K'J[X°
0 0 K*E'Kf -1 —K*E'K' || X¥
- K*K¥ M'-K'K" 0 0 |
KK*-E -K*K' 0 0 il
M

where X* and X* are column vectors formed by y,; and
X,;» respectively, ¥ and TV are column vectors formed
by ¥,; and ,;, and I is the unit matrix. Note that K¥ and
K’ are diagonal matrices with the elements K7, = k;/k.
where j ={—q—1and K}, =k /k. Furthermore, E and M
are the Toeplitz matrices'® generated by the Fourier coef-
ficients of the dielectric function and its inverse, respec-
tively, such that E; , = £ and M, , = ¢, where p =
! —m. Equation (7) shows the modified matrix form for
conical diffraction, which is different mathematically from
Refs. [17] and [20], because the selection between matri-
ces E and M here is in accordance with Li's recommended
procedure. In order to solve Eq. (7), X* and X" can be
decoupled from I'* and 'Y by differentiating another time.
In a similar way, I'" and T can be decoupled from XX
and XY. Note that matrix equation in Ref. [22] is consis-
tent with Eq. (7); however, the authors did differently in
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the second derivations. The proper matrix equations for X
and I are as follows:

XY
1 a7 K¥K* K'{(E-'K*E—K*) X’
el axx | | 0 KK +(KE'K*-DM || X
az?
(8a}
art
1 dz?
k2| gr¥
dzt
B KYKI’_i_M—I(KXEfIKX_[) (KXfM-IKxE_I)KY l—-!"
- 0 KK +E(K'E'KY-D) || ¥
(8k)

Accordingly, the solutions of x., X, 7. and v,; can
be expressed by the eigenvalue and eigenvectors of the
matrices given by

N
Xy(2) = L WG4+ Cle™ ] (9a)
=1

N
'}’xj(z) = Z sz[chrek;f(z_d) + Cfs—e—kl:lz] (5b)
=1

N
X(2) = L VG0 et
I=1

N
Y VICH D e ) (59
=1

v .
¥(2) = L VIHCH 6D — Clme]
=1
N
+ Y VELCPr D L O e ME] (0d)

i=l

where W7, and W, are the elements of the matrices w*
and W8, and they are composed of the eigenvector corre-
sponding to the eigenvalue of the matrices

A=KK +(KE'K-DM™" (10a)

and
B=KK*+EK'E'K"-I) (10b)

The expenential terms in Egs. (9a) and (9b) originate from
the forward and backward coupled diffracted waves in
Region 11. Here, C’s are their unknown coefficients with
superscripts + and — which signify forward and backward
waves. Note that & and £, are the elements of diagonal
matrices Q* and QF, which are composed of the positive

square root of the eigenvalue of A and B. In addition, VAL
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VAP VEL and VP are the elements of matrices VA4, VA%,
V54 and V#, respectively, given by

VA — K'(K*K* - E)"'K*w* (11a)
v = (K*K* —- E)y"'W?Q* (11b)
V= (K*E7'K* —I)"'WAQ" (11c)
and
V8 = K'(K*ET'K* —I) '"K*E~'W? (11d)

In order to obtain complete field distributions in
Regions I, II, and IH, one needs to solve for LON
unknown coefficients, i.e., EJ;, 7, £, EL, E', E!, cH,
Cf‘,Cf*’, and Cf~(j = 1,2,...,N). Here, boundary
conditions state that the tangential components of the
electric and magnetic fields are continuous at region
boundaries (z =0 and z = d). Application of the bound-
ary conditions yields 8V equations. Furthermore, since
-diffracted waves are assumed to be plane waves, they
should be perpendicular to the corresponding wavevector;
therefore,

k, E, =0 (12a)

) 7

and
k,j-EU- =0 {12b})

which provide additional 2NV equations. After solving the
10N coefficients, one can get the diffraction efficiencies
by computing the time-averaged Poynting vector of each
diffraction order along the z direction. Furthermore, the
field distribution and Poynting vector distribution in the
near field are completely obtained. Notice that RCWA can,
in principle, achieve accuracy to an arbitrarily specified
degree by the use of sufficient numbers of Fourier com-
ponents to represent the dielectric function in the grating
region. In the present study, a total of 81 Fourier terms
(i.e., N =81) are used and the results differ from those
obtained with 201 terms by less than 0.3%. For a given
wavelength and geometric parameters, the calculation of
the transmittance using RCWA algorithm takes about 0.5 s
of CPU time with a Pentium 4 processor {3.2 GHz speed).

3. RESULTS AND DISCUSSION

In the present study, a vacuum is assumed for the media
below and above the gratings as well as the slit region
for simplicity. The transmission enhancement is demon-
strated by selecting stlver (Ag) as the meral. Tt should be
noted that for practical applications, a dielectric substrate
can be used to support the metallic grating structure, and
the discussion presented here will still be applicable. The
nanoscale metallic grating can be fabricated by lithogra-
phy {deep UV, X-ray, or electron beam), nano-imprinting,
or focused ion beam machining. Metals can be evaporated
onto the space patterned by the photoresist and the desired

J. Comput. Theor. Nanosci. 5, 201-213, 2008
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structures remain after stripping the photoresist. Besides
silver, gold and aluminum can be used for a metallic grat-
ing with very similar transmission characteristics in the
mfrared.

Figures 3(a and b) show the spectral transmittance for
a free-standing Ag grating at normal incidence. The grat-
ing geometric parameters are set such that A = 400 nm,
d = 800 nm, and w = 200 nm (i.e., the Ag filling ratio
f =10.5). The azimuthal angle ¢ is set to 0° so that the
Pol is perpendicular to the grating grooves. The trans-
mittance is plotted against the wavelength from 0.3 to
9.0 um for both the TE wave (¢ = 90°) and the TM
wave (i = 0°). The tabulated optical constants of Ag in
Ref. [23] are used with interpolation. An 800-nm-thick Ag
film is essentially opaque in the wavelength region consid-
ered, because the radiation penetration depth is less than
50 nm; however, a large transmittance is observed from
the Ag slit array at certain wavelengths for both TE and
TM waves. For the TE wave as shown in Figure 3(a),

1 T
I
: A =400 nm
0.8 H - d=800nm E
@ w =200 nm
2
=4
& 086 §
=
(=%
@
=
W 04 {a) TE wave E
£
] -
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ookl B {emeas Absorptance B
o B El i R PR
0.3 0.6 08 1 3 5 7 9

1 ———
08|
H
@ H
a 1
5 L
o 06f H
= i
=} M
@ " .
= 1
"/ 04 (b) TM wave E
B HE 1 .
o A ———— =
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0 AJ L T e L
03 04 06 08 1 3 5 7 g9

Wavelength, A {(um)

Fig. 3. Transmittance and absorptance of the free-standing Ag grating
with A =400 nm, d = 800 nm, and w = 200 nm when the plane of inci-
dence is perpendicular to the grating grooves for: (a) TE wave; (b) T™M
wave,
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the large transmittance is obtained in the spectral band
from 300 to 500 nm. This is due to Wood's anomaly (A =
A = 400 nm) and cavity resonance, such that the trans-
mittance peaks are closely located and partly overlap each
other. The transmittance in the IR region is close to zero
with the absorptance value less than 0.05; thus, most of
the incident energy is reflected back by the Ag grating. On
the contrary, the spectral transmittance for the TM wave
as shown in Figure 3(h) exhibits strong enhancement over
the wavelength range from the visible to the mid-IR spec-
tral region. Wood's anomaly and cavity resonance result
in considerable transmission enhancement, especially at
wavelengths less than 2 pm. However, more cavity reso-
nance peaks are observed for TM waves and their trans-
mittance values are greater than those for TE waves. Fur-
thermore, the peak waveléngths from the cavity resonance
shift to the longer wavelength region for TM waves. Inter-
estingly, when the wavelength is greater than 4 pm, the
transmittance for TM waves increases monotonically and
reaches 0.85 at A =9 pm, suggesting that ephancement
is not due to resonance phenomena. The large transmit-
tance enhancement in the mid-IR for TM waves can be
explained by the effective medium behavior when A A
and will be discussed in detail later.

It should be noted that for the considered Ag slit array,
SPP plays an insignificant role in terms of the transmission
enhancement. Because the thickness of grating is much
greater than the radiation penetration depth, SPPs at two
region boundaries (i.€., z =0 and z = d) are decoupled.
In this case, SPP can only be excited at one boundary
since the diffracted evanescent wave cannot reach the other
boundary. Accordingly, the excitation of SPP at z =0
mainly contributes to absorption rather than transmission.
Here, SPP occurs at the wavelength very close to that
of Wood’s anomaly, because the dispersion curve is close
to the light line in vacuum.** Consequently, the transmit-
tance at 400 nm for TM waves is less than that for TE
waves due Lo the absorption accompanied with the excita-
tion of SPP, as can be seen from Figure 3(b}. Therefore,
the effect of SPP on the transmission enhancement is not
further considered in the present study. Detail discussions
about Wood's anomaly, cavity resonance, and the effective
medium behavior and their role in modulating the radiative
properties are provided below.

3.1. Wood’s Anomaly

Wood’s anomaly occurs when a diffraction order shows
up at the grazing angle. The radiative properties abruptly
change at the wavelength corresponding to Wood’s
anomaly because the light intensity will be redistributed
when a new propagating diffraction order appears. Origi-
nally, Wood’s anomaly was studied for grating structures
on a semi-infinite substrate, such that its effects were
prominent in the reflectance spectrum,'! and a few stud-
ies dealt with Wood's anomaly on the transmittance.”-2
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In this case, the anomalies in both Regions [ and I may
affect the spectral transmittance of periodic slit arrays.

For conical diffraction, the jth diffraction order appears
al the grazing angle (when the z component of the
wavevector becomes zero) in Regions I and III when &7, +
k% = k% because both regions are set to be vacuum. Using
Egs. (32) and (3b), Wood’s anomaly can be predicted from
the following equation for an arbitrary i

-—] ’ 2—jsind S¢—CO29_0 (]1,)
+ 51 Co = J
Ilj AJ >

Since Wood’s anomaly occurs due to diffraction, it is obvi-
ous that Eq. (13) only depends on the grating period regard-
less of its thickness and filling ratio. Equation (13) can be
further simplified if the Pol is perpendicular to the grat-
ing grooves (i.e., ¢ =0°).2' In this case, £1 diffraction
orders appear when the wavelength is equal to the grat-
ing period at normal incidence as shown in Figures 3(a)
and (b) when A =400 nm. Since the considered Ag grating
is relatively deep (i.e., A/d =0.5), Wood’s anomaly can

2T eA 02 03 04
X (um)

(a) TM wave, A = 398 nm

261 6z 03 o0& 05 06 071

x (pm}
{b) TM wave, A =402 nm

Fig. 4. Square of the magnitude of complex magnetic figld in logarith-
mic scale for TM wave over the two grating periods: (a} A = 398 am;
() A =402 nm. The geometric parameters of the Ag grating are the same
as in Figure 3, and the slit regions are located in 0.1 um <x <0.3 pm
as well as 0.5 pm < x < 0.7 pm. The wave is incident from below the
slit array-
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be clearly seen for both TE and TM waves. If the grat-
ing is relatively shallow, the effects of Wood's anomaly on
radiative properties may not be obvious for TE waves as
compared to TM waves.2! In order to further undersiand the
characteristics of Wood’s anomaly, the square of the mag-
nitude of complex magnetic field is plotted in logarithmic
scale (i.e., log,q |H,|?) for TM waves at two wavelengths
very close to that associated with Wood’s anomaly. For TE
waves, a very similar field distribution will be obtained if
the electric field is plotted.

Figures 4(a) and (b) show the magnetic field distribution
over two grating periods at A = 398 nm (7 = 0.180) and
A =402 nm (T = 0.141), respectively, in the vicinity of
the Ag grating. The grating geometry is the same as that
in Figure 3. The slit regions are located in 0.1 pm < x <
0.3 pm as well as 0.5 pm < x < 0.7 um, and a plane
wave is incident from the below the grating at normal inci-
dence. Wood’s anomaly occurs at A = 400 nm and the
transmittance is 0.199. In Figure 4(a), the wavelength of
398 nm is a little shorter than the grating period such that
the diffraction orders of j = -1 propagate to the far field.
Since there exists no energy loss in vacuum, the field dis-
tribution in Region I (below the grating in Fig. 4(a)) shows
very similar patterns in the near field as well as in the far
field. In fact, the periodic interference patterns are found in
the field distribution in both x and z directions. Here, the
periodic pattern of the field along the x direction results
from the j = +1 diffracted waves, which are propagating
nearly along the region boundary (i.e., k ; =~ k). Since the
plane wave has an infinite wave front, the periodic inter-
ference patterns in the x direction are observed even if
z approaches negative infinity from the grating surface.
On the other hand, the periodic pattern along the negative
z direction is due to the interferences among diffracted
waves, whose orders are O and 1, as well as the incident
wave. The transmitied waves in Region Il show very sim-
ilar interference patterns as in Region 1. Notice that when
Wood’s anomaly occurs (i.e., k,; =k for j =1}, the field
distribution should be very similar to Figure 4(a). -

On the contrary, at the wavelength of 402 nm, the %1
diffraction orders are evanescent waves. As can be seen
from Figure 4(b), when the distance from the surface is
less than 1.5 pm, the interference patterns in Region 1
are very similar to those in Figure 4(a), with periodicity
in both x and z directions. However, the periodic inter-
ference pattern in the x direction is due to evanescent
waves along the boundary. Since the imaginary part of the
z component of the wavevector is very small for j = 41
diffracted waves, the periodic patterns in the x direction
appear even when |z|/A = 4. If the distance from the sur-
face further increases, only interference pattems in the z
direction remain. In fact, the magnetic field of Region I
is greatly affected by evanescent waves in the near field
regime and is quite different from that in the far field,
where evanescent waves disappear. The magnetic field pat-
tern in the far field is the interference of the zeroth-order
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diffracted wave and the incident wave. Likewise, the trans-
mitted fields show very similar distributions as in Region I.
Consequently, the field distribution in the near-field and
far-field regimes clearly indicates that j = +1 propagating
orders disappear at a wavelength slightly longer than that
corresponding to Wood’s anomaly. In addition, the near-
field distribution reveals very rich features due to the inter-
ference between evanescent waves and propagating waves.
It should be noted that Wood’s anomaly may not always
enhance the transmission, and other studies showed that
the transmittance could be suppressed.® The effects of
Wood's anomaly on the transmittance also depend on the
angle of incidence according to Eq. {13).

3.2. Cavity Resonance

When the cavity resonance occurs, standing waves exist
in cavities formed by the grating. At the resonance con-
dition, a strong electromagnetic field exists inside the
cavity or slit; it is the confined and enhanced field that
subsequently enhances transmission through the gratings.
Therefore, several peaks can be observed from the far-field
transmitlance spectra as shown in Figure 3. Notice that
each cavity formed by the grating has two open ends at
z=0and z = d. However, the boundary condition requires
that tangential field compenents be continuous, enabling
electromagnetic waves t0 be confined inside the cavily.
Consequently, the resonance condition strongly depends
on the geometric paramelers of the cavity as well as the
boundary conditions. Furthermore, the boundary condi-
tions are complicated functions of geometric paramelters.
The cavity resonance is not the same as an 1D Fabry-Pérot
resonance, whose resonance condition is simply given by
n,d, = multipies of A/2, where n_ and d_ are respectively
the refractive index and thickness of the medium inside the
1D cavity.” Therefore, the resonance condition suggested
by Refs. {28] and [29] does not properly predict the cavity
resonance condition of the gratings studied here. In fact,
the standing wave in the cavity is a combination of all
diffracted waves including evanescent waves, and it is not
necessary for a single diffraction component to contribute
to the cavity resonance. As Lezec and Thio® pointed out
for 2D hole arrays, interferences of diffracted evanescent
waves must be fully considered to predict the transmittance
peak position. To further understand the cavity resonance
of 1D gratings, the field distribution is plotted in the near-
field regime and discussed next.

At selected peak wavelengths, the squares of mag-
netic and eleciric fields are plotted for TM and TE
waves, respectively, over two grating periods in Figure 5.
The grating geometry is the same as that in Figure 3.
Figure 5(a) plots the magnetic field distribution for TM
waves when the wavelength is 1950 nm at which the trans-
mittance 7 = (,957. The slit regions are for 0.1 pm < x <
03 pum and 0.5 pwm < x <0.7 pm, and the wave is inci-
dent from the bottom of the grating at normal incidence.
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Fig. 5. Square of the magnitude of complex magnetic field when the cavily resonance occurs for TM waves over the two grating periods: (a) A =
1950 nm; (b) A =960 nm and that of complex electric field for TE waves: (c} A = 484 nm; (d} A =444 nm. The geometric parameters of the Ag
grating are the same as in Figures 3 and 4. The corresponding transmittance T is also indicated for each case.

The magnetic field distribution clearly indicates that one
anti-node (i.e., maximum of the field intensity) is formed
at the center of the cavity. As the wavelength further
increases, no cavity mode exists, and thus, the transmit-
tance does not show such peaks. This suggests that the
wavelength of 1950 nm corresponds to the cutoff wave-
length (upper limit) of the cavity resonance. When the
wavelength decreases to 960 nm where the transmitiance
T = 0.944, wwo anti-nodes are formed in the cavity as
illustrated in Figure 5(b). Note again that because of the
complex coupling of diffracted waves, the wavelength at
which two anti-nodes occur slightly vary from half of
the wavelength at which a single anti-node occurs. Even
though it is not shown, if the magnetic field is plotted at
1260 nm, where the transmittance dip exists, one-and-a-
half anti-nodes are formed in the cavity region. Accord-
ingly, multiple anti-nodes will be found inside the cavity
when the wavelength further decreases, corresponding o
higher modes (or overtones) of the cavity resonance. How-
ever, only low-order cavity resonance modes contribute
to the high transmittance peaks, and the transmittance for
high-order modes may not necessarily show a high peak.

For TE waves, very similar field distributions are
obtained when the ransmittance shows peaks as illustrated
in Figures 5{c and d). The cutoff wavelength for the TE
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wave occurs at 484 nm, which is about one-quarter of
the cutoff wavelength for the TM wave. In fact, there
are four anti-nodes at 514 nm in the TM wave due 1o
cavity resonance, which is not shown in Figure 5. Inter-
estingly, the wavelength associated with two anti-nodes
for the TE wave occurs at 444 nm; this is very close 1o
the cutoff wavelength of 484 nm, suggesting that the fre-
guency at which two anti-nodes occur is far from twice
the frequency at which only one anti-node occurs. In addi-
tion, the grating becomes almost opaque for TE wave
when the wavelength is longer than 500 nm. It can be
seen from Figures 5(a and b) that, while cavity resonance
can enhance the transmittance for both polarizations, the
peak locations and the number of anti-nodes are polariza-
tion dependent. The enhancement of transmittance for TE
waves by cavity resonance is not as significant as in the
case of TM waves. In the following, the effects of geo-
metric parameters, such as the grating thickness, period,
and slit width on the resonance condition are separately
investigated only for TM waves.

Figure 6{a) shows the transmittance spectra when A =
400 nm and w = 200 nm are fixed for d = 400 nm, §00 nm,
and 1600 nm. As the grating thickness increases, more
wransmittance peaks are found in the considered wavelength
range; and furthermore, the cutoff wavelength shifts 1o the
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longer wavelength region. This is related to the standing
wave formation with one anti-node similar to what is seen
in Figure 5(a). The wavelength of the standing wave with
one anti-node should be longer when the cavity thickness
increases. Though the thickness changes by factor of two,
no transmittance peak occurs at the same wavelength for
three cases. This supports that the cavity resonance is much
more complicated than for a simple Fabry-Pérot resonance.

The effects of the slit width are considered iIn
Figure 6(b) when the period is 400 nm and the thickness
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is 800 nm. Although the field distwribution in Figure 5§
mainly shows node and anti-node formations in the vertical
direction, the resonance condition can be affected by the
lateral size of the cavity as well. In {act, the x components
of the wavevector of diffracted waves are modified by the
grating equation, resulting in nonzerc values even al nor-
mal incidence. Hence, the standing wave formation in the
iateral direction can occur with the presence of diffracted
waves. Furthermore, boundary conditions at z =0 and
7z = d will also be modified as the lateral dimension of the
cavity changes. Figure 6(b) clearly shows that the peak
wavelengths shift 1o the shorter wavelength region when
the slit width changes from 100 nm to 300 nm. Interest-
ingly, even for the narrow slit when the aspect ratio w/d
is 0.125, the cavity resonance still enhances the transmis-
sion through the slit array, allowing the transmillance w0
be over 0.85. When w = 300 nm, the overall transmittance
is already very high, such that the cavity resonance does
not considerably enhance the transmission. The number of
peaks does not change as the slit width changes. Again,
the transmittance peak due to Wood's anomaly does not
shift in Figures 6{a and b) since the grating period remains
the same.

Figure 6{(c} shows the transmittance of gratings when
the grating period is either 400 nm, 600 nm, or 800 nm
while d = 800 nm and w = 200 nm. Unlike the pre-
vious structures, the physical size of individual cavity
remains the same, and only the lateral size of metal strips
changes. Since the grating period changes, the wavelength
corresponding to Wood’s anomaly accoerdingly shifts as
seen from Figure 6{c). The effects of the grating period
on the resonance condition are very similar to those of
the slit width, such that the transmittance peak wave-
length shifts to longer wavelengths as the period increases.
As mentioned earlier, standing waves in the lateral direc-
tion formed by diffracted waves also contributes to the
resonance condition. In terms of the standing wave for-
mation in the x direction, increases in w or k,; (i.e.,
decreases in A) while keeping the other constant have
the same effects because the phase shift in the cavity
of each diffracted wave is proportional to the product
of k,w. Hence, Figures 6(b and c) show very simi-
lar trends in the transmittance peak wavelengths as w
increases or as A decreases. Furthermore, the transmit-
tance peak around A = 600 nm becomes broader when
A = 800 nm. In this case, additional propagating orders
j = %1 exist based on Eq. (3a) because the wave-
length 600 nm is shorter than the period. In Figures 6(a
and b), however, only the zeroth-order diffracted wave
is propagating when the cavity resonance occurs. The
existence of the additional propagating diffraction orders
may affect the far-field transmission characteristics, such
that the transmittance at cavily resonance becomes
broader.

The transmittance of the Ag grating with the same geo-
metric parameters as in Figure 3 is plotted with respect
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The inset shows the solution of Wood's anomaly determined by Eq. (13).

to the wavelength and incidence angle for ¢ = 3(°, ie.,
conical diffraction, in Figure 7 for TM (i = 0°) and TE
(i =90°) waves, respectively. The inset in Figure 7(a)
depicts the solutions of Wood’s anomaly obtained from
Eq. (13) with a minor (short) branch (f = 1) on the lower-
left corner and a major (long) branch (j = —1) that across
all zenith angles. Because the excitation of SPP is at wave-
lengths very close 1o Wood’s anomaly, a reduction of the
rransmittance due to enhanced absorptance can be seen in
the major branch and especially for TM waves. On the other
hand, the minor branch of Wood's anomaly may enhance
the transmittance for TE waves, as can be seen from the
bright region at the lower-left corner of Figure 7(b). As can
be seen from Figure 7(a), oscillations of the transmitiance
due to the cavity resonance are obvious along the wave-
lengths for different # values less than 45°, and the trans-
mittance peak positions are close to those in Figure 3(b)
for ¢p = 0°. On the other hand, for 60° < 8 < 70°, the spec-
tral transmittance is greater than 0.8 at wavelengths longer
than 1 wm, without visible oscillations. Even when 8 > 80°,
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there exists considerable transmission through the Ag grat-
ing with T = 0.6 at the wavelengths of 875 and 1750 nm,
As can be seen from Figure 7(b), the transmittance for TE
waves exhibits quite different features with much lower
values compared with those for TM waves. As shown in
Figures 3 and 4, the cutoft wavelength of cavity resonance
for TE wave is around 500 nm at normal incidence. When
¢ = 30°, the transmittance values are much higher than
those in Figure 3(a) because #, is not zero.

3.3. Effective Medium

A mixture of multiple media or a complicated structure
can be homogenized into an effective medium with a spe-
cific material property to reduce the computational time
with reasonably approximate resulis.”® For 1D gratings,
the EMT is applicable only when all diffraction orders
are evanescent except the zeroth order.”’ Since the grat-
ing period in the present work is much shorter than the
wavelength in the mid-IR spectral region, the grating
{Region II} can be modeled by a hemogeneous film of
thickness ¢. The zeroth-order effective medium expres-
sion has been used for the design of periodic gratings
with antireflection effects® or wavelength-selective radia-
tive properties.’! On the other hand, expressions containing
high-order terms of A/A often failed for metallic gratings,
resulting in negative values in the imaginary part of the
effective dielectric function.?' Therefore, the zeroth-order
expression is adopted in the present study, and the dielec-
tric functions are given below for both polarizations when
the Pol is perpendicular to the grating grooves:

grg = fea+{1—feg (14a)

o= (L 1122)”
Ea Ep

where f is the filling ratio of medium A, which is Ag in
the present study. It is important to note that the dielectric
functions depend on the polarization of the incident wave
so that the effective medium behaves differently for dif-
ferent polarizations. Furthermore, the grating filling ratio
is the only geometric parameter affecting the dielectric
function.

Figure B(a) shows the effective refractive index and
extinction coefficient for the TM wave when the filling
ratio of the Ag grating is 0.5. The effective extinction
coefficient becomes three orders smaller than that of Ag
and thus behaves like a dielectric material. On the con-
trary, the effective extinction coefficient for the TE wave
{not shown in the figure) has the same order of magni-
tude as that of bulk Ag. Consequently, grating behaves
like a metal film for the TE wave so that most radia-
tion is reflected. Figure 8(b) shows the transmittance spec-
tra calculated by EMT for Ag gratings with a thickness
d = 800 nm and filling ratio f = 0.5. Note that the result

and
(14b)
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from EMT (solid line} is independent of the grating period.
The transmittance spectra, calculated by RCWA, of two
Ag gratings (i.e., A = 400 nm; dashed line and A =
800 nm; dash-dotted line) with the same filling ratio and
the thickness are also plotted for comparison. The trend
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of transmittance predicted from EMT agrees well with
those calculated from RCWA, especially at long wave-
lengths. On the other hand, the deviation becomes large
at short wavelengths especially for A = 800 nm. While
EMT predicts oscillations due to thin-film interference, it
fails 1o describe the cavity resonance of the gratings in
the near-infrared region. The effect of filling ratio on the
TM wave transmittance of the Ag slit array is examined
with A =400 nm and d = 800 nm with f = (.25 and
0.75, as shown in Figure 8(c). Though the transmittance
by the EMT shows a similar trend as that by RCWA for
different filling ratics, the deviation becomes larger as the
filling ratio increases. In general, EMT overpredicts the
transmittance and the error becomes larger as the filling
ratio increases. For the TE wave, the transmittance is very
close to zero in the mid-IR region when the filling ratio is
greater than 0.05.

The effects of & are further investigated in the long
wavelength region with the same geomeiric parameters as
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Fig. 9. Transmittance of the Ag grating with the same geometric param-
eters as in Figure 3: (a) the plane of incidence is perpendicular to the
grating grooves; (b) the plane of incidence is parallel to the grating
grooves. In both cases, the magnetic field is set to be parallel w0 the

grating grooves.
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those in Figure 3 using RCWA. Figure 9 plots the transmit-
tance spectra of the free-standing grating when the Pol is
either perpendicular or parallel to the grating grooves. Note
that the transmittance specira for § = 0° are identical in
Figures 9(a and b). In Figure 9(a), with ¢ = 0° and  =0°,
the magnetic field is always parallel to the grooves. Fur-
thermore, &, increases with 8 but k, remains zero. As 6
increases, the transmittance increases in the mid-IR. Sim-
ilar variations in the transmittance can also be predicted
by EMT based on the TM wave, although it is not shown
here. The transmittance at large incidence angles (6 = 60°)
is close to unity in the whole spectrum. It appears that
the transmittance peak due the cavity resonance at A =
2.0 um is independent of 6 when 6 < 45°. Notice that
only E, and E, change as 6 varies but H, remains the
same, suggesting that the y-component of the magnetic
field plays a dominant role in the cavity resonance for TM
waves. On the other hand, if H, changes, the wavelength
corresponding to the cavity resonance varies somewhat
as shown in Figure 9(b), and the spectral transmittance
decreases as @ increases. Although Figure 3(b) is for TE
incidence with ¢ = 90° and ¢ = 90°, the electric field is
always perpendicular to the grooves. Furthermore, k, = 0
and k, increases with €. The situation corresponds to con-
ical diffraction. The magnetic field has a component H,
that is parallel to the grooves. Hence, the transmittance is
relatively large in the mid-IR but decreases with increas-
ing 6. This is caused by the reduction of the ratio H,/H, as
@ increases. Therefore, the dependence of transmittance on
# has opposite trends in Figures 9(a and b). In the case of
Figure 9(b), the EMT formula is not applicable because of
conical diffraction. When there is a nonzero electric field
component E,, e.g., ¢ = 90° and = 0°, the transmittance
becomes very small in the long wavelength region.

Figure 10 shows the magnetic field distribution at A =
8 pwm when the TM wave is incident on the same structure

2
Togyo| £,
Y T
t* r 1 1 T 1 1 T L H A4 L3 1 1 1 _| D
1 L % AY A [ r r I T . 1 hY - - 1}
PR ANl o TN ]
T T Tt Tt T -0.5
(R N B O
Foiod A
Trr Tttt -1.0
T S
L I Tttt _
PeTOT R O W T S 15
LT S Nt ot or 7
v e . U TR T R I ~2.0
" T r H r T - 1 1 1 1 1 * T 1
] b4 T 1 t t t t 1 1 1 * * * ]
R R S S S S A S -25
0.2 0.3 0.4 a5 06 07 0.8

X (am)

Fig. 10. Square of the magnitude of complex magnetic field and Poynt-
ing vector distribution for TM waves over the two grating pericds at

- A =8 um. The field is plotted as a contour plot, and the Poynting vec-
tor is illustrated in arrows. The geometric parameters of the Ag grating
are the same as in Figure 3. The slit regions are located in the regions
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considered in Figure 3. At A =8 pm, the wavelength-to-
period and wavelength-to-slit ratios are 20 and 40, respec-
tively. When the grating exhibits an effective medium
behavior, the magnetic field in the vicinity of grating does
not contain rich features like those of Wood’s anomaly and
the cavity resonance. Instead, the magnetic-field intensity
is nearty.uniform around the grating, except the Ag strips
where it decays very fast. Figure 10 also arrows the time-
averaged Poynting vector, defined as § = (.5Re[E x H"|,
where Re represents the real part of complex guantity.
The arrows represent the directions of the Poynting vec-
tor and indicate the path of net energy flow. The magni-
tude of Poynting vector in vacuum of the grating region
is greater than that of Regions I and IIL, as illustrated
by the longer arrows, because energy transferred through
Ag sirips is negligible. Therefore, the incident energy is
squeezed into the narrow slit regions. The Poynting vec-
tor distribution quickly evens out within a distance around
200 nm from the grating surface. Note that the Poynting
vectors become the largest around the sharp corners of the
slits: this may be caused by the abrupt change of mate-
rial properties at the comner. The figure is a clear illustra-
tion of how the IR radiation can be funneled through the
nanometer scale grating structures, More detailed discus-
sion about the near-field localization of the IR radiation in
the nanometer length scale through the 1D metallic grat-
ings can be found in the Ref. [16].

4. CONCLUSIONS

In the present study, the transmission enhancement in
the spectral region from visible to mid-infrared through
nancscale 1D shit arrays has been theoretically examined,
using a modified RCWA algorithm, based on both the
far-field spectral wansmittance and the field distributions
near the grating region. The mechanisms enabling large
transmission are Wood’s anomaly, cavity resonance, and
the effective medium behavior, depending on the spectral
region. For TE waves, spectral transmittance shows peaks
due to Wood’s anomaly and the cavity resonance in the
visible region with transmittance peaks partly overlapped.
On the other hand, the influence of Wood’s anomaly and
the cavity resonance are separated for TM waves. Near the
wavelength corresponding to Wood’s anomaly, the field
distribution in the vicinity of the grating can be strongly
affected by the interference of diffracted evanescent waves
and propagating waves. Hence, Wood’s anomaly can also
suppress the transmittance, along with the excitation of
SPPs. The cavity resonance yields transmittance oscillation
in both TE and TM waves, with very large transmittance
maxima for TM waves at the resonance wavelengths. The
resonance wavelengths depend strongly on the polarization
and can also be affected by the thickness, period, and the
slit width of gratings. This is because all diffracted waves
are responsible in forming standing waves inside the cav-
ity. In the mid-IR spectral region, however, the effective
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medium theory can explain the large transmission found in
a wavelength-insensitive manner for TM waves, as well as
the nearly-zero transmittance for TE waves. Based on the
EMT, the grating structure behaves like a metal for the TE
wave but a dielectric for the TM wave. The Poynting vec-
tor disiribution in the near-field regime clearly shows that
the incident radiation can be efficiently funneled through
the narrow slit region even when w:A = 1:40.

Acknowledgment: This work was supported by the
National Science Foundation (CTS-0500113).

References

1. T. W, Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wollff,
Nawre 391, 667 (1998),

2. E. Popov, M. Neviére, S. Enoch, and R. Reinisch, Phys. Rev B 62,
16100 (2000).

3. H. 1. Lezec and T. Thio, Opt. Express 12, 3629 (2004).

4. W. Srituravanich, N. Fang, C. Sun, Q. Lue, and X. Zhang, Nano
Letr. 4, 1085 (2004).

5. F J. Garcia-Vidal and L. Martin-Moreno, Phys. Rev B 66, 155412
(2002).

6. 1. A Ponwo, F. 1. Garcfa-Vidal, and J. B. Pendry, Phys. Rev. Len. 83,
2845 (1999).

7. M. Auslender and S. Hava, Infrared Phys. Technol. 36, 1077 (1995).

8. 5. Astilean, Ph. Lalanne, and M. Palamaru, Opr. Commun. 175, 265
(2000).

9. F. Marquier, J.-]. Greffet, S. Collin, F. Pardo, and J. L. Pelouard,
Opr. Express 13, 70 (2005},

10. R. W, Wood, Phys. Rev. 48, 928 (1935).

11. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).

J. Comput. Theor. Nanosci. 5, 201-213, 2008

Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared

12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces -and
on Gratings, Springer-Verlag, Berlin (1988).

13. 1.-1. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, 8. Mainguy. and
Y. Chen, Nanere 416, 61 (2002),

14. F. Marquier, M. Laroche, R. Carminati, and 1.-J. Greffet, £ Hear
Transfer 129, 11 {2007).

15. P. Lalanne and D. Lemercier-Lalanne, S Mod. Opt. 43, 2063
(1996).

16. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, J. Quant. Spectroc. Radiat.
Transfer 109, 608 (2008).

17. M. G. Moharam, E. B, Grann, D). A, Pommet, and T. K. Gaylord.
J Opt. Soc. Am. A 12, 1068 (1993).

18. L. E Li, J Ope Soc. Am. A 13, 1870 {1996).

19. 8 T. Han, Y. L. Tsao, R. M. Walser, and M. F. Becker, Appl. Opt.
31, 2343 (1992).

20. 8. Peng and G. M. Morris, J. Opt. Soc. Am. A 12, 1087 (1995).

21. Y.-B. Chen, Z. M. Zhang, and P. I. Timans, J. Heat Transfer 129.
79 (2007).

22, P Lalanne and G. Morris, J. Opt. Soc. Am. A 13, 779 (1996).

23, E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1.
Academic Press, San Diego, CA (1998).

24. Y.-B. Chen and Z. M. Zhang, Opt. Commun. 269, 411 {2007),

25, H.F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec,
Phys. Rev. B 58, 6779 {1998).

26. A. K. Azad, Y. Zhao, and W. Zhang, Appl. Phys. Ler. 86, 141102
(2005).

27. M. Bom and E. Wolf, Principles of Optics, 7th edn., Cambridge
University Press, Cambridge, UK (1999).

28. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi. Appl. Phys.
Len. 79, 1393 (2001).

29. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, J. Opt. Soc. Am. A
22, 1805 (2005).

30. A. Sentenac and 1.-J. Greffet, fnr. L Heat Muss Transfer 37, 353
(1994).

31. E. N. Glytsis and T. K. Gaylord, Appl. Opt. 31, 4459 (1992).

Received: 5 August 2006. Accepted: 30 Janvary 2007.




