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Abstract
Implementations of quantum information processing systems based on optically
controlled electron spins in semiconductor quantum dots are particulary appealing
due to several features. These features include inherent ultrafast gate operation times,
reasonably long decoherence times, small optical control power and a natural ability to
link to optical fiber communication networks. We will discuss the current state of the art
in the experimental implementations of the main elements of semiconductor spin
qubits: qubit initialization, single-qubit gates, two-qubit gates, entanglement distribution,
projective measurement, quantum memory and indistinguishable
single-photon generation.

PACS numbers: 03.67.−a, 42.50.Ex, 03.67.Lx, 71.35.−y, 78.67.−n

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The concepts of quantum computation and quantum
simulation were first proposed by Deutsch [1] and
Feynman [2], which created interest in the physical
implementation of quantum information processing systems
in the mid-1980s. In the late 1980s, research at NTT
Basic Research Laboratories made a general search for
physically implementable optical quantum information
processing systems. The implementations of two qubit
gates (controlled-NOT gates) and projective measurements
(quantum non-demolition measurements) for flying photonic
qubits based on optical Kerr nonlinearities were discussed
theoretically [3, 4]. The stimulated Raman scattering process
for an atomic three-level 3-system was identified as a means
of optically controlling an electronic matter qubit [3]. The
experimental efforts to implement some of those ideas also

started in the late 1980s. A semiconductor cavity quantum
electrodynamic (QED) experiment, in which the spontaneous
emission of quantum well (QW) excitons is enhanced in a
monolithic planar microcavity [5, 6], was one of the outcomes
of such experimental efforts. These early results from 20
years ago provided the foundation for current ideas for
optically controlled semiconductor spin qubits for quantum
information processing.

Since then, we have been searching for simple, practical
and complete implementations of quantum information
processing systems, with a special emphasis on semi-
conductor cavity QED and ultrafast optics techniques. Many
new ingredients came into play to cope with the demanding
requirements of recently discovered quantum concepts, such
as fault-tolerant quantum repeaters [7, 8] and one-way
quantum computation [9, 10].
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The implementation of physical qubits for such future
quantum information processing systems must realize the
following six functions simultaneously:

(i) initialization,

(ii) single-qubit gate,

(iii) two-qubit gate,

(iv) interface to quantum communication bus and entangle-
ment distribution,

(v) quantum memory,

(vi) projective measurement.

The last three functions (iv)–(vi) are particularly important
for implementations of fault-tolerant quantum information
processing systems, such as quantum repeaters based
on nested purification protocols [7, 8] and fault-tolerant
one-way quantum computation based on topological cluster
states [9, 10]. For these applications, these abilities must
be achieved with a reasonable speed and a high fidelity.
Solid-state implementations based on optically controlled
electron spins in semiconductor quantum dots (QDs) are
particulary appealing due to their inherent ultrafast gate
operation times and their natural interface to optical fiber
communication networks.

The unique features of a QD as an ‘artificial atom’ can be
summarized in the following three points:

(A) An exciton in a semiconductor QD or QW island has an
enhanced oscillator strength due to an effect similar to
‘Dicke’s superradiance for an ensemble of atoms’ [11],
fexciton = fe–h × a2/a∗2

b , where fexciton and fe–h are the
oscillator strengths of an exciton and free electron–hole
pair, a is the QD radius and a∗

b is the exciton Bohr
radius. The enhancement factor a2/a∗2

b is of the order
of 10–30 for self-assembled QDs and higher for QW
islands with a larger area [12–15]. This feature is the basis
for ultrafast optical control of electron spins with small
control powers.

(B) QDs can be placed permanently as a two-dimensional
(2D) lattice at designated positions without requiring
external forces [16]. The spontaneous emission rate
is further enhanced by the modified field density of
states with cavity walls, which provides an efficient
way to couple a semiconductor spin state to an
optical communication bus [17, 18]. Efficient two-qubit
quantum gates, entanglement distribution and cluster
state generation can also be realized optically within
a monolithically integrated microcavity. A cavity mode
operates as a catalyst for all those multiqubit operations.

(C) An excitonic transition wavelength can be tailored
to the fiber optic communication wavelengths of
1.3–1.5 µm [19], which will facilitate a natural interface
to long-distance optical communication networks.

In this paper, we will discuss how the above six functions
can be potentially implemented with semiconductor QD
cavity QED systems and review the current state of the art
in their experimental realization.

Figure 1. (a), (b) The devices used in experiments consist of
self-assembled InGaAs QDs and a monolithic post-microcavity with
top and bottom DBRs. (c), (d) An alternative device is based on a
2D array of position-controlled QDs and a monolithic planar
microcavity with top and bottom DBRs.

2. Physical qubits—a cavity QED system with single
electron-doped QDs

The device structure we most commonly use in our
experiments is an ensemble of self-assembled InGaAs QDs
(figure 1(a)) embedded in a 3D post-microcavity with
top and bottom distributed Bragg reflectors (figure 1(b)).
Because of narrow cavity resonance and large inhomogeneous
broadening of QDs, a single QD coupled to a single
cavity mode can be found with a reasonable probability.
Alternatively, and probably preferably, a 2D array of
position-controlled QDs (figure 1(c)) [16] will be embedded
in a simple planar microcavity (figure 1(d)). The physical
qubits in this system are the Zeeman sublevels of single
electrons trapped in the QDs. These levels are split by a global
dc magnetic field.

2.1. Magnetic spectrum of charged excitons in QDs

We first describe the basic optical spectroscopy of this qubit.
In this experiment, a single InGaAs QD embedded in a
GaAs matrix captures a single electron from a δ-doped layer
of Si donor impurities located at 10–20 nm from the QD
layer. A dc magnetic field Bext is applied along the x-axis,
perpendicular to the heterostructure growth axis and optical
excitation direction (the z-axis) in this experiment (Voigt
configuration). The electron Zeeman sublevels are split by
δe = µbge Bext in frequency, where µb is the Bohr magneton
and ge is the electron gyromagnetic ratio, which may be
drastically different from that of a bare electron (2.0013). This
ratio is about −0.35 for our system due to the relatively strong
spin–orbit coupling. The excited state with an additional
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Figure 2. (a) The energy splitting of an electron spin and trion state in an InGaAs QD under Voigt configuration as well as the polarization
selection rules. (b) The observed magnetic spectrum and polarization direction of the excitonic emission [21].

electron–hole pair is called a charged-exciton or trion state.
For this state, the two electrons are in a spin singlet state,
and so an unpaired hole determines the spin. Hole states
are split due to a variety of effects. The relatively large
energy splitting between the heavy hole (mz = ±3/2) and
light hole (mz = ±1/2) due to the strong confinement along
the z-axis allows us to neglect the light–hole contribution
to the magnetic spectrum. We neglect the electron–hole
exchange interaction, as it is small compared with the Zeeman
energy at Bext = 5–10 T [20]. If we represent the trion state
splitting at our magnetic field as an effective Zeeman splitting,
δh = µbgh Bext, then the effective hole gyromagnetic ratio
gh is approximately −0.30. The energy spectrum of such
a two-fold three-level 3 system is schematically shown in
figure 2(a), as well as the polarization selection rules for the
four transition lines. These features have been fully confirmed
experimentally as shown in figure 2(b) [21].

The excitonic emissions at the highest and lowest
transition energies are linearly polarized along the y-axis,
while the emissions at two inner transition lines are
linearly polarized along the x-axis. There is a π

2 phase
difference between the two transitions. In a subsequent
single-pulse-stimulated Raman scattering experiment [21], we
used a circularly polarized pump pulse, for which the two
stimulated Raman scattering amplitudes via two trion states
constructively interfere.

2.2. Enhanced spontaneous emission rate for a QD exciton

The existence of a single isolated QD can be conveniently
confirmed by the excitonic emission featuring a strong
anti-bunching effect (g(2)(0)6 1/2) as shown in
figure 3(a) [22]. In this particular InGaAs QD system, the
spontaneous emission lifetime of the QD in a homogeneous
GaAs matrix is ∼620 ps, while it is reduced to ∼15 ps in a
post-microcavity with a post-diameter of 1.8 µm (figure 1(b)).
Therefore, a spontaneous-emission-rate enhancement factor,
often referred to as Purcell factor or cooperativity parameter,
is Fp ≡ γ /γ0 − 1 ∼ 60, where γ and γ0 are the spontaneous
emission rates inside and outside a cavity, respectively. In
the experimental result shown in figure 3(b), the enhanced
spontaneous emission rate is roughly equal to the cavity
decay rate, so that the system is slightly inside the strong
coupling regime. This regime results from a relatively small
cavity mode volume V0 ∼ 20(λ/n)3 and large cavity Q value
(∼1.5 × 104) [22]. We emphasize that a strong coupling
is not essential to implement various quantum information
processing elements described in this paper.

However, a large Purcell factor is indispensable for
implementing efficient two-qubit gates and entanglement
distribution protocols. For an atomic point dipole in a planar
microcavity, such a large Purcell factor is achieved only if
the top and bottom DBRs are formed with two materials
with large refractive-index difference [23]. This is because the
isotropic radiation pattern of a point dipole is poorly matched
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Figure 3. (a) A measured two photon correlation trace g(2)(τ ) for
the excitonic emission from a single QD in a post-microcavity.
(b) The photoluminescence spectra from this system for various
exciton-cavity detuning parameters where the excitonic transition
wavelength is swept by a temperature [22].

to the narrow radiation pattern along the normal direction of
a high-Q planar microcavity. The increased refractive-index
difference helps to increase the acceptance angle of the DBR
so that more efficient enhancement of spontaneous emission
rate becomes possible.

In the case of a QD with a finite lateral size, the radiation
pattern is concentrated onto a normal direction even in a
homogeneous medium when ka approaches to one, where
k = 2πn/λ is the optical wavenumber and a is the QD
diameter. For an InGaAs QD emitting at 900 nm, the above
condition corresponds to a > 40 nm, which is easily achieved
by self-assembled QDs. The spontaneous emission rate is
also enhanced due to the superadiance effect [12]. However,
the enhanced oscillator strength fexciton = fe–h × a2/a∗2

b is
off-set by the reduced density of field states when ka � 1,
and the enhanced spontaneous emission rate saturates at
τ0/τ ∼ 6/π2(λ/na∗

b)
2, where τ and τ0 are the spontaneous

emission lifetimes for an exciton and a free electron–hole
pair. The numerically evaluated spontaneous emission
rate enhancement factor approaches the saturation value
τ0/τ ∼ 350 when ka exceeds one [12]. A spontaneous
emission lifetime of 20–100 ps was indeed observed in large
area QDs [13–15], while a spontaneous emission lifetime
of an electron–hole pair is of the order of 5–10 ns. Since
the inherent radiation pattern of a large area QD naturally
matches the radiation pattern of a high-Q planar microcavity,
an even larger Purcell factor can be expected for such a
system. Figure 4 shows the calculated spontaneous emission

Figure 4. The spontaneous emission lifetime versus DBR mirror
transmittivity for a half-wavelength planar cavity for various system
size a. The cavity photon lifetime τp is also plotted. The dotted line

is the asymptotic decay rate, 1
τ

∼
6

π2 ( λ

na∗
B
)2 1+

√
R

1−
√

R
1
τ0

. The dashed lines
correspond to the decay time of an inhomogeneously broadened
exciton transition line with a 5 meV linewidth [12].

decay rate of a QD exciton in a half-wavelength planar
microcavity versus DBR transmittivity (1-R) for various QD
radii [12]. Compared to the spontaneous emission lifetime
of 5–10 ns for a free electron–hole pair, the lifetime is
decreased to ∼20 ps for a QD exciton without a cavity, and
it is further decreased to ∼1 ps with a cavity when a ' λ/n.
The spontaneous emission lifetime of ∼1 ps was observed
for a single QW exciton in a GaAs/AlAs planar microcavity
[24]. This particular transition matches very well to a
high-Q planar microcavity, which is a main motivation
to use a semiconductor QD or QW island as an ‘artificial
atom’.

3. Qubit initialization by optical pumping

A basic scheme for initializing an electron spin in its ground
state |0〉 via optical pumping is shown in figure 5(a), where
the transition between the states |1〉 and |e〉 is selectively
pumped and the trion state decays into the state |0〉 after
a few transition cycles. Figure 5(b) shows the measured
population in the state |1〉 for the repeated process of optical
pumping over 13 ns and ultrafast π-pulse rotation (electron
spin flip) [21]. This spin-flip process will be discussed in the
following section. From this result, the initialization fidelity
by optical pumping over 13 ns is estimated to be 92 ± 7%. If
a standard thermal equilibration technique was used for qubit
initialization, we would need a high magnetic field and low
temperature for satisfying δe = µbge Bext � kbT ; further we
would need to wait for the relatively long spin equilibration
time, which is T1 & 1 ms in our system.

A potentially more efficient and faster way to initialize an
electron spin is to use a (single shot) projective measurement
of the electron spin state. If the measurement result is |0〉,
the initialization is complete; if the measurement result is |1〉,
we can send a π -pulse to flip the electron spin state. We will
discuss such a projective measurement of an electron spin in
section 6.
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Figure 5. (a) Optical pumping scheme to initialize the electron spin in its ground state |0〉. (b) The measured population in the electron spin
excited state for a repeated process of optical pumping and π -pulse spin rotation [21].
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Figure 6. (a) The energy level diagram of a charged QD and two pairs of frequencies contained in the pulse spectrum that will induce
transitions between |0〉 and |1〉. (b) Probabilities for the states |0〉, |1〉 and |e〉 for a π

2 and π -pulse excitation [25].

4. One-qubit gate by single, broadband,
stimulated-Raman-scattering pulses

A single short optical pulse with a broad spectrum can
implement an arbitrary one qubit gate for these qubits [25].
As shown in figure 6(a), an electron-doped QD may
automatically find an upper and lower sideband from the pulse
spectrum; these frequency bands connect the two spin states
|0〉 and |1〉 by off-resonant-stimulated Raman scattering, for a

variety of possible detuning values 1. A continuum of such
pairs of upper and lower sidebands exist in the spectrum of
a broadband pulse. If the phase differences between the two
sidebands are identical for all pairs, constructive interference
occurs among the continuum of distributed-Raman-scattering
paths, leading to highly efficient electron spin rotation. The
condition of the constant phase difference between the upper
and lower sidebands is satisfied if the optical pulse is
Fourier-transform limited. This spin rotation may alternatively
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Figure 7. Rotations of an electron spin about various
axes induced by optical pulse delays. (a) x-pulse, (b) y-pulse, and
(c) −x-pulse [25].

be interpreted as an optical Stark shift [26] of the optically
bright superposition of |0〉 and |1〉 with respect to an optically
dark superposition.

If the electron Zeeman frequency δe, the detuning 10(11)

of the pulse center frequency from the |0〉 ↔ |e〉(|1〉 ↔ |e〉)
excitonic transition frequency and the coherent Rabi
frequencies �0(t), �1(t) due to the pulse satisfy
δe � {�0, �1} � {10, 11}, then the time-dependent effective
Rabi frequency between the two qubit states |0〉 and |1〉 is
approximately given by

�eff(t) '
�0(t)�∗

1(t)

21
'

|�(t)|2

21
, (1)

where 1 is the average of 10 and 11. A circularly polarized
pulse ensures that the probability amplitudes from the two 3

systems add constructively, and a large detuning 1 minimizes
undesired real excitation in the excited states |e〉.

Figure 6(b) shows the numerical simulation results based
on a three-level master equation for an ultrafast π/2-pulse
and π-pulse [25]. The state |e〉 is only virtually populated
during the pulse excitation and the high fidelity of 99.9%
can be achieved with single optical pulses with a duration
of 100 fs in spite of reasonable decoherence time for the
|e〉 state (electron spin decoherence time T2 = 10 µs; exciton
spontaneous lifetime τ0 = 200 ps, Zeeman frequency δe/2π =

100 GHz). This result indicates that a huge transverse
magnetic field (Boptical ∼ 103 T) can be effectively induced by
optical pulses for a duration of 100 fs. The required pulse
energies are 5 µJ cm−2 and 14 µJ cm−2 for π/2 and π -pulses,
respectively, which are easily available from a mode-locked
semiconductor laser system.

A system clock signal is provided by the repetition
frequency of a mode-locked laser as shown in figure 7 [25].
An electron Larmor frequency δe can be locked to the
repetition frequency of the mode-locked laser, which provides
a clock signal to the whole system. The optical pulse arriving
at t = 0 has zero phase difference between the upper and
lower sidebands shown in figure 6(a) such that it rotates
the electron spin about the x-axis. The optical pulse arriving
a quarter Larmor period later t = π/2δe has a π/2 phase
difference between the upper and lower sidebands so that it
rotates the electron spin about the y-axis. Similarly, the optical
pulse arriving a half Larmor-period later t = π/δe rotates the
electron spin about the −x-axis. Since an arbitrary one qubit

Figure 8. (a) Coherent Rabi oscillations between the electron spin
states versus optical pulse power. (b) Evolution of the reconstructed
Bloch vector over the range of rotation angles 06 θ 6 3π . Views
are from the x-axis and −y-axis, respectively. The rotation angle and
Bloch vector length are extracted from the extreme of the coherent
Rabi oscillation data (figure 8(a)) and the azimuthal position of the
Bloch vector is determined from the phase of the Ramsey fringes
(figure 9) [21].

gate (i.e. an SU(2) operation on a qubit) can be decomposed
into the three rotation operators, R̂x (α)R̂ y(β)R̂−x (γ ), the
three optical pulses at t = 0, π/2δe and π/δe can implement
an arbitrary SU(2) operation. The time required for an
arbitrary gate is therefore as short as ∼10 ps for δe/2π ∼

50 GHz.
Figure 8(a) shows the experimentally induced coherent

Rabi oscillation by a single optical pulse of 4 ps pulse duration
with δe = 26 GHz and 1 = 270 GHz [21]. The electron spin is
rotated with angles up to 12π as the pulse power is increased.
Figure 8(b) shows the trajectory of a reconstructed electron
spin state in a Bloch sphere seen from the x-axis (along a
rotation axis) and from the y-axis (orthogonal to the rotation
axis) up to the pulse area of 3π .

Incomplete initialization (Finitial ∼ 92%) degrades the
purity of an initial state in this experiment, which is seen as the
reduced length of a Bloch vector pointing to the south pole at
t = 0 in figure 8(b). After a π/2 rotation, the purity is further
decreased due to the decoherence induced by the incoherent
absorption of the optical pulse. This unwanted background
absorption is likely due to the weak absorption tail of a QW
(wetting layer), and might be eliminated by growing QDs
without a wetting layer. After a π rotation, the electron spin
direction is skewed from the north pole direction due to the
non-negligible Larmor precession (with a period of ∼40 ps)
of the electron spin during the 4 ps pulse excitation. This
problem can be overcome by using shorter optical pulses and
lower dc magnetic field.

The Ramsey interferometer for an electron spin is
constructed with two optical pulses and variable delay time.
The interference pattern is shown in figure 9 for various pulse
areas and delay times. To estimate the fidelity of the π/2
pulses, we assume the Bloch vector initially has normalized
length of L0 = 0.83 (determined from the initial fidelity
of 92%) and directed toward the south pole of the Bloch
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Figure 9. Experimental demonstration of Ramsey fringes. (a) Photon count rate is color mapped as a function of pulse rotation angle θ and
delay time between pulses. (b) Ramsey fringes for a pair of π/2 pulses. (c) Ramsey fringes for a pair of π -pulses [21].

sphere. It shrinks in length by a factor of Dπ/2 due to a π/2
pulse. The Bloch vector length after two π/2 pulses is thus
L0 D2

π/2, and thus the population in state |1〉 oscillates between
(1 + L0 D2

π/2)/2 and (1 − L0 D2
π/2)/2 with a Larmor period

of 2π/δe. The fidelity is defined by Fπ/2 = (1 + Dπ/2)/2.
We estimate the fidelity by considering the Ramsey fringe
amplitude at the shortest delay time (figure 9) as Fπ/2 ∼

0.94 [21].
Ideally, the Ramsey interferometer output would remain

constant at L0(1 − D2
π )/2 with no oscillations for a π -pulse

case. However, the experimental result shows an overall
upward slope, due to the optical pumping beam remaining on
between two π -pulses and pumping population from |1〉 state
to |e〉 state. Small oscillations remain because the rotation axis
is not exactly the x-axis, as discussed earlier. The π -pulse
rotates the spin about a vector titled by 0.17 rad from the
x-axis, as shown in figure 8(b). By comparing the length and
orientation of the Bloch vector with a vector with the same
length as the initial state but in the direction of the north pole,
we estimate the fidelity to be Fπ ∼ 0.91 [21].

5. Two-qubit gate by single narrow band pulses

Implementation of a two-qubit gate is often realized by using
some kind of quantum communication bus, which connects
two qubits. Examples include a phonon bus for trapped ions
and a cavity/waveguide photon bus for semiconductor QDs
and Josephson junctions. In contrast to the methods using
a direct exchange interaction or dipole coupling between
spins, the use of a quantum communication bus provides
more freedom to design a quantum circuit and often allows
non-local gate operation between two distant qubits. However,
in most cases, the qubit-bus entanglement will also become a
source of decoherence. This is a particulary serious problem

for an optical quantum communication bus in which photon
loss is unavoidable.

A deterministic two-qubit gate may be implemented by
a common cavity mode including two qubits. The gate is
achieved by driving the cavity mode with one or more optical
pulses from a laser. The phase or amplitude of this cavity
mode may be altered by the state of the qubits, which in
turn changes the phase or population of those qubits. The
amplitude version of such a gate was proposed in [27], and
may be viewed as a pair of stimulated Raman transitions for
two qubits driven by two lasers and their common cavity
mode [3]. This gate is known to require high-Q cavities and
may present problems for scaling up toward a large system.
The phase version of such a gate is a form of the ‘qubus’
gate described in [28], and may be viewed as a geometric
(or Berry’s) phase gate in which two qubits and a photonic
waveguide mode are entangled and then disentangled after
the entire interaction, so that the waveguide mode can be
discarded without measurement. This gate is known to be
sensitive to internal photon loss [17, 18, 25].

One of the simplest two-qubit gates of the phase version
is shown in figure 10(a) [29]. We assume that the 2D array
of position-controlled QDs is embedded at the center of a
common planar microcavity. A narrow band optical pulse
with a matched spot size to the inherent mode size of a
planar microcavity and a center frequency slightly detuned
from the |1〉 → |e〉 transition is incident upon a spot where
the two particular QDs (qubits) exist. The inherent mode size
of a planar microcavity is determined by the cavity Q value
and ranges from 1 to 100 µ [12]. The advantage of using
a planar microcavity is the flexibility and simplicity that an
independent cavity with a unique mode area determined by the
cavity Q value can be formed at any desired position inside a
whole wafer.

7
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sending a coherent state pulse. (b) Example level structure assumed for a single QD; for simplicity, we consider that only state |1〉 is
optically connected to the exciton state |e〉. (c) Qubit-dependent cavity resonance and control-pulse spectrum. The cavity dresses the
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trajectory of the cavity internal field for qubit states |00〉, |01〉 or |10〉 and |11〉, respectively [29].

Next, we will explain how this two-qubit gate works.
Since the empty cavity resonance is close the |1〉 → |e〉
excitonic transition line, the cavity resonance frequency
depends on the spin state of the two QDs as shown in
figure 10(c). For a given incident pulse power with a detuning
center frequency from the cavity resonance as shown in
figure 10(b), the cavity internal field amplitude depends on
the cavity resonance frequency, i.e. the two-qubit states.
Figure 10(d) shows the qubit-state-dependent phase-space
trajectory of the cavity internal field, simulated by a master
equation with two |1〉 → |e〉 excitonic transitions and coherent
state input field. As a Gaussian pulse enters and exits
the cavity, a trajectory is swept out; however, the exact
shape depends on the qubit-induced cavity detuning. When
the difference in the enclosed areas of these phase-space
trajectories becomes π , a universal two-qubit gate, identical
to a controlled-phase gate up to single-qubit rotations, can
be implemented [17, 18, 28]. An alternative but equivalent
explanation of this two-qubit gate is the following: depending
on the qubit state 1, the cavity resonance and therefore its

internal field amplitude is modulated. Qubit 2 is subject to the
ac Stark shift from this modulated field. In this way, one qubit
controls the other’s phase, mediated by the cavity.

In order to achieve a high fidelity for this two-qubit
gate, we have to consider two decoherence mechanisms.
One is the spontaneous emission due to real absorption of
incident control pulse photons and real excitation to the
excited |e〉 state. To minimize this, detuning of the pulse
center frequency from the |1〉 − |e〉 exciton transition should
be sufficiently large and the incident control pulse power
should not be too strong. The other decoherence mechanism
is the loss of photons through a cavity mirror, which reveals
‘which-path’ information. As shown in figure 10(d), the qubit
and the cavity internal field may be continuously entangled
during the entire pulse duration. In other words, the photon
field is phase modulated by the dispersive coupling with
the qubit states. The difference in the amplitude and phase
of the cavity internal field should be overwhelmed and
hidden by the quantum noise (vacuum fluctuations). We must
realize a so-called quantum erasure process by utilizing the
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Figure 11. An entanglement distribution scheme based on a
coherent-state bus. A polarization interferometer is assumed
here instead of a Mach–Zehnder interferometer of van Loock et al
[17, 18].

intrinsic quantum noise of a weak coherent state. For this
reason, the detuning of the pulse center frequency from the
|1〉 → |e〉 transition must be limited. Optimization of the
gate is therefore a trade-off between the two decoherence
mechanisms.

Through a numerical search for an optimized parameter
range, we find the gate fidelity of approximately 95% can be
achieved with a cavity Q value of 105, and cavity detuning of
100 GHz with optical control pulse duration in the nanosecond
regime. Higher fidelity requires cavities with a higher ratio
of Q to mode volume, or more sophisticated methods for
quantum erasure.

6. Entanglement distribution and projective
measurement

Distant two-qubit gate and qubit-transfer operations require
the preparation of an entangled state in remote quantum
memories and the use of quantum teleportation. Entanglement
distribution between two remote quantum memories can
be achieved either with a coherent state bus [17, 18]
or single-photon bus [30–32]. The qubit-coherent-state-bus
entanglement also provides an efficient means of projective
measurements of a single qubit.

6.1. A coherent-state bus

A basic scheme of entanglement distribution with a coherent
state bus is shown in figure 11 [17, 18]. A circularly
polarized coherent state pulse is incident upon one spot
in a planar microcavity where a qubit 1 is prepared
in a linear superposition state, 1

√
2
(|0〉 + |1〉)1. Through

the polarization-selective dispersive coupling, the qubit
state and field polarization state are entangled into the
state 1

√
2
(|0〉1|

π
2 〉 f + |1〉1|

π
2 + θ〉 f ), where |

π
2 〉 f and |

π
2 + θ〉 f

correspond to the phase difference of the two (x and y)
linear polarization components. If we repeat an exactly same
process for the other spot where qubit 2 is also prepared
in 1

√
2
(|0〉 + |1〉)2, the final state of the combined qubits

and field is 1
2 [|0〉1|0〉2|

π
2 〉 f + (|0〉1|1〉2 + |1〉1|0〉2)|

π
2 + θ〉 f +

|1〉1|1〉2|
π
2 + 2θ〉 f ].

We can easily measure a phase difference between the
two polarization components and if |

π
2 + θ〉 f is post-selected,

the two-qubit state is projected onto the entangled state
1

√
2
(|0〉1|1〉2 + |1〉1|0〉2) with a success probability of 50%.

Figure 12. An entanglement distribution scheme based on a single
photon bus. BS: beam splitter, DBS: dichroic beam splitter.

The advantage of this scheme is a fast operation time,
high success probability and robustness against optical
path (phase) fluctuation due to the employed polarization
interferometry configuration. The disadvantage is the fidelity
degradation due to photon loss between the two interactions,
because dangerous entanglement exists between the qubit 1
and the field polarization during that interval. Indeed, this
entanglement can be exploited for a means of single shot
projective measurement of qubit 1.

6.2. A single photon bus

A basic scheme of entanglement distribution with a single
photon bus is shown in figure 12. Two QDs are simultaneously
excited to the charged exciton states |e〉1 and |e〉2. Through a
spontaneous emission process, both QDs emit photons either
at ω1 or ω2 to reach a qubit state |1〉 or |0〉, respectively.
Therefore, we have two pairs of qubit-field entangled states:

1
√

2
(|0〉1|ω2〉 f1 + |1〉1|ω1〉 f1) and 1

√
2
(|0〉2|ω2〉 f2 + |1〉2|ω1〉 f2). If

the two field modes f1 and f2 are occupied by pairwise
quantum mechanically indistinguishable single photons and
are recombined at a 50–50% beam splitter, the output state is

1
4 (|1〉1|0〉2 + |0〉1|1〉2) ⊗

(
|ω1〉 f2 |ω2〉 f2 − |ω1〉 f1 |ω2〉 f1

)
+ 1

4 (|1〉1|0〉2 − |0〉1|1〉2) ⊗
(
|ω1〉 f2 |ω2〉 f1 − |ω1〉 f1 |ω2〉 f2

)
+ other terms. (2)

Therefore, if the detectors D1 and D2 simultaneously click
or the detectors D3 and D4 simultaneously click, the
two-qubit states are projected onto the entangled state,

1
√

2
(|1〉1|0〉2 + |1〉1|0〉2). On the other hand, if the detectors

D1 and D4 simultaneously click or the detectors D2 and D3
simultaneously click, the two-qubit states are projected onto
the entangled states, 1

√
2
(|1〉1|0〉2 − |0〉1|1〉2).

The advantage of this scheme is that the fidelity of the
resulting entanglement is robust against photon loss. Since
the Zeeman frequency ω2 − ω1 is ∼10−4 of the optical carrier
frequencies ω1, ω2, the optical path (phase) fluctuation can
be suppressed by the same factor (∼10−4) [30–32]. The
disadvantage is the low success probability, since a single
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Figure 13. (a) A neutral donor D0 and donor bound exciton D0 X in semiconductors. (b) Energy levels of D0 and D0 X states in a
dc magnetic field.

photon can be easily lost due to scattering, absorption and
reflection loss of optical circuits, and we require a coincidence
count. Entanglement has been formed recently in two trapped
ions based on this scheme [33].

7. Quantum memory

In a quantum repeater system with an ultralong
communication distance of 1000–10 000 km, qubits must be
stored for an extremely long time up to 1–10 s [7, 8], while
quantum gate operations are performed very rarely for qubits.
In such systems, repeated quantum error corrections for qubits
stored in electron spin quantum processors are not convenient.
Instead, we can think of the use of a long-lived quantum
memory to store qubits. A substitutional donor impurity in
semiconductors is a ‘natural QD’, which possesses such a
quantum memory function.

7.1. Magnetic spectrum of donor bound excitons

Figure 13(a) shows the ground state and excited state of
neutral donor impurities such as 31P:Si, 29Si:GaAs and
19F:ZnSe. These donor impurities have a simplest nuclear spin
−1/2 and capture an unpaired electron at low temperatures.
The contact hyperfine coupling between a single electron spin
and nuclear spin is ∼60, 10 and 100 KHz for 31P:Si, 19F:ZnSe
and 29Si:GaAs, respectively. These neutral donor impurities
D0 can capture an electron–hole pair (bound exciton), which
is the excited state and provides various optical capabilities
to these systems via resonant photon absorption, spontaneous
emission, off-resonant dispersive interactions and stimulated
Raman transitions.

Two electrons in a neutral donor bound exciton D0 X
are in a spin singlet state, so the spin state of the bound
exciton is determined by an unpaired hole. Figure 13(b)
shows the energy levels of D0 and D0 X of a 29Si:GaAs
system under a dc magnetic field [34]. The magnetic

Figure 14. (a) The magnetic spectrum of Si:GaAs donor bound
excitons. (b) The transition energies of the two hole satellite
emissions from acceptor bound excitons in GaAs. The dashed line
represents the transition energy to the ionization threshold,
E A0 X − E A0 .

spectrum for the D0 X–D0 transition of an ensemble of
Si:GaAs under non-resonant above band excitation is shown
in figure 14(a) [35]. The blue shift of a D0 X line is due to a
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Figure 15. (a) A pulse sequence for measuring the spin relaxation
time T1 time for a Si:GaAs system. (b) The measured T1 versus dc
magnetic field Bext. Inset: population in the excited spin state after
switching off an optical pumping beam.

diamagnetic shift (reduction of an exciton wavefunction due
to the applied field). The D0 X lines are split into four peaks
due to the electron and hole Zeeman splitting (figure 13(b)). A
weak emission is observed at lower energy sides, in which the
D0 X decays to higher orbital states such as 2s, 2p, . . . of the
D0 state. These lines are called two-electron satellite (TES)
emissions. The measured energy spectra for the transitions
from the accepter bound excitons A0 X to the neutral acceptor
A0 with nth s-orbital states (n = 1 − 5) are plotted and
compared with the hydrogenic model (solid line), E A0 X −

E A0 + 1
n2 R∗

y , in figure 14(b), where E AX , E A0 and R∗
y are

the acceptor bound exciton energy, the ionization threshold
energy and the binding energy of the neutral acceptor.

7.2. Spin relaxation time T1 and decoherence time T2 of
electron spins

The spin relaxation time T1 of the electron spin in an ensemble
of Si:GaAs donor system was measured by first initializing the
electron spin to its ground state by optical pumping, waiting
for a variable delay time τ and sending a resonant optical
probe pulse to detect the excited state population as shown
in figure 15(a) [36]. A typical measurement result of the
recovery trace to thermal equilibrium is shown in the inset of
figure 15(b). From such a recovery trace, we can estimate the
spin relaxation time T1. Figure 15(b) shows the measured T1

versus the dc magnetic field Bext. T1 increases with decreasing
Bext according to the law B−3.8±0.2

ext and saturates at T1 ' 4 ms
at Bext 6 4T . This saturation behavior is an experimental
artifact due to the leakage of a blocked optical pumping beam
during a supposedly free relaxation time period τ . The power

Figure 16. (a) A pulse sequence for Hahn’s spin-echo setup.
(b), (c) The Larmor precession signals for 2τ1 = 52 ns and 2 µs. A
green trace in (b) means there is no Larmor signal if there is no
refocusing pulse. (d) The fringe visibility versus delay time 2τ1 [38].

law of T1 ∝ B−4
ext agrees with the theoretical prediction based

on spin–lattice relaxation model [37].
The dephasing time T ∗

2 of the electron spin in a Si:GaAs
system is determined by the surrounding nuclear spin bath
fluctuations and of the order of 1–10 ns. This was confirmed
by the coherent population trapping experiment and also by
the off-resonant stimulated Raman scattering experiment in
our system [35].

We used three optical pulses, each of duration 2 ps,
to construct a Hahn spin-echo setup to suppress the
effect of nuclear spin bath inhomogeneity, as shown in
figure 16(a) [38]. If there is no central (refocusing) pulse,
there is no Larmor precession signal for the time interval τ1 =

26 ns � T ∗

2 as shown in figure 16(b). However, if we inject
the central (refocusing) pulse, the spin-echo signal is clearly
observed for 2τ1 = 52 ns and 2 µs as shown in figure 16(b)
and (c). Figure 16(d) summarizes the optical pulse spin echo
experiment, which suggests the spin-echo signal decays with
an exponential time constant of T2 ' 6.7 ± 2.5 µs. The value
is comparable to the inverse of the hyperfine coupling between
the electron spin and nuclear spin in an Si:GaAs system. This
means that a qubit of information could be transferred from
the electron spin to the nuclear spin before the electron spin
loses the quantum information.

The ratio of the decoherence time to single spin rotation
time, T2/pulse, is of the order of ∼7 × 106. Recall, however,
that an arbitrary one-qubit SU(2) operation requires one-half
Larmor period of about 10 ps, so the ratio of decoherence time
to the arbitrary one-qubit gate time is of the order of ∼7 × 105.
However, the electron spins of Si:GaAs can be manipulated
with a limited rotation angle by the current experiment with
∼psec optical pulses [39].

7.3. Spin relaxation time and decoherence time
of nuclear spins

The nuclear spin relaxation time T1 and decoherence time
T2 of 29Si nuclear spins were measured for a nuclear spin
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Figure 17. (a) An r f pulse sequence of saturation comb for measuring a T1 time for 29Si nuclear spins. (b) The FID signal versus delay
time for a natural silicon crystal at 300 K [40].

Figure 18. The spin-echo signal from 29Si nuclear spins in a natural silicon crystal at 300 K. The CPMG π -pulse sequence and MREV-18
π/2 pulse sequence are concatenated to suppress the magnetic field fluctuation and iso-spin dipolar coupling [41].

ensemble in a single crystal of silicon. The T1 time of 29Si
nuclear spins is measured by the saturation comb (multiple
π/2 pulse sequence separated by a time interval much longer
than T ∗

2 ) which prepares the statistical mixture of equal
populations in the ground and excited spin states in a relatively
short time (figure 17(a)) [40]. The recovery of a thermal
equilibrium population difference is monitored through free

induction decay (FID) signals after the first π/2 pulse (probe
pulse) of the saturation comb as shown in figure 17(b). For
isotopically natural, single-crystal silicon, T1 is extremely
long at multiple hours at room temperature. But even for
the more hostile environment of a 29Si enriched sample, in
which nuclear–nuclear dipolar coupling is strong, the T1 time
is longer than 2 h at 300 K and longer than 8 h at 10 K. In
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Figure 19. The inferred T2 time of 29Si nuclear spins versus the
cycling time of the MREV-16 π/2 pulse sequence at 300 K [41].

general, spin-1/2 nuclei in semiconductor environments are
very long lived.

The nuclear T2 time is measured in an ensemble
NMR experiment by combining the famous CPMG π -pulse
sequence for refocusing the fluctuating magnetic field
along the quantization axis and the MREV-16 π/2 pulse
sequence for eliminating the dipolar coupling among iso-spins
(29Si–29Si), as shown in figure 18 [41]. The inferred T2 time
in this measurement for a natural silicon and 29Si enriched
sample are shown as a function of r f pulse cycle time tc
in figure 19 [41]. The quadratic dependence of T2 on tc,
T2 ∝ 1/t2

c , agrees with average Hamiltonian theory for the
MREV decoupling pulse sequence. The T2 time is ∼2 s for
a 29Si enriched sample and ∼25 s for a natural silicon crystal
even at 300 K. Those numbers are long enough even for ultra
long distance quantum repeater system applications.

8. Generation and characterization of
indistinguishable single photons

8.1. Generation of single photons and quantum interference

In order to implement the second scheme of entanglement
distribution based on a single photon bus, a QD must emit
a single photon at a time. Generation of single photons
from a patterned QW [42], self-assembled QD [43–45]
and position controlled QD [46] have been demonstrated.
However, for a quantum repeater application, spontaneously
emitted single photons should be Fourier transform limited
and should exhibit negligible timing jitter. This has been
demonstrated for sequentially generated single photons from
an InGaAs QD embedded in a post-microcavity [47]. In this
system, the spontaneous emission lifetime is short compared
with the decoherence time of the excitonic dipole of ∼1 ns,
and so it expected that the single photon pulse should be
Fourier-transform limited. The timing jitter of single-photon
emission from a QD is determined by the energy relaxation
time of ∼10 ps from the 2e–2h optical excitation level to
the 1e–1h emission level. If the single photon pulse duration
(determined by the spontaneous emission lifetime) is much
longer than ∼10 ps, the timing jitter can be neglected.

Table 1. The two-photon correlation function g(2)(0), the ratio g of
the probability of emitting two photons in either one of the two
consecutive pulses to the probability of emitting one photon in each
pulse, the spontaneous emission lifetime τs, the first-order
coherence time τc, 1/e width of the HOM dip τm and the two photon
overlap at zero path-length difference V (0) of the three devices [47].

g(2) g τs(ps) τc(ps) τm(ps) V (0)

Dot1 0.053 0.039 89 48 80 0.72
Dot2 0.067 0.027 166 223 187 0.81
Dot3 0.071 0.025 351 105 378 0.74

The three GaAs/AlAs micropost DBR microcavities with
a single InGaAs QD are fabricated to realize an appropriate
cavity-enhanced spontaneous emission rate. The performance
of these three devices are summarized in table 1. The
second-order correlation function g(2)(0) is less than 0.1,
which confirms a single QD emitter exists inside a cavity.
The spontaneous emission lifetime is τs = 90–350 ps, which
satisfies τs � 1 ns and τs � 10 ps. The indistinguishability
was tested by the Hong–Ou–Mandel (HOM) interferometry
shown in figure 20(a). Five peaks appear within the central
cluster, corresponding to three types of coincidence events.
For peaks 1 and 5 at τ = ±4 ns, the first photon follows the
short arm of the interferometer and the second photon follows
the long arm. For peaks 2 and 4 at τ = ±2 ns, both photons
follow the same arm. For peak 3 at τ = 0, the first photon
follows the long arm and the second photon follows the short
arm such that the two photons collide at the beam splitter.
The reduction of the coincident count rate (peak intensity 3
compared with 2 and 4 in figure 20(b)) reveals the quantum
interference between indistinguishable photons. From the
numerical fit to the HOM dip as shown in figure 20(c), the
overlap of the quantum wavefunctions of two single photons
can be estimated to be 0.7–0.8 and the results are summarized
in table 1. For all three devices, we observe reductions in the
coincidence probability near 1t = 0 by factors of 0.61, 0.69
and 0.62 for QDs 1, 2 and 3, respectively. The remaining
coincidences are partly due to optical imperfections in the
setup such as beam splitter’s reflection to transmission ratio
R/T = 1.1 and the interference fringe contrast (1 − ε) =

0.92 measured when an ideal monochromatic laser source is
sent into the interferometer, and accounts for optical surface
imperfections. Without these imperfections, the coincidence
reduction factors would be V (0) = 0.72, 0.81 and 0.74,
respectively.

8.2. Violation of Bell’s inequality

The quality of generated indistinguishable single photons can
be studied through the test of violation of Bell’s inequality.
The experimental system is shown in figure 21(a) [48],
where the two single photons in the same horizontal
linear polarization, |H〉1|H〉2, is converted to a polarization
entangled state, 1

√
2
(|H〉1|V 〉2 − |V 〉1|H〉2), via linear optical

circuits and post-selection of coincidence counts at DA

and DB . The two photon polarization state is reconstructed by
state tomography as shown in figure 21(b). The density matrix
of the two polarization states in the |H H〉, |H V 〉, |V H〉 and
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Figure 20. (A) A Michelson-type interferometer for colliding two photons separated by 2 ns. (b) Coincidence count rate as a function of a
relative delay time between a photon detection at one counter (t1) and the other (t2). (c) Coincidence count rate g(2)(τ ) versus delay offset
for the three devices [47].

Figure 21. (a) Experimental setup for the entanglement formation and the test of violation of Bell’s inequality. (b) Reconstructed
polarization density matrix and maximally entangled-state density matrix [48].
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Figure 22. (a) Experimented setup for single-mode quantum teleportation of a target photon. (b) Verification of single-mode
teleportation [51].

|V V 〉 basis is given by

ρ̂ =
1

R
T + T

R + 4g(2)


2g(2)

R/T −V
−V T/R

2g(2)

 , (3)

where R and T are the reflection and transmission coefficients
of the second NPBS in figure 21(a), g(2) is the second-order

correlation function and V is the overlap between two single
photon wave functions. Using the values for R/T, g(2) and V
measured independently, we obtain an excellent quantitative
agreement of our model to the experimentally determined
density matrix, with a fidelity of F = Tr[ρ̂1/2

exp ρ̂modelρ̂
1/2
exp ] as

high as 0.994 [48]. Using the Peres criterion [49], the
negativity is ∼0.43, which indicates the created state is
entangled, i.e. non-separable.
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Figure 23. (a) Experimental system for generation of indistinguishable single photons from two 19F:ZnSe donor impurities. (b) The
observed HOM dip [52].

Following [50], if we define the correlation function
E(α, β) for analyzer setting α and β as

E(α, β) =
C(α, β) + C(α⊥, β⊥) − C(α⊥, β)− C(α, β⊥)

C(α, β) + C(α⊥, β⊥) + C(α⊥, β) + C(α, β⊥)
,

(4)
the local realistic assumptions lead to the inequality

S = |E(α, β)− E(α′, β)| + |E(α′, β) + E(α′, β ′)|6 2, (5)

that can be violated by quantum mechanics. Sixteen
measurements were performed for all combinations of
polarizer settings among α ∈ {0◦, 45◦, 90◦, 135◦

} and
β ∈ {22.5◦, 67.5◦, 112.5◦, 157.5◦

}, which produced the

experimental result S ∼ 2.38 ± 0.18. Thus, the CHSH
inequality was violated by two standard deviations.

8.3. Quantum teleportation

The quality of generated indistinguishable single photons
can be further tested by constructing a single-mode quantum
teleportation gate [51]. An experimental setup is shown in
figure 22(a), where the two single photons are used as a
dual-rail target qubit and ancilla qubit and the linear optics
Bell state measurement is employed. The mode |d〉 of the
target qubit is teleported to the mode |d〉 of the ancilla
qubit, which was confirmed by the interference pattern for
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the mixing output of the mode |u〉 of the target qubit and
the mode |d〉 of the ancilla qubit, as shown in figure 22(b).
The finite contrast in figure 22(b) is mainly due to a residual
distinguishability between ancilla and target photons, which is
parameterized by V . Slight misalignments and imperfections
in optics also result in an imperfect mode matching at BS1 and
BS2, reducing the first-order interference visibilities V1andV2.
Finally, the residual presence of two-photons (g(2) > 0) can
reduce the contrast. These parameters can be independently
measured as V ∼ 0.75, V1 ∼ 0.92, V2 ∼ 0.91 and g (2)

∼0.02.
The contrast C in counts at detector A or B should be Cmodel =

V V 1V2/(1 + g(2)/2) ∼ 0.62. This predicted value compares
well with the observed value of Cexp ∼ 0.60. The fidelity of
teleportation is F = (1 + C)/2 ∼ 0.8 in this experiment [51].

8.4. Indistinguishable single photon generation from two
quantum memories

In order to distribute an entangled state in two remote
quantum memories, the indistinguishable single photons must
be generated simultaneously from two independent quantum
memories. This function has been demonstrated recently
using two 19F:ZnSe donor impurities [52]. The experimental
system is shown in figure 23(a), in which two post-structure
devices with a single 19F donor impurity simultaneously emit
single photons. The measured g(2)(0) for these two devices
are ∼0.25 and ∼0.40, respectively. The observed HOM dip
is shown in figure 23(b). The visibility and the quantum
mechanical overlap of the two single photon wavefunction are
∼31% and ∼65 ± 13%, respectively.

9. Conclusions

The ingredients we have discussed show strong promise
for scalable quantum information processing, but we must
not forget the challenges in designing large-scale systems.
In a large-scale quantum computer or quantum repeater,
the cost of communication will dominate the performance
and resource requirements. The presence of realistic optical
losses in communication channels and optical cavities will
place severe demands on the architectural design of quantum
processors, as will finite yields of qubits and finite chip-sizes.
As an example, for a nested-purification-based [7, 8] quantum
repeater system implemented with semiconductor cavity QED
and optical fiber over a communication distance of 10 000 km,
∼1000 repeater nodes, ∼4 × 103 quantum memories (qubits)
per node and gate errors less than 0.5% are required to
create one EPR-Bell state every ∼100 ms [18]. As another
example, for a purification-based semiconductor cavity QED
one-way (cluster state) quantum computer with topological
quantum error correction [9, 10] with a finite-device-yield
system, factoring a 2048-bit number by Shor’s algorithm may
require resources on the order of ∼104 logical qubits, ∼109

physical qubits (lattice size), gate errors smaller than ∼0.2%,
and decoherence times exceeding ∼50 ms [53]. Starting with
a physical qubit operation clock rate of 10 GHz in this model
architecture, the final execution time is still of the order of
a year [53]. The added overhead for error correction makes
quantum information processing systems very expensive, and
emphasizes the need for fast operation times and efficient
qubit-to-qubit communication.

Here, we have presented a candidate physical system
for these emerging technologies: optically controlled QDs.
This system may cope with the daunting demands of fast
initialization, coherent manipulation, mutual couplings and
rapid measurements, all using bright laser pulses and a
simple planar microcavity. The lattice size (number of
physical qubits) can scale up to ∼109 in this system, so
a single chip or multiprocessors with of the order of ten
chips can accommodate the above design criteria. Intrachip
and interchip entanglement distributions can be achieved
either by the phase shift measurement of coherent state
probe pulses or the generation and coincidence detection of
indistinguishable single photons. Suppression of decoherence
for electron spin processors by an optical refocusing pulse
sequence has been successfully demonstrated and the T2

time seems to be long enough to allow transfer of a
qubit of information to a nuclear spin memory with a
T2 time much longer than ∼1 s. Our results suggest that
such optical semiconductor technology has the potential to
scale to a system capable of attacking classically intractable
communication and computation problems.
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