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Two-Dimensional Rare Gas Solids

ROBERT J. BIRGENEAU AND PAUL M. HORN

Monolayers of rare gas atoms adsorbed onto the basal
lanes of hite the same proto role in two
gimcnsiongr:ll:at raxI':: gas liquids al:ld sot{ig do in three
dimensions. In recent experiments such novel phenomena
as continuous melting, the lack of true crystallinity in two
dimensions, orientationally ordered fluid tll:hases, and
melting from a solid to a reentrant fluid with decreasing
temperature have been observed. Because the forces in
these rare gas monolayers are simple and well understood,
by studying them the investigator can examine a direct
interface between experiment and first principles. In
order to understand the phases and phase transitions that
occur in such materials, it is necessary to consider the
geometrical matching of the rare gas overlayer to the
hite substrate. It turns out that in two dimensions
ga the local and the long-distance behavior are impor-
tant. These two-dimensional rare gas solids may be effec-
tively probed with synchrotron x-ray techniques, and the
results of a series of synchrotron x-ray scattering studies
of these solids are presented.

URING THE PERIOD FROM 1894 TO 1898 THE RARE GASES
helium, neon, argon, krypton, and xenon were discovered
and isolated by Lord Rayleigh, W. Ramsay, and W. M.
Travers (1). In fact, indirect evidence for the existence of the noble
gases was contained in earlier measurements by Cavendish in 1784
(2). The condensed rare gases have been extensively studied for the
last half century (3). Indeed, noble gas liquids and solids have been
the traditional testing grounds for static and dynamic structural
concepts in condensed-matter physics and chemistry. In virtually all
elementary textbooks on liquids and solids, the first applications of
concepts of binding, crystal structure, lattice dynamics, and liquid
short-range order are made to condensed argon, krypton, and
xenon.
This is so because the interactions are simple and well known. To
a very good approximation, only forces between pairs of atoms need
be considered. The interactions are spherically symmetric with a
long-range van der Waals attractive term (~7~°, where 7 is distance)
and a short-range repulsive term (conventionally taken to scale as
#~12). The magnitudes of the interactions may be deduced from gas-
phase data. Thus first principles’ calculations or computer simula-
tions of such properties as the crystal structure, defect energies, and
liquid short-range order are possible with essentially no adjustable
parameters. Correspondingly, sophisticated measurements of these
properties either in the liquid phase or in high-quality single crystals
are possible. This has made possible a thorough development of our
understanding of the properties of liquids and solids in three
dimensions (3).
Since the pioneering theoretical work of Landau and Peierls (4) it
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has been known that the properties of solids in two dimensions
should differ drastically from those in three dimensions. For exam-
ple, Landau and Peierls demonstrated that crystalline order, as
conventionally defined, cannot exist at any finite temperature in two
dimensions. However, a more subtle form of translational order
known as “topological order” may occur. Landau also recognized
that, even if the translational long-range order did not exist, the
crystalline axes could still be well defined; that is, one could have
“bond-orientational” long-range order. This now turns out to be an
important concept in both two- and three-dimensional systems.
Much of the current interest in two-dimensional solids was stimulat-
ed as a result of a theoretical paper by Kosterlitz and Thouless (5).
They predicted that freezing, which is always strongly first order in
three dimensions, could occur continuously in two dimensions.
Microscopically, this means that the positional order of the atoms in
the fluid would grow continuously as the freezing transition was
approached, reaching the size of the container at the freezing
temperature (5, 6). This would be a very dramatic result, if indeed it
did occur.

Rare Gas Overlayers

The above discussion raises two questions: how does one prepare
a model two-dimensional solid, and how does one probe the
structure of such a solid with enough sensitivity to address the
important issues? An answer to the first question has been known
for some time. Thomy and Duval (7) in the late 1960’s carried out
accurate vapor pressure isotherm measurements of krypton and
xenon physisorbed onto the basal planes of graphite. These measure-
ments revealed that graphite could be prepared by exfoliation in a
form with very high surface area (up to 80 m?g) with atomically flat
basal planes extending over at least 1000 A and with little alternate
site adsorption. The rare gas atoms adsorb onto the surface, atomic
layer by atomic layer, and the density on the surface may be
controlled in equilibrium at the level of 1 percent of an atomic layer.
Thomy and Duval obtained evidence for two-dimensional gas,
liquid, and solid phases in the submonolayer coverage regime. From
these data they deduced that the solid could be either in-registry or
out-of-registry with the graphite substrate. They also observed
transitions between these phases.

Important information about these surface structures has been
obtained with the use of electron diffraction (8, 9), neutron
scattering (10), and conventional x-ray diffraction (11) techniques.
However, because the resolution of these techniques is limited, this
inhibits study of the long-distance behavior and of the detailed
evolution of the positional correlations at melting. The disadvan-
tages of these probes are largely circumvented by the use of x-ray
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synchrotron radiation (12). X-rays with both high intensity and
excellent natural collimation are emitted from storage rings such as
the Stanford Positron-Electron Asymmetric Ring (SPEAR) at the
Stanford Synchrotron Radiation Laboratory (SSRL). The intensi-
ties and collimation are such that, with suitable instrumentation, one
can obtain Bragg peak intensities of ~10° counts per minute from a
single solid atomic layer (1 mm by 1 mm) of krypton with a
resolution of 0.0001 A~'. This high resolution, which is unprece-
dented in surface science, allows one to probe the development of
spatial order from the angstrom to the micrometer level. According-
ly, in 1980, together with D. E. Moncton, P. W. Stephens, and G.
S. Brown, we began exploratory experiments at SSRL to study
phase transitions in monolayer rare gas overlayers. Shortly thereaf-
ter, related experiments were initiated by J. Als-Nielsen, J. Mc-
Tague, M. Nielsen, and J. Bohr at Deutsches Elekstronen-Synchro-
tron (DESY). We discuss here the science that has emerged from
our experiments at SSRL, confining our attention to the behavior of
krypton and xenon in the monolayer coverage range. Because of
space limitations, other results will be discussed only to the extent
that they are necessary for an understanding of the synchrotron
experiments.

Many of the structural features of rare gas monolayers physically
absorbed on graphite surfaces may be understood on the basis of
simple energetic and geometrical considerations. The (001) basal
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Fig. 1. Sketch of krypton (upper) and xenon (lower) on graphite drawn to
scale showing explicitly the zero energy and minimum energy Lennard-Jones

tions. The plot at the bottom right shows the Lennard-Jones energy as
a function of separation for xenon.
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plane of graphite with xenon and krypton atoms drawn to scale is
illustrated in Fig. 1. The hierarchy of interactions is as follows. The
largest energy is the uniform binding of the rare gas atom to the
surface; this is equivalent to ~1400 K and ~1900 K for krypton
and xenon, respectively. The next most important term is the
adatom-adatom interaction; the simplest representation of this is the
Lennard-Jones form

o= [(2)- ()]

where e is the pair interaction energy and o is the hard-core diameter
(Fig. 1). From gas-phase data one deduces that for krypton o is
~3.65 A and ¢ is ~163 K and for xenon o is ~3.98 A and e is ~232
K. Equation 1 is illustrated for xenon at the bottom of Fig. 1. The
pair potential energy, #, is a minimum for 7o = 2"/ ¢, and this gives
approximately the equilibrium separation in the bulk solid. The final
important energy is the corrugation of the surface potential. The
preferred adsorption site for both krypton and xenon is the center of
the graphite hexagon, whereas the least favorable configuration is
one in which the rare gas atom is sitting directly on top of a carbon
atom. However, the net difference in energy is only 40 to 80 K,
much less than the overall binding energy.

Let us now consider the possible structures for submonolayer
krypton and xenon on graphite. We begin with krypton, which is
illustrated at the top of Fig. 1. The rare gas atoms prefer to sit in the
center of the graphite hexagons. Krypton atoms are prevented from
occupying neighboring hexagons by the strong short-range repul-
sive force. However, placement in next-nearest-neighbor hexagons
gives a structure whose density is only ~10 percent smaller than
ideal (Fig. 1). Since the periodicity of this structure is simply
determined by the graphite, it is referred to as “commensurate.” An
essential feature of this structure is that there are three equivalent
ways, labeled «, B, and y and colored red, blue, and yellow,
respectively, in Fig. 1, of placing the krypton atoms on the surface;
a, B, and vy are referred to as “sublattices.” The lattice vectors of the
krypton unit cell are V3 longer than those of the underlying
primitive cell of graphite and are rotated by 30° so that the structure
is referred to as V3 X V3 R30°. An essential feature of commensu-
rate overlayers is that they have discrete rather than continuous
symmetry; this means that an infinitesimal displacement of all the
krypton atoms costs a nonzero amount of energy. When one views
Fig. 1, a question arises. Suppose all the V3 x V3 sites are filled. If
one adds an extra krypton atom, will it go on the second layer or will
the krypton atoms move out of the graphite minima to accommo-
date it on the first layer? We shall address this question in detail later
in this article.

The xenon case is superficially more complicated. The graph at the
bottom of Fig. 1 shows the xenon atoms packed at the Lennard-
Jones equilibrium separation. It is evident that the lattice constant is
slightly larger than the V3 x V3 value, and one obtains an
incommensurate structure. Suppose one now holds the density fixed
and moves the atoms to the center of the nearest hexagon. One then
obtains locally the structure shown at the left in Fig. 2. The xenon
atoms occupy one sublattice (say a) for some distance; however,
since the V3 X V3 commensurate structure is denser than the
xenon incommensurate structure, there must at some point be a
vacant region; the xenon atoms then resume the V3 X V3 struc-
ture but occupy a second sublattice (say B). The vacant region is
called an a-B domain wall or misfit dislocation. Depending on
energetics, the domain walls themselves may form either a hexagonal
array or a striped pattern. The site preference energy of the xenon
atoms s, in fact, relatively small; thus an actual vacant region like
that shown at the left of Fig. 2 is unlikely. Minimization of the
temperature T = 0 energy for.a periodic linear array of domain walls
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yields the domain wall structure shown at the right in Fig. 2 (9, 13).
The shift of the xenon atoms from one sublattice to the other occurs
over a distance of six to eight xenon atoms.

This domain wall concept, first introduced by Frank and van der
Merwe in 1949 (14), is essential for understanding the physics of
surface overlayers and intercalation compounds as well. A full
discussion of the statistical physics of domain walls is beyond the
scope of this article. Here we note only several basic features. First,
in the solid the domain walls that repel each other must themselves
form a periodic lattice; the domain wall array may be hexagonal,
preserving the underlying symmetry, or it may be linear, producing
a rectangular or parallelepiped unit cell. Second, if the domain wall
spacing is incommensurate with respect to the substrate, the overall
structure is incommensurate even though most of the atoms might
occupy graphite lattice sites. Third, entropic wandering of the
domain walls plays an essential role in determining the total free
energy of the overlayer.

Before presenting the experimental results, we need to introduce
some additional theoretical concepts. In the 1930’s, Landau and
Peierls demonstrated (4) that one could not have true crystalline
order in two-dimensional, continuous-symmetry systems, because
the amplitude of vibration due to the long-wavelength elastic waves
diverges logarithmically with the size of the sample. It turns out,
however, that a state of matter may occur in which the positional
correlations decay algebraically with distance. This algebraic decay
state has a form of order called “topological order”; it has most of
the properties of a normal solid, including crystalline axes that are
petfectly well defined. The algebraic decay manifests itself in an
interesting fashion in an x-ray diffraction experiment. In a three- or
two-dimensional commensurate solid, the x-ray cross section is a
sum of perfectly sharp Bragg peaks

SQ~3 ™63 (Q-G) @)
where Q is the momentum transfer; G is a reciprocal lattice vector;
and 3(Q - G) is the Kronecker delta function, which equals 0 when
Q - G is non-zero and is infinite for Q — G = 0; it has unit
integral. This is the algebraic representation of the familiar Bragg
spots in an x-ray diffraction pattern. The factor ¢"2%G is the Debye-
Waller factor which depends on the atomic vibrations of the sample.
For continuous-symmetry, two-dimensional systems, W diverges
logarithmically with sample size with the consequence that Eq. 2
becomes

SQ~2 1Q-GI¥me A3)
G

where

_ kTG?
NG K

and K is a combination of elastic constants. In the liquid state where
information decays exponentially with distance, one might expect

A

SP(Q)—E §;2+|Q—G|2 (4)
where & is the positional correlation length for the Gth Fourier
component of the mass density and 4 is an amplitude.

Equation 4 implicitly assumes perfect bond-orientational order,
which is not correct in the liquid state. Accordingly, we now
consider the theoretical concept of bond-orientational order. In an
ordinary fluid one can speak of two lengths, the positional correla-
tion length &; of Eq. 4 and an orientational correlation length & for
triangular lattices. In an ordinary fluid, both are finite and equal to
at most a few lattice spacings; the positional information decays
exponentially over a length &,; the orientation of the local axes
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Fig. 2. (Left) Sharp superlight (two-
thirds of a row of xenon atoms is
missing) domain wall for xenon on
graphite. (Right) Relaxed superlight
domain wall. The shaded circles indi-
cate xenon atoms whose positions
deviate significantly from the com-
mensurate position. [From Hong ¢
al. (13)] A linear periodic array of
such domain walls occurs below 65 K
for a completed xenon monolayer.

becomes uncorrelated over a length &. It is possible to have a phase
of matter, labeled “hexatic” for two-dimensional triangular lattices,
in which & is infinite; that is, the local axes are invariant across the
sample, even though &, is finite. Such phases are common in three-
dimensional liquid crystals (15), and they apparently also occur in
quenched metallic glasses with fivefold symmetry (16). In an x-ray
diffraction experiment, a fluid with both &, and & finite will yield a
ring of scattering with width in | Q | of ~£,7".

The cross section for a hexatic fluid is more complicated. Even
though & is infinite, it is still possible to have local orientational
fluctuations in the sample axes. Mathematically, one begins with Eq.
4 for the positional cross section and incorporates these fluctuations
to first order by convolving Eq. 4 with, for example, a Lorentzian in
the transverse direction

GAb/n
fQ) = Grey + @, -G,y

©)

where L denotes the transverse direction and A6 is the root-mean-
square orientational fluctuation width in angle. As a consequence,
the diffraction pattern will be a set of spots that are elliptical in shape
with the orientational fluctuations manifesting themselves as an
excess transverse width GA®. This is illustrated at the left of Fig. 3.
One of the most dramatic predictions of dislocation-mediated
freezing theories (5, 6) is that the freezing should occur in two steps:
from isotropic fluid to hexatic fluid and then from hexatic fluid to a
solid with long-range orientational order and algebraic positional
order; both transitions are predicted to be continuous.

With these concepts in hand, we can now proceed to discuss the
synchrotron x-ray experiments.

Synchrotron X-ray Experiments

It is immediately clear that in order to differentiate between
ordinary Bragg scattering (Eq. 2), algebraic decay (Eq. 3), and a
fluid with a long positional correlation length (Egs. 4 and 5), we
will need a probe that combines very high resolution with negligible
multiple scattering so that line shapes can be interpreted quantita-
tively. The negligible multiple scattering criterion is satisfied by x-
rays, which interact weakly with matter. The requirement for very
high resolution may be met by the use of commercially available
perfect silicon or germanium crystals as monochromator and analyz-
ers; they act simultaneously as high-resolution collimators, giving a
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Fig. 3. (Left) Schematic of the intensity distribu-

Radial scans

tion in reciprocal space for a hexatic fluid with
axes along the X V3 R30° axes. (Right)
Radial and angular scans through the xenon (1,0)
peak in the fluid phase; the freezing temperature
1s 138.5 K; the solid lines are the results of fits to

Eqs. 4 and 5 convoluted with the graphite (GR) o

mosaic and finite size functions. [Adapted from

Nagler et al. (21)] © °
)

Angular scans

typical angular resolution of 15 seconds of arc. This translates into a
real-space resolution of 10,000 A or better. Unfortunately, at this
resolution with a laboratory x-ray source the signal levels from
surface overlayers are prohibitively small. This field of research has
been made possible by the advent of x-ray synchrotron sources,
which at high resolution provide ~10* times as many photons as the
characteristic radiation from a rotating anode x-ray generator.
Synchrotron radiation science has been discussed extensively (9, 13).
For our purposes it is sufficient to regard the synchrotron beam line
up to the x-ray diffractomator as a “black box” that provides a
remarkably high flux of well-collimated, monochromatic x-ray radia-
tion. We limit our discussion to two illustrative examples.

Xenon on Graphite

The vapor pressure measurements of Thomy and Duval (7)
strongly suggested that in the submonolayer coverage regime the
two-dimensional xenon phase diagram is quite like its three-dimen-
sional counterpart. It has a triple point structure with two-dimen-
sional gas, liquid, and solid phases coexisting at T; = 99 K and
triple-point coverage of ~0.8 monolayer. However, extrapolation of
the Thomy-Duval liquid-solid coexistence boundaries to higher
temperatures indicated to us that they could meet at 120 to 130 K
and a coverage of ~0.9 monolayer, implying that the liquid-solid
transition would be continuous for coverages greater than 0.9
monolayer.

High-resolution studies of the xenon monolayer melting based on
the use of synchrotron radiation were first carried out by Heiney ez
al. (17) for a coverage of 1.1 monolayers; these measurements were
extended to lower coverages by Dimon et al. (18). In both
experiments a high-surface-area graphite substrate labeled UCAR
ZYX was used. This substrate has extended flat graphite basal
planes, ~2000 A in extent, which are well aligned perpendicular to
the basal planes but which form an azimuthal powder. Thus one can
obtain accurate positional information, but the interesting orienta-
tional effects discussed above are lost in the two-dimensional
powder average. The experiments of Heiney et 4l. (17) and Dimon
et al. (18) present strong evidence for continuous freezing for
coverages above 0.9 monolayer; here the coverage is in units of the
areal density of the primitive cell at the phase boundary. Orienta-
tional information was first obtained in a rotating anode experiment
at IBM by Rosenbaum et al. (19). They used as a substrate an
exfoliated single crystal. The most precise experiments on the xenon
submonolayer melting have been performed with the use of syn-
chrotron radiation with both an exfoliated single crystal and a single
crystal as substrates (19-21). We now discuss these results in detail.
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As discussed above, in a fluid without bond-orientational order,
the x-ray diffraction pattern should be a ring. However, if there is
bond ordering, then the ring will condense into a series of elliptical
spots centered about the ultimate Bragg positions (left of Fig. 3).
We show at the right in Fig. 3 diffraction profiles of the first peak in
the liquid structure factor of 1.0 monolayer of xenon on an
exfoliated single crystal. These become the (1,0) peaks of the
triangular lattice in the solid phase. The intrinsic angular spread
(mosaicity) of the substrate is 3.2° half width at half maximum
(HWHM), and the basal plane surfaces of graphite have a finite size
of ~1400 A. All these scans are in the fluid phase; the freezing
temperature for this coverage is 138.5 K. All the profiles are broader
than the resolution determined by the finite size and mosaicity of the
substrate. On the scale of widths relevant to Fig. 3, the intrinsic
synchrotron resolution is essentially perfect. It is evident that the
diffraction profiles are just those expected from a bond—orientation-
ally ordered fluid since an elliptical spot rather than a ring of
scattering is observed. The angular scans are centered about the
graphite V3 X V3 R30° axes so the fluid axes are aligned in that
direction. As the freezing temperature is approached from above,
both the radial and angular widths narrow progressively and
ultimately take on the substrate values at T ~ 138.5 K. The aspect
ratio (the ratio of angular width to radial width) of the liquid peaks
is ~6 at these temperatures. The solid lines in Fig. 3 are the results
of least-squares fits of Eq. 4 convoluted with Eq. 5 and the substrate
resolution. From these fits one can extract the intrinsic radial and
angular widths. These are shown in Fig. 4.

An experiment, similar to that of Nagler et al. (21) but with one
single crystal used as a substrate, has been carried out by Specht ez al.
(20). For the single crystal the surface coherence length (the distance
over which the surface is atomically flat and defect-free) was at least
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Fig. 4. Radial widths (a) and angular widths (b) in the fluid phase for ~1.0
monolayer of xenon on graphite; the open circles are for an exfoliated
graphite substrate, the closed circles for one single crystal. The freezing
temperature in the latter experiment has been increased by 5.0 K to permit
superposition of the data. The data are from (19-21).
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10,000 A and the mosaicity was ~0.1°, so it was possible to obtain
data in the fluid phase at much longer length scales. On the other
hand, because of the small number of xenon atoms in the scattering
volume, the signal became prohibitively small once the fluid posi-
tional correlation length was less than ~200 A. By coincidence, this
is the largest fluid length scale that could be probed in the exfoliated
single-crystal graphite experiments. Thus the two substrates yield
complementary information. The single crystal results are also
shown in Fig. 4. The melting temperature T, of Specht et al. (20)
has been increased by 5.0 K so that the data from the two
experiments could be superimposed. This difference in Ty, corre-
sponds to a difference in coverage of about 3 percent.

Figure 4 provides dramatic evidence for a continuous freezing
transition in a two-dimensional solid, as originally predicted
Kosterlitz and Thouless. (5). The value of &, reaches at least 2000
before the solid is entered. Furthermore, the ratio of the angular to
the radial width is nearly constant throughout the fluid phase; the
fluid thus always has a hexatic character. At the highest tempera-
tures, the orientational order in the fluid undoubtedly is induced by
the substrate although reasonable estimates of the relevant magni-
tudes suggest that £>>§,. What about the transition from isotro-
pic to hexatic fluid predicted by Nelson and Halperin (6)? Here
again, the data in Fig. 4 are consistent with an intrinsic hexatic phase
near Ty, but they do niot prove the existence of such a phase because
the transition, if it occurs, is severely rounded by the substrate
orienting field. These experiments provide definitive evidence for
continuous, albeit very sharp, melting in two dimensions. They are
consistent with the theories of Kosterlitz and Thouless (5), Nelson
and Halperin (6), and Young (6), but they do not prove them
uniquely.

Krypton on Graphite

One of the most surprising features of the monolayer xenon-on-
graphite system is that the substrate corrugation plays a minor role
except at low temperatures. The most prominent effects are orienta-
tional rather than positional. From the geometrical considerations at
the beginning of this article, one might expect more dramatic
substrate effects for krypton. Early vapor pressure isotherm (7),
clectron diffraction (8, 9), and x-ray (11) measurements showed that
this is indeed ﬂlccasc.Fork\r/y_Ptonwcshallgivcallcovcragsin
units of a complete V3 x V3 R30° monolayer. For coverages
below ~1.0 monolayer, the structure is always the commensurate
V3 x V3 R30° lattice shown at the top of Fig. 1 (8, 9, 11). The
phase diagram is unusual, however, in that the triple point is
eliminated and one has only fluid and solid phases. An elegant lattice
gas model known as the “Pott-lattice-gas,” which includes vacancies
and possible occupancy of the a, B, and vy sublattices, has been
proposed by Berker ¢t al. (22, 23) for submonolayer krypton on
graphite. By explicit calculation using known interaction constants,
they have been able to explain quantitatively much of the submono-
layer behavior.

Quite exotic behavior is observed in the coverage range between
~1.0 and ~2.0 layers, and we shall discuss those results in detail.
The two-dimensional phase diagram determined by Specht ez al.
(24) for vapor pressures P between 1 and 600 torr and T between
114 and 134 K is shown in Fig. 5. It is most convenient to discuss
this phase diagram in the context of the actual synchrotron x-ray
data from which it was derived.

We show in Fig. 6 a series of synchrotron x-ray diffraction scans in
the neighborhood of the (1,0) V3 x V3 commensurate position.
In these experiments UCAR ZYX was used as the substrate, so again
positional but not orientational information was obtained. The data
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respectively. [From Specht 2 al. (24)]

in Fig. 6 were obtained by fixing the krypton P at 310 torr and
simply lowering T The actual coverage on the surface for these data
is not known precisely, although it is always in the vicinity of ~1.0
monolayer. Scans were carried out between Q = 1.20 A~! and
Q =220 A" but only the center region is shown in Fig. 6. The
graphite background has been subtracted so that only the krypton
overlayer scattering is displayed. At 129.5 K, very broad scattering
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ition (1.70 A~") at a pressure of 310 torr. The solid lines are fits to Eqgs. 2
l;);ng(sasdisan)ssedaindlcncxt.[AdapnedﬁomSpochtetul.(24)]Eqs
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centered at the commensurate position is observed. The solid line,
which is a fit to 4c1rcularlyavcraged,cormpondsto§,-l6A
and IGI ~ 1.70 A™'. Thus at 129.5 K krypton forms a weakly
oorrclatedﬂuidwithoommsuratcshortrangcorda When the

temperature is lowered to 128. 75K,ﬂ1chqmdsngmlbardychanga

while a sharp peak appears at the (1,0) commensurate position. This
is the signature of a first-order freezing transition from a weakly

correlated fluid to a commensurate solid. By 127 K the fluid signal
has vanished and the commensurate solid is fully developed. The
solid line is a fit to a finite-size version of Eq. 2, that is, a Gaussian
distribution with Lorentzian tails. The ic line shape origi-
nates in the vertical mosaic of the UCAR ZYX substrate. As T is
lowcredbclowlZSK,dlcsolidpakbeginstodiminishandhas
virtually vanished by 123.5 K (Fig. 6). The diffraction profile at

123.5 K is best described as originating from a weakly incommensu-
rate fluid with incommensurability € = Q — QO omm ~ 0.01 A~' and
oomlauonlmgmg,~1loA With further decreases in T to
122.25 K, € increases to 0.03 A~! while &, decreases to 40 A. The
solid line at 122.25 K is a circularly averaged Lorentzian, Eq. 4;
clearly this simple form describes the observed fluid structure factor
quite well. With further decreases in T, §; increases and a continu-
ous ing transition occurs at ~119 K. The solid line at 116 K is
the power law form, Eq. 3, with 4 = 0.3. The difference in the
structure factor for discrete (T = 127 K) and continuous (T = 116
K) symmetry solids manifests itself dramatically in these data.
Clearly, the phenomenon of melting with a decreasing T evident in
Figs. 5 and 6 is quite novel. Before discussing the probable
undcrlymgphysncs, we consider the experimental behavior at lower

The original discovery that a well-correlated fluid intervened
between the commensurate and incommensurate solid phases for
krypton on graphite was made by Moncton ¢z al. (25) at T = 97 and
80 K. Thus the reentrant fluid phase evident in Fig. 6 extends far
below the ordinary melting temperature. Their data (25, 26) also
contained evidence for domain wall effects. The geometry of the
domain walls for compressed krypton on graphite may be under-
stood as follows.

If onc takes a2 V3 X V3 krypton monolayer, contracts it so that
the krypton atoms have about their Lennard-Jones scparation, and
then moves each krypton atom to the center of the nearest hexagon,
onc generates the lattice shown in the right inset of Fig. 7. It is
evident that one produces a hexagonal network of domain walls;

these walls have been denoted “super heavy” by Kardar
and Berker (22). The explicit domain wall structure shown in Fig. 7
is not possible since the krypton atoms would have scparations less
then their hard-core values. Minimization of the total energy yiclds
wallssixtodghtatomswidc(27),analogonsuothoscforxmm
shown in Fig. 2 - If the domain walls themsclves have long-range
ordetthenoncwouldnowhavcancw,vu'ylong ity that
would, in general, be incommensurate. The lowest order peaks that
occur as a result of this new periodicity are illustrated in the right
inset of Fig. 7; the primary peak is at (Qcommt€, 0), and the first-
order satellite peaks occur at (Qcomm—¢, €) and (Qeomm: —€).

Figure 7 shows diffraction scans in the fluid phase near the fluid-
moommmsuratcsohdboundaryofbodad:cpnmarypukanda
satellite peak (27), based on the use of a single-crystal substrate at
T=2883 K and P =2 torr. The anncaled domain wall model
predicts the relative intensities quite well. These data demonstrate
dmthcsupcrhavydomnwalloonccptnsoormct,thatfor
€ ~ 0.04 A~ the domain walls are aligned along the axes shown in
Fig. 7 and that at this T and P the domain wall network itself forms a
well-correlated hexagonal fluid with a correlation length of ~400 A.
These data agree with the earlier UCAR ZXY results of Moncton et
al. (25) and Stephens ¢t al. (26) in the same T range.

We thus have the novel empirical result that at small incommensu-
rability, that is, when the domain walls are far apart, they form a
fiuid rather than a solid. With increasing e, the domain walls move
together, interact more , and then . This automati-
cally explains the sequence 3x\/_sohd-—>wmklymcommcmu
rate fluid — incommensurate solid. The above explanation was in
fact constructed on the spectrometer at SSRL by Moncton ¢t 4l.
(25) as the data were produced. It was understood at the time that
the large entropy of the domain wall network must play an essential
role, but the explicit mechanism for the domain wall disorder at
weak incommensurability was not identified.

Since then, clegant theories for the phenomena have been given
by Coppersmith et al. (28) and others (22, 23). The essential idea
may be summarized as follows. The domain walls should be
regarded as excitations that move freely in the lattice, bend and
oscillate, but are not allowed to pass through each other. This has
the consequence that the domain wall free energy is dominated by
entropy. This domain wall disorder manifests itself dramatically in
simulations by Abraham ez al. (29) (Fig. 8). The domain walls are
also scen to meander as a function of time in the simulations. The

3000 T T T T 1 T 7 T T |
|
2500f— o e o ¢
o) 0.0 0_’ e e '0:9 © e
/ '00'0 Coﬂ_‘OOO 969 ¢
7 \€ 00080%,° g8 036°, 1
2000 |— ! € 0502500850, 0%e I.'| —
g V———O0——e—»n 02020%00%0°0° oy
£ . Qcomm °Cesonesogo 000 g1
Fig 7. Single diffaction scans & '5°°[ . e ®elete20%0%  moy. o ]
the # 0) ad & Segiriliniglss ] %
a @Pg;n‘:;‘c’?’g} 3 Kanda £ 1000[- Supeheavy walls 4 ?"
pressure of 2 torr. [Data from § I
D’Amico et al. (27)] The solid lines |
are fits no Lorentzians  with s00[— (h,0.036) | o
g0 400 A The left inse shows NS z°
space. o ag@®  © e® o 2
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energetics are such that the domain wall network is unstable to the
formation of free dislocations (28). This is predicted to be true at all
T values for small incommensurabilities. A two-dimensional system
with free dislocations is a fluid since it cannot sustain shear. Kardar
and Berker and their colleagues (22, 23) have carried out a full
microscopic lattice gas calculation including all possible domain
walls as excitations. Their theory accounts rather well for the
complete empirical phase diagram with only one adjustable parame-
ter.

The unusual topology for the krypton phase diagram (Fig. 5) can
be understood as follows. For coverages near ~2.0 monolayers, the
close-packed incommensurate phase is favored. However, for cover-
ages closer to ~1.0 monolayer, at high T there is significant
occupation of the second layer and there is also a significant number
of krypton atoms in the vapor over the graphite. The second layer
forms a dilute lattice gas while the structure of the first
layer is commensurate. As T decreases condensation occurs into the
first layer from the second layer and from the vapor, thereby driving

Fig.8.Asnapshoipicturcofd1cincommcnsuntektyptmm(44%)for

a
22,212 krypton atom system on ite at a coverage of 1.05 monolayers, a
ucmperaturcof97.5K,andao&aphitclinwdimsionof620A.'lhc
atomic ion is for 20,000 time steps into the molecular i
simulation. The ied substrate sublattices of the commensurate

atoms are color: to match those in Fig. 1. [Figure derived from data of
Abraham ez &l. (29))
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. However, it is clear that the domain wall

the commensurate-incommensurate transition. This commensurate-
incommensurate transition is, in fact, a melting transition. This
accounts for the reentrant character. Finally, the reentrant fluid
freezes into an incommensurate solid.

Final Comments

As these two examples illustrate, two-dimensional rare gas solids
exhibit remarkably rich and interesting behavior with new phenom-
ena unique to two dimensions. S radiation has played,
and will continue to play, an essential role in idating the
fundamental behavior (i) because it opens up the distance scale
between 100 and 10,000 A and (ii) because the detailed line-shape
analysis it allows can yield reliable information about the relevant
correlation functions. The simplicity of the rare gases has allowed
for straight-forward intuitive considerations as well as explicit
microscopic calculations, just as for three-dimensional rare gas
solids.

Concepts developed for three-dimensional rare gas solids have
proven to be important throughout solid-state physics (3). It is
legitimate to ask whether the same will hold true in two dimensions.
Currently, much less is known about other two-dimensional solids.
discussed here can
be applied directly to metal overlayers on metals and semiconduc-
tors. The concepts have already been applied to explain the in-plane
behavior of intercalation materials. i that are now under
way on rare gas layer-by-layer crystal growth should also have broad
consequences. Finally, new tools such as inelastic atom beam
scattering are now being applied to rare gas monolayers and bilayers

so that more detailed information about the excitations as well as the-

structures will become available. We expect, therefore, that two-
dimensional rare gas solids will continue to be an active and
productive area of rescarch. '
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Safeguarding Our Military Space Systems

MICHAEL M. MaAy

HE MEASURES THAT CAN BE TAKEN TO SAFEGUARD OUR
military space systems or the functions carried out by these
assets, the potential effectiveness of the measures, and the
utility of arms control agreements vary according to the function to
be safeguarded. Broad statements, arguing that space assets are few

Military space systems consist of satcllites, earth stations, and links
between them (Fig. 1). The characteristics that mainly affect the
vulnerability of these systems, such as altitudes of orbits, nature of
components, and the like are discussed in the first part of this article.
Then various ways of attacking the systems along with steps that can
be taken to counter the attack or make it less effective are described.
Next, the adequacy of these steps in safeguarding some space system
functions are evaluated, mainly to illustrate the kind of analysis that
must be done in each case. Finally, the potential value of some arms
control agreements in further safeguarding these functions is dis-
cussed.

'Vulnerability of Military Space Systems

. Space systems can be used for surveillance of cither strategic asscts
. or tactical situations, for warning, for communication, for weather
;mﬁ)tmaﬂon,formv:gaﬂon,andforﬂrgenng Figurc 2 displays

typical orbits for these various kinds of missions. The orbit is the
main determinant of vulnerability. It determines the time and cost
foranmthlmmchedASAngetmmcsatclluc,aswcllasthc

componentry

kinds. The ones shown in Fig. 3 are all necessary for some satellites.
'Ihcy:llumncdxerangcofvulncrabﬂmcsdntmbecxpmdﬁom
most componentry.
Vulnaabnluyanbcdmmnmcmldamagc,blmdmgor)ammmg
of sensors, or damage or falsc signals induced in the clectronics. Let

mc take up material damage first. Some of the materials used on
can be quite fragile. Normal solar pancls, for instance, will fail at
relatively low levels of laser or nuclear irradiation. With special
attention to the materials and design, however, the material problem
can be solved to the point that a satellite can only be destroyed by
cither (i) a direct hit, (ii) a nuclear explosion sufficiently close that it
andcsuvyonlydutsamclhmcmdnooﬂwr(l),or(m)laser

'Ihcbhndmgor]ammmgofscnsonmustbedonebymdar
m&amd,orvwxblchghtsoummordmgmthcﬁeqlmybandthc
sensor operates in. Such “in- can be countered by
rapidly changing the frequency at which the radar operates, by
rapidly shuttering the optical clements of a camera, or by other
measures. One parti countermeasure applics to infrared sen-
sors. For launch warning purposes these sensors need only pick up

Laboratory, Livermore, CA 4560, This atice  wisptod o page b pescotod o
?&gmmdhmw&;:p mAspaen, , on 13 August
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