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Interplay of Rotational, Relaxational,
and Shear Dynamics in Solid *He

E. . Pratt,* B. Hunt,™>* V.. Gadagkar,* M. Yamashita,* M. ]. Graf,” A. V. Balatsky,” J. C. Davis™*"t

Using a high-sensitivity torsional oscillator (TO) technique, we mapped the rotational and
relaxational dynamics of solid helium-4 (*He) throughout the parameter range of the proposed
supersolidity. We found evidence that the same microscopic excitations controlling the torsional
oscillator motions are generated independently by thermal and mechanical stimulation. Moreover,
a measure for the relaxation times of these excitations diverges smoothly without any indication
for a critical temperature or critical velocity of a supersolid transition. Finally, we demonstrated
that the combined temperature-velocity dependence of the TO response is indistinguishable

from the combined temperature-strain dependence of the solid's shear modulus. This implies
that the rotational responses of solid “He attributed to supersolidity are associated with
generation of the same microscopic excitations as those produced by direct shear strain.

olid “He may become a supersolid (/) when

its temperature 7'and mass-flow velocity V

fall below their critical (2) values 7. and
V.. Indeed, torsional oscillator (TO) studies (3, 4)
reveal that the resonant angular frequency of
rotation o increases rapidly below both 7'~ 250
mK and rim velocity V' ~ 107 ms™!, as if su-
perfluid inertia decouples at a critical temperature
and velocity. These o increases (3—0) are greatly
diminished by blocking the TO annulus (4, 1),
as if superfluid inertia is thereby reconnected.

www.sciencemag.org SCIENCE VOL 332

Signatures in the heat capacity ascribed to
supersolidity also occur in this same temperature
range (/2). However, direct mass-flow studies
detect maximum currents that are far smaller than
those implied by the TO experiments (/3—15).
Moreover, the temperature dependence of the
resonance frequency f(T) = o(T)/2n of TOs
containing solid “He (3—11) resembles closely
that of its shear modulus u(7’) (/6). Coincident
with the maximum rates of increase of f(7) and
W(7') are maxima in TO dissipation (46, 8, 9) and

shear dissipation (16, 17), respectively. Such ef-
fects should not exist during a bulk Bose-Einstein
condensation transition, although they do occur in
the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition of a superfluid film (/8) [see Supporting
Online Material (SOM) section I (/9)]. Final-
ly, the increases in both f and p are quickly
extinguished by increasing TO maximum rim
velocity V (3-8, 10) or shear strain € (16, 20),
respectively.

Several theoretical models have been pro-
posed to explain the unexpectedly complex ro-
tational dynamics of solid *He. The first is a
simple supersolid (/) in which Bose-Einstein
condensation of vacancies produces an inter-
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Fig. 1. TO resonant frequency shift f(T) (A) and
dissipation data (B) mapped throughout the V-T
plane. Ninety-eight free inertial decay curves (each
at a different temperature) were smoothly interpo-
lated into the two color-coded surfaces displayed
here on identical log-log axes. The low-velocity max-
imum frequency shift (~30 mHz) would correspond
to a superfluid fraction of 5.6%.

Fig. 2. (A) TO resonant frequency shift f(T)
measured at lowest rim velocity. T* is defined as
the temperature at which 50% of the frequency
change has occurred (Fig. 1). (B) TO resonant
frequency shift f(+/V) measured at lowest temper-
ature. VV* is defined as the rim velocity at which
50% of the frequency change has occurred (Fig.
1). (C) TO dissipation D(T) measured at lowest rim
velocity. (D) TO dissipation D(1/V) measured at
lowest temperature. (E) The empirical measure of
microscopic relaxation times wytg(T)ly_o from data
in Fig. 2, A and C. The inset shows the equivalent
analysis using Eq. 3 for the BKT transition of a
superfluid *He film (see SOM section I). (F) The
empirical measure of microscopic relaxation times
0gte(V)lr_o from data in Fig. 2, B and D. It di-
verges smoothly as V* with A = —1.17 + 0.05.
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penetrating superfluid with well-defined 7. and
V.. The second is an incipient supersolid lacking
long-range phase coherence (27, 22). A third
class of model posits disorder-induced super-
fluidity (9, 23—29). The final proposal is that
solid “He contains a population of inertially ac-
tive crystal excitations (30-35), whose relaxation
time 1 lengthens smoothly with falling 7 and V.

o 3V

0.1 100

(P (3

These excitations are variously proposed to be
a dynamical network of pinned dislocations
(17, 30, 35), atomic-scale tunneling two-level
systems (34), or the glassy response of defects
distributed throughout the solid (3/-33). All mod-
els positing inertially active crystal excitations
have the property that, as ©(7’) passes through the
condition @t = 1, a strong maximum in |df/dT)|

©sT(T,V)

3.16
1.00
0.32
0.10

0.03
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Fig. 3. (A) All of the TO dynamical responses throughout the V-T plane [f(T,V) from Fig. 1A and
D(T,V) from Fig. 1B] are collapsed onto just two curves (very similar in structure to the Re(x_l) and
Im(;~Y) components of the Debye susceptibility) by plotting f[(T*/T)s + (V*/V)*] and DI(T*/T)% +
(V*/V)M] (SOM section IV). Here, we find that Re(x™1) o< f[(T*/T)° + (V*/V)"] is always too large, in
comparison with Im(y~1) o< DI(T*/T)% + (V¥/V)!], to be explained quantitatively by a Debye sus-
ceptibility model; this point has been used to motivate a “superglass” hypothesis (9). (B) A com-
prehensive map of empirical relaxation times wqtg(T,V) deduced using Eq. 3 represented as a surface
in the logT-logV plane. The equally spaced contour lines in log wqtz(T,V) reveal the underlying
divergence of wyte(T,V) as combined power laws [(T*/T)% + (V¥/V)M].
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Fig. 4. (A) Plots of our simultaneously measured f(T)l,.., (open circles) and f (V)7 (filled squares)
from Figs. 1 and 2. (B) Simultaneous plots of measured u(T)l._o (open circles) and p(e")lrqo (filled

squares) from (20) acquired at 2000 Hz.
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and TO dissipation D should occur (9, 37-35),
even though there is no supersolid 7 and V.. By
contrast, a bulk superfluid phase transition should
exhibit clear signatures of both 7, and V. (2). One
way to distinguish between such models is to
determine the evolution of microscopic relaxa-
tional time constants 1, in search of either the
smoothly diverging t of a system governed by
ot = 1 phenomenology or the sudden changes
expected in 1 at a thermodynamic 7, and/or V..

An unbiased approach to TO studies of solid
“He can be achieved by using the TO rota-
tional susceptibility x(o,7) = 6(w,7)/T(®) (9).
Here, 6(w,T’) represents the amplitude of angular
displacement as a function of @ and 7'in response
to a harmonic torque I'(®) of constant magni-
tude. Then (3/-33)

x_l(co,T) =K - Io* — iyo — x;ll{e((n,T) (1)

represents the properties of the bare TO plus the
“pack action” of the solid *He upon it through the
solid’s rotational susceptibility 3,5, (®,T). Here,
1is the combined moment of inertia of the TO plus
“He at zero temperature, K is the torsional spring
constant, and v is the TO damping constant. To
clarify these concepts, we consider a Debye ro-
tational susceptibility x4, (T) = g/[1 —icwyt(T)]
(9, 31-33) with relaxational time constants t(7)
increasing with decreasing 7. For this susceptibility

m(xap) _ D(T)F(0)

Re(xape)  2[/(0) = f(T)]

where Re(x,},) and Im(x,},) are its real and
imaginary parts, respectively (32), and D(T) =
0 (I - O (T—w) is the inverse contribution
to the TO quality factor O from the solid “He.
Access to 1(T') for the microscopic excitations
is therefore possible in principle from measure-
ments of Re(y,,) and Im(x %, )-

Following this approach, we mapped the
rotational susceptibility of a TO containing solid
“He throughout the V-7 plane (SOM section II).
The results in Fig. 1, A and B, reveal immediately
that the frequency increase and dissipation peak
are bounded by closely corresponding V-7 con-
tours. Thus, the same unexplained dissipation
seen with falling temperature near the proposed
supersolid 7; is found also with diminishing /in
the range of the proposed (3, 4) supersolid V..
The highly similar contours of both f(7, V) and
D(T V) also reveal that the maxima in |df/dT| and
D are always linked, as if controlled by some com-
bined function of 7'and V. Similar results were
observed in all three distinct solid “He samples
studied.

Next, we compared the solid “He rotational
dynamics versus T'as ¥—0 to those versus V' * as
T—0 (the rationale for ¥°° will become clear
below). Figure 2, A and C, shows f(T')|;—,¢ and
D(T)|y—_o, whereas Fig. 2, B and D, shows
FfNr—o and D(V)|7—o (Fig. 1 data used are
identified in fig. S5). Figure 2 reveals a striking
and unexpected similarity between the results of
what, for a simple superfluid, would be two com-

= wyt(7)

(2)
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pletely different experiments (one stimulating the
sample thermally and the other mechanically). To
examine this, we define an empirical measure tz
of relaxation times for any combination of 7and V.
D(T.V) f(0)
o (T,V) = - . 3
“TN = satro -y P

In Fig. 2E, we show logtz(T) plotted versus
log(7/T*) for the lowest rim velocity data (Fig. 2,
A and C). In Fig. 2F, logtg (V) is likewise plotted
versus log(V/V*) for the lowest temperature data
(Figs. 2, B and D). Here, we define 77* and V'*
as the temperature and rim velocity, respectively,
at which half the total frequency shift has oc-
curred (Fig. 1 and Fig. 2, A and B). This analysis
reveals that the 1z diverges smoothly as T° with
{=-2.75+0.1 when V—0 and as V* with
A =—1.17 £ 0.05 when 7—0. Thus, the effects
of temperature on f(7T)|;—o and D(T)|y— appear
identical to those of rim velocity on f(VY)|7_,o and
DV 0, tespectively, where y = L/{ = 0.43
is the ratio of power-law exponents. Figure 2, E
and F, also shows that no matter how complex
the actual rotational dynamics (Fig. 2, A to D),
the peak in D is always canceled by the peak in
|df/dT| to produce smoothly diverging functions
T5(T)|y—o and 1(V)|7_o (fig. S7). Microscopic
relaxational processes represented by 1z should
change dramatically at a superfluid phase tran-
sition; an excellent example of this is seen in
1(T) at the BKT superfluid phase transition of
liquid *He, shown in the inset to Fig. 2E (fig. S1).
However, no indications of the sudden change
that would signify the supersolid 7, or V exist in
Fig. 2, E and F. Instead, 1 exhibits everywhere

the smooth divergence expected in ot = 1 models.

Figures 1 and 2 provide direct empirical evi-
dence that the effects of 7°and / on the TO are
intimately related to each other. One may there-
fore ask whether a single Debye-like rotational
susceptibility could describe the whole V- plane
dynamics in Fig. 1 when the effects of Von the
relaxation time t are correctly incorporated. Hy-
pothesizing a total relaxation rate 1/2(7,V") due to
a combination of two effects

along with the knowledge that the overall phenom-
enology appears identical as a function of 75|,
and V*|7, (Fig. 2) and interpolates smoothly be-
tween these limits (Fig. 1), yields an ansatz.

1 X A

Ty T ®)

Here, X and A quantify the relative contributions to
the relaxation rate from thermally and mechanically
stimulated excitations (SOM section IV). Figure
3A shows that by using this ansatz, virtually all the
complex solid “He rotational dynamics in /(7))
and D(T'V') of Fig. 1 can be collapsed onto just two
functions, Re(y ') and Im(y "), merely by plot-

13 MAY 2011

ting f[(T*T)* + (V*/V)"] and D[(T*/T)" +
(V*/ V). Moreover, this apparent unification of
rotational dynamics implies that Eq. 3 could yield
a comprehensive image of tz(7 V) throughout
the V-T plane by dividing all the data in Fig. 1B
by that in Fig. 1A, as shown in Fig. 3B. Although
the proposed V-T ranges for a supersolid phase
transition (3, 4, 12) are at or below the dashed
T*-V* contour, the 1z surface exhibits every-
where the smoothly diverging relaxation processes
expected in ot = 1 models. We emphasize here
that all the above results (Figs. 1 to 3) are in-
dependent of any choice of y},(7,V) and there-
fore strongly constrain eventual microscopic
models for the dynamics of solid “He.

Figures 1 and 2 provide evidence that the
identical microscopic excitations are being gen-
erated by thermal and mechanical stimulation and
that the overall rotational dynamics in f(¥,7) and
D(VT) are consistent with a single ot = 1 mecha-
nism that is controlled by a relaxation rate
(T*/T)* + (V*/V)" due to the combined influ-
ences from these two sources (Fig. 3). Because
these unified dynamics also appear inconsistent
with expectations for 7, or V of a superfluid tran-
sition (2), one must ask which model could ac-
count for them. Because the solid “He shear
modulus p(7") exhibits a very similar temperature
dependence to f(T') (16), and because this shear
stiffening effect is extinguished by a character-
istic strain as opposed to a critical velocity (20), a
key question has been whether excitations gen-
erated by direct shearing are the same as those
controlling the TO dynamics.

Our approach provides an opportunity to ad-
dress this issue. If crystal excitations induced by
inertial strain € in the TO (where € o< V) are the
cause of the anomalous rotational dynamics, then
the indistinguishable structure of f(7')| ;.o and
FV 7o (Fig. 4A) should be mirrored by an
equivalently indistinguishable relationship in
shear modulus between w(7')|.—o and w(e")|7—o.
‘When the measured p from (20) is plotted simul-
taneously versus 7 and €Y in Fig. 4B (using the
power-law ratio y derived from our TO studies),
this is precisely what we find. That the com-
bined temperature-velocity dependence of the
TO response mirrors quantitatively the combined
temperature-strain dependence of the shear mod-
ulus, along with the original observation that
W(T') tracks f(T') (16), implies that the rotational
dynamics of solid *He are associated with the
generation (presumably by inertial shearing) of
the same type of microscopic excitations that are
generated by direct shear strain €. These con-
clusions appear to be in good accord with the
observed smoothly diverging microscopic relax-
ation times as expected of @t = 1 models (Fig. 3)
and with the absence of a signature in 1z (7,/)
for the T or V. of a supersolid phase transition
(Figs. 2 and 3). These results will motivate efforts
to (i) identify directly whether the microscopic
excitations are crystal dislocations as implied and
(ii) determine whether they admit any associated
zero-frequency contribution to the rotational sus-

ceptibility that would represent a superfluid com-
ponent (9).
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