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"~ 1. INTRODUCTION

ical limitations on the use of
r structures as a transmission me-

ides [Kapron et al., 1970].
se of interest in optical fibers
nel waveguides in communi-
idiation from curved surface
ved a good deal of attention.
nent of a problem of this type
ichtmyer’s [1939], which was
ore careful treatments of less
by Elliott [1955] and Miller
. Of the more recent work, that
1970] involves assumptions on
d outside a rectangular dielectric
alidity cannot easily be assessed.
we also been applied to both two-
al structures [ Maurer and Fel-
2; Snyder and Mitchell, 1974b],
tion to guides of general cross-
1er cumbersome. Particularly
uch as the slab [Marcuse, 1971,
rnes, 1973; Heiblum and Harris,
llar fiber [Shevchenko, 1971;
'1974] can be treated by more
lechniques, but, especially in
er, whose finite cross section
ple exact formulation of the
_,‘tlié various results are some-

)
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| scheme for calculating the change (both the real part and the imaginary part) of the
on constant of a surface-wave mode on a general open waveguide structure is presented.
afr keeping track of lower-order terms in the analysis, it is shown how approximations
‘made in other analyses can result in quite significant errors in the determination of
ion loss. The resulting formulas require knowledge only of the fields and propagation
the corresponding straight waveguide mode, and the value of the radius of curvature
veguide axis. As a simple example, the curvature loss of a Goubau line is calculated.

| structures are much more sus-

losses than are more conven-

“mations have been made [ Arnaud, 1975
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'times inconsistent, and the most careful |
analyses [Lewin, 1974] has been perforn
for these simple geometries. L G

The method of Arnaud [1974] is in
generalization to guides of arbitrary cro
of Lewin’s analysis of the fiber, since E
proaches utilize a spectral expansion of th
in the direction normal to the plane of th
The result for the special case of the fib
therein does, in fact, follow from Lewin’
after the appropriate redefinitions and i

g
el

paper, the spectral expansion technique i
to develop a. géneral formulation applif
waveguides of arbitrary inhomogeneo
tion, which is, in some respects, the ex
the above approach whose possibility wa
by Arnaud [1974], but which retains muge
simple physical interpretation of the slab ¢
carefully keeping track of small-order te;
icant factors may be found in both the a
and phase shift which are often incorrec
ed. Specific application of our theory
open waveguide structures has been

companion paper [ Kuester and Chang, 19
a simple example, we include here a cal
of the curvature loss of a Goubau line.

2. REVIEW OF THE CURVED SLAB PROB

We consider first a curvéd homogeneous
tric slab waveguide of thickness D having :
radius of curvature R and a refractive index
respect to the surroundings) as depicted ir




S
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Fig. 1. St t h neous slab.
ig. raight homoge ol

1. All quantities are assumed independent of z (the
direction normal to the bend), a : search for
solutions of the form exp(iwt — iky¥R8), where
k3 = ©2 pq €y, which satisfy the usual boundary
conditions at the slab and the outge radlauon
condition at sufficiently large ra
the slab, where p is the radial i
cylindrical system. Here the (no alized) propaga-
tion constant v, although as yet undetermined, has
to approach the value v, comﬁﬁﬁﬁdmg to. the
stralght guide as R — oo,

We now define a local coord‘iﬁfe system £
= RIn(p/R) and § = R6 so that the governing
wave equation becomes [Changmmes 1973]:

£ B¥ili

{d?/d5? + k3 [n? exp@%/R) ~ v} B®) =0 (1)

where n; = 1or nfor j=1 or 2"‘% ‘f-he refractive
index corresponding to the rned e or inside
the slab. The slab boundaries mw become
f=0and £=d=RIn(1 + D/R)= D. Thus for
all practical purposes we can ce the curved
slab of Figure 1 by a straight one of virtually the
same thickness but with an inhomogeneous refrac-
tive index profile as in Figure 2. For the case of
a straight homogeneous slab, the  propagation con-
stant for a propagating surface- ‘mode satisfies
1< v, <'n. Thus inside the slab the solution is
a standing wave—a linear combination of sin(n?
- vz)”zx and cos(n? — v2) /2 %, Outside the slab,
n? — v < 0 so that the solutleﬁ“&%n ‘evanescent
wave of the form exp[ (v2 = f)mﬁi]]

Fig. 2. Straightened slab with exponential profile.

-~

to be homogeneous with refractive index n,

Now in the case of the curved slab, if v, i§
essentially unchanged, the character of the solutions
is unchanged everywhere except the region where
X > %,= Rln v, corresponding to py, = v,R.
yond this point (which is known as the turning po
the effective refractive index n; exp(%/R) > v,
the solution of (1) satisfying the radiation condi
is an outgoing unattenuated cylindrical wave. Thi
in spite of the fact that between X = dand ¥ =
the fields must be evanescent, the character of e
solution at ¥ = X, must change so that the field
is partially transmitted and partially reflected from
the turning point, returning toward the slab as an
‘‘incoming’’ evanescent wave. Near the slab surface
X = d then, the electric field must have a finife}
although small, exponentially growing component
[Chang and Barnes, 1973]:

E,= E,[exp(—koAX) + o, exp(kg A X)]

where the reflection coefficient is found by the
WKB method to be

a,= —(i/2) exp(=2 A kyR/3v?)

Here A = (v? — 1)'/2, making (ko) ~! the pene
tion depth of the surface wave into the out
medium. It should be noted that the reflect
coefficient decreases exponentially with R, so
when R — =, 0,— 0 and (2) reduces to the f
outside the homogeneous straight slab. Chang
Barnes [1973] have calculated the attenuation ¢
ficient for this structure in a straightforward man
by considering the reflected field in (2) as a
turbation, and calculating the resultant change
impedance at the slab surfaces.

3. SPECTRAL REPRESENTATION OF FIELDS IN
FINITE CROSS SECTION WAVEGUIDES

We now attack the problem of a curved sectio
of a dissipationless three-dimensional optical w:
guide, shown in Figure 3. We allow the guide
be of arbitrary cross-sectional shape, and possibl
inhomogeneous, but the outside medium is requ

P > Poax- We construct four coordinate syst
for this geometry as shown: two global ones (C
sian (x,y,z) and cylindrical (p,0,z) as usual)
two local ones (local Cartesian (%, ¥,7), where £
— R, § = R0, £ =z, and local cylindrical (7
where 7 cos & = £and 7sin & = —%). The radi
of curvature R is chosen as the distance between



X

[ .

C=Cy+ Cqp. €lp2)

ved optical waveguide with Cartesian
), cylindrical system (p,0,z), local
), and local cylindrical system (7.0, ).

al and global systems.

field component @ in the

he largest value of p in the guide
pure 3) must satisfy the scalar

.) +32® /a2 + k3 (n2
' @)

— ik, vR 0) dependence has been
. Because the medium in this
in the z direction between =,
duce (4) using the Fourier trans-

p,8) €~z ds

&)

the wave number in the outer
function ® now satisfies

) + k3 [n2(1 — s?)
(6)

(6) which satisfies the radiation
° I8 well known:

RADIATION AND PROPAGATH

®(p,s) = A H® . [kp(1 - 52)1/2], si<|
= A,(kp)~"R, s2=1
= A3 K, or [kp (s> — 1)/2],

where A, are independent of p, H? is i
Hankel function, and K is the modif
function of the second kind.
For the purpose of calculating thse
for large radii of curvature, the exact B
tions in (7) can be conveniently replac
asymptotic forms for k,R > 1, ob
WKB method [Chang and Barnes
and Kuester, 1975], or simply by using
asymptotic forms for the Bessel functit
and Marcuvitz, 1973]. If we examine
that there are two distinct cases to be
(the points s = =1 may be conside
cases of either). When s? < 1, and lf 1
the Debye forms indicate that a turni
at p = p, = vR(1 — s2)"Y2/n,. Antici
the mode of the curved structure w
however, we realize that v will actually |
with a small negative imaginary part
for the consequent attenuation.
These considerations allow us to
proximate forms for the spectrum functia
of the Debye expapsions. For convenier

v=2%/R, w=[gW]"”, g(V) = n3(l — &
= n3(1 = 's?)p2/R? - v* = g(p)

.5t 1 1408

£ =J w(v')dv' = w— (i/2)v [In(w + v}

= In(w— iv)] — (1/2)vr {

where v, is the turning point (related t

and the branch of w is chosen so that

< m, while — 7 < Im[In(w = iv)] <
CaseI: s*<1. Except forasmalli

the turning point, we have

P ~ Di(s)w 2 {[1 + O(1/kyR)]
- exp[+ikyR(E — £,)] + o, [1 + O(1/kg}
- exp[—ikyR(E - &)1},

and

punx < P < |pt
i

D ~ D*(s)w~"2exp(—ik,RE), p>|p,|

where




-outside of the guide can berepre
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1
§0=§(V=O)=iv[qo+?ln( {10)

15 "h
no = [1 —nj(1 = s2)/w2][12 q{],‘

This quantity was inserted into (ﬂm to make

a,= —(i/2) exp(—2ik,RE,)

the ratio of the incident field &
from the turning point in the
system. The functions Di(s) and
the amplitude of the spectral
consideration, inside and outside
respectively (the two are in fact
since the fields beyond the turr
needed in the following, this poin
Case II: s?> 1. In this case,
is away from the real axis, so t
exponenuai in the Debye expaﬁ

giving
& ~ Di(s)w™ /2 [1 + O(1/k, R)] ex

for all p > pax- i
In summary, then, the fields o

expansion .in the z direction, ai
function ®(p,s) can be represe
by its Debye approximation. For
with s > 1, formula (12) applies,
caymg field spectrum components
remain evanescent all the way unﬂ'ﬁ‘ﬁ o, (These
are the so-called ‘‘stable waves’’ described

and Talanov [1956]. See also Lew
the other hand, those components
which appear evanescent (locally to the
in fact possess a small exponentia
below the turning point as in (9),
turning point become an outwarc
rather than evanescem field. It is

the curved waveguide. ¥

4. PERTURBATION FORMULA ME
PROPAGATION CONSI"

Having now a few general ideas W how the
fields in a curved waveguide must behave, we ask
how to determine the change in mMQng the
value v, and the fields in the corre:
structure, into which the curved

must go as R— o. If an analytic form of
eigenvalue equation is available, as it is for
slab [ Chang and Barnes, 1973], it is a straightfor-
ward matter to perform a perturbation calculation
of the propagation constant of the curved structure.
No such equation seems available in the finite ¢
section case, however (since no explicit matchi
of the boundary conditions at a finite number of
coordinate surfaces is possible), and so some al-
ternative perturbation technique must be found. In
this section we develop a mixed-field perturbation
formula applicable to waveguides of uniformly
curved axis, similar to formulas given by Harrington
[1961] for straight, uniformly perturbed wave-
guides. it

By expanding Maxwell’s equations, written in
global cylindrical coordinates (p,8,z in Figure 3);
in inverse powers of R using local Cartesian coordi-
nates (£, 9,2 in Figure 3) centered in the guide cross .
section, and utilizing the fact that E,, H,, v, (the -
unperturbed fields and propagation constant of the
straight gmde) will satisfy these equations to the
zeroth order in R~!, one may, with the help of
an analog of the two dimensional divergence
theorem, obtain the first-order perturbation to each
of the real and imaginary parts of v, as [Chang
and Kuester, 1975]:

ko(v — vy)=—ic/P+ A/P (13)

where

C*§ —[EjxH —ElxHg]-a,dl (14)
CR :

P=2J— d, « [Ef x H{1dS ooas)
5

1 ST s @
A:;J 2lop HY « Hf + weEf « E{1dS  (16)
8

The fields E, and H, are expressed in the local -
coordinate system (in which the integrations are
performed as well), and E and H are’ those
portions of Eyand H, “reflectcd” frorn the turmng‘
point, in the manner of the o, term in (9). The
transpose fields (superscript minus) are related to
the original (plus) fields by the relations -

»
tn
+

Il
vs ]

d,x H* = —agx H-,



I’'s equations if v (or v,) is
" —vy). The surface S and its
e moment, arbitrary, so long
ns the guide cross section.
ctly in section 4.2.
rrections can be logically
es—those involving A which
perturbation fields EP,I-_I B
etric influence of the bend,
from ¢ which are directly a
n of the fields from the turning
subsections are devoted to
ch of these corrections.
-icorrections to the propagation
have assumed for simplicity
is lossless, we can show that
of the various field compo-
A/P is purely real [ Chang and
d so this term is a correction
only which contributes no
of (16) suggests the geometri-
as a shift of the phase velocity
the center of gravity of the
. H} + ¢Ef « E) from the
‘coordinate origin within the
be shown [Chang and Kuester,
R) correction is zero for a
2, provided that the mode itself
etry properties. This result
in closed waveguides [ Lewin,
waveguides [Chang and
ot in the general case. Note
symmetrical nature of single-
veguides precludes this correc-
, which indeed has been shown
and Talanov, 1956].

cal waveguide modes where
is not equal to zero, one can
. A from (16) for any guide
the fields of the mode on the
wn. Because of the depen-
any finite angle 6 of: bend
n of an appreciable excess
ison with the straight guide.
' tion does vanish, at most
on will occur; however, the total
¢ shift will be of order (1/R)
be neglected. This phase
‘substantially to both single-
pulse distortion if its frequency
p enough; more importantly,

- of v, which he interprets as coupling to a w

RADIATION AND PROPAGATION

however, this phase shift can also affect the
of radiation loss as detailed in section 5.-: 4

4.2. Radiation corrections to the pro
constant. The remammg correction to th
gation constant is given by —ic/P. In cor
the geometric correction term, it depend@f
upon the perturbation fields E and H
turn out to be an attenuation term In t.ln :
tion, it is interesting to note the similarity
term, as given by (14) and (15), to the power.
relation given by Snyder and Mitchell [19]
well as to the mode coupling coefficients for
waves on parallel open waveguides [ Arna
Chang and Kuester, 1975]. Arnaud [19’?41
obtains a similar expression for the attenua

gallery mode propagating along an artificiall
duced perfectly conducting cylinder. The ¢
is then allowed to approach infinity, circun
in the process the mathematical difficulty th
modes in the absence of the cylinder ca
normalized. ;

The authors prefer to think of (14) as repre:
codirectional coupling to a second, i
whose fields are E, and H,. An investi
crosstalk carried out by Arnaud [1975!;]
that such fields could be produced by r_"_
of the actual guide in a semi-infinite lossy
or by an actual second guide separated fi
original one by a lossy layer. Comparison
coupling coefficients obtained for several ¢
the work of Arnaud [1975b] with the atte
due to curvature [ Kuester and Chang, 1975
the distance from the guide to its image
calculated (see section 5). :

In order to obtain from (14) a useful exp
for ¢, we first note that the only field comg
which are Cartesian in all of the coordinate §
of Figure 3 are E, and H,. We will find it
then, to write (14), as far as possible, s¢
terms of these. Furthermore, to use the sp
function to the greatest possible advanta
choose the surface S so that its boundary C¢
of the two infinite lines at p = R, and g
between z= - and z= +. R, and R, n
away from the waveguide, on the outer :5.
side of the bend, respectively, but are otk
as yet arbitrary. The resulting expression |
of two contributions (one for each part
boundary C). Utilizing the spectrum represe
of the fields and. the convolution theorem




: _'merely proportional to the p
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nlu.ﬂna

contributions can be transfo
the spectral variable s. . -
At this point it is approp
approximation which appe
the analysis and greatly
assume R, and R, may be
from the guide so that essentia
flow’" is included in (19)

troduce an
points in
iters. We

that R, is near or past the
This requirement may be sta

5 t&ﬁg" £

kohgR>1, \g=A(v,,0) _
where ST
5 9t
Av,s) = [v2+ nd(s2—1)]'2 ",ﬂill:_'f" (17
As a result, all terms in ¢ exp [ -2k,
‘A(g,8)%] may be considere than any
inverse power of R, and the o ant remain-
ing terms are those in which ial depen-
.dence has been cancelled, i.e., involving the
product of a locally growing ai evanescent
wave. To first order then, we pntribution
only from C, [Chang and Kue
4 J‘i A(vg,8)0, [E(sg'
£.= '
. n°. =Ll 1- 32 ';1“.
H(s)H(-5) _i';,q-}
: iweyn} ]ds -:_)iqs"_!* el
bRATY B
where E and H are the spectrum functions of E,,
and Hy, (after the #dependence — koA (v,,5)%]

~ has been removed):
E@)Y kon 4 E,;(%,2)
% }’ 222 exp[koh (vo.9)8] 0 | 4 % ]
H(s) 2w "S: H,,(x,2)

- exp(iksZ) d2 (19)
Expression (19) is independ % by virtue of
the fact that E,, and H,, sa e scalar wave
equation outside the guide. T al (18) is only
from —1 to +1 since we hz ing to (12),
o, =0 outside this range. d be further
recognized that while E an no explicit
dependence on R, there is ¢t variation
which arises when the choice rigin of the
£ axis is varied, and hence this che will affect

the perturbed value of v. irf;: .- ’

5. STEEPEST-DESCENT EVALUATION OF THE
ATTENUATION |

Consistent with the foregoing approximati
involving the magnitude of R, the appropriate
od to evaluate (18) is the method of steepest de
[Felsen and Marcuvitz, 1973]. 'We have, by s
stitution of (10) and (11) into (18), the f i

expression: ; o

B 21w
© K3n3
- explko Rq(s$)1[N(vo,5)/ (1 — s?)]ds

where

1 : o - l
f [eon3 E()E(—s) + noH(s)H(-5)]
-1

[ v  v—A(v,S) ]
q(s) =2 A(v,s8) + —In—
2 v+ \(v,s)
Assuming that the exponential behavior of E(s)
and H(s) is negligible in comparison with koRq
it is easily verified that the steepest-descent
is essentially the real axis between s = +1,
that the exponent goes to —« as s2 — 1..Choo
ko R as the large parameter, we have by the
techniques that the saddle point (which sa
q'(s) = 0) is located at the point s=0.
spurious complex zeroes of q’(s) also occur;
however, are branch points of g(s) and will in
provide the limitation on R which insures the vali
of the steepest-descent approximation.) Thus
first-order steepest-descent asymptotic approxi-
mation is: '

c=Qno/kInd)(mh, /koR)"2 [eon2E? (0)'
+ po H? (0)] exp(—27) @1

where we abbreviate \ = A(v,0) = [vZ - -;:..
and ]

1= —koR{A + (/2) In [(v = N)/(v + N)]}
In the special case when |\ /v| << 1 (quite t

approximately
7= (1/3)kg R\ /v2 = (2/3)k\ (po — R)

where p,, is the WKB turning point for s = 0.
way of expressing 7, in addition to the well-kn:
dependence of exp(—k,\ W) of the parallel-g
coupling coefficient [Arnaud, 1974] where
the separation between guides, allows us to roug
identify the distance between the first guide and



ide as W = (4/3)(p,o — R).
yalid, we must require the
le point to the nearest singu-
ve) to be large. The condition

(24)

./v| < 1, is obviously more
dition koA, R >> 1 assumed
) is the single criterion of
nite cross section guide.

e sufficient to evaluate 7
ere by v, for a symmetric
nce (v — vy)- is of order
ed in section 4.1. However,
‘case, the (1/R) correction
vanish and we must take
, if we call g = A(v = vy)
ve have by a Taylor series

Riln (VI) _'Ao) 29)
. Vot Ao
< 1,
1':0 + (1/3)k, (v - Vo)
(26)

edure, then, for calculating
culate the real (1/R) correc-’
and then, using this quantity
to calculate the attenuation
fields required in (21) are
*in the 7 direction by the in-
it is to be expected that igss
as a result of using inexact
. would be if the ‘‘naked”’
ed to calculate the loss. This
reatili’s [1969] field approxi-
gular dielectric waveguide
ting the R~'/? dependence
iich by (21) should occur in
n structures. Finally, for the
mode, v = v, so that the

e))

APLE: THE GOUBAU LINE

le, let us consider the lowest-
ic) TM mode on a Goubau

n? 1 &
D(v,) = b1 ~ “2)[’"? Fi(vo) + — F3 ()3
% Kg ho
Fo(vg) Faf )] | sind
g R
oSN T 2 s VAR, g 0)

Ko = (n? — v3)1/2 ,
Zy=(py/e)"? 4

Y. (kykob)

Foiv.)m Tl ke b) — T, (ko @) ———— 4
. ‘Yo ‘Ko Ko 0 Ko Ko Yo(ko"ea)'-

RADIATION AND PROPAGATION

line [ Collin, 1960], since no formula for the
loss of such lines seems to have appeared
literature. For a Goubau line consisting of a
conductor of circular cross section with ra
and an annular dielectric coating of outer
b and refractive index n, situated in fre
the fields of this mode are well kn
straightforward, if somewhat tedious, to ¢
the P integral (15) [Chang and Kuester, 197

P= —(2mvyA?/Z,) D(v,)

where A is an arbitrary constant,

(Though not obvious, D(v,) >0 when
as may be shown using the eigenvalue
Similarly, since the fields outside the line
same form as for the optical fiber TM
may utilize this spectrum function [Kue:
Chang, 1975] to obtain -

T x \!/?
c=— (—) e
koZ, \koR/

 (vhsin? b, + 08 )

A’Fivg)

~27g =
20)/2 K% (kohy b)

where Tois given by (22) with v = v, and )
and ¢, is a mode polarization angle with
to the plane of the bend. Note that the r
attenuation
¢/P=(m/kyR)"/2e 0 [1 +\3sin? b,] Fi(u

+ dkgvg A}/2 Ki(koho b)D(vy)
is polarization dependent; only weakly so_
but more and more strongly as ‘the surfa
becomes slower. X

7. CONCLUDING REMARKS
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fields E, and H, and propagatio
known, we may calculate the s
of the propagation constant due
_ture ‘of the waveguide axis of r
where A and P are given in |
done, we may calculate the ra
as —ic/P, where c is given by
or (26), using the previously de
the real part of the correction to
The application of this method
slab structures is straightforward, !
simplifications taking piace m :
.(16) become line integrals insteac
grals, and the line integral (14) actu:
into an evaluation of the integrand
point p = R, (see section 4.2). In ﬂ!ls case the

surt'ace inte-
--degenerates

steepest—descent evaluation of cis unnecessary, as
is the use of spectrum functions forthe waveguide
fields, and the factor R ~'/2 no | I appears in

¢ [Kuester and Chang, 1975]. Tﬁ’ﬁ:phcatmn of
this procedure for the asymmem is given by
Kuester and Chang [1975]. Discre s
with Marcuse’s [1971] result
slab which are traceable to a neg
corrections appearing in (29) a
discrepancies can be of quite sij
in this case has been previ
[Chang and Barnes, 1973].

a finite cross section guide to a §
is elongated in the z direction. If ¥
whose variation in the z direction h:
maximum, this mode pattern b CO
broader as the guide is elongated i j
that field variations in this dlmch%hmme slower
and slower, it approximates a mode h the corre-
sponding infinite slab (whose fields :
of z). As this happens, however,
forms E(s) and H(s) of the freldﬁ'
and narrower, eventually beco:
in the slab limit. But before this
ential dependence of E(s) and
become so strong that the steep
tion (21) for ¢ will have ceased
easy to see, in fact, that takir
exponential dependence into
steepest-descent evaluation of (20) ¢
transition from the additional R°
of c in the finite cross section ¢
exponential dependence on R i
additional condition on the vali

‘narrower

nt in the
n explain the
% dependence

[0 the purely
b case. An
_'i (21) thus

obtains, namely, that the characteristic dimension
of the mode in the z direction (hence for low-ord
modes, of the guide itself) must be small compa
to R.

Another hmltanon to the present method appe
because in the derivation of formulas (13)-(16)
has been assumed that the fields and propagati
constant of the mode on the curved guide can be -
developed as ‘asymptotic expansions in (k,R)™"
with the corresponding straight waveguide quanti=
ties as leading terms. When this. is not the case
(e.g., for so-called “‘edge-guided’’ or ‘‘whispering
gallery” modes [ Heiblum and Harris, 1975], which,
due to a curvature-induced or -shifted caustic are
not well approximated by any one straight guide -
mode), it would be necessary to know .'5'p and H 3
independently in order to apply the present ap-
proach. E

In addition, it is not necessary to-restrict the
medium external to the guide to be homogeneous.
By choosing A instead of s as the independent
transform variable, the fields above and below the
guide can be expressed as Fourier transforms with
respect to the x (i.e., the p) variable. Once this
is done, the introduction of planar boundaries paral-
lel to the plane of the bend presents no substantial
problems, and the asymptotic estimation of the
attenuation may be carried out in a similar fashion.
In this way, we may treat, for instance, dielectric -
channels embedded in a substrate, accounting for
the effect of the air-substrate interface. This prob-
lem is currently under investigation.

The application of this method to the circular
fiber is also given by Kuester and Chang [1975].
The results agree with those of Arnaud [1974] and
Lewin [1974] once the differences in definitions
and the appropriate approximations are made.
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