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Two-Step IMC-PID Method for Multiloop Control System Design
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Proportional-integral-derivative (PID) controller tuning method based on the internal model
control is one of the simplest tuning rules and provides excellent performances for various
processes. It has one design parameter which determines the speed of closed-loop response. As
the design parameter changes, the controller gain changes while integral and derivative times
usually remain constant. Hence, the method can be extended easily to the design of multiloop
control systems because there are simple methods to find stable multiloop proportional controller
gains. However, integral and derivative times independent of the design parameter can cause
poor closed-loop responses for some processes such as those with small dead times. For such
processes, 2 degree of freedom control systems are usually required, and a two-step method
where a proportional controller is designed first and then a PID controller is designed for the
compensated system can be used to design the 2 degree of freedom control systems. This two-
step method is applied to the design of multiloop control systems for interacting multivariable
processes.

1. Introduction

The internal model control (IMC) method1 can be used
to design proportional-integral-derivative (PID) con-
trollers for single-input single-output (SISO) processes.
The IMC-PID method is very simple and provides
excellent PID controllers for various processes. It has
one design parameter of the closed-loop time constant.
As the design parameter changes, only the proportional
gain changes while integral and derivative times are
usually independent of it. When this fact of the IMC-
PID method is utilized, the method can be applied to
the design of multiloop control systems.2,3 However, it
can be a demerit to hinder the obtainment of control
performances for some processes. For example, the
IMC-PID method provides control systems with poor
load responses for some processes such as those having
small time delays.1 For such processes, large integral
times compared with the closed-loop time constants
result and load responses can be poor. To resolve this
disadvantage, we may use a two-step method where a
proportional (P) controller is designed first and then the
IMC-PID method is applied to the process compensated
by the P controller.4 This two-step method can also be
applied to unstable processes stabilizable by a P con-
troller. The resulting control system becomes a kind of
2 degree of freedom (2DOF) control system.

Multiloop control systems can be designed by the
SISO IMC-PID method. The IMC-PID method is
applied to diagonal transfer functions, ignoring inter-
actions, and then the design parameters of the IMC-
PID method are adjusted to compensate for interactions.

Because design parameters of the IMC-PID method
affect only the proportional gains, they can be easily
determined by methods such as the Nyquist array
method. As in the SISO case, this multiloop IMC-PID
method can be poor for some processes. Here, the above
two-step method is tried to enhance the multiloop IMC-
PID method.

Several methods for the 2DOF control system such
as the set-point weight on the proportional gain5 are
available and are still being investigated. However, their
feedback parts in the 2DOF control systems are not
straightforward to the design for multiloop systems.
They are not considered here because our primary object
of this study is to design feedback parts of multiloop
control systems via the IMC-PID method. The proposed
design method is compared with the well-known biggest
log-modulus tuning (BLT) method6 and the sequential
autotuning (SAT) method.7,8 The proposed method can
handle unstable processes stabilizable by P controllers.

2. Two-Step IMC-PID Method for SISO
Processes

For a process with small time delay compared to time
constant, the design parameter of the closed-loop time
constant in the IMC-PID method can be chosen to be
very small, resulting in fast set-point responses. How-
ever, responses for load changes in the input can be
sluggish because of slow open-loop dynamics.1 For
example, consider a process G(s) ) 1/(s + 1). The IMC-
PI controller becomes C(s) ) (1 + 1/s)/λ. While the
closed-loop transfer function for the set-point change is
1/(λs + 1), that for the load change in the input becomes
λs/(λs + 1)/(s + 1). With a decrease in λ, the set-point
response can be made to be very fast. However, because
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of the pole at -1, the load response cannot be made to
be fast. The large integral time compared with the
closed-loop time constant λ indicates the problem. It may
be cured by using other controller tuning methods such
as the pole placement method.5 However, simplicity of
the IMC method may not be maintained, and extension
to multiloop control systems is not straightforward. For
such processes, basically the 2DOF control system
should be used to obtain good control performances for
both set-point and load changes.9 Unstable processes
including integrating processes also require 2DOF
control systems for better set-point and load responses.
For a method applicable to multiloop control systems,
the two-step IMC-PID method where a P controller is
designed first and then the IMC-PID method is applied
to the compensated process is investigated here.

The two-step method shown in Figure 1 can be used
to design 2DOF control systems. An inner P controller
is designed first. Then the outer controller is designed
by the IMC method.1 The characteristic equation be-
comes

The outer controller is designed by specifying F(s) )
KinCout(s) G(s)/[1 + KinG(s)].1 Hence, we have

and the closed-loop poles of the control system of Figure
1 include zeros of 1 + KinG(s) ) 0. They become open-
loop poles of G(s) as Kin goes to zero (the standard IMC
method). These open-loop poles of G(s) can cause slower
load responses of the closed-loop system. With introduc-
tion of Kin, these poles can be moved, resulting in the
control system with faster load responses.

A practical method for Kin and Cout(s) is now described.
For stable processes and some integrating processes, the
gain of the inner P controller can be designed by the
Ziegler-Nichols method as

where Ku is the ultimate gain of the process G(s).4 For
some unstable processes, De Paor and O’Malley10 also
proposed stable controller gains.

For the outer controller, the IMC-PID method is used
with approximation of the closed-loop system by a

second-order plus time delay (SOPTD) model

where Gh (s) represents the transfer function of a closed-
loop system compensated by the inner P controller.
Parameters of the approximate SOPTD model can be
obtained by fitting Gh (s) in the frequency domain. The
fitting criterion is

where Ω is a set of frequency points. To minimize the
above criterion, the Newton-Raphson method is used.
The method in work by Park et al.11 requiring simpler
computations can also be used to obtain the approximate
SOPTD model from frequency response information.

The control system of Figure 1a can be rearranged
as the control system of Figure 1b

If Cout(s) is PID, Q1(s) becomes a kind of lead/lag module

and Q2(s) becomes PID.

Figure 2 shows responses of the proposed control
system and the IMC-PID control system for the process
G(s) ) exp(-0.1s)/(s + 1). The design parameter λ is set
to 0.05. As shown above, the IMC-PID controller shows
a very sluggish response for the step load change in the
input. On the other hand, the sluggish load response
disappeared in the proposed 2DOF control system.

3. Multiloop Control System Design

The IMC method can be applied to the design of a
multiloop control system.2,3 Controllers in the multiloop

Figure 1. Proposed control system (a) and its equivalent 2DOF
control system (b).

Z(s) ) 1 + KinG(s) + KinCout(s) G(s)

Z(s) ) [1 + F(s)][1 + KinG(s)]

Kin ) Ku/4 (1)

Figure 2. Step set-point and load responses for the process G(s)
) exp(-0.1s)/(s + 1) (λ ) 0.05 and a load change occurs at the
process input).

Gh (s) )
G(s)

1 + KinG(s)
≈ kcl exp(-θcls)

τcl
2s2 + 2úclτcls + 1

(2)

J ) ∑
ω)Ω|Gh (jω) -

kcl exp(-jθclω)

τcl
2(jω)2 + 2úclτcl(jω) + 1| (3)

Q1(s) ) Cout(s)/[1 + Cout(s)] (4)

Q2(s) ) Kin + Cout(s) (5)

Q1(s) ) (R1s
2 + R2s + 1)/(â1s

2 + â2s + 1) (6)

Q2(s) ) kc(1 + 1/τIs + τDs) (7)
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control system are designed for the paired transfer
functions, ignoring interactions, and then the design
parameters of the IMC method are adjusted to ensure
stability robustness under interactions. It is very simple
to determine the design parameters because they
affect only the proportional gains. The Nyquist array
method12,13 or a more elaborate method guaranteeing
robust performances2 can be used. This method is as
simple as some other methods such as the BLT method6

and the sequential loop closing method.7 However,
integral and derivative times which are the same as
those of control systems for the paired transfer functions
may not be desirable for some multivariable processes,
resulting in poor control performances.

Poor control performances are indicated by large
integral times in multiloop PI control systems. Large
integral times appear in many design methods such as
the BLT method and the SAT method,7 including the
multiloop IMC-PI method.3 Consider the Wood and
Berry column6 in the example section. Control systems
designed by BLT, SAT, multiloop IMC-PI, and iterative
continuous cycling (ICC) methods13 are shown in Table
1. The BLT, SAT, and IMC-PI methods provide larger
integral times for the second loop than the ICC method,
and sluggish responses result.13

To resolve problems of the IMC-PID method for
multiloop control systems while maintaining the sim-
plicity of the IMC-PID method, the two-step method
in the previous section is applied. The design procedure
is as follows.

Step 1. Applying the Nyquist array method of Lee et
al.13 to the process G(s), obtain the largest stable gain
obtainable and set the inner P controller gain to one-
fourth.

Step 2. Calculate the frequency response of Gh (s) )
G(s) [I + KinG(s)]-1 and obtain approximate SOPTD
models of its diagonal elements by fitting their fre-
quency responses.

Step 3. Applying the IMC-PID method1 to the
approximate SOPTD models of step 2, obtain integral
times and derivative times of Cout(s).

Step 4. Applying the Nyquist array method to the
compensated process of Gh (s) Cout(s), obtain the largest
stable gain and set the outer controller gain to 1/3.3.

4. Examples

The proposed 2DOF control method is compared with
other well-known methods of the BLT and SAT meth-
ods. A 1 degree of freedom (1DOF) controller with Q1(s)
) I is also considered for fair comparisons.

Stable Processes. Methods to design multiloop
control systems are applied to the following three 2 × 2

processes and one 3 × 3 process shown in work by
Luyben.6

Table 2 shows the inner P controller gains and the
approximate SOPTD model parameters. Table 3 shows
the outer controller Cout(s).

Figures 3-5 show the set-point responses for the WB,
WW, and OR columns. For all processes, the BLT
method shows slower set-point responses in some loops.
The BLT method uses the detuning strategy, and poor
responses are due to the large detuning to obtain the
stability robustness. This disadvantage of the BLT
method may be resolved by using different detuning
strategies based on a more elaborate stability criterion
for multivariable systems, but simplicity is not main-
tained.

For the WB and WW columns, the SAT method also
shows slower set-point responses in some loops. The
SAT method tunes the multiloop control system sequen-
tially. Hence, later loops may be tuned loosely, and their
set-point responses will be sluggish.

The proposed 2DOF control systems remove these
sluggish responses throughout the above example pro-

Table 1. Multiloop PI Control Systems for the WB
Column

BLT
method

SAT
method

IMC
method

ICC
method

K 0.375 0.868 0.737 0.850
-0.075 -0.0868 -0.103 -0.0885

τI 8.29 3.246 17.2 7.21
23.6 10.4 15.9 8.86

Figure 3. Step set-point responses for the WB column.

Wood and Berry (WB) column:

G(s) ) [12.8 exp(-s)
16.7s + 1

-18.9 exp(-3s)
21s + 1

6.6 exp(-7s)
10.9s + 1

-19.4 exp(-3s)
14.4s + 1

]
Wardle and Wood (WW) column:

G(s) ) [0.126 exp(-6s)
60s + 1

-0.101 exp(-12s)
(48s + 1)(45s + 1)

0.094 exp(-8s)
38s + 1

-0.12 exp(-8s)
35s + 1

]
Ogunnaike and Ray (OR) column:
G(s) )

[0.66 exp(-2.6s)
6.7s + 1

-0.61 exp(-3.5s)
8.64s + 1

-0.0049 exp(-s)
9.06s + 1

1.11 exp(-6.5s)
3.25s + 1

-2.36 exp(-3s)
5s + 1

-0.01 exp(-1.2s)
7.09s + 1

-34.68 exp(-9.2s)
8.15s + 1

46.2 exp(-9.4s)
10.9s + 1

0.87(11.61s + 1) exp(-s)
(3.89s + 1)(18.8s + 1)

]
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cesses. In multiloop 2DOF control systems, feedback
parts of Q2(s) are more important because they are
harder to design than the set-point filter parts of Q1(s).
Our primary object of this study is to design excellent
Q2(s). Only the feedback parts in the proposed control
systems can also be used. These 1DOF control systems
without the set-point filter, Q1(s), show peaks in set-
point responses for some processes, but it is easy to
design the set-point filters by some other methods to
remove peaks in set-point responses. Methods to design
SISO 2DOF control systems which can be applied easily
to the design of multiloop control systems are few.

Unstable Batch (UB) Reactor. The proposed method
can be applied to unstable processes including integrat-
ing processes stabilizable by a P control system. To
illustrate this, the proposed method is applied to the
following UB reactor problem:14,15

For this process, P controller gains calculated by the
inverse Nyquist array method14 are used. The diagonal
elements of the inner P control system are approximated
by the first-order system. Because there are no time
delay terms, the first-order models are sufficient to
approximate the closed P control system. The IMC
method is applied to obtain PI controllers of Cout(s).
Tables 2 and 3 show the control systems obtained. The
proposed control systems are compared with the mul-
tiloop PI control system in work by Green and Lime-
beer.15 Better control responses are obtained as in
Figure 6.

5. Conclusion

The IMC method can be used to design multiloop
control systems. Each loop in multiloop control systems
can be designed for the paired transfer functions by the
IMC-PID method, and effects of the interactions can
be compensated for by adjusting its design parameters.

This method is as simple as the well-known BLT method
and the sequential loop closing method. However, for
some processes, simple adjustment of the design pa-
rameter of each loop may not be sufficient. To comple-
ment this, a two-step method modifying the IMC-PID
method is proposed for the design of multiloop control
systems. A proportional control system is designed first,
and then a PID control system is designed for the closed-
loop system compensated for by the P control system.
Simulations show that the proposed method can reduce
disadvantages in some other simple methods such as
BLT that some loops are sluggish. The method can also

Table 2. Inner P Controllers, Approximate Models, and Outer PID Controllers

process frequency range (Ω) Kin approximate modela outer controllerb [Cout(s)]

WB 0.0001-1.6003 0.3934 (0.7915, 1.1528, 0.9010, 0.6074) (0.9754, 2.0774, 0.6397)
0.0001-0.4872 -0.0588 (0.3929, 2.2422, 0.6428, 2.6436) (0.7186, 2.8824, 1.7442)

WW 0.0001-0.2725 29.02 (0.7074, 5.8485, 0.7018, 4.0273) (0.9461, 8.2085, 4.1670)
0.0001-0.2095 -12.43 (0.4645, 7.6292, 0.5148, 4.7615) (0.9036, 7.8549, 7.4100)

OR 0.0001-0.6748 0.826 (0.2908, 2.5842, 0.5642, 1.3546) (0.8946, 2.9162, 2.2900)
0.0001-0.5873 -0.1664 (0.2345, 2.5292, 0.5096, 1.6409) (0.9290, 2.5776, 2.4818)

UB 0.0001-1.6638 1.631 (0.5414, 0.4625, 2.1912, 0.9518) (0.5666, 2.0267, 0.1055)
0.0001-100 2 (1.1937, 0.0836)c (0.7004, 0.0836, 0)
0.0001-100 -5 (0.8201, 0.0745)c (0.9088, 0.0745, 0)

a (kcl, τcl, ςcl, θcl). b (khc, τjI, τjD), where Cout(s) ) khc(1 + 1/τjIs + τjDs). c (kcl, τcl).

Table 3. Proposed Controller Parameters

process Q1(s)a Q2(s)b

WB (1.3290, 2.0774)/(1.3290, 4.2073) (0.7771, 4.2073, 0.3159)
(5.0274, 2.8824)/(5.0274, 6.8937) (-0.1010, 6.8937, 0.7293)

WW (34.205, 8.2085)/(34.205, 16.888) (56.480, 16.885, 2.0258)
(58.205, 7.8549)/(58.205, 17.235) (-22.839, 17.235, 3.3771)

OR (6.6781, 2.9162)/(6.6781, 6.1748) (1.5642, 6.1748, 1.0815)
(6.3971, 2.5776)/(6.3971, 5.3524) (-0.3210, 5.3524, 1.1952)

UB (0.2139, 2.0267)/(0.2139, 5.6037) (2.5543, 5.6037, 0.0382)
(0, 0.0836)/(0, 0.2030) (3.8176, 0.1565, 0)
(0, 0.0745)/(0, 0.1565) (-8.5020, 0.2030, 0)

a (R1, R2)/(â1, â2). b (kc, τI, τD).

G(s) ) 1
d(s)

×

[29.2s + 263.3 -(3.156s3 + 32.67s2 + 89.93s + 31.81)

5.676s3 + 42.67s2 - 68.84s - 106.8 9.43s + 15.15 ],

d(s) ) s4 + 11.67s3 + 15.75s2 - 88.31s + 5.514

Figure 4. Step set-point responses for the WW column.

Figure 5. Step set-point responses for the OR column.
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be applied to unstable processes stabilizable by P control
systems including integrating processes.
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Figure 6. Step set-point responses for the UB reactor.
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