
ANNALS OF PHYSICS: 8, %3-389 (1959) 

Studies of Polaron Motion 

Part II. The “Small” Polaron 

T. HOLSTEIN 

Westinghouse Research Laboratories, Pittsburgh, Pennsylvania 

The one-dimensional molecular-crystal model of polaron motion, described 
in the preceding paper, is here analyzed for the case in which the electronic- 
overlap term of the total Hamiltonian is a small perturbation. In seroth order 
-i.e., in the absence of this term-the electron is localized at a given site, p. 
The vibrational state of the system is specified by a set of quantum-numbers, 
Nk , giving the degree of excitation of each vibration-mode; the latter differ 
from the conventional modes in that in each of them, the equilibrium displace- 
ment, about which the system oscillates, depends upon the location of the 
electron. 

The presence of a nonvanishing electronic-overlap term gives rise to transi- 
tions in which the electron jumps to a neighboring site (p + p f l), and in 
which either all of the Nk remain unaltered (“diagonal” transitions) or in which 
some of them change by fl (“nondiagonal” transitions). The two types of 
transitions play fundamentally different roles. At sufficiently low temperatures, 
the diagonal transitions are dominant. They give rise to the formation of 
Bloch-type bands whose widths (see Eq. 37) are each given by the product of 
the electronic-overlap integral, and a vibrational overlap-integral, the latter 
being an exponentially falling function of the NI, (and, hence, of temperature). 
In this low-temperature domain, the role of the nondiagonal transitions is 
essentially one of scattering. In the absence of other scattering mechanisms, 
such as impurity scattering, they determine the lifetimes of the polaron-band 
states and, hence, the mean free path for typical transport quantities, such as 
electron diiusivity. 

With rising temperature, the probability of the off-diagonal transitions goes 
up exponentially. This feature, together with the above-mentioned drop in 
bandwidth, results, e.g., in an exponentially diminishing diffusivity. Eventu- 
ally, a temperature, T, - W the Debye 8, is reached at which the energy un- 
certainty, h/7, associated with the finite lifetime of the states, is equal to the 
bandwidth. At this point, the Bloch states lose their individual characteristics 
(in particular, those which depend upon electronic wave number); the bands 
may then be considered as “washed out.” For temperatures >Tt , electron 
motion is predominantly a diffusion process. The elementary steps of this proc- 
ess consist of the random-jumps between neighboring sites associated with the 
nondiagonal transitions. In conformance with this picture, the electron diffu- 
sivity is, apart from a numerical factor, the product of the square of the lattice 
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distance and the total non-diagonal transition probability, and is therefore 
an exponentially rising function of temperature. 

The limit, J,,, , of the magnitude of the electronic overlap term, beyond 
which the perturbation treatment of the present paper becomes inapplicable, 
is investigated. For representative values of the parameters entering into the 
theory, J,,, - 0.12 ev and 0.035 ev for the extreme cases of (a) width of the 
ground-state polaron-band and (b) high-temperature site-jump probabilities 
(these numbers correspond to electronic bandwidths of 0.24 ev and 0.07 ev, re- 
spectively). For electronic bandwidths in excess of these limits, a treatment 
based on the adiabatic approach is required; preliminary results of such a treat- 
ment are given for the above two cases. 

I. INTRODUCTION 

In this paper, the one-dimensional molecular-crystal model, developed in the 
preceding paper (1) ,l will be applied to the study of the small polaron. The basic 
features of the molecular-crystal model are contained in Eq. (9) of I, which 
may be written as 

= gl 
[ ( 

-2s $- + i ~wZx2) - AX,] a, - Jb,,+l + aA. 
(1) 

7n2 
Here, the “wave function,” a,(zl , * - - , xN), is a function of the “lattice-vibra- 
tion” coordinates, x1 , . . . , xN (each of which describes the internuclear vibra- 
tion of a single (diatomic) molecular site of the linear chain), and of a discrete 
“electronic” coordinate, n. The latter is to be understood in terms of the tight- 
binding approximation, according to which the actual wave function of the sys- 
tem has the form 

(where 4(r - na, x,) is a one-electron wave-function, localized about the nth 
molecular site, its precise definition being given by Eq. (I 3) in the appendix 
of I). 

The sum over m in the square-bracket of (1) represents the “lattice” Hamil- 
tonian, consisting of the vibratory kinetic and potential energies of the molecules 
in the absence of the electron; it, is expressed in terms of the reduced mass, M, 
and vibration frequency, ~0 , of the individual molecules. The remaining term 
in the square bracket, -Ax, , gives the “electron-lattice” interaction as a linear 
function of the vibration coordinate of the occupied site. Finally, the term pro- 

1 To be referred to hereafter as I. Here, as in I, the term “small polaron” designates 
the case in which the linear dimension of the polaron is of the order of a lattice spacing. 
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portional to the electronic “overlap” integral,2 -J, describes the motion of the 
electron through the lattice. As discussed in I, this feature of the model is strictly 
analogous to the conventional atomic tight-binding approach; in particular, if 
all the x:~‘s are fixed at one and the same value (thereby suppressing vibrational 
motion), Eq. (1) reduces to the standard tight-binding approximation of the 
Bloch one-electron equation, as illustrated by Eqs. (4)-( 7) of I. 

As pointed out in I (Eqs. 43-46, and accompanying text), the case of the 
small-polaron is realized when the electronic bandwidth, 2J, is small compared 
to a characteristic energy, A2/2M UC,“, which (see I, Eq. 46) is, in essence, the 
binding energy of the small polaron. This circumstance suggests that Eq. (1) 
be solved by a perturbation approach in which the zeroth order Hamiltonian 
consists of the square-bracket of (1)) whereas the J-proportional term is the 
perturbation. Such a procedure has, in fact, been applied by Tjablikov (2) and 
by Yamashita and Kurosawa (3)3 to the continuum-polarization model, and 
will form the basis of the present work. In anticipation of results to be obtained 
below, it may be remarked that the domain of validity of the treatment will not 
be sufficient to cover the whole range of interest for the small polaron. Namely, 
as will be shown in Section 6, the small-polaron condition (see Eq. 43 of I) 

2J < A2/2M$ (3) 

is not sufficient for the applicability of the perturbation approach; in particular, 
the more restrictive conditions 

2J < (A”/ZMW;)~‘~ &I,,)~‘~ 

J < (A2/4M~,2)1’4 (~K!!‘/T)~‘~ (fi c~o/?r)~‘~ 
(4) 

will be shown to be necessary. 

2 Strictly speaking, (see I, Eq. 3), this term has the form, J(z, , z,+i)a,+i + J(z, , 
~,-~)a,-i where the overlap integrals, J(r, , X,&I) are defined by Eq. (I-15) in the appendix 
of I. As d.iscussed in I, the x, dependence of the J’s is to be ignored for the time being, so 
that all the J’s are assumed equal to a single constant, -J. 

3 Referred to hereafter as Y and K. It should be stated at the outset that the treatment 
of the present paper overlaps, in considerable measure, the earlier work of Y and K. How- 
ever, there are a number of features of the problem, which constitute important elements 
of the present paper, and which are absent from Y and K’s treatment. Examples are (a) 
the roles of the diagonal and off-diagonal transitions at temperatures above and below 
the “transition” temperature, Tt [as given by Eq. (88) and subsequent text], (b) the classi- 
cal activation approach in the high-temperature region (KT >> h~k), and (c) the estimation 
of the limits of validity of the perturbation treatment (together with the question of the 
alternate applicability of the adiabatic approach). Moreover. in the opinion of the present 
author, the specific results obtained by Y and K are not correct in detail. A discussion of 
these results is presented at the end of the paper. 
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Before entering upon detailed calculation, let us generalize Eq. (1) by adding 
to the lattice Hamiltonian coupling terms of the form mentioned in footnote 3 
of I. The augmented equation reads 

h2 .Jt + t Mw:xm2 + f Mw:x,x~+~ > 1 (5) = 
-TM axm2 2 + Ax, a, 

- J[a,+l + an-J 
As is known, the presence of coupling terms gives rise to dispersion of the lattice 
vibration frequencies. It will later be seen that this dispersion has to be taken 
into account in the calculation of probabilities of transitions in which a change 
of electron-site variable is accompanied by the simultaneous absorption and 
emission of vibrational quanta. In particular, it will turn out that the standard 
approximation of replacing the vibration frequencies by a single frequency (Ein- 
stein model) yields meaningless results for these probabilities. 

For the treatment of (5) it is desirable to express the vibrational coordinates, 
xn , in terms of the normal-mode coordinates of the host crystal. This is done 
by means of the one-dimensional analog of Eq. (50) of I [the transformation is 
also given by Eq. (11-2) of Appendix II] ; one then has 

= h2 dZ + ! MW;q; 
-FM aq, 2 > 0 

_ ; l/2 
AQlc sin(lcn + T/4) 1 (6) 

x a?&(“- qk . - . > - J(a,+l + an-l) 

where Wk is given by the dispersion relation 

#k2 = wo2 + WI” cos k (7) 

and where k = &K/N, the integer K lying in the range -x(N - 1) 5 K S 

>5(N - 1) (N being assumed odd for the sake of convenience). 
The zeroth-order wave equation is obtained by setting J equal to zero in (6). 

The zeroth-order eigenstates are then seen to have the form 

ancp) (. . .qk. ..) = &pX(p) (...Qk...) (8) 

where 6,, is the Krijnecker delta-unity for n = p and zero otherwise-and 
where x (‘) satisfies the equation 

Excp) = F [ -& g2 + k Mwk2qk2 - Gy2 Aqk sin (& + a/4)] xc’). (9) 



STUDIES OF POLARON MOTION 347 

Noting that the square-bracket of (9) represents a system of independent 
harmonic oscillators, with equilibrium points 

A 2 1’2 *p = __ - 
0 Mwc2 N 

sin(kp + 7r/4) 

one readily obtains for the eigenfunctions and eigenvalues of (8) 

X??N~...(. * ‘qk’ *‘) = 7rk@N,[(&‘k/fi>““(Q.k - &‘)] 

E...,,... = F fiwk(Nk + >‘$) + Ea 

where 

(11) 

(12) 

aN(z) = ( 2NN!7r1’2)-1’2 e-“2’2H,(z) 

are normalized harmonic oscillator eigenfunctions [the HN(z) being Hermite 
polynomials] and where 

Eb = -3 L2 ($) sin2(kp + u/4). (13) 

Finally, from (8) and (11 ), one has for the zeroth order eigenstates of the total 
system 

ap,...Nk... (n, . . * qk * * *) = 8np?Tk@Nk[(&‘k/f$‘2(qk - q:“‘)]. (14) 

In the representation of these zeroth order eigenstates, the wave function of the 
system takes the form 

&(‘*’ qk --*) = c 
P’,...Nk’... 

c(p’, *” Nk’ “‘)apt,...Nk*...(n, ‘** qk -**) 

(15) 
x exp[-(it/n)E...Nk~...]. 

Inserting this expression into (6), multiplying on the left by up.. .N1. . . 
(n, ... qk .‘. ), and integrating with respect to the vibration coordinates, @ , 
one obtains, with the aid of (8)-(13) 

(16) 
)( c(p’, . . * Ni * - *) eXp[(it/fi)(E...N,... - E...Nke.,.)] 

where 

(p, . . . Nk . . . 1 v 1 p’, . . . Nk’ * . . > = - Jtgl &,l+t 

x ?Tk +.Nk[(MWk/fi)1’2(qk - q,‘“‘)]~Nk~[(2MWk/n)1’2(qk - d”‘] 1 (17) 

. (MUk/fi) dqk, 
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the product, ok , going over all vibration modes. Taking advantage of the cir- 
cumstance that the ,:*’ are actually infinitesimal (i.e., -l/N), one may eval- 
uate the multiplicands oi:” simCp$ by developing, say, &,J (MN/~) l”( ok - $))I 
as a Taylor series in CJ~ -qk , and by making use of the standard formula 

%JN(Z) N l/2 

~ = az 0 
112 

a @N--1(X) - N+ 
( > 

@‘N+1(Z). 

The result is, to the second order in 4:‘) - c$““, 

(P’, . ’ 

where 

Nk’ * * . I v [ p . . . Nk . . . > = -J .zl b,p+e 

x ak 1 - $ (Nk + 1/2)yr~ cos2(k(p + E/2) + T/4) 1 
- [(;>‘:2E&‘2(” + ‘f * 1’2)c0fj(fi(p + E/2) + r/4)] (18) 

Yk ZiE 2Mfk:liox (1 - cm k) ? (19) 

pk being equal to f 1, depending on whether k is positive or negative, and where 
the CY:*’ are dimensionless quantities of the order of unity or (Nk),, , whichever 
is larger. They are not given explicitly since, as will be seen later, the two-quan- 
tum jumps to which they pertain turn out to be unimportant. In obtaining (18)) 
the expansion parameter, 42) - p?‘), was eliminated by use of (8). It may be 
remarked here that the yk are important parameters of the theory. Apart from 
the trigonometric factor, 1 - cos k, they represent, in essence, the ratio of the 
poleron binding energy, (-A”/aMw,“), to the quantum of vibrational energy. 
In order of magnitude, this ratio is to be assumed large compared to unity, e.g., 
~10 (see footnote 17). 

II. DIAGONAL AND NONDIAGONAL TRANSITIONS: COMPLEMENTARITY OF 
BAND AND LOCAL SITE-JUMP APPROACHES 

The transitions arising from the matrix elements (18) may be grouped into 
two different categories: one in which the vibration quantum numbers remain 
unaltered (Nk = Nk,), the other in which some of these numbers change by one 
(or two) units. These two types will be designated as “diagonal” and “non- 
diagonal,” respectively. 

In order to exhibit the role played by the diagonal transitions, let us consider 
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the simplest case-prevalent at the absolute zero of temperature-in which the 
vibration quantum numbers, Nk , are all zero. In this case, by virtue of energy 
conservation, transitions of substantial amplitude are all of the diagonal type. 
It is now to be noted that such transitions connect states, up,. . .Ok.. . (n, . . . qk . . . ), 
whose unperturbed energies all coincide at one and the same value, E.. .ok.. . = 
Eb + xk k&/2. Hence, to the first order in the perturbation parameter, J, the 
stationary states of the system are of the form4 

where the C, constitute the stationary solution of the equations 

ih d?g? = c (p, . . . 0, . . . 1 v 1 p’, . * * 0, . . . >c,t 
P 

[obtained from (16) by dropping all terms for which Nk # 01. From (13) one 
has 

* 
i 

1 - q yk cos 2 +(d+;)+;]} 

which may be written as5 

(p, . . . 01, . . . 1 v / p’, . . . ok . . . ) = - Jc~fi,,,~+. 

7k cos’[k(p’ + i) + i]} = -Je~p,.,~+, exp{~dN~. (22) 

Inserting (22) into (21), and assuming the time dependence of the C, to be 
of the form e--iEt’h, one has 

EC, = -J exd - 7 w/N) (&+I + C,-I> 

the solution of which is 
C’“’ = eiPu 

P (23) 

4 The notation C, is used as an abbreviation of C,, .Ok.. . 
5 The second equality results from the circumstance that ok = 7-k , so that, when terms 

of plus and minus k are combined, one has 
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with 

E = E, = -2J cos u exp ( - F 7,JN) (24) 

where u ranges over the same values as k. 
Referring back to (20) and (14)) one observes that the Nk = 0 eigenstates 

of the system are 

a, ,... ,, ,... (n, ’ *. qk ” -) = e”n”rk~~[(Mwk/n)1’2(Qk - q:“‘)] (25) 

with eigenvalues 

E,O...o... = Eb + c fiWk/2 - 2J cos CT e-’ (26) 
k 

where 

s = F w/N = ; s,T Yk dk = ; s,‘ (A2/2Muk%dk)( 1 - cos k) dk. (27) 

The eigenstates (25) may be considered as constituting the groundstate 
polaron-band. This band is characterized by a half-width 

AE,,. . .Ok.., = 2J epS. (28) 

In practical cases, S may be expected to be of the order of 5-10, so that the 
factor e+, which gives the ratio of the polaron-bandwidth to the original elec- 
tronic bandwidth, 2 J, will be quite small (~10P2-10M4). 

Turning now to the excited states, in which some of the Nk differ from zero, 
and continuing for the moment to neglect the nondiagonal matrix elements, one 
may approximate (16) by6 

in dc(p, . * - Nk * * * ) = c cp 
at P’ ’ 

. . . Nk . . . Ivjp’, . . . Nk . ..) 

. c(p’, . . . Nk * * *) 

where, in analogy with (21) and (2.2)) one has 

(p, .a. Nr, ..* IvlP, **- Nkl --.I = -Je~L,+c 

- exp -C 2(1 + 2Nd Yk cosz 

k N [+I+;)+;]}. 

For the further simplification of (30) it will be assumed7 that 

(29) 

(30) 

6 Of special significance is the fact that, due to the coincidence of initial and final un- 
perturbed energies, the time dependent exponential factor in (16) is here unity. 

7 Actually, this assumption would not have been necessary had “running-wave” vibra- 
tion coordinates been used instead of the “standing-wave” coordinates, qk . This deficiency, 
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NI, = N-s. (31) 

The step analogous to the last equality of (22) may then be carried out, and 
one has 

(Ip, . . . Nk . . . 1 v 1 p, . . . Nk’ . . .) = -J c &,p,+t@“N”‘.‘) (32) 
-kl 

where 

. (1 - cosk)(l + 2Nk) dk. 

Proceeding as before, one then obtains for the stationary solution of (29) 

C(p, - - - Nk . + a) = eipr exp[+(it/fi)(2J cos u e-“‘“‘““““)]. (34) 

The wave functions corresponding to (34) are 

a,,.. .N&. . . (n, . . . Qk . . .) = einCdNk[ (Muk/fi) “‘( qk - q:“‘)] (35) 

with eigenvalues 

E g, . . .Nk.. . = Eb + F (Nk + >4)fi~, - 2J cos u e-S(“‘Nk”.). (36) 

Attention is called to the rather novel feature that the bandwidth 

AE c ,... Nk... = 2 J e--S(..4k...) 
(37) 

is [by virtue of (33)] a function of the vibrational quantum numbers, and, in 
fact, an exponentially decreasing function of these variables.’ The bandwidth is 
thus maximal at absolute zero and diminishes rapidly with rising temperature. 

The above discussion has been predicated on the assumption that the non- 
diagona,l transitions play a subordinate, higher-order role. This assumption will 
now be investigated. One may begin by expressing the equations of motion (16) 
in the representation of the polaron-band states a,, . . .Nk.. . ( n1 . . . qk * . . ) . In this 
representation, the total wave function takes the form 

= g,.~k~.~c(Up “‘Nk “‘)ar....Nk...(n, “’ qk “-) 

x exp[- (it/fi)E, ,... Nk...] 

(33) 

however, is not serious (since, in practice, N-k and Nk are always, in effect, equal (see foot- 
note 9); the formal advantages of running-wave coordinates are to some extent offset by 
an increased conceptual complexity of the zeroth order wave functions. 

* This feature appears to have first been noted by Yamashita and Kurosawa (3). 
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where E,. . . .Nk.. . is given by (36) ; i.e., it is the original unperturbed energy 
(taken with reference to localized wave-functions) augmented by the polaron- 
band energy. The C( u, * * . NI; . . . ) satisfy the equations 

;,acb, .-* Nk: *.*I = c (u, 
at cl,.. .Nk’. . . 

. . . Nk . . . IV]/, . . . Nk’...) 
(39) 

X exp[(it/h)(E,, ...Nk... - EC,, ...Ntk...)] 

where 

(,,, . . . Nk . . . j V j J, . . . Nk’ . . . ) 

= c e--i[“P--O’P’] (p, . . . Nk . . . / V ) $, . . . N; . . . ) 
PP’ 

(40) 

and where the sum in (39) excludes the term for which u = u’ and Nk = Nk’ 
[this term being automatically subtracted out by the inclusion of the polaron- 
band energy in the time-dependent exponential of (39)]. 

It is readily verified that the u dependence of the diagonal matrix elements is 
of the form9 6,,,f , so that, in effect, (39) represents only nondiagonal transitions. 

The actual computation of the nondiagonal transitions (in the polaron-band 
representation) is carried out below (see Section 5). Some of the principal fea- 
tures of these transitions may however be noted here. First of all, the initial and 
final unperturbed energies no longer coincide exactly. However, primarily be- 
cause of the dispersion of vibrational frequencies, as represented by (7)) the 
unperturbed energy spectrum is continuous, so that energy conservation (in 
the sense of time-dependent perturbation theory) is possible for a wide variety 
of multiphonon processes. It then follows that transitions of the type 
u, . . . Nk . . . + J, . . . Nk’ . . . develop uniformly in time, and are therefore 
describable in terms of the conventional (time-independent) transition proba- 
bilities 

w(, ,... Nk...-+&..N&.) =;j(u;-Nk-- 

(41) 
. 1 V / r’, . . . Nk . . .) I2 6(E,, . ..Nk... - E,r, . . . ..t...> 

9 As in the case of footnote 7, this statement is strictly true only when Nk = N-k . Here, 
also, the need for this qualification arises from the use of standing-wave vibration coordi- 
nates, and could have been avoided by the use of running-wave coordinates. Actually, 
however, it is only required that the average quantum number (the average being taken 
over a range Ak small compared to unity but large compared to the spacings of the indi- 
vidual modes) be the same for plus and minus k. Since this condition is always obeyed in 
practice, the equality Nk = N-k may be applied to (30). It then follows that 

(p, ... Nk; .a- (V/p’, ... N:...) 

depends only of the difference, p - p’, in site variable; this feature, in turn, leads straight- 
forwardly to the above-mentioned factor, CT,.,, . 
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where 6(E) is the Dirac delta function, and where, from (40) and (18), 

(u'r . . . Nk . . . 1 V 1 u, . . . Nk . ..) = -J c, &,,,p+cei[up-"p'l 
PP’ 

Due .to the requirements of energy conservation, the number of phonon ab- 
sorptions will be comparable to that of phonon emissions. It is to be noticed 
(from ICq. 42) that each absorption process gives rise to a factor, N:“, in the 
matrix, and hence a factor, Nk , in the transition probability. Thus, for example, 
the probability of the process u, . . * Nk, , Nkz , Nka , Nk( --f u’ 1.. Nk, - 1, 
Nk2 - 1, Nk, + 1, N/c, + 1, *. - is proportional to the factor Nk., , Nkz( 1 + Nk3) 
(1 + Nkq). It is therefore to be concluded that, at sufficiently low temperatures 
(such that (ykNk)*,, << 1)) those transitions which are of lowest order in the 
number of photon absorptions will dominate. 

In discussing these lowest-order transitions, let us assume that all vibrational 
frequencies, Wk , differ from zero,lO i.e., w1 < wo in (7). It then follows, by virtue 
of energy conservation, that a one-phonon (emissive) transition is forbidden; 
the lowest-order transition is a two-phonon process of the type u, . . . Ns, , Nkz + 

, u, ** . Nkl - 1, Nk, + 1, a..; in conformity with the above remarks, its proba- 
bility is proportional to Nk, . Hence, although this type of transition is the domi- 
nant one at low temperatures, its probability also vanishes as the temperature 
approaches absolute zero. 

From this discussion, it is apparent that, in the limit of very low temperatures, 
the nondiagonal transitions play a role subordinate to that of the diagonal transi- 
tions. In particular, in the domain of temperatures such that the mean life of a 
polaron-band state 

T,, ,... Nk... = l/ c W(U, -** NI, ... --+ u’, *-* Nk’ -**) 

I 
CT,” .Nkl.. . 

is large enough for the fulfillment of the inequality 

ii/~,, ,... Nk... << AE,, ,... Nk... = 2J Cs(“‘Nk”.), 

(43) 

(44) 

10 This assumption means simply that the vibrational spectrum is of optical, rather 
than acoustical, character, this being the relevant case for polaron theory. 
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a sufficiently accurate description of the physical situation is indeed provided by 
the polaron-band approach, according to which the principal characteristics of 
the states depend on the diagonal matrix elements, the role of the off-diagonal 
elements being limited to determining their lifetimes. 

However, as the temperature increases from some low value, at which (44) 
is valid, the situation changes. First of all, TV,. . .Nk.. . decreases by virtue of the 
fact that, the probability for a given transition, u, . . . NI, . . . ---f u’, . . . Nk’ . . . 
is proportional to the product of those Nk which are involved in absorption, and 
these all increase rapidly with temperature. Secondarily, as shown by Eqs. (33) 
and (37), the bandwidth, AE,, . . .Nk.. . diminishes with increasing temperature. 
Thus a temperature is eventually reached” at which (44) breaks down, i.e., at 
which the polaron-bandwidth becomes smaller than the energy uncertainty of 
the individual band states. Regarded from another point of view, the lifetime is 
less than the time (wh/AE#, . , .Nk,. . ) required for the polaron to move a distance 
equal to a lattice spacing. Under such circumstances, the band approach is 
clearly inapplicable. The fact is that, at this point, the relative importance of 
the diagonal and nondiagonal transitions has been reversed. The appropriate 
zeroth-order states, to be used in a perturbation treatment, are the original 
localized polaron states, up,. . .Nk.. . (n, . . . qk . * . ), given by (14)) rather than 
their plane wave combinations, a,, . . .Nk.. . (n, . . . qk . . * ). The nondiagonal matrix 
elements, (p, . . . Nk * . . 1 v 1 p’, . * * Nk’ . . . ), between these localized states 
(which have now to be taken into account before the diagonal elements) give 
rise to transitions of the type p, . .. Nk . .. -+ p f 1, . . . Nk’ . . . in which a 
jump to a neighboring site is accompanied by the emission and absorption of 
a number of phonons. The computation of the probabilities of these transitions, 
w(p, -** Nk + p’, --- Nk’ -**), by conventional time-dependent perturbation 
theory is presented below. 

The subsequent inclusion of the diagonal matrix elements in the perturbation 
treatment leads to a state of affairs which, although somewhat novel, is actually 
not unexpected. Namely, it is found that, by virtue of the exact conservation of 
energy which characterized the diagonal transitions, the resultant transition 
probabilities are not time-independent-as is the case for the nondiagonal vari- 
ety-but increase linearly with time. From this it follows that, if the time in- 
terval, over which perturbation theory is valid, were arbitrarily large, the 
diagonal transitions would ultimately dominate. Actually, however, perturbation 
theory breaks down when the time intervals (over which it is applied) get to be 
of the order of the mean lives of the individual (localized) states 

TP* . ..Nk... = l/ c w(p, *. . NI, . * * ---f p’, * * * Nk’ * * 0). (45) 
Nk’P’ 

11 An estimate given below (see Eq. 88 and subsequent text) shows that, for representa- 
tive values of the parameters of the theory, this temperature is of the order of (0.5 - 1) 
times the Debye 8. 
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A proper treatment of the diagonal transitions would then require the introduc- 
tion of collision-damping into the theory. A criterion for the diagonal transitions 
to be of subsidiary importance may, however, be stated on simple physical 
grounds, without recourse to a formal damping theory. It is namely that the 
probability for a diagonal transition to occur in a time -rp,. . .NI.. . (as computed 
by perturbation theory) must be small compared to unity. Using (29) and (32), 
the reader may readily establishI that this criterion is equivalent to 

fi/rp ,... Nk... >> 2J t~-~(--‘~~“*). (46) 

If, now, it be assumed (as will be verified in Section 5) that rP,.. .Nk... has a 
magnitude comparable to that of the mean life, r6,. . .Nk.. . , of the polaron-band 
states, (46) is seen to be simply the converse of (44) and may thus be considered 
as defining a regime complementary to that in which (44) obtains. 

III. NONDIAGONAL TRANSITIONS BETWEEN LOCALIZED STATES: 
SITE-JUMP PROBABILITIES 

After these general orienting remarks, let us proceed to the perturbation cal- 
culation of the probabilities of nondiagonal transition between localized states. 
Two quantities will be of specific interest. The first of these is the probability 

W ...Nk...(p +p’) = c w(p, *a* Nk ... + p’, *** Nk’ *-*) (47) . ..Nk’... 

for a site-jump with arbitrary final vibrational quantum numbers. The second 
is the thermal average of (47)) namely, 

w,(p + p’) = Z? c W...,,...(p -+ p’) eqd- q PJ14Nb + %)I (48) . ..Nk... 

where p = I/KT (K and T are Boltzmann’s constant and absolute temperature, 
respectively) and 

2 = c exp[-FPfiWI;(Nk + %)I . ..Nb... 

is the vibrational partition function. 
Standard perturbation theory (4)‘” yields for the elementary transition proba- 

bilities the expression 

w(p ,... &...+p’, . ..N. . ..)=2n-21(p’....Nkl...IVIp,...Nk))2 

. $ o[c k&N; - Ndl (49) 
k 

12 An explicit expression for the diagonal transition probability, given by Eq. (63), may 
be used here. 

13 As will be seen later, some care is required in going to the limit of infinite “interaction” 
time, t. 
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where 

Q2(x) ~ 1 - cos (&/FL) = 2 sin2(zt/21i) 
X2/@ 22/fi2 (50) 

is the characteristic energy-resonance function of perturbation theory; it has 
the property 

limQ(2) = 7&S(z) 
t-we 

and may be expressed in the integral form 

so that 

(51) 

Upon substituting (51) and (18) into (49), one observes that the sum over 
the final occupation numbers, Nk’, required by (47)) splits into a product of 
sums over the individual multiplicands of Tk . These are easily evaluated; the 
result is 

W -f-‘k-.(P + P’) = f ~~~,~,p+. /_:’ Tk {[I - ; (Nk + s) 

..,cos2[++;)+;]] 

+ 2 (Nkemwkt’ + (Nk + 1) eiwkt’) cos’ 

x - (Nk + +$) + (Nk + 35) COS cat + $ Sin Wkt’ 11 dt 

wherein the contributions of the transitions Nk + Nk f 2 have been neglected; 
this neglect is clearly justified in view of the fact that the terms in question are 
ml/N2 (in contrast to the retained terms, which are m1/N).14 

As before (see footnotes 7 and 9), one takes Nk = N-k , and is thereby free 
to replace cos2 [k(p + $46) + XT] by $5. Thus, 

14 For the same reason, the terms in ykf coming from the first square-bracket in the first 
equality of (52) have also been discarded. 
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+ (Nk + 55) cos ukt’ + i sin wd’ dt’. 

Further progress in the evaluation of (53) is possible for an arbitrary variation 
of Nk with k, as long as this variation is well-behaved. However, in practice, the 
distribution in Nk is always thermal, so that we may as well proceed immediately 
to the thermal average defined by (48). In the evaluation of this average, it is 
expedient to employ the product form of the exponential integrand in (53), 
which reads 

?Tk 1 + ‘$ 
i [ 

-(NI, + $5) + (Nk + 35) cos ‘t&t + ;SiIl c&t’ II , 
It is then apparent that the thermal average over the Nk results in the replace- 
ment of each Nk by its equilibrium value, (eahwk - 1)-l; this replacement (to- 
gether with the summation over E) yields 

w,cp + p * 1) = 5 I-:’ exp {-T $ [coth ‘+ (1 - Cos mkt’) 

-I\ (54) 
- i sin cat’ dt’. 

For the further simplification of (54), it is desirable to introduce the trans- 
formation 

i = f  + ‘T (55) 

which transforms the integrand to 

exp{-F$[coth F - csch?coswki]}. 

The T-integration, which goes from -t - i/3fi/2 to + t - i@i/2 is now deformed 
into a component along the real axis (from -t to + t) and two components 
perpendicular to this axis (from -t - i@fi/2 to -t, and from t to t - i@/2). 
Combining the latter two into a single integral, one obtains 

where 

W& ---f p f 1) = g b,(t) + A!(t)1 (56) 

g,(t) = /-yexp(-Cg[cothF-- cschFcosw*r]}dr (57) 
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and 

g,(t) = g T lsnJz exp { -2 [ coth ‘9 - csch ‘+ 

(58) 

x cos [clJ?Jt f ia)] au. 

In proceeding further, let us focus attention on the case for which the “inter- 
action” time, t, is large compared to the vibrational periods, i.e., 

t >> l/Wk . (59) 

It is of specific interest to determine whether W,( p --+ p f 1) becomes independ- 
ent of t in this limit (as would be required in order that W,(p + p f 1) be inter- 
pretable as a conventional transition probability). 

One may begin by considering the behavior of the integrands of $(t) and 
a,(t) for large T. Inspection of (57) and (58) indicates that this behavior is 
conditioned by that of 

G(r) = F ‘9 csch N$ cos ~7. 

Asymptotic (large T) expressions for G(T) may be obtained by the method of 
steepest descents. The details of the computation will not be given; the result 
is 

G(T) = 4yk=z w” w1T1,2 
( 2 - ut)1’4 csch ,%d - Ol”> cos 

2 
(wo - u:)~‘~T + ;], (61) 

i.e., G( 7) is an oscillatory function whose amplitude diminishes with increasing 
7. It will be noticed that the parameter, w1 , which is a measure of the vibrational 
dispersion (see Eq. 7), occurs in the denominator of (61). This feature testifies 
to the fact that, in order for (61) to be valid, dispersion of vibrational frequencies 
is necessary. In the absence of this dispersion (w, = w. , Einstein spectrum), 
the expressions on the right-hand side of (60) obviously reduce to simple trig- 
onometric functions of T, and do not go to zero with increasing 7, as indicated 
by (61). The presence of vibrational frequency dispersion is thus a vital ingre- 
dient of the theory. 

From (61) it is clear that, in the limit specified by (59), g2( t) approaches zero 
as P2, and may hence be discarded. On the other hand 

liigl(t) = J:“exp{-F$[cothT- ~T+2)]}dr (62) 

(the notation @( Tw1’2), denoting a term -Tw1’2 for large T), which does not 
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approach a finite limit at all, but simply becomes proportional to t. Thus (56) 
is itself linear in t, and hence cannot represent a transition-probability in the 
conventional sense. 

Actually, (56) is not the correct expression for the thermal average of the 
total nondiagonal transition probability. Referring back to (52), one may ob- 
serve that this expression represents the sum of (49) over all final vibrational 
quantum numbers, Nk’ , and thus includes the diagonal transitions, NI, = Nk’ , 
as well. These have now to be subtracted from (56). 

A simple way of evaluating the diagonal contribution to (56) is to note that 
the nondiagonal contributions [see the first equality of (52)] always involve the 
time-dependent exponentials, efiwkt’ ; the elimination of quantities containing 
these factors is then equivalent to restricting the NV sum to NV = NI, . Apply- 
ing this recipe to (56) and (57)) one immediately finds for the diagonal contribu- 
tion,” 

W?‘(p-+p&l) =g/-:‘exp {-C~~oth~~},~=2~~-“T (63) 

where 

ST = c $ &h i!!$ 

is clearly the thermal average of S( * * . Nk . * . ) , as defined by (33). 
Subtracting the first equality of (63) from (SS), one obtains the correct ex- 

pression for WT( p + p f I ) , namely, 

w T  (p-+p&- 1) = CP 
ii2 

I-y{exp [F$cschFcos,,,]- I}& (65) 

wherein the interaction time, t, has finally been permitted to go to intinity; the 
fact that no convergence difficulties are thereby occasioned may be seen from 
the form of the integrand at large 7, which, by (61), is 

-( 1/w171’2) cos[(oo2 - 01 ) 2 1’27 + a/4] 

and hence clearly integrable over the infinite domain. 
It is of interest to evaluate (65) in the two limits in which the argument of 

the exponential term in the integrand is small or large compared to unity. For 
tixed values of the parameters, A, M, uo , and w1 , which determine the yk , these 
cases occur at low and high temperatures, respectively. 

16 The proportionality of (63) to 1 was discussed earlier (in the text surrounding Eq. 45) 
and needs no further comment. 
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Considering first the low-temperature case, one expands the second exponent 
as a power-series in the argument, obtaining 

W (p+.pfl) = +sT +Ool T  
Ii2 [s 1 

* F(k) -co ?r 0 
GOS WkT dk + k2 

X s,r s,r F(W’(k’) COS WkT COS ‘t&l dk dk’ 

+ 6$ s,= F@)F(k’)FW’) 

COS WkT COS WkJT COS Wk”T dk dk’ dk” f * * * 1 
where 

F(k) = 2Yk csch ‘9. 

The integrations over r are readily carried out, leading to the replacement of 
the cosines by delta functions; thus 

w (p+pfl) T  =Jze?T 
K2 

* F(k)a(wk) dk + & s,w s,% N0’(k’) 

. ;s(Wk + Wk’) + +(Wk - Wk’) dkdk’ 1 
+ & s,‘s,rlr F(k)F(k’)F(k”) 

0 

(66) 

i [6(Wk $ Wk’ + Wk”) + 8(Wk + wk’ - wk”) 

+ 8(Wk - WA* + WkX) + s(W, - Wk’ - Wk”)] dk dk’ dk” + * * * . 
} 

From the form of (66) (as exhibited in particular by the curly bracket of the 
right-hand side), it is seen that WT(p + p f 1) may be broken down into a 
series of processes in which one, two, three, etc. phonons are either emitted or 
absorbed; for each such process, the delta functions of the individual terms in- 
corporate the requirement of conservation of energy. For example, the first 
term of the second curly bracket, representing a one-phonon process, is actually 
zero (since Ok # 0, in accordance with footnote [12]); i.e., a single-phonon 
process cannot conserve energy. Similarly, the second term represents two- 
phonon processes; the delta function, 8(wk + Wkf) and 6(wk - Wkl) occurring in 
the integrand correspond, respectively, to processes in which both phonons are 
emitted (or absorbed) and to those in which one phonon is emitted and the 
other absorbed. Since the condition Wk i- Wk’ = 0 cannot be realized, only the 
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latter process actually occurs. Finally, the third term represents three-phonon 
processes in which one has 

‘dk f Wk’ f Wkff = 0, 

i.e., one phonon is emitted (absorbed) and two absorbed (emitted). 
The above interpretation also accounts for the temperature dependence of 

the curly-bracket of (66). For example, in the case of two-phonon processes, 
which are subject to the restriction, old = Wk’ , it is readily verified that the tem- 
perature-dependent factor, csch (@iWk/i?) csch (@iWkt/2), may be replaced by 
$&Nk(Nk’ + 1) + Nk<(Nk + I)] ( w h ere Nk here represents the equilibrium 
Planck distribution). The first term of the square bracket is clearly the appro- 
priate Hose-Einstein population factor for the transition Nk ---$ Nk - 1, NW -+ 
Nk, + 1; the second term plays an analogous role for the reverse transition. 
Similarly, for three-phonon processes obeying, e.g., the condition, Wk = Wk’ -l- Wk” , 

the temperature-dependent factor 

may be shown to be equivalent to 

HS[Nk(Np + l)(Nkp + 1) + (N/c + l)NvNv]. 

The individual terms of the square bracket are clearly the correct Bose-Einstein 
population factors for the transitions Nk ---t Nk f 1, Nkl + Nk* =F 1, Nk* + 
Nv =F 1. 

Let us now consider the behavior of (65) in the high-temperature limit, in 
which 

1 
T  lr F(k) & = ‘, s,= 2-fk csch ‘+ & >> 1. 
- (67) 

In this case the integral in (65) may be evaluated by the method of steepest 
descents. 

We may begin by considering the contributions to the integral from the neigh- 
borhood of the point 7 = 0, for which the exponential factor attains an absolute 
maximum. One then has for the argument of the exponential 

1 a - 
s 

F(k) cos WkT dk = A ?r 1% F(k) dk - & s,’ F(k)wk’ dk. (68) 
Ti- 0 

It is now to be observed that the second term of (68) will cause the exponential 
to drop off sharply from its maximum value. In particular, it is seen that the 
principal contribution to the integral will come from the region in which 

> 

-l/Z 

77 F(k)wk’ dk . (69) 
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Noting that, according to (7)) 

wo2 + WI2 >‘ Wk2 >‘ (Jo2 - WI2 

so that 

1 * 
s 2,o 

F(k)Wk2 dk > Oo2 2; w12 Jr F(k) dk, 
0 

one may conclude that, in the domain specified by (69)) 

(70) 

the last inequality holding by virtue of (67). It then follows that the higher 
order terms of (SS), resulting from the expansion of cos WIT, may be ignored, 
so that the substitution of (68) into (65) yields 

(71) 

2rlc csch ‘nok dk 1 2 ’ 

where the superscript “(O)” on the left-hand side indicates that (71) represents 
only the contribution in the neighborhood of 7 = 0. 

Let us now consider the contributions to W,(p + p f 1) from the other 
points, ri # 0, which minimize the integrand of (65). It is expedient to write 
the argument of the exponential term of that integrand in the form 

where 

2-y csch F i j‘ H(k) cos w,tr dlc 
n- 0 

A2 
y = 2Mwo3ii (72) 

and where 

3 csch ‘+ 
H(k) = f$ two (1 - cos k) (73) 

csch 2 

is a function of the order of unity (as long as Ok is not too small compared to w. 
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and @Lv,/~ = fiwo/2~T not too large). The condition (67) is then essentially 
equivalent to 

27 csch @+ > 1 
2 - (74) 

It is now physically reasonable that, if the vibration spectrum (as given by 
Eq. 7) exhibits sufficient dispersion (e.g., if WI - wo), the numerical values of 
the quantity 

1 * 
-s 

H(k) cos WkTi dk 
3r 0 

at the maximal points, 7; , will be smaller than the absolute maximum 

1 * - 
s 

H(k) dk 
?r 0 

attained at r = 0, by amounts of the order of unity. If this be granted, it then 
follows, by virtue of (74), that the values of the maxima of the integrand of 
(65) at the points T; are negligibly small compared to the principal one at T = 
0. The contributions from the neighborhoods of ri # 0 may thus forthwith be 
neglected, with the result that the right-hand side of (71) is a sufficiently good 
approximation to the total W,(p + p f 1). 

As a check of the above qualitative argument, a calculation has been carried 
out in Appendix I for the case of a narrow frequency band (WI< ~0). It is found 
that the contributions associated with the subsidiary maxima at T; # 0 are 
negligible provided that (see Eq. I-15) 

zr !!!i csch @!! >> 1 
8w$ 2 . (75) 

If, now, for the purpose of order-of-magnitude comparison (75) be extrapolated 
to the region of w1 N wo , it clearly becomes equivalent to (74). This equivalence, 
in the opinion of the present author, constitutes adequate confirmation of the 
above qualitative argument for the neglect of the contributions of the subsidiary 
maxima, and for the consequent applicability of (71) to the total W,( p -+ p f 1). 

Of course, in the case that the frequency spectrum is actually of narrow-band 
character, the more stringent condition (75) should be used in place of (74). 
A significant consequence is that in the limiting case of an Einstein spectrum 
(w, = 0, wk = WO), in which (75) cannot be fulfilled, the approximation repre- 
sented by (71) breaks down altogether. This breakdown can be seen more di- 
rectly by setting ok = w. in (65), whence one obtains upon integrating over k, 

WT(P -+p f 1) 

= $ exp[-2&I /z (exp [ 2y csch ‘9 cos wo,] - I} dt (76) 
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which clearly diverges, since the integrand is now a positive periodic function 
of 7 [with a period of (2*/w,)]. 

In proceeding further, it is convenient to write (71) in the alternate form 

W,(p+p f 1) = $ 
2a 112 

s T -1 n- 2ymk2 csch ‘?@! dk 
0 2 1 (77) 

X exp f-l 
i 1 

r 2y, tanh (@k&4) dk 
0 

where the superscript (0) has now been dropped, in accordance with the above 
discussion. 

Considerable insight into the physical significance of the various factors in 
(77) is gained by considering the “classical” limit, for which 

@mk = &ow~/KT << 1. (78) 

In this limit the hyperbolic tangent gets replaced by its argument; then, upon 
eliminating -)‘k by use of its definition (19), one has 

112 

e 

--B,/rT (79) 

where 

E, EE r-l 
s 0 

T (Ykfi‘dJ&) dk = n--l IT (A2/4&%k2) (1 - cos k) dk. (80) 
0 

It will be observed that the temperature dependence of (79) is of the type 
characteristic of an activation process, with E, playing the role of an activation 
energy. It turns out, in fact, that, in the approximation in which the vibrational 
motion is treated classically, (79) may be obtained by a simple “occurrence- 
probability” approach. This approach is presented in Appendix II. It is shown 
therein that site jumps between neighboring sites (say, p and p f 1) occur 
principally when the values of the unperturbed “electronic” energies, - Aq, 
and -Ax,+1 , coincide. Specifically, it is found that (79) may be written in the 
form 

W:“(p + p f 1) = /- Pk%,)W,(p + p + 1) dv, 

where (see II 18) 

(81) 

e-Mvr2’4KT 1 or 1 & (&f&j”’ e-Ea’“T (82) 

is the probability per unit time for the occurrence of a coincidence event, x, = 
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zp+l , in which the “relative” velocity, v, = 8, - up+1 = (d/dt) (x, - x,+1) lies 
in a specified differential range, and where (see II 9)) 

is the probability that, in such an event, a site-jump takes place.16 
One may, in addition, show that the activation energy, E, , is the minimum 

potential energy (in excess of the absolute minimum, -Ea) of a configuration 
for which x, = x~+~ . It should, in particular, be emphasized that E, is substan- 
tially smaller than the binding energy of the polaron, 

Eb = il’L2dk (84) 

(see Eq. 13). This inequality means simply that the energy necessary to estab- 
lish a “neighbor” coincidence must always be less than that required for the 
thermal dissociation of the polaron. 

Having discussed the behavior of W,(p -+ p f 1) in the classical limit, let 
us utilize the general quanta1 expression (77) to estimate the ‘(transition” tem- 
perature, Tt , at which the mean life of the localized state, 

1 
= WdP --+ p + 1) + WT(P --) P - 1) = 2W,(P -+ p + 1) (85) 

TP,T  

is equal to l/K times the mean polaron bandwidth 

AE, = 2J evsT. (86) 

From the discussion of Eqs. (44)-(46), Tt is to be considered as defining the 
boundary between the two regions of high and low temperature, in which the 
random site-jump and band descriptions of polaron motion are respectively valid. 
Equating (85) to l/n times (86)) and employing (71) and (64), one obtains 

For an order of magnitude estimate of Tt , it will be sufficient to consider the 
case of a narrow-band vibrational spectrum (in which W& E oo). Then, upon 
taking logarithms on both sides, one has 

2 cscF P&-do 1’2 Y csch /3tfimo/2 
2 

coth P&Jo _ 1 log f&~ 
- [( 2 Y J )I (88) ?r 

18 The fact that, when (82) and (83) are inserted into (81), the resultant expression re- 
duces to (79) may readily be verified. 
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which constitutes a transcendental equation for pt = ~/KT~. Choosing for y a 
representative value” of 10, one finds that, for f&/J contained between the 
extremes of units and 100, Tt lies in the range 0.4-0.55 times the Debye 8. 

It may be remarked that, in view of the exponential temperature dependence 
of both AET and fi/rP,,, , the transition region, within which neither the site- 
jump or band approaches are valid, is quite small, and may in practice be ig- 
nored. 

It may also be pointed out here, that, in the neighborhood of the transition 
temperature, and with y large compared to unity, as is the case at hand, in- 
equality (67) (or (74) ) holds; it then follows that (77)) rather than (66)) is 
the appropriate formula to use for W,(p + p f 1) in the high-temperature 
domain in which the site-jump approach applies. 

IV. NONDIAGONAL TRANSITIONS BETWEEN POLARON-BAND 
STATES: MEAN LIFETIMES 

In order to round out the theory, it is desirable to obtain an expression for 
the mean probability per unit time, W,(u + u’), that a nondiagonal transition 
between polaron-band states IJ and u’ takes place. Due to limitations of space, 
the derivation of this expression will not be given in detail; a brief outline fol- 
lows. 

One starts with (41), which, with the aid of (36)) (40) and the Fourier inte- 
gral expression for the delta function, may be written as 
W(u, . . . Nk . . . +a/, . . . Nk’ . ..) 

= 4 c eib(P-+~'(P'-Q')l x w(p Q . . . Nk . . . -$q', . . . Nk' . ..) (89) 
7 7 

PP,' 
99 

where 
w(~,~, . . . Nk .-. +q’,q’, .-- Nzs’ .-a> 

1 
=-I 

+t 

K2 --t e 
i(Awr,)t’l* exp F iot’(Nkl _ Nk) 

i 
> 

(90) 
x (p’, . - . Nk’ . . * 1 V 1 p, . - - Nk - * * > 

. (41, - . . Nk’ - - . 1 V 1 q, . - . Nk . . - ) dt 
and 

A.E,,., = --2~[cos al e-S(.*.Nk*-..) _ cos (T e-“‘-.N”...‘~. 
(91) 

Substituting (18) into (90)) one carries out the sum over Nk’ and the thermal 
average over Nk in essentially” the same way as was done for the computation 

17 With this value, the activation energy E, N r(ho0/2) is five times the Debye energy, 
hwO ; taking the latter to be, e.g., 0.04 ev, one has Es = 0.2 ev. The corresponding value of 
the polaron binding energy, E6 , is = 0.4 ev. These estimates are suggested by experiments 
on hole conduction in transition metal oxides [see Heikes and Johnston (6)] to which the 
present theory may find application. 

18 Some difficulties arise in principal because of the dependence of the Nk, (via the fac- 
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of W,( p + p’) . The result is 

W,(u --) a’) 

= ;cE ezl g2 cos [(a - fl’)ikt] COS [ (’ - “;” + u”] e--2sT 

(g2) 

2 

x /-T ei(Atsr’)t’/h { k @fiWk 
exp c 2Cy.k csch ~ 

2 
cos ‘dkt’ cos kik! dt’, 

where, in accordance with footnote 18, the Nk’ in (91) are to be replacedlg by 
the Nk . 

One may now treat (92) in a manner analogous to (65) to obtain formulae 
for the two cases in which ck (2rk/N) csch (b&k/2) is small or large compared 
to unity. In the first case, one obtains an expression analogous to (66)) which 
incorporates the added feature of wave-vector conservation, via the occurrence 
of Kronecker-delta factors of the form 8C-C~fk&k~fk1 1.. . . This case will not be dis- 
cussed further, since it is most likely that, in the domain in which it is valid, 
other scattering mechanisms, such as impurity scattering, would be dominant. 

In the alternate case, defined by inequality (67), the method of steepest 
descents is applicable. One finds here that the term in (92) for which M = 0 
and a = 1 gives by far the largest contribution. Ignoring the other terms, and 
replacing exp [i(Ae,+)t’/fi] by unity, in accordance with footnote 19, one then 
sees that, apart from the factor, 2/N, the expression for wT(u -+ u’) is identical 
with that for W,(p + p’), i.e.,*’ 

2J2 112 
wT(u ---f u’) = 7 e -2sT 

Nfi 
* 

-1 
7r 

s 0 
&dktSCh F dk 

I (93) 
* 

2yk csch F dk . 

tor exp[-S(... NV . . . )]). However, as can be inferred by examination of the higher 

order terms in (66), or in fact verified by a computation of 

(‘&(AN~)~)~~ = &(ZN~, (Nk - N,#W(ff, . . . Nk . . . --f a’, . . ’ Nk3 . . . ))T/ 

(&rk, w(u, ... Nk ... --) d, -*. Nk’ * * * ))T 

the average number of phonon emissions and absorptions accompanying a transition is 
finite [in fact, of the order of y csch @hw,J2)] rather than, say, -N. For such transitions, 
the difference between S (. . . Nk, . . . ) and S (. . . Nk . . . ) is -l/N, and hence to be ignored. 

I9 Actually, in view of the smallness (~10~~) of Aen0 I in Comparison with hwk , one may, 
for all practical purposes, ignore the factor exp(iA+,t/h) in (92) altogether. 

20 It is of interest to note, in passing, that (93) does not depend on either the initial or 
final electron wave vectors, (r and 0’. This feature is analogous to the lack of occurrence in 
(93) (or 77) of energy delta functions, both features being characteristic of multi-phonon 
processes. 
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The mean lifetime of a polaron-band state, T,,~, is given by summing (93) 
over all u’, i.e., 

+ a’) = 2w,(p t p’) = l/?+,,T (94) 

where I/T,,T is the total site-jump probability, given by (85). Equation (94) 
exhibits the fact that the lifetimes of the localized states and the polaron-band 
states are equal. 

V. TRANSPORT PHENOMENA: POLARON DIFFUSIVITY 

The stage has now been reached where applications to transport properties 
may be considered. In what follows, attention will be focussed on the diffusivity, 
D, which, for the case of a nondegenerate polaron gas, is related to the mobility, 
b, through the Einstein relation 

IPeg. (95) 

Two cases have to be considered: 
Case I. T > Tt : Here, as discussed above, polaron motion takes place via a 

succession of random site-jumps, in each of which the electron hops to a neighbor 
site with probability, wT(?> + p f 1). For the one-dimensional model under 
consideration, the diffusivity is easily seen to be 

D = a%&, + p f 1) (96) 

where a is the lattice spacing. For illustrative purposes, let us consider the nar- 
row-band approximation of wk = wo . One then has, from (77) and (96) 

The “relative” diffusivity 

a, = D/wou’ (98) 

is plotted in Fig. 1 as a function of @ZLQ = KT for representative values of the 
model parameters [J = LQ , y = 10 (see footnote 17)]. Also, shown (as the 
dotted curve) is the classical approximation, obtained by using (79) in place of 
(77). 

Case II. T < Tt : Here, the band approach applies, and one has the conven- 
tional formula21 (adapted to a one-dimensional model) 

D = (~Z,TT~,T)A, 
21 In the case at hand, the independence of wT(u -+ u’) with respect to B’, permits iden- 

tification of the momentum-transfer rate with the total collision probability. 
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FIG. 1. Polaron diffusivity versus temperature. The solid curves labelled I‘Dact' and 
"D bsnd ” represent the contribution arising from random site jumps and polaron-band 
motion, respectively. The dashed curve gives the classical approximation to D,,t . 

where, from (36), 

ad 2J . 
V 

-sT o,T z n ale Ec,T = x sin u e 

is the expectation velocity in a state of wave-number u, and where the average 
in (98) is to be taken over the distribution in u. In view of the extreme smallness 
of the bandwidth (~10~~ fiwa << KY’), one may assume the a’s to be equally 
populated, so that 

which, with (99) and (94), becomes 

-2s T 
P.Te . (100) 
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Using (85), (71)) and (64) (in the narrow-band approximation), one then has 
for the relative diffusivity 

D 2J2 
3 = _ = __ woTp,T e 

-2s T 
wocL2 fi2w02 

This expression is also plotted in Fig. 1 for the same numerical values of the 
model-parameters as (97) (i.e., J = fi wg , y = 10). As is to be expected, (101) 
and (97) attain comparable numerical values in the neighborhood of the transi- 
tion temperature, Tt . 

VI. LIMITS OF APPLICABILITY OF THE PERTURBATION TREATMENT 

It is now of interest to discuss the limitations of the perturbation approach, 
upon which the treatment of the present paper is based. Specifically, one wants 
an estimate of the upper limit of the electronic bandwidth parameter, J,,, , for 
which perturbation theory is valid. Two extreme cases will here be considered: 
(a) random site-jumps in the classical limit, KT >> fiwo , and (b) the polaron- 
band at the absolute zero of temperature. 

Case (a) : For this case, the limitations of the perturbation approach are 
treated in Appendix III. It is found [see (III 7) and subsequent discussion], 
that 

J max - (Afi 1 up+1 - f&J pw2 (102) 

where v,+~ - v, = (dldO(2,+1 - xP) is the velocity with which a crossing point 
x=+1 = zP is approached; in line with the discussion of Eqs. (81)-(83) (as well 
as with Appendix II), such crossing (or coincidence) events are crucially signifi- 
cant for the occurrence of site-jumps. Taking 1 up+1 - v, ] - (2~!!‘/?rM)“~, one 
finds 

J,,, N (@>“’ ($?>‘I’ 

which, in the narrow-band case of WIG G wg , may be transformed via (80) to 
read 

(103) 

When J is larger than (103)) the adiabatic approach (also discussed in Ap- 
pendix III) becomes valid. In particular, W&J -+ p + 1) is obtained by inte- 
grating the coincidence probability (82)) over all positive values of v, = up+1 - 
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V, . The result of such an integration is 

w,(p+P+ 1) = -&j ( “>‘I’& (-(.GE.>“’ e-%IrT 

which, again in the narrow-band limit, becomes 

W,(p -4 p + 1) = 2 e+,IKT. (104) 

Case (5) : For the polaron-band at absolute zero, the discussion will be based 
upon preliminary computations which have been carried out for the simplest 
possible case, namely, a linear chain consisting of only two molecular sites. 
While this case represents a considerable oversimplification of the multi-site 
chain, it is, in the opinion of the present author, still relevant.” The basic equa- 
tions are (with neglect of intermolecular coupling, i.e., w1 = 0) 

[ 

= -Jaz(x1 )X2> , 
(105) 

-;~w:(x;+s~)+Axz az(a,d 1 
= -Juz(zl )X2) . 

Two limiting methods are available for the treatment of ( 105) ; the perturba- 
tion and the adiabatic approaches, valid in the extremes of small and large J, 
respectively. These will now be developed; comparison of the results will then 
provide an estimate for J,,, . 

In the perturbation approach, one takes odd and even combinations of the 
zeroth order “wave functions” 

Cp = exp 
i 

-f MT [(xl - A/Mu:)’ + x:1 ; 
} 

Up = 0, 

a1 
(2) 0. (2) 

= , a2 M$ [x: + (x2 - A/Mw:)~] . 

These combinations are 

( 106) 

22 In particular, preliminary calculations indicate the existence of a rather good possi- 
bility that the adiabatic treatment of the two-site case, given below, will be capable of 
generalization to the multi-site case of physical interest. 
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where the superscript (&) designates the even and odd combinations, respec- 
tively. The corresponding eigenvalues, E (*), of (105) are obtained by the stand- 
ard secular calculations, and are 

E’i-’ = - A2 m + fiwo =F AE 
wherez3 

AE = J exp ( - A2/2Mu,21i~o}. 

In the adiabatic approach, one assumes a wave function of the form 

Q(Z1,Zz) = X(~I,X2)C1(Z1,52), 

a2(3h,a) = X(~1,34C2(51,Zz), 

where the c’s are solutions of the “electronic” equations 

(E + AQ)c~ = - Jcz , 

(G + Ax& = - Jcl , 

(107) 

(108) 

(109) 

(110) 

the eigenvalue &(z1,22) constituting the “electronic” energy. As is known, 
&(zl,zz) also plays the role of a potential energy term in the equation for the 
“vibrational” wave function, x(x1, x2), which reads 

E + 2$; + ; - ; hb:(x: + x,“) - &1,~2) 

l2 z2 1 xh1,~2) = 0. (111) 
The eigenvalues of (110) have already been obtained in the latter part of 

Appendix II; of these, only the lowest 

Ew(xl,x2) = -4(x1; $2) _ [A%y 22)’ + J2r2 (112) 

is of interest in the adiabatic approximation. 
Upon substituting (112) into (111)) one observes that the transformation 

x = x1 + x2 

2 ’ (113) 

x = x2 - x1 

leads to a product solution of the form x(x;~,z~) = ~(X)+(X). The equation for 
4(X) is that of a simple harmonic oscillator in the presence of a constant force, 

23 Apart from a numerical factor of 2, (108) is just what would be obtained from (28) 
and (27) in the narrow-band limit of wk = wg . The absence of the factor of 2 in (108) is 
due to the special feature of a two-site system, in which the number of nearest neighbors 
is one, rather than two. 
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A ; apart from the fact that its lowest eigenvalue is - (A2/4Mu,2) + (j&/2), 
it is of no further interest. 

The equation for 4(z) is 

;wozx2+ {(q+J’y2]nx, = 0 (114) 

where 

p = M/2. (115) 

The potential energy for this problem, namely 

V(x) = ; u,“x” -{($>‘+J2y’ 

possesses two minima, which, for J small compared to A2/2Mut (small-polaron 
condition), are approximately located at x = =tA/2pu02, and have the common 
value 

These two minima are separated by a barrier whose height (relative to the 
minima) is A2/8~,,’ - J z A”/Spw,,‘. The potential is thus quite similar to 
that encountered in the theory of the inversion spectrum of the ammonia mole- 
cule. As in that case, the condition, %JO << barrier height, (y >> 1) permits solv- 
ing for the energy splitting of the two lowest states by WKB tunnelling tech- 
niques. Omitting the detailed computations, one finds 

It will now be noticed that, apart from the logarithmic term, (116) and (108) 
are of comparable magnitude when 

J - J,,, = (A2/2Mu:)1’2(T’io,,)1’2. (117) 

From this comparison it may be inferred that J,,, , as defined by (117), gives 
the upper limit of applicability of perturbation theory. 

Considering, now, the logarithmic term, one sees that, since, for J - J,,, , 

deviations between (112) and (108) occur at J values somewhat smaller than 
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the right-hand side of (117). Strictly speaking, then, J,,, should be redefined 
as 

J max = ( A2/2MclJ,2) 1’2( &do) li2/log( A2/MW&Wo)1’2. 

However, in view of the circumstance that the logarithm is numerically com- 
parable to unity, this last expression is essentially equivalent to (117). 

Let us note, in passing, that (117) may be written in a form analogous to the 
high-temperature limit, namely, 

where 

J mm = (AhvY”‘/2*) 1’2 (118) 

V5- (eff) = (?rA/Muo) = (%4/2/M&)). (119) 

It may now be noted, from (114) and subsequent text, that (119) is of the same 
order as the “imaginary” velocity 

which the system possesses in the neighborhood of the barrier maximum at 
x = 0, i.e., in the neighborhood of the crossing point of the unperturbed (J = 0) 
potential energy curves. In the high-temperature case, this point is classically 
accessible, so that, in the general formula, v, = (2Eki,/p), the actual kinetic 
energy NKT is to be used. In the case of the ground state, the crossing point is 
classically inaccessible; from the analogy to conventional barrier problems, one 
takes Ekin - A2/&uoo2. 

It is now of interest to obtain numerical estimates for J,,, . In terms of the 
numbers given in footnote 9, these estimates are 

and 

J 2: g 0.67&( T/O)1’4 = 0.027( !!‘/8)“4 ev 

J co) N 3fif.00 = 0.12 ev max - 

for the cases of high-temperature site-jumps and ground-state bandwidths, re- 
spectively. Selecting for T/8 a representative value of 3 (while this choice pushes 
(108) to the limit of its domain of applicability, the formula should still be serv- 
iceable for order-of-magnitude considerations), one has Jf$h’,h - 0.035 ev; both 
this value and that of 0.12 ev, cited for the ground-state limit, J?&, represent 
rather small electronic bandwidths, indeed. It is thus apparent that the perturba- 
tion approach covers only part of the total region (J < A2/2Muo2 - 0.4 ev) of 
significance for the small polaron; for the remainder of this region, the adiabatic, 
rather than the perturbation, approach is to be employed. 
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Some orienting calculations, based on the adiabatic approach, have been per- 
formed for the energy levels of the ground-state polaron band. On the basis of 
these calculations, it appears likely that the levels in question are given by an 
expression of the form of (2(i), in which the coefficient, 2JeC”, gets replaced by 
twice the right-hand side of ( 116). 

In the other extreme of high-temperature site-jumps, it appears that the 
adiabatic expression (10-l) will hold, subject to the stipulation that formula (80) 
for the activation energy will have to be modified to take account of the progres- 
sive lowering of the potential barrier24 with increasing J. 

VII. COMPARISON WITH OTHER SMALL POLARON TREATMENTS 

The discussion given here will deal exclusively25 with the paper of Y and K 
(3). These authors were primarily concerned with computing the probabilities 
of thermally activated site-jumps. Using a method originally developed for the 
treatment of optical transitions in F-centers (which is substantially equivalent 
to that of the present paper), but also restricting themselves to the Einstein 
approximation (W = wo), they obtain an expression for the site-jump probabil- 
ity, which reads (see their Ey. 43) 

W =‘f I&i”exp(-S(2n + 1)) 2$/V~exp(2S[n(n + l)]“” 
(120) 

-coswtf dt 

where n = [eBhwoi2 - l]-‘, M is the electronic-overlap parameter ( = J), and 
where X apparently’” corresponds to twice the vibrational overlap parameter, 
y = A2/2Mw,2, employed in the present paper. Noting that 2n + 1 = coth 
(ph42), and [n(n + l)]“’ = 36 csch (@L&2), one sees that, apart from the 
term, - 1, in the integrand of (76) (this term being absent from Y and K’s 
formula, because of their neglect, to subtract the diagonal transitions from the 
total transition probability expression), (120) is completely equivalent2’ to (76)) 
and is hence also infinite. The finite result given by Y and K, namely 

W = f 1 Ml* exp (-S(2n + 1)) & 10(2S[n(n + l)]“‘) (121) 

24 It may be remarked that barrier lowering also results in an enhancement of quanta1 
barrier penetration; this feature is responsible for the appearance of the positive terms, 
proportional to J*, in the exponent of (116). 

26 The t,reatment of Tjablikov, cited in Ref. 2 (as well as that of a recent paper by Sewell) 
is limited to the consideration of the polaron-band states (Tjablikov, in particular, to the 
ground state band at absolute zero). In neither of these papers, is any attempt made to 
include the non-diagonal transitions within the framework of the theory. 

26 The reason for this uncertainty will become evident short,ly. 
27 Notre that, in (76), ST is to be equated to y coth@hwo/2). 
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[where I,,(X) is the modified Bessel function of t,he first kind] was apparently 
obtained by replacing the iufinit,c integral of (120) by one going from zero to 
2n. 

It should here be remarked that, despite the above-discussed error in its 
derivation, Y and K’s formula (121) is still applicable to the case of a narrow- 
band vibrational spectrum in the region defined by inequality (75). As dis- 
cussed above, in comiection with the derivation of (77)) a consequence of this 
inequality is that the maximum of the integrand of (65) at t = 0 is so large, 
relative to the other maxima, that in effect the integration may be restricted to 
the interval -r 5 t 5 + ?r, thereby coinciding with Y and K’s procedure. 
[The actual equivalence of (121) to (77) is readily demonstrated by inserting 
for I,,( Z) the standard asymptotic expression, ez/( 2nz)i”.] 

On the other hand, in the domain in which the converse of (75) holds (either 
at low temperatures or for small values of y), (121) is clearly incorrect. In this 
region, as shown by equation (66) and subsequent discussion, the site-jump 
probability is expressed as a sum of terms each representing site-jumps in which 
two, three, etc., phonons are emitted or absorbed, and hence possessing both 
the temperature variation and dependence on vibrational frequency spectrum” 
characteristic of such processes. These features are not exhibited by ( 121). 

Y and K have also obtained an expression analogous to (36) for the energy 
bands of the polaron-bands (see their Eq. 26 and its generalization, stated in 
the subsequent paragraph) 

E = E. + 2M( cos(k,a) + cos( k,a) + cos( kza))e-(2n+1)s (122) 

where M and S have the same significance as in (120). (Also, the band energy 
is here a function of three wave numbers, since Y and K’s treatment is three- 
dimensional.) If, now, one introduces Y and K’s symbols into Eq. (36) of the 
present paper and goes over to the narrow-band approximation in which wk --+ wo 
and Nk ---f n, one has 

E,*...Nk... = Eb + ; (n + 4$+&, - 2J cos u e++“‘)’ (123) 

which differs from (122) by a factor of $5 in the exponent of the last term. 
This numerical difference is far from trivial; in particular, from (122) Y and 

K apparently concluded that band-type motion of the polaron could never be 
of any practical significance (irrespective of temperature), and that thermally- 
induced, site-jump transport would always be dominant. 

Due to the circumstance that Y and K gave only a brief outline of their cal- 

98 The dependence of (66) in the vibrational frequency spectrum is contained implicitly 
in the frequency delta functions. Integration over any one of the k’s contained in a given 
delta function results in its replacement by a typical “frequency-density” factor, of the 
form, &/auk. 
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culation, the present author has not succeeded in tracking down the discrepancy. 
However, the fact that the exponent of (122) is too large by a factor of two may 
be established by the following considerations. 

If one takes the special case of absolute zero, at which the vibrational quantum 
numbers are all zero, one may establish a simple correspondence between the 
exponents occurring in (122) and the site-jump-probability expression, (120). 
Disregarding the question of the actual divergence of (120), which was dis- 
cussed earlier, one sees that, for 12 = 0, the exponents are apparently identical. 
It is now to be realized that, in both cases, the exponential factor enters in as 
part of the matrix element for the transition p -+ p + 1. This matrix element, 
given by the product of the right-hand-side of Y and K’s Eq. (27) and the vi- 
brational overlap integral immediately following [or, in the present paper by 
(17), enters linearly into the band-energy (123)], but qucwhticaZZy into the 
random-jump probability (120) (as is evidenced by the M dependence of these 
two expressions). It therefore follows that the exponent occurring in (122) should 
actually be half that contained in (120). 

APPENDIX I 

In this appendix, the maxima of the integrand of the text Eq. (65) will be 
computed for the “narrow-band” case, in which 

Cdl < 00 . (I-1) 
In this case, (7) may be approximated by 

where 

‘dk = ‘00 + ‘db cos k 

‘db = ‘$/2‘&, 

is the half-width of the band. 
Subject to (I-l), one may also introduce the approximations 

W03/Wk3 E 1 - 3(‘Ob/W,) cos k, 

U-2) 

(I-3) 

(I-4a) 

(I-4b) 

so that the quantity H(k), defined by the text equation (73), becomes 

H(k)= l-$‘cosk (l-cask) I-(@&,) (I-5) 

Neglecting terms of quadratic or higher order in “b/w0 , one may further approxi- 
mate H(k) by 

H(k) z 1 - (1 + a) cos k + a GOS’ k (1-6) 
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where 

u E 
. ( 

3 + @E? &)b Phwo wb 
2 2 > * WO 

(I-7) 

Using (I-6), one then has for the argument of the exponential term in the inte- 
grand of (65) 

X(T) E 27 csch ‘+ 1 s * H(k) cos WkT dk 

= ,,csch&o;; [l - (1 +a)cosk+acos2k] 
7r 0 

-[cos wo7 COS(W~T cos k) - sin ~07 sin (wo7 cos k>I dk (I-8) 

= 2,, csch 9 {cos WOT [(l + ;) Jo(w) - ;J2(w)] 

+ sin w07[(1 + a)J~(cw)I 
i 

where the J’s are Bessel functions. 
The absolute maximum of X( 7) is attained at 7 = 0, and is 

x(0) = 2y csch ‘+ (1 + ;). 

For the computation of the other maxima, it is expedient to rewrite (I-8) in 
the form 

x(7) = X(O) {po(3) - &J2(9] 

+ (c&y.‘~(~x)JV2cOs~~ - d7)l (1-g) 

where 

(O(T) = arc tan (1 + a)J1((&7) 

( > 
1+; JO(WbT) - ;J2(wbT) 

(I-10) 

and 

x = war (I-11) 

In the case of those maximal points for which ( wb/wo)zi < 1, the Bessel functions 
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may be expanded, yielding, to the lowest order in wb/wO, 

(P(T) 2 wbx/2wo. (I-13) 

It is now to be noted, that, since cp( 7) is small, the maximal points, zi , may to 
a sufficiently good approximation, be set equal to 2mi. One then has 

X;(7) = x(0) 1 - [ ($$)ni]. (I-14) 

From (I-14), it is then seen that, in order for the contributions of these maxima 
to (65) to be negligible, it is required that 

x(0) g$>> 1 

or, in view of (I-3), and of the definition of X(0) [given between (I-S) and 

u-g>1 

2~ csch @ 5 >> 1 
2 8o04 * 

Turning now briefly to the other maxima, for which (wb/wo)xi > 1, one sees 
that their magnitudes are essentially given by the curly bracket of (I-9). In 
particular, if this bracket does not approach unity in the domain (wb/wO)xi > 1, 
the contributions to (65) will be negligible. The fact that this is actually the 
case may be established by numerical analysis of the curly bracket. However, 
in view of the above results, and of the arguments already presented in the text 
subsequent to Eq. (74)) this analysis will not be carried out here. 

APPENDIX II 

In this appendix, the classical occurrence-probability derivation of the text 
Eq. (79) for W,(p --f p &l) will be presented. The basis of the treatment is 
the set of equations 

which is obtained from the text set (5) by omitting the vibrational Hamil- 
tonian. The zlz(t) are to be considered as given functions of time, determined 
by classical trajectories. 2s It is assumed that, at some initial time, ti , the electron 

29 In the zeroth approximation, in which the electron remains localized on a given pth 
side, the time dependence of z,(t) is determined by the Hamiltonian, H(p) = HL - As, 
(HA representing the purely vibrational Hamiltonian of the host crystal). When, in the 
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is in a definite (pth) site, so that 

an(ti) = 6,, . (11-2) 

The application of first-order perturbation theory then gives, say, for a,+l(t), 
at a time t > ti 

where the lower limit of the “phase integrals,” occurring in the exponents of 
(II-3), is to be specified later. 

The procedure to be used in the evaluation of the integral on the right-hand 
side of (11-3) is based on the fact that, over the region of interest for the present 
classical treatment, in which the inequalities 

AZ/Mu: >> fiw, (11-4) 

KT >> fiu (11-5) 

obtain, the relative variation of x, - xP+l in a time of the order of an instan- 
taneous “period,” fi/A(x, - +,+I), [i.e., the quantity (5/A 1 x, - xp+l 1 ) (a/at) 
log(x, - x~+~)], is small, except at a “coincidence” point, t, [at which z,+~( tC) = 
xP(tC)].“” It then follows that the oscillations in the exponential integrand will 
interfere destructively, except at the coincidence points, t, , at which the phase 
of the exponential is momentarily stationary. 

Let us assume that such a point of stationary phase, t, , occurs in the interval 
between ti and t. Let us further introduce the assumption31 that, in the neighbor- 
hood of t, , the time variation of zP( t) - xP+l( t) may be considered linear, so 
that 

&a(t) - qJ+1(G = (v, - v,+1)(t - to) 

where the velocities up+1 and v, are evaluated at t, . 

(II-S) 

next approximation, site jumps of the type p ---f p + 1 are computed, the question arises 
as to whether H(p) or H(p+i) (or some mixture thereof) should be used in determining the 
z,(t). It turns out, however, that, as will be seen below, within the domain of validity of 
the classical calculation, this ambiguity does not cause any trouble. 

80 That such a situation prevails when (114) and (11-5) are satisfied, can be seen by 
noting that 1 zP - xP+i 12 (KT/Muo*)~‘~ and 1 (d/dt) log(z, - $,+I) 1 - 00 SO that 

W(A I xp - xp+l I 11 1 (a/at) log@, - xp+d I -K 1. 

31 The domain of validity of this assumption will be discussed later. 
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Inserting (11-6) into (II-3), and choosing the lower limit of the phase inte- 
grals to be t, , one has 

a,+l(t) = -$ exp iA l: xr+i(t’) dt’ } 

i, [A(v, - 

(11-7) 

v,+d/fil(t’ - t,)” dt. 

It will now be noticed that important contributions to the integral occur over 
a time interval, 

At - [fi/A(v, - Q+I)]“* - b/A (KT/M)“21”2 = & (n,lMw:~~,,.,v,]“‘. 

If the spacing in time between successive coincidence points be assumed large 
compared to At (this assumption also will be examined later), the contributions 
of different coincidence points will not overlap. One may then replace the inte- 
gration limits, t and ti , by plus and minus infinity, respectively, so that 

(11-S) 

In going from occupation amplitudes to occupation probabilities, it will be 
assumed that there is no phase correlation between successive coincidence points 
(or, alternatively, that any such correlation for a given classical trajectory aver- 
ages to zero when all possible trajectories are taken into account).32 Then, upon 
taking the absolute square of both sides of (II-8), one has 

W,(p+p+l) =2rJ” 1 

fi A I VP - vp+l I 

where W,(p + p + 1) = 1 u,+~( 00 ) 1’ represents the probability of a site jump, 
p + p + 1, occurring in a single coincidence event. 

In order to obtain the transition probability, W,(p -+ p + 1 ), giving the 
average site-jump probability per second, one multiplies (11-9) by the proba- 

a* In view of the generally large number of oscillations between successive coincidence 
points (this number can be estimated from the material given in footnote 30), such corre- 
lations would occur only if the motion were perfectly periodic. This possibility, however, 
is specifically ruled out by the frequency dispersion of the vibrational frequencies. 
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bility per second, P$‘(vT) dv, , for a coincidence in which the relative velocity, 
v, = 21, - up+] , lies within a given differential range, and integrates over all 
values of vT . 

To compute Pg’ (v,) dv, , one notes that, in a time dt, all configurations for 
which x, - xP+l 5 V~ dt will give rise to the coincidence, x, = xP+l , in time dt. 
The classical occurrence-probability of such a configuration, in which ZJ? is also 
specified to lie within a given differential range, is 

‘-’ 1 . ’ ’ / e-(HL-AZp)‘KT [8(X, - X,+1) - fl(X, - xp+l - 21, &)] 

X [fi(v, - up+1 - v,) - S(v, - V,, - vr - dv, )I 

.dxl ... dxNdvl .a. dvN 

where 

ZE s s . . . e--(YL-As~)‘rT dxl . . . dxN dvl . . . dvN 
and where 

X(x) = j-Z 6(x’) dx’ 
--m 

is the conventional step function. It will be noticed that both of the square 
brackets are equal to zero, except for the differential intervals, x=+1 5 x, 5 
xP+l + v, dt and up+1 + v, << v, 5 v,+l + v, + dv, , respectively, within which 
they are unity. These differential impulse functions may more conveniently be 
represented by the expressions 6(x, - x~+~)v, dt and 6(v, - us+1 - v,) dv, . 
Then, upon carrying out the velocity integrations, and dividing by dt to obtain 
the occurrence-probability per unit time, one has 

dv, e--Mvr2’4xT 1 v, 1 5 (11-10) 

where 

s s . . . e-(VL-AZp"XT 6(x, - xptl) dx, . . . dxN 

SC 

J s 

(U-11) 
. . . e -(vL-AzP)~xT dxl . . . dxN 

V, representing the vibrational potential energy of the host crystal. 
At this point it is expedient to introduce the Fourier-integral formula for the 

delta function: 

6(x) = 2 1: eiza da 
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and to transform to the normal coordinates, qk , via the relations 

2 =( > 
l/2 

xn = n N qk sin(kn + r/4) (11-12) 

The numerator and denominator of the resulting expression for 5 are each re- 
duced, therewith, to a product of integrals over the qk . The individual integra- 
tions are readily carried out, the result being 

C k (11-13) 

where 

@k(a) = (-A + Z’QIKT) sin[kp -j- 7r/4] - Z’CCKT sin[k(p + 1) -I- 7r/4]. (11-14) 

One now introduces a new integration variable 

Then, upon pairing terms of plus and minus k, one may write the exponent of 
the integrand of (11-13) as 

F - 4Ni;k2,T (1 - cos k) - 2 NG2 (1 - cos k)y2. (11-16) 

From the form of this exponent, it is clear that the y-integration limits 
(- CC + i&2~T, + co + iA/2~?‘) may be replaced by (- 03, + co), so that, 
upon introducing the “activation energy” 

E, = $ T A2 ( 1 - cos k)/4Mwk 

1 
s 

“A2(1 - cos k) dk =- 
4Mwk2 2 a 0 

(11-17) 

one obtains 
l/2 

e--E,/CT 

which, when inserted into (lo), yields 

l/2 
&,, e-M~,214xT (11-H) 

Multiplying (11-B) by (II-g), and integrating over all vr = v, - v,+~ one ob- 
tains the text relation (79), q.e.d. 

The assumptions introduced in the derivation of (11-9) will now be examined. 
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Of these, the most delicate is embodied in (11-6). The significance of the approxi- 
mation implied by this expression is that the relative velocity, vP - vP+i , does 
not change appreciably in a time 

At - [fi/A (c, - 2iP+#” - W;‘[fiWo/ ( L@/MWO~)~‘~( KT) 
l/2 l/2* 

] , 

as pointed out in the discussion subsequent to (II-7), At defines the neighbor- 
hood of a coincidence-point within which the principal contribution to the right- 
hand side of (11-7) is contained. 

In order to assess the validity of this assumption, an estimate of the relative 
acceleration, (d/dt) (v, - u~+~), is required. In obtaining this estimate, the 
vibrational coupling between the individual molecules will be neglected (W = 0) ; 
this procedure should be quantitatively accurate for a narrow-band vibrational 
spectrum (wl << w), and should be suitable for at least order-of-magnitude con- 
siderations in the more general case of WI - wo . 

Neglecting, then, the intermolecular vibrational coupling term in the lattice 
Hamiltonian, one has for the relative acceleration at a coincidence point (x, = 

x,+1> 

$ (vp - vp+1> = -woTx, - x,+1> + $ 

wherein it has been assumed that the effective Hamiltonian is33 HCp) = H, - 
Axp . On the other hand, the order of magnitude of the relative velocity is 

(11-20) 

From (11-19)) (11-20)) and the estimate for At, it follows that, in order for (11-6) 
to be applicable, it is necessary that 

or 

i.e., 

1’2 ho 
(KT)3/2 c ‘, 

KT >> [(A) (fiwo)‘]li3. (11-21) 

33 If, instead, one assumed the effective Hamiltonian to be H(p+l), the sign of the right- 
hand side of (11-9) would be changed but the magnitude would remain unaltered; if one 
took some average of H(p) and H(p +I), the relative acceleration would still be --A, times 
a numerical factor i 1. 
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It is of interest to point out that (II-21), rather than KT >> fiw, is the appro- 
priate condition for the approximation of the quanta1 relation (77) by (79). 
Namely, if in the Taylor expansion of the hyperbolic tangent occurring in the 
exponential factor of (77), one retains two terms, i.e., 

one obtains (79) multiplied by the factor 

(1 - cosk)(fiw$& 
3(4~T)~ 1 

which, for order of magnitude considerations, may be approximated by 

In order for this quantity to be replaceable by unity, it is necessary that 

which, apart from numerical factors, is identical with (11-21). 
It remains to discuss the assumption, introduced in the paragraph preceding 

(II-g), that the time between successive coincidence points is large compared 
to At N w;~[~~/(~~/~w~~)“~( KT)“‘]~“. Apart from one special feature, said 
time is of the order of l/w0 , and hence larger than At by a factor 

(A2/M~~/fi~,,)1’2( ~~T/fiwo)“~ >> 1. 

The special feature in question arises from the fact that, when A2/ilfwt is large 
compared to KT, the coincidences tend to occur in closely-spaced pairs. For exam- 
ple, using the same narrow-band limit of w1 = 0, as in the previous discussion, 
one sees that every coincidence in which vP - vp+l is positive is preceded by one 
in which it is numerically equal, but negative, and that the time interval between 
them is of the order of twice the mean relative velocity divided by the mean 
relative acceleration [given by (11-20) and (II-19), respectively], i.e., 
At, - (2~T/A~/d!fcao~)~‘~( l/we). It is then immediately clear that the require- 
ment that At, be large compared to At is equivalent to (11-21). 

It may finally be remarked that the uncertainty, discussed in footnote 29, as 
to the proper choice of vibrational Hamiltonian to be used in computing classi- 
cal orbits, would affect only the relative acceleration; hence, in the approxima- 
tion represented by (II-S), in which acceleration effects are neglected altogether, 
this uncertainty is of no consequence. 
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APPENDIX III 

In this appendix, the classical treatment of site-jump probabilities, given in 
Appendix II, is further developed to cover the case in which the electronic band- 
width parameter, J, is too large for perturbation theory to be applicable. The 
problem has actually been discussed rather extensively in the literature, princi- 
pally from standpoint of the theory of nonadiabatic transitions between molecu- 
lar potential energy curves. In the case at hand, these potential energy curves 
are the eigenvalues E(a , * * . , zN) of the equations 

= [I’,(%, , . . ., ZN) - AX,&, - J(u,+I + a,-~) (III-l) 

obtained from the text Eq. (5) by discarding the vibrational kinetic energies; 
as in Appendix II, VL(xl , * . . , zN) is the vibrational potential energy 

vL(xl) . . .) xs) = c 
( M$ xmz + M+ XmXm+l > * (111-2) 

n 

If one attempts a development of the solution of (III-l) as a power series in 
J, via perturbation theory, one obtains 

lP’(xl, “‘,xN) = VL(Xl, ‘.‘,XN) - Ax, 

+ l 1 + . . ..-p (111-3) 
x, - XP-1 

Generally,34 x, - IC~,+~ - A/Mu:, so that in the case of the small polaron 
for which J << AZ/Mu: (see I, Eq. 43), (111-2) and (111-S) are accurate. Within 
the domain of applicability of these relationships, the electronic state correspond- 
ing to a given potential-energy curve, E”‘(x1 , . . *, x,), is strongly localized 
about a single site, p. 

However, in the neighborhood of the “crossing-points” of two potential energy 
curves, say, ECp) and ECp+‘), (in particular, when / x, - x,+1 1 < J/A), the 
perturbation expansion must be modified to take account of the fact that ap and 
up+] are both appreciable. One is thus led to the consideration of the two equa- 
tions 

E(Q) *-*, ZN)U, = (V, - Ax&p - Ju,+, , (111-4) 

E(x1, *a*, XN)U~+I = (I’, - Axp+da,+~ - Ja, , 

34 In the limiting case of WI = 0, for example, the equilibrium G’S are (for the small 
polaron), x9 = A/Ma?, x,,fp = 0. 
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Xp+l -X, 

FIG. 2. Potential energy curves for the two-site system 

the eigenvalues of which are 

= VL(X1, me*, 
xx) _ A (h +y) *{[“2’& 4 %+I>” + J2]y2. W-5) 

These two solutions are shown in Fig. 2 as the solid curves. The dashed lines, 
denoted by EC’) and EC’+‘), give the unperturbed (J = 0) potential curves; 
they are also the asymptotic limits of the actual curves for sufficiently large 

I%+1 - ZPI. 

In a site jump of the type p -+ p + 1, the system is initially in a configuration 
in which x, >> xp+l ; since the associated electronic state is localized about the 
p’th site, its limiting potential energy curve is E”‘. It may thus be represented 
in Fig. 2 by a point which moves along the lower solid curve, EC-~ , approaching 
the crossing point from the left. In the neighborhood of the crossing point a 
variety of possibilities is available. 

Firstly, the system may remain on the lower potential curve, EC-, , continu- 
ing its motion to the right,35 and thereby eventually attaining the region of 

35 In this discussion, as in the perturbation treatment of Appendix II, the relative veloc- 
ity, up+1 - z)= , in the vicinity of the crossing point is assumed sufficiently large so as to be 
considered essentially constant in this vicinity. 
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x=+1 >> xp on the curve E (‘+l) The net result of this process is the realization of . 
a site-jump event. 

The alternate possibility, in which the system jumps from the EC-, to the 
EC+, curve, on going to the right, results in a situation in which the system is 
moving “uphill”; it must then eventually “turn around” and reapproach the 
crossing point from the right. If in the latter trajectory, it jumps to the lower 
curve, it moves “downhill” towards the initial configuration, with the net result 
that no site jump takes place. On the other hand, if the system remains on the 
EC+, curve, it gets another chance to traverse the crossing region from left to 
right; if, in this traversal, it jumps to the EC-1 curve, the site-jump event is 
realized. 

By summing over all possibilities of this type, one may compute the site-jump 
probability, W,( p -+ p + l), in terms of the probability, P, , of (nonadiabatic) 
transitions between the potential energy curves.30 Specifically, one obtains for 
W,(p ---f p + 1) the series 

W,(p --f p + 1) = 1 - Pt + P,(l - PM, + Pt(l - PM, + * * 0, 

which is readily summed, the result being 

1 - Pt 
Wc(P--tP + 1) = 2Fjyjy. 

t 
(111-6) 

As stated above, the problem of computing P, has been treated in the litera- 
ture. In particular, an explicit solution has been given by Zener (7)) which, in 
the notation of the present paper, reads 

Pt = exp - (111-7) 

From (111-6) and (111-7) it is seen that, when J2 << hA 1 v,+l - v, //27r, 
W,(p ---f p + 1) reduces to 

w, = 2 27rJ2 
fiA I up+1 - VP I 

(111-S) 

which is twice the right-hand side of the perturbation result (11-g). In this limit, 
the system may be considered as moving up and down the zeroth order energy 
curve, E’“’ ( re p resented in Fig. 2 by the appropriately-labelled dashed line). 
At each of two transits through the crossing point (in which the relative velocity 
is first positive and then negative) a transfer to the E”+” curve may take place 
with a probability given by (11-g). The total probability (for the two transits) is 
then equal to the right-hand side of (III-g), as it should be. 

36 As will be seen immediately below, this probability is symmetrical in the direction 
of the transition (E, -+ ET), and independent of the sign of the relative velocity. 
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In the alternate limit of J2 >> Cl 1 2)P+l - v, 1/27r, the site-jump probability, 
W,(p -+ p + l), is unity. In this limit the system simply stays on the lower 
potential curve, EC-, , in its left-to-right motion, and thus effects an adiabatic 
site-jump transition, without further ado.37 
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