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Solid Solubility of Carbon in Copper during Mechanical Alloying

S. Saji, T. Kadokura®, H. Anada, K. Notoya
and N. Takano

Faculty of Engineering, Tovama University, 3190 Gofuku Toyama 930-8555, Japan

Solubility of carbon in solid capper during mechanical alloying using an Attritor type of ball mill was investigated
by means of X-ray diffraction, microscopy, efectron probe microanalysis and chemical analysis. Carbon atoms less than
about 28.5 atomic percent are seluble in the solid copper consisting of nano-crystals during mechanical alloying of cop-
per-graphite mized powders. The supersaturated solute carbon atoms take the interstitial positions in the fee «-Cu solid

solution and result in the lattice expansion of the w-Cu.
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I. Introduction

In 1946 the solubility of carbon in molten copper®
was determined to be, in wi%C, about 0.0001% at 1373
K, 0.00015% at 1573 K, 0.0005% at 1773 K and 0.003%
at 1973 K, and redetermination of the the solubility of C
in molten Cu by Fischer and Schumid® confirmed the
previous work with an estimate of about 0.0005 wt%
(0.0026 at9%) at 1473 K. From the experimental data of
McLellan in 1969%, it is evident that the Cu-C phase dia-
gram is of peritectic type and that the maximum solubili-
ty of C in fcc terminal solid solution (Cu) is about 0.04
at%C at about 1373 K. In 1998, Chu-ef #/.? reported that
Cu-C pseudoalloy films prepared by R.F. magnetron
sputtering were a nonequilibrium supersaturated solid so-
lution of C in Cu with nanocrystalline microstructures.
On the other hand, mechanical alloying (MA) has
received considerable attention, because it can produce
various non-equilibrium phases; highly supersaturated
solid solution™1?, nano-quasicrystalline’V, amorphous
phases"? and so on.

In the present work the maximum solubility of super-
saturated carbon in copper solid solution during mechani-
cal alloving{MA) of a copper-graphite powder mixture
was determined. The results obtained were presented at
the 121th meeting of the Japan Institute of Metals
{Sendai, September 1997).

II. Experimental Procedure

Atomized pure copper powder (99.86 wt%Cu, particle

size: ~45 pm and graphite powder (98.55 wt%C, parti-

cle size: ~ 6 pim) were uséd as elemental powders. Cu-10,

T Graduate student, Toyama University.

20, 25, 30, 40 and 50 at%C mixed powders were mechani-
cally alloyed for various times by an Attritor type of ball
mill in a glove box filled with pure Ar gas containing oxy-
gen less than 300 ppm. The mill container was charged
with a 96 g mixture of the elemental powders and 2,200-g
hardened steel balls (SUJ2, dia.: 4.76 mm, volume: 410
cm?). The rotating speed of the mill adepted was 175
rpm. The mechanically alloyed powders were removed
from the container in an Ar-filled glove box and were sub-
jected to X-ray diffraction by monochromatic CuKa
radiation at 40 kV, optical, scanning electron microscopy
and electron probe microanalysis.

The lattice parameters, crystal structures and sizes of
MA-powders were determined through X-ray diffraction.
The crystal size D of MA powders consisting mainly of
«-Cu solid solution were estimated from the breadth
of the most intense Bragg peak, o-Cu(lll), using
Scherrer’s relation D=0.91/ ficos &, where A is the wave-
length of the X-ray radiation, § the integral width (peak
area divided by peak height) of the diffraction peak
and 8 the diffraction angle.

Carbon content in the MA-powders were chemically
analyzed by the decomposition in the oxygen-infrared ab-
sorption measurement.

III. Results and Discussion

Figure 1 shows changes in XRD patterns during
mechanical alloying of Cu-20 at%C mixed powders, as
one example showing solid solubility of carben into cop-
per. In the XRD pattern for 0 ks (as-mixed powders),
Cu(l111), Cu(200) and graphite (0002) diffraction peaks
are observed. The graphite peak, however, disappears
after 36-ks milling and the Cu peaks shift to the low-
angle side. These peak shifts correspond to the increase
in the lattice parameter of copper.
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Fig. 2 Changes in the latiice parameter of the ¢-Cu phase with milling
time during mechanical alloying of the various mixed powders with
different graphite contents.

Figure 2 shows the changes in the lattice parameter of
the @-Cu phase during mechanical alloying for the vari-
ous mixed powders with different graphite contents. In
all the cases, the lattice parameter increases with milling
time and reaches a saturation value which depends on the
graphite content. The higher the graphite content, the
higher becomes the saturation value.-

Very recently, Chu and his coworkers” have reported

Changes in X-ray diffraction Patterns during mechanical alloying of Cu-20 at%C mixed powders. As-mixed powders

Table | Carbon contents in the indicated Cu-C powders mechanical-
[y-alloyed for 180 ks, determined by chemical analysis.
(at%)
Sample Milling time {ksec) No. 1 No.2 No.3 Average

Cu-10 at%C 975 9.56 9.63
Cu-20 at%C 19.76  19.64 19.70
Cu-25 at%C 180 2309 23.22  23.20 23.17
Cu-30 at%C 28.08 2821 28.14
Cu-40 at%C 38.47 38.27 38.37
© Cu-50 at%C 48.24 4832 48.11 48.22

that the lattice parameter measured by XRD of Cu-C
films prepared by R.F. magnetron sputtering increases
with increasing carbon content in the range from 0~ 16
at?%C. They have concluded that as-deposited Cu-C
films exhibit a nanocrystalline structure consisting of C
atoms in non-equilibrium supersaturated solid solutions
of Cu.

Table 1 shows the carbon contents determined by the
chemical analysis in the various powders mechanically-
alloyed for 180 ks. The average value of carbon obtained
is a little smaller than the mixed value for all samples.
Graphite powders adhering to the surface of MA-alloy
powders were washed out before chemical analysis. The
difference between the average and mixed value shows a
tendency that washed out graphite powder increases with
increasing mixed carbon content.

Figure 3 shows the relationship between the saturation
values of the lattice parameter in Fig. 2 and the average
carbon values determined by chemical analysis for the
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MA-powders. The lattce parameter increase linearly with
increasing carbon content to about 28.5 at%, beyond
which it remains unchanged. The carbon content of
about 28.5 at% corresponding to the break point in Fig.
3 gives the maximum value of supersaturated solid solu-
bility of carbon in copper during mechanical alloying.
The crystal size of o-Cu(C) during MA decreases
remarkably from about 5.5 um for the atomized copper
powder to about 16 nm for MA-powders, as shown in
Fig. 4. The higher the content of the mixed graphite, the
shorter the milling time for the nanocrystal size of about
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Fig. 3 The relationship between the saturation values of the lattice
parameter during mechanical alloying and the average carbon con-
tent in MA powder delermined by chemical analysis.

S. Saji, T. Kadokura, H. Anada, K. Notoya and N. Takano

16 nm.

Figure 5 shows the microstructures (OM) of varicus
MA (180 ks)-powders which were embedded in the syn.
thetic resin and polished. White particles or phase is
determined to be a @-Cu(C) phase by EPMA and the gray
one seems to be a graphaite phase. Almost all MA-pow-
ders prepared from Cu-10, 20, 25 and 30 at%C mixed
powders show only the white «-Cu(C} phase as seen in
Fig. 5(a), (b), {c) and {d). On the other hand, the MA.
powders prepared from the Cu-40 and 50 at%C mixed
powders consist of the gray graphite phase and the white
c-Cu phase as shown in Figs. 5(e) and (f). These micros-
tructures show that the graphite powder in excess of the
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Fig. 4 Changes in the crystal size of a-Cu(C) phase with milling time
for the indicated Cu-C mechanically alloyed powders.

Fig. 5 Optical microstructures of Cu-10at%C (), -20 at%C (b}, -25 at%C (c), -30 at%C (d), -40 at%C {e), and -50 at%C (D),

powders mechanically-alioyed for 180 ks.
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maximum solubility of supersaturated C in @-Cu during
MA forms composite particles with the «-Cu phase.

The thermal stability and properties of the new materi-
al prepared- by MA method are interesting subjects.

In conclusion, carbon atoms less than about 28.5 at%
are soluble in the solid copper in the non-equilibrium
state during MA of copper-graphite mixed powders. The
supersaturated solute C atoms in fee @-Cu take the inter-
stitial positions and result in the lattic expansion of the
Cu solid solution.
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