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Studies of Polaron Motion

Part Il. The “Small” Polaron

T. HoLsTEIN

Westinghouse Research Laboratories, Pittsburgh, Pennsylvania

The one-dimensional molecular-erystal model of polaron motion, described
in the preceding paper, is here analyzed for the case in which the electronic-
overlap term of the total Hamiltonian is a small perturbation. In zeroth order
—i.e., in the absence of this term—the electron is localized at a given site, p.
The vibrational state of the system is specified by a set of quantum-numbers,
Ny , giving the degree of excitation of each vibration-mode; the latter differ
from the conventional modes in that in each of them, the equilibrium displace-
ment, about which the system oscillates, depends upon the location of the
electron.

The presence of a nonvanishing electronic-overlap term gives rise to transi-
tions in which the electron jumps to a neighboring site (p — p & 1), and in
which either all of the V; remain unaltered (‘‘diagonal’’ transitions) orin which
some of them change by +1 (‘“nondiagonal” transitions). The two types of
transitions play fundamentally different roles. At sufficiently low temperatures,
the diagonal transitions are dominant. They give rise to the formation of
Bloch-type bands whose widths (see Eq. 37) are each given by the product of
the electronic-overlap integral, and a vibrational overlap-integral, the latter
being an exponentially falling function of the ¥, (and, hence, of temperature).
In this low-temperature domain, the role of the nondiagonal transitions is
essentially one of scattering. In the absence of other scattering mechanisms,
such as impurity scattering, they determine the lifetimes of the polaron-band
states and, hence, the mean free path for typical transport quantities, such as
electron diffusivity. -

With rising temperature, the probability of the off-diagonal transitions goes
up exponentially. This feature, together with the above-mentioned drop in
bandwidth, results, e.g., in an exponentially diminishing diffusivity. Eventu-
ally, a temperature, T, ~ 14 the Debye ©, is reached at which the energy un-
certainty, 4/7, associated with the finite lifetime of the states, is equal to the
bandwidth. At this point, the Bloch states lose their individual characteristics
(in particular, those which depend upon electronic wave number); the bands
may then be considered as ‘“‘washed out.”” For temperatures >T', , electron
motion is predominantly a diffusion process. The elementary steps of this proc-
ess consist of the random-jumps between neighboring sites associated with the
nondiagonal transitions. In conformance with this picture, the electron diffu-
sivity is, apart from a numerical factor, the product of the square of the lattice
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distance and the total non-diagonal transition probability, and is therefore
an exponentially rising function of temperature.

The limit, Jmax , of the magnitude of the electronic overlap term, beyond
which the perturbation treatment of the present paper becomes inapplicable,
is investigated. For representative values of the parameters entering into the
theory, Jmax ~ 0.12 ev and 0.035 ev for the extreme cases of (a) width of the
ground-state polaron-band and (b) high-temperature site-jump probabilities
(these numbers correspond to electronic bandwidths of 0.24 ev and 0.07 ev, re-
spectively). For electronic bandwidths in excess of these limits, a treatment
based on the adiabatic approach is required; preliminary results of such a treat-
ment are given for the above two cases.

I. INTRODUCTION

In this paper, the one-dimensional molecular-crystal model, developed in the
preceding paper (1)," will be applied to the study of the small polaron. The basie
features of the molecular-crystal model are contained in Eq. (9) of I, which
may be written as

aan(xl y Ty xN)
ot

- o1
= [Z ( + é Mwﬁzxm2> - Axn] ay, — J[an+1 + an-—l]-

th
(1)
m=1 _m m
Here, the “wave function,” a,(x:, *-- , zx), is a function of the “lattice-vibra-
tion”’ coordinates, z,, - -, Z» (each of which desecribes the internuclear vibra-
tion of a single (diatomic) molecular site of the linear chain), and of a discrete
“electronic” coordinate, n. The latter is to be understood in terms of the tight-
binding approximation, according to which the actual wave function of the sys-
tem has the form
‘#(r) X1, "'7xN) = Zan(xla "';xN)¢(r—na7 xn) (2)
(where ¢(r — na, x,) is a one-electron wave-function, localized about the nth
molecular site, its precise definition being given by Eq. (I 3) in the appendix
of I).

The sum over m in the square-bracket of (1) represents the “lattice’’ Hamil-
tonian, consisting of the vibratory kinetic and potential energies of the molecules
in the absence of the electron; it is expressed in terms of the reduced mass, M,
and vibration frequency, wo, of the individual molecules. The remaining term
in the square bracket, — Az, , gives the ‘“‘electron-lattice’” interaction as a linear
function of the vibration coordinate of the occupied site. Finally, the term pro-

1 To be referred to hereafter as I. Here, as in I, the term ¢‘small polaron” designates
the case in which the linear dimension of the polaron is of the order of a lattice spacing.
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portional to the electronic “overlap” integral,® —J, describes the motion of the
electron through the lattice. As discussed in I, this feature of the model is strictly
analogous to the conventional atomic tight-binding approach; in particular, if
all the z,’s are fixed at one and the same value (thereby suppressing vibrational
motion), Eq. (1) reduces to the standard tight-binding approximation of the
Bloch one-electron equation, as illustrated by Eqgs. (4)—(7) of 1.

As pointed out in I (Eqs. 43-46, and accompanying text), the case of the
small-polaron is realized when the electronic bandwidth, 2J, is small compared
to a characteristic energy, A’/2Mwy, which (see I, Eq. 46) is, in essence, the
binding energy of the small polaron. This circumstance suggests that Eq. (1)
be solved by a perturbation approach in which the zeroth order Hamiltonian
consists of the square-bracket of (1), whereas the J-proportional term is the
perturbation. Such a procedure has, in fact, been applied by Tjablikov (2) and
by Yamashita and Kurosawa (3)° to the continuum-polarization model, and
will form the basis of the present work. In anticipation of results to be obtained
below, it may be remarked that the domain of validity of the treatment will not
be sufficient to cover the whole range of interest for the small polaron. Namely,
as will be shown in Section 6, the small-polaron condition (see Eq. 43 of I)

2J < A*/2Mw (3)

is not sufficient for the applicability of the perturbation approach; in particular,
the more restrictive conditions

2J < (A2/2Mw02)1/2 (ﬁwg)”Z
J < (A*/4MoH)" (2kT /%) (B wo/7)™*

will be shown to be necessary.

(4)

? Strictly speaking, (see I, Eq. 3), this term has the form, J (zn , Zns1)tns + J (a0,
Tn_1)8n_1 Where the overlap integrals, J (2, , £.41) are defined by Eq. (I-15) in the appendix
of I. As discussed in I, the z, dependence of the J’s is to be ignored for the time being, so
that all the J’s are assumed equal to a single constant, —J.

3 Referred to hereafter as Y and K. It should be stated at the outset that the treatment
of the present paper overlaps, in considerable measure, the earlier work of Y and K. How-
ever, there are a number of features of the problem, which constitute important elements
of the present paper, and which are absent from Y and K’s treatment. Examples are (a)
the roles of the diagonal and off-diagonal transitions at temperatures above and below
the “transition’’ temperature, T, [as given by Eq. (88) and subsequent text], (b) the classi-
cal activation approach in the high-temperature region (7 > hw:), and (e) the estimation
of the limits of validity of the perturbation treatment (together with the question of the
alternate applicability of the adiabatic approach). Moreover, in the opinion of the present
author, the specific results obtained by Y and K are not correct in detail. A discussion of
these results is presented at the end of the paper.
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Before entering upon detailed calculation, let us generalize Eq. (1) by adding
to the lattice Hamiltonian coupling terms of the form mentioned in footnote 3
of I. The augmented equation reads

6an(xl y " xn)
ot

N JERpY
- Z——l( OM 3zm + M o't + 5 M“’l xmxm+l) + Axn:la,,

i
(5)

—-J [an+l + an—l]'

As is known, the presence of coupling terms gives rise to dispersion of the lattice
vibration frequencies. It will later be seen that this dispersion has to be taken
into account in the calculation of probabilities of transitions in which a change
of electron-site variable is accompanied by the simultaneous absorption and
emission of vibrational quanta. In particular, it will turn out that the standard
approximation of replacing the vibration frequencies by a single frequency (Ein-
stein model) yields meaningless results for these probabilities.

For the treatment of (5) it is desirable to express the vibrational coordinates,
Z., In terms of the normal-mode coordinates of the host erystal. This is done
by means of the one-dimensional analog of Eq. (50) of I [the transformation is
also given by Eq. (II-2) of Appendix II}; one then has

aa"(... qk ...)
at

= kZ [( 234 aaq + - ka Qk> - (%)m Aqe sin(kn + 1r/4):| (6)

X (o qe ) — J(Cup1 + Anr)
where w: is given by the dispersion relation
wd = o + o’ cos k (7
and where k = 2x«x/N, the integer « lying in the range —14(N — 1) £ « £
14(N — 1) (N being assumed odd for the sake of convenience).

The zeroth-order wave equation is obtained by setting J equal to zero in (6).
The zeroth-order eigenstates are then seen to have the form

Q) = 5npx<1’) (- oqerer) (8)

where §,, is the Kronecker delta—unity for n = p and zero otherwise—and
where x® satisfies the equation

E(p)_Z ﬁ2 32 1M22 21/2A : (»)
X = —-ma—q—’ﬁ‘*'é wi . — 'N gx SIn (kp+1r/4) X - (9)

k

i

an(p) (_ .
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Noting that the square-bracket of (9) represents a system of independent
harmonic oscillators, with equilibrium points

® A 2\ .
o’ = M—wkz(—ﬁ> sin(kp + =/4) (10)
one readily obtains for the eigenfunctions and eigenvalues of (8)
X g (g ) = m@w[(Man/B) (g — ¢7)] (11)
E. .. = Zk)ﬁwk(Nk + 13) + E, (12)

where
dy(z) = (2'N1x") 2 2y (2)

are normalized harmonic oscillator eigenfunctions [the Hy(z) being Hermite
polynomials] and where

A (2 .,
Eb = _;W<N> sin(kp + =/4). (13)

Finally, from (8) and (11), one has for the zeroth order eigenstates of the total
system

Qpyeeipee (B o+ @ v+ 0) = Bagm@w[(Mer/5) (g — o). (14)

In the representation of these zeroth order eigenstates, the wave function of the
system takes the form

Gl @) = Z C(py - N o Nag oy, o @ -+)
) p'y- - Ng e (15)

X exp[— (¢¢/R)E...5,...].
Inserting this expression into (6), multiplying on the left by a,...s,...

(n, -+ g ---), and integrating with respect to the vibration coordinates, g ,
one obtains, with the aid of (8)—-(13)

7 9C®, - N ---) _ > (p,- Ni-|VI|p, - N )
ot »' Ny (16)

X C(p', - N ---) expl(it/B)(E...xy... — E...ypr...)]

where

(p,---Nk---lVIp',---Nk'---) = _JE,;M,H
e=41

400
X m,[ B B [(Man/B) (g — ¢ bwp [(Mon/B)* (g — q,?”]] (17)

. (ka/ﬁ) qu,,
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the product, =, going over all vibration modes. Taking advantage of the cir-
cumstance that the ¢” are actually infinitesimal (i.e., ~1/N), one may eval-
uate the multiplicands of = simply by developing, say, ¢x[(Maor/ ) g — ™))

as a Taylor series in ¢;” — ¢;*”, and by making use of the standard formula

o8] (VY o~ () aute

The result is, to the second order in o — ¢

y

(p,,"'Nkl“‘Ile"'Nk"') = —J §lépr,p+g

X {[1 - % (Ni -+ 1/2)yi cos’(k(p + ¢/2) + vr/4)] ONy N,

12
_ [(%) eywkm (W) cos(k(p 4+ ¢/2) + 1/4)]

(18)

a,g:l:)

- 0wy vkar T+ N 'YkaNk’,Nkiz}

where
A 2

Ye = m (1 — CO8 k), (19)

ux being equal to =1, depending on whether % is positive or negative, and where
the o are dimensionless quantities of the order of unity or (Ni)., , whichever
is larger. They are not given explicitly since, as will be seen later, the two-quan-
tum jumps to which they pertain turn out to be unimportant. In obtaining (18),
the expansion parameter, @? — ¢, was eliminated by use of (8). It may be
remarked here that the y. are important parameters of the theory. Apart from
the trigonometric factor, 1 — cos k, they represent, in essence, the ratio of the
poleron binding energy, (~A%/2M we'), to the quantum of vibrational energy.
In order of magnitude, this ratio is to be assumed large compared to unity, e.g.,
~10 (see footnote 17).

II. DTAGONAL AND NONDIAGONAL TRANSITIONS: COMPLEMENTARITY OF
BAND AND LOCAL SITE-JUMP APPROACHES

The transitions arising from the matrix elements (18) may be grouped into
two different categories: one in which the vibration quantum numbers remain
unaltered (N, = Ny ), the other in which some of these numbers change by one
(or two) units. These two types will be designated as “diagonal” and ‘“non-
diagonal,” respectively.

In order to exhibit the role played by the diagonal transitions, let us consider
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the simplest case—prevalent at the absolute zero of temperature—in which the
vibration quantum numbers, Ny , are all zero. In this case, by virtue of energy
conservation, transitions of substantial amplitude are all of the diagonal type.
It is now to be noted that such transitions connect states, a,,...q,... (0, <+ - q& -+ +),
whose unperturbed energies all coincide at one and the same value, E...,... =
E, + > i #wi/2. Hence, to the first order in the perturbation parameter, J, the
stationary states of the system are of the form*

a’ﬂ(xl y 7T Ty xN)
. 2
= T Gyt o i) expl =ity + 3 Fn2iyn 20
P
where the C, constitute the stationary solution of the equations
. a0 ’
@han=;(Pa"'Ok"'[V|P,"'Ok"')Cp' (21)

[obtained from (16) by dropping all terms for which N s 0]. From (18) one
has

(py oo Ok |V, - Ok v) = —J 2 8ppiems
e=+1
-1—z cosz[k g +1£]
N PT3)T1
which may be written as’

(p, = - Ok [ VIp, -0 -) = —J D 8, e
e=11

o (=25 qeead k(v +5) + 7]} = ~T T e T/,

e=+1 k

(22)

Inserting (22) into (21), and assuming the time dependence of the C, to be
of the form ¢ **** one has

ECy = —J expl= £ 14/M}(Cpan + Cpa)

k
the solution of which is
C;a) — eipv (23)

1 The notation C, is used as an abbreviation of Cp,...q;... .
5 The second equality results from the circumstance that vz = y_x , so that, when terms
of plus and minus % are combined, one has

’ f I — 1 —_ ! 1.‘.-_ j—
E) cos? I::I:k (p + 2) + 4] =3 E) (1 cos l::i:k(2p + ¢ + 2:|> =

DO | =
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with
E =E,= —2J cosoexp{— 2, v/N} (24)
k

where ¢ ranges over the same values as k.
Referring back to (20) and (14), one observes that the Ny = 0 eigenstates
of the system are

ooy oo g o) = €™ m@ (Man/B) (g — )] (25)
with eigenvalues

Es.cono. = By 4 D /2 — 2J cos g e™® (26)
k
where
(" 1[" 2 2
S =Y /N =+ f e dls = -f (A%/2Maihian) (1 — cosk) dk.  (27)
k T Yo T Jo

The eigenstates (25) may be considered as constituting the groundstate
polaron-band. This band is characterized by a half-width

AR, ...q... = 2J € ", (28)

In practical cases, S may be expected to be of the order of 5-10, so that the
factor ¢°, which gives the ratio of the polaron-bandwidth to the original elec-
tronic bandwidth, 2J, will be quite small (~107-107*).

Turning now to the excited states, in which some of the N, differ from zero,
and continuing for the moment to neglect the nondiagonal matrix elements, one
may approximate (16) by’

., 3C(p, -+ Ni
ih %

) =>.(p, -+ Ne---|V]|p, - Ne-+-)
»’ (29)

O, Np--+)
where, in analogy with (21) and (22), one has
(p,++ Ne---|V|p,--- N& =) = —J D 6y prte
=11

oo [T i [i(prg) + 1]}

For the further simplification of (30) it will be assumed’ that

8 Of special significance is the fact that, due to the coincidence of initial and final un-
perturbed energies, the time dependent exponential factor in (16) is here unity.

7 Actually, this assumption would not have been necessary had ‘‘running-wave’’ vibra-
tion coordinates been used instead of the ‘“‘standing-wave’’ coordinates, g; . This deficiency,
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Ni. = N_;. (31)

The step analogous to the last equality of (22) may then be carried out, and
one has

(B, Neooe [ Vg e N voe) = =J Dby ™00 (32)
€e=+]1

where

117, 4 2
SC- Newo2) = X (L4 2N)m/N = ;fo (A%/2Maien) -
(1 — cos k)(1 + 2Ny) dk.

Proceeding as before, one then obtains for the stationary solution of (29)
C(p, -+ Ni---) = ™ exp[+ (it/h) (2] cos ¢ ¢ 50 Ve ), (34)
The wave functions corresponding to (34) are
Qoyooemee-(y o0 Q-+ +) = ™ mBu[(Mar/B) (g — i) (35)
with eigenvalues

E,..w...=E + ; (N + 18 e — 2J cos o e °C %0 (36)

Attention is called to the rather novel feature that the bandwidth
AE, .. x... = 2J ¢S50 M0 (37)

is [by virtue of (33)] a function of the vibrational quantum numbers, and, in
fact, an exponentially decreasing function of these variables.® The bandwidth is
thus maximal at absolute zero and diminishes rapidly with rising temperature.

The above discussion has been predicated on the assumption that the non-
diagonal transitions play a subordinate, higher-order role. This assumption will
now be investigated. One may begin by expressing the equations of motion (16)
in the representation of the polaron-band states a,,...x,... (71 -+ + & - - - ). In this
representation, the total wave function takes the form

an(- - qe--)
= Z Clo, ~+* Np v gmger (0, oo g +) (38)

Gy Nprer

X expl— (#t/R)E,,...x,.-.]

however, is not serious (since, in practice, N_; and N are always, in effect, equal (see foot-
note 9); the formal advantages of running-wave coordinates are to some extent offset by
an increased conceptual complexity of the zeroth order wave functions.

8 This feature appears to have first been noted by Yamashita and Kurosawa (3).
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where H,,...x,... is given by (36); i.e., it is the original unperturbed energy
(taken with reference to localized wave-functions) augmented by the polaron-
band energy. The C(a, --- Ny - - -) satisfy the equations

iﬁaC(a,'-'Nk"')= Z (0’,"'Nk"'lVlG'l,"’Nk,"’)
ot o (39)

X expl(it/fi) (Eq, ...npeee — Eor, coonrien)]

where
(0, N+ | V]a, -+ Ny )

: 4
= Zle‘”w—“'ﬂ’l(p, c N\ VP, oo N (40)
PD

and where the sum in (39) excludes the term for which ¢ = ¢’ and N, = N,/
[this term being automatically subtracted out by the inclusion of the polaron-

band energy in the time-dependent exponential of (39)].
It is readily verified that the ¢ dependence of the diagonal matrix elements is
of the form® 3, , so that, in effect, (39) represents only nondiagonal transitions.
The actual computation of the nondiagonal transitions (in the polaron-band
representation) is carried out below (see Section 5). Some of the principal fea-
tures of these transitions may however be noted here. First of all, the initial and
final unperturbed energies no longer coincide exactly. However, primarily be-
cause of the dispersion of vibrational frequencies, as represented by (7), the
unperturbed energy spectrum is continuous, so that energy conservation (in
the sense of time-dependent perturbation theory) is possible for a wide variety
of multiphonon processes. It then follows that transitions of the type
g, + Ng--- > ¢, -+ Ny --- develop uniformly in time, and are therefore
describable in terms of the conventional (time-independent) transition proba-

bilities

W(o, -+ Nx - =g, Ny +++) = in(,,,... Ny ---
A (41)

¢ lVlO", re Nk i ') |2 B(Eu, cesNgooe E,r, ”‘Nk"")

9 As in the case of footnote 7, this statement is strictly true only when N, = N_; . Here,
also, the need for this qualification arises from the use of standing-wave vibration coordi-
nates, and could have been avoided by the use of running-wave coordinates. Actually,
however, it is only required that the average quantum number (the average being taken
over a range Ak small compared to unity but large compared to the spacings of the indi-
vidual modes) be the same for plus and minus k. Since this condition is always obeyed in
practice, the equality N, = N_, may be applied to (30). It then follows that

@, -  Ne--- |V ]p, - Nig--+)
depends only of the difference, p — p’, in site variable; this feature, in turn, leads straight-
forwardly to the above-mentioned factor, 8., .
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where §(F) is the Dirac delta function, and where, from (40) and (18),
(al, oo Ngp oo IVIO': o Np oo = —J Z’ 5,,1,1,4_!6“@—”,]
Pp

X {[1 — % (Ni + 1/2)vs cos® l:k (p + ;) + ﬂ] .
1 1/2 (42)

1
8\2 N + 2 + 2 2 € T
- (ﬁ) g ) wencos [’“ (p + é) + 4]

af®

* ONy Nptl + N 'Yk5Nk',Nki2}-

Due to the requirements of energy conservation, the number of phonon ab-
sorptions will be comparable to that of phonon emissions. It is to be noticed
(from Eq. 42) that each absorption process gives rise to a factor, Ni°, in the
matrix, and hence a factor, Ny , in the transition probability. Thus, for example,
the probability of the process o, -+« Ny, , Niy, Niy, Ney > o -« Ny, — 1,
Ni, — 1, Ni, + 1, Ny, + 1, - -+ is proportional to the factor Ni, , Ni, (1 + Ny,)
(1 + Ny,). It is therefore to be concluded that, at sufficiently low temperatures
(such that (viNx)sv < 1), those transitions which are of lowest order in the
number of photon absorptions will dominate.

In discussing these lowest-order transitions, let us assume that all vibrational
frequencies, w; , differ from zero,” i.e., wy < woin (7). It then follows, by virtue
of energy conservation, that a one-phonon (emissive) transition is forbidden;
the lowest-order transition is a two-phonon process of the type o, - -+ N, , Ny, —
o, Niy, — 1, Ni, + 1, - - +; in conformity with the above remarks, its proba-
bility is proportional to Ny, . Hence, although this type of transition is the domi-
nant one at low temperatures, its probability also vanishes as the temperature
approaches absolute zero.

From this discussion, it is apparent that, in the limit of very low temperatures,
the nondiagonal transitions play a role subordinate to that of the diagonal transi-
tions. In particular, in the domain of temperatures such that the mean life of a
polaron-band state

Toorge =1/ 20 W(a, -+ Np--r >, - N --+) (43)
oo Ny
is large enough for the fulfillment of the inequality
7)o, e K AEg, o yyer. = 2J €50 Ne (44)

10 This assumption means simply that the vibrational spectrum is of optical, rather
than acoustical, character, this being the relevant case for polaron theory.
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a sufficiently accurate description of the physical situation is indeed provided by
the polaron-band approach, according to which the principal characteristics of
the states depend on the diagonal matrix elements, the role of the off-diagonal
elements being limited to determining their lifetimes.

However, as the temperature increases from some low value, at which (44)
is valid, the situation changes. First of all, 7,,...5,... decreases by virtue of the
fact that, the probability for a given transition, o, --- Ny --+ — ¢, --- N/ ---
is proportional to the product of those N, which are involved in absorption, and
these all increase rapidly with temperature. Secondarily, as shown by Egs. (33)
and (37), the bandwidth, AE,,...x,... diminishes with increasing temperature.
Thus a temperature is eventually reached' at which (44) breaks down, i.e., at
which the polaron-bandwidth becomes smaller than the energy uncertainty of
the individual band states. Regarded from another point of view, the lifetime is
less than the time (~h/AE,,...5,...) required for the polaron to move a distance
equal to a lattice spacing. Under such circumstances, the band approach is
clearly inapplicable. The fact is that, at this point, the relative importance of
the diagonal and nondiagonal transitions has been reversed. The appropriate
zeroth-order states, to be used in a perturbation treatment, are the original

localized polaron states, ag,...n;.-.(%, --- qx +++), given by (14), rather than
their plane wave combinations, a,,...x,...(%, - - - ¢ - - - ). The nondiagonal matrix
elements, (p, -+ Ni--- |V |p, -+ Ni/ ---), between these localized states

(which have now to be taken into account before the diagonal elements) give
rise to transitions of the type p, -+ Ny -+ = p £ 1, --- N/ --- in which a
jump to a neighboring site is accompanied by the emission and absorption of
a number of phonons. The computation of the probabilities of these transitions,
W(p, - -+ N, = p’, --+ N --+), by conventional time-dependent perturbation
theory is presented below.

The subsequent inclusion of the diagonal matrix elements in the perturbation
treatment leads to a state of affairs which, although somewhat novel, is actually
not unexpected. Namely, it is found that, by virtue of the eract conservation of
energy which characterized the diagonal transitions, the resultant transition
probabilities are not time-independent—as is the case for the nondiagonal vari-
ety—Dbut increase linearly with time. From this it follows that, if the time in-
terval, over which perturbation theory is valid, were arbitrarily large, the
diagonal transitions would ultimately dominate. Actually, however, perturbation
theory breaks down when the time intervals (over which it is applied) get to be
of the order of the mean lives of the individual (localized) states

oo Npees = 1/NZ1.7’W(p’ e Ng-oo o, - N -0 (45)
k

11 An estimate given below (see Eq. 88 and subsequent text) shows that, for representa-
tive values of the parameters of the theory, this temperature is of the order of (0.5 — 1)
times the Debye ©.
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A proper treatment of the diagonal transitions would then require the introduc-
tion of collision-damping into the theory. A criterion for the diagonal transitions
to be of subsidiary importance may, however, be stated on simple physical
grounds, without recourse to a formal damping theory. It is namely that the
probability for a diagonal transition to occur in a time ~7,,...5,... (as computed
by perturbation theory) must be small compared to unity. Using (29) and (32),
the reader may readily establish' that this criterion is equivalent to

B/ oo D 2J 750 NED), (46)

If, now, it be assumed (as will be verified in Section 5) that 7,,...s,... has a
magnitude comparable to that of the mean life, 7,,...,..., of the polaron-band
states, (46) is seen to be simply the converse of (44) and may thus be considered
as defining a regime complementary to that in which (44) obtains.

III. NONDIAGONAL TRANSITIONS BETWEEN LOCALIZED STATES:
SITE-JUMP PROBABILITIES

After these general orienting remarks, let us proceed to the perturbation cal-
culation of the probabilities of nondiagonal transition between localized states.
Two quantities will be of specifie interest. The first of these is the probability

Wemen(p—p) = 3 Wip - Newoo =g N o) (4D)

for a site-jump with arbitrary final vibrational quantum numbers. The second
is the thermal average of (47), namely,

Welp = 9) = 27 2 Wewe(p =) expl= 2, Bhn(Ne + 19)] - (48)

where 8 = 1/«T (x and T are Boltzmann’s constant and absolute temperature,
respectively) and
Z= 2 expl—2 fo(Ni + 25)]
cosNpooe
is the vibrational partition function.
Standard perturbation theory (4)* yields for the elementary transition proba-
bilities the expression

W(p, -+ Np--+—p, - N -y =20"|(p, - N - |V|p,--- NoI

. -(%mkz fiwe( Ny — Ni)l (49)

12 An explicit expression for the diagonal transition probability, given by Eq. (63), may
be used here.

13 Ag will be seen later, some care is required in going to the limit of infinite ‘“interaction’
time, ¢.
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where

1 — cos (zt/%) _ 2 sin®(xt/2%)
1}2 /ﬁ2 .'1:2 /ﬁ?

is the characteristic energy-resonance function of perturbation theory; it has

the property

Qz) = (50)

lim Q(z) = =htd(x)

i

and may be expressed in the integral form
| P e
o) =L [a [ o ar
(@) 2 J —t’ ¢ 3 dt
so that
] 1 f + zxt
Upon substituting (51) and (18) into (49), one observes that the sum over
the final ocecupation numbers, Ni', required by (47), splits into a product of

sums over the individual multiplicands of 7. These are easily evaluated; the
result is

+
WNk(p —> p,) J }:6,, g f Tk {[1 — % (Nk + 1/2)

2
X i cos’ [k <p + %) + Z]:I

e (N6 4 (Ne+ 1) ) cos [’“ (p + _;) + ﬂ} v
+
_ % e;ilap,zﬁ* f_, exp {Z 21 cos [k (10 + E2> + Z]

I:— (Ne 4+ 138) + (Ny + 14) cos wit’ —I— —sm it :I}dt'

(52)

wherein the contributions of the transitions N — N &= 2 have been neglected;
this neglect is clearly justified in view of the fact that the terms in question are
~1/N* (in contrast to the retained terms, which are ~1/N )M

As before (see footnotes 7 and 9), one takes Ny = N_;, and is thereby free
to replace cos’ [k(p + 14¢) + Y4x] by 4. Thus,

14 For the same reason, the terms in v, coming from the first square-bracket in the first
equality of (52) have also been discarded.
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2 +t
Nk"‘(p _)p,) = I;% élap’,pﬁ f—t exp {Xk:% l:"(Nk -+ }é)
(53)
+ (Nx + 14) cos wit’ + —sm wxl ]} dt’.

Further progress in the evaluation of (53) is possible for an arbitrary variation
of N with k, as long as this variation is well-behaved. However, in practice, the
distribution in N is always thermal, so that we may as well proceed immediately
to the thermal average defined by (48). In the evaluation of this average, it is
expedient to employ the product form of the exponential integrand in (53),
which reads

. 3
{1 + 4%[ (N: + 24) 4+ (N + %) cos awt’ + %Sin wktl]},

It is then apparent that the thermal average over the N, k results in the replace-
ment of each N by its equilibrium value, ("* — 1)7': this replacement (to-
gether with the summation over €) yields

WT(p—>p:[:1)_.£ exp{ Z Tk[ Bﬁ'wk(l—cosmt)

— 4 sin wkt’]} dt’ .

For the further simplification of (54), it is desirable to introduce the trans-
formation

(54)

t = —"— 4+ (55)

which transforms the integrand to

exp {—; 213: I: oth Bﬁwk - ’3—— cos wkr:l}

The 7-integration, which goes from —¢ — ¢6%/2 to +¢ — i8#%/2 is now deformed
into a component along the real axis (from —¢ to +%) and two components
perpendicular to this axis (from —¢ — 48%/2 to —¢, and from ¢ to ¢ — 46%/2).
Combining the latter two into a single integral, one obtains

Wop—p 4 1) = " T [0t + 9:()] (56)

where

+
4.(t) = f_t exp {—; %’\Yff [coth &;k — é— cos wkr]} dr  (57)
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and

Bh/2
9:(t) = Z F f exp —-% I:coth Blor _ csch Bt
@ 0 N 2 2

(58)
X cos [wr(t == ia)]:l} do.

In proceeding further, let us focus attention on the case for which the “inter-
action” time, ¢, is large compared to the vibrational periods, i.e.,

t> 1wy . (59)

It is of specific interest to determine whether Wr(p — p = 1) becomes independ-
ent of ¢ in this limit (as would be required in order that Wr(p — p = 1) be inter-
pretable as a conventional transition probability).

One may begin by considering the behavior of the integrands of 9:(f{) and
92(t) for large r. Inspection of (57) and (58) indicates that this behavior is
conditioned by that of

G(r) =3, 27 csch Bl COS WKT . (60)
r N 2
Asymptotic (large ) expressions for G(7) may be obtained by the method of

steepest descents. The details of the computation will not be given; the result
is

2 2\1/4 2 2
G(r) = 4vi—r (e’ = 1‘;;1 ) esch Bhlan” = o) cos [(w(f - w’)r -+ 1—r], (61)
T 2 4

i.e., G(7) is an oscillatory function whose amplitude diminishes with increasing
7. It will be noticed that the parameter, w;, , which is a measure of the vibrational
dispersion (see Eq. 7), occurs in the denominator of (61). This feature testifies
to the fact that, in order for (61) to be valid, dispersion of vibrational frequencies
is necessary. In the absence of this dispersion (wr = wo, Einstein spectrum),
the expressions on the right-hand side of (60) obviously reduce to simple trig-
onometric functions of 7, and do not go to zero with increasing 7, as indicated
by (61). The presence of vibrational frequency dispersion is thus a vital ingre-
dient of the theory.

From (61) it is clear that, in the limit specified by (59), 95(f) approaches zero
as £ *, and may hence be discarded. On the other hand

lim 9,(¢) = f_-:t exp {—; % [coth @%‘i’ﬁ — O(T—1/2):l} dr (62)

{00

(the notation o(r™?), denoting a term ~7% for large 7), which does not
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approach a finite limit at all, but simply becomes proportional to ¢. Thus (56)
is itself linear in £, and hence cannot represent a transition-probability in the
conventional sense.

Actually, (56) is not the correct expression for the thermal average of the
total nondiagonal transition probability. Referring back to (52), one may ob-
serve that this expression represents the sum of (49) over all final vibrational
quantum numbers, Ni', and thus includes the diagonal transitions, Ny = N/,
as well. These have now to be subtracted from (56).

A simple way of evaluating the diagonal contribution to (56) is to note that
the nondiagonal contributions [see the first equality of (52)] always involve the
time-dependent exponentials, e=***; the elimination of quantities containing
these factors is then equivalent to restrlctlng the Ny sum to N = N . Apply-
ing this recipe to (56) and (57), one immediately finds for the diagonal contribu-
tion,

+i
WP(p—px1) —Jf exp {—Z%coth ﬂﬁ;"}d —2—22L BT (63)
—1 k

where
_ E Y Bhws

is clearly the thermal average of S(--- Ny ---), as defined by (33).
Subtracting the first equality of (63) from (56), one obtains the correct ex-
pression for Wy(p — p £ 1), namely,

I asp [ 27k ﬁﬁ W
Wep—p+1) = ';'*{26— rf {exp [E v csch cos wkT:I - l}d-r (65)
—o0 k

wherein the interaction time, ¢, has finally been permitted to go to infinity; the
fact that no convergence difficulties are thereby oceasioned may be seen from
the form of the integrand at large r, which, by (61), is

N(l/wlrl/g) cos[(wo2 - w12)1/2_r + n/4]

and hence clearly integrable over the infinite domain.

It is of interest to evaluate (65) in the two limits in which the argument of
the exponential term in the integrand is small or large compared to unity. For
fixed values of the parameters, A, M, wp, and w; , which determine the v , these
cases occur at low and high temperatures, respectively.

15 The proportionality of (63) to t was discussed earlier (in the text surrounding Eq. 45)
and needs no further comment.
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Considering first the low-temperature case, one expands the second exponent
as a power-series in the argument, obtaining

1

27?2

2 _ 400 1 T
Wrlp—op=1l)= %26 251[-[_00 ﬂ_]; F(k) cos wr dk
X f f F(k)F(L') cos wer cos wy dk dk’
0 0
1 " / ”
+ @fo F(RF(E (k")

COS wiT COS wyrT COS wirr dk dk’ dk” + - - :|

where

Bhex

F(k) = 2v; esch 5

The integrations over r are readily carried out, leading to the replacement of
the cosines by delta functions; thus

: [; 8(wr + ) + %a(wk - wk,)] dk dk’
(66)

+ #‘[orfo"fo" F(K)F(E)F(K”) (i) [6(wr + wir + wrr) + 0(ewr + wrr — wpr)

+ 6(wr — wp + wwr) + 6(wr — wr — wp)] dk dk’ dk”} 4 .-

From the form of (66) (as exhibited in particular by the curly bracket of the
right-hand side), it is seen that W.(p — p &= 1) may be broken down into a
series of processes in which one, two, three, etc. phonons are either emitted or
absorbed; for each such process, the delta functions of the individual terms in-
corporate the requirement of conservation of energy. For example, the first
term of the second curly bracket, representing a one-phonon process, is actually
zero (since wi # 0, in accordance with footnote [12]); i.e., a single-phonon
process cannot conserve energy. Similarly, the second term represents two-
phonon processes; the delta function, §(wi + wi) and 8(wr — wir) oceurring in
the integrand correspond, respectively, to processes in which both phonons are
emitted (or absorbed) and to those in which one phonon is emitted and the
other absorbed. Since the condition w; + wer = 0 cannot be realized, only the
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latter process actually occurs. Finally, the third term represents three-phonon
processes in which one has

wr &+ wp = wrr = 0,

i.e., one phonon is emitted (absorbed) and two absorbed (emitted).

The above interpretation also accounts for the temperature dependence of
the curly-bracket of (66). For example, in the case of two-phonon processes,
which are subject to the restriction, w; = ws , it is readily verified that the tem-
perature-dependent factor, esch (8fiwr/2) csch (Bfiwr/2), may be replaced by
L[Ne(Nw + 1) + Nuw (N + 1)] (where N here represents the equilibrium
Planck distribution). The first term of the square bracket is clearly the appro-
priate Bose-Einstein population factor for the transition Ny — Ny — 1, Ny —
N -+ 1; the second term plays an analogous role for the reverse transition.
Similarly, for three-phonon processes obeying, e.g., the condition, wi = wpr + wir ,
the temperature-dependent factor

Bhwy Bhoys Bhwpr
3 csch 5 esch 5

may be shown to be equivalent to
HelNe(New + 1) (N + 1) + (Ni + 1)NiwNp].

The individual terms of the square bracket are clearly the correct Bose—Einstein
population factors for the transitions Ny — Ny = 1, Ny — Np F 1, Np» —
N F L.

Let us now consider the behavior of (65) in the high-temperature limit, in
which

csch

L[ RGey dk =1 [ 2y csoh P ap > 1. (67)
T Jo m Jo 2
In this case the integral in (65) may be evaluated by the method of steepest
descents.

We may begin by considering the contributions to the integral from the neigh-
borhood of the point = = 0, for which the exponential factor attains an absolute
maximum. One then has for the argument of the exponential

L4 L4 2 T
1[ F(k) cos wer dk = - f P(k) dk — ’_f F(h)wi db.  (68)
T Jo T Jo 27 Jo

It is now to be observed that the second term of (68) will cause the exponential
to drop off sharply from its maximum value. In particular, it is seen that the
principal contribution to the integral will come from the region in which

. % (2% fo " () wd dk)—m. (69)
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Noting that, aceording to (7),

2 2 N 2 N 2 2
w +oo” S Sw — w

so that
1 f F(k)wl dk > & _“"f F(k) dk,

one may conclude that, in the domain specified by (69),

wy + “’2 - 1 "
wr X (m> /(_2;>f0 F(k) dk <1 (70)

the last inequality holding by virtue of (67). It then follows that the higher
order terms of (68), resulting from the expansion of cos wxr, may be ignored,
so that the substitution of (68) into (65) yields

J2 . O 1/2
(0) —_ 251‘
(popx1) T+ -
= 2‘kak csch dk
T Jo 2

- exp [_’1‘_ fo 2v; esch l—’?‘ dk],

where the superscript “®”” on the left-hand side indicates that (71) represents
only the contribution in the neighborhood of + = 0.

Let us now consider the contributions to W(p — p = 1) from the other
points, 7; # 0, which minimize the integrand of (65). It is expedient to write
the argument of the exponential term of that integrand in the form

(71)

2v csch Bliy 1 f H(E) cos wnr dk
xJo
where
_ A
T = SMeih (72)
and where
o esch Bﬁ;’”
H{E) = -13—-—- (1 — cos k) (73)
@ Bhwo
esch 5

is a function of the order of unity (as long as w; is not too small compared to wy



STUDIES OF POLARON MOTION 363

and Bhiwy/2 = Fhwo/2kT not too large). The condition (67) is then essentially
equivalent to

ﬂﬁwo

2v esch > 1. (74)

It is now physically reasonable that, if the vibration spectrum (as given by
Eq. 7) exhibits sufficient dispersion (e.g., if w1 ~ wo), the numerical values of
the quantity

! f H(k) cos wr; dk
mJo
at the maximal points, 7;, will be smaller than the absolute maximum
L[ EG) ak
T Jo

attained at + = 0, by amounts of the order of unity. If this be granted, it then
follows, by virtue of (74), that the values of the maxima of the integrand of
(65) at the points r; are negligibly small compared to the principal one at = =
0. The contributions from the neighborhoods of 7; # 0 may thus forthwith be
neglected, with the result that the right-hand side of (71) is a sufficiently good
approximation to the total Wo(p — p £ 1).

As a check of the above qualitative argument, a calculation has been carried
out in Appendix I for the case of a narrow frequency band (w; < wo). It is found
that the contributions associated with the subsidiary maxima at =; # 0 are
negligible provided that (see Eq. I-15)

2 4
T W

86004

If, now, for the purpose of order-of-magnitude comparison (75) be extrapolated
to the region of wy ~ wo, it clearly becomes equivalent to (74). This equivalence,
in the opinion of the present author, constitutes adequate confirmation of the
above qualitative argument for the neglect of the contributions of the subsidiary
maxima, and for the consequent applicability of (71) to the total Wr(p—p £ 1).

Of course, in the case that the frequency spectrum is actually of narrow-band
character, the more stringent condition (75) should be used in place of (74).
A significant consequence is that in the limiting case of an Einstein spectrum
(w1 = 0, wx = wg), in which (75) cannot be fulfilled, the approximation repre-
sented by (71) breaks down altogether. This breakdown can be seen more di-
rectly by setting wr = «q in (65), whence one obtains upon integrating over k,

WT(P_>p +1)

2 +o
= ‘7]{2 expl — 28] f {exp [27 esch '[%’ cos (JJ()T] - 1} dt (76)

2y csch 'BﬁTwo > 1. (75)
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which clearly diverges, since the integrand is now a positive periodic function
of 7 [with a period of (27/w)].
In proceeding further, it is convenient to write (71) in the alternate form

J? 2 2
Welp—pEl) =5 N
T f Qv csch 2 dk
0 2 (77

X exp {r“l f 2v,, tanh (Bhwr/4) dk}
0

where the superscript (0) has now been dropped, in accordance with the above
discussion.

Considerable insight into the physical significance of the various factors in
(77) is gained by considering the “classical” limit, for which

Bhiwr = fon/ kT < 1. (78)

In this limit the hyperbolic tangent gets replaced by its argument; then, upon
eliminating vy, by use of its definition (19), one has
(o) J2 T 1/2 BT
Wr (P—>p:|:1) =—ﬁ—2|:mj| [4 (79)

where
E,=x" f (vihon/2) dk = " f (A*/AM (1 — cos k) dk.  (80)
0 0

It will be observed that the temperature dependence of (79) is of the type
characteristic of an activation process, with E, playing the role of an activation
energy. It turns out, in fact, that, in the approximation in which the vibrational
motion is treated classically, (79) may be obtained by a simple ‘“occurrence-
probability’’ approach. This approach is presented in Appendix II. It is shown
therein that site jumps between neighboring sites (say, » and p + 1) occur
principally when the values of the unperturbed “electronic” energies, — Az,
and —Az,41 , coincide. Specifically, it is found that (79) may be written in the
form

+c0
WPp—px1) = [ PRI —p+1)d, (81)

where (see II 18)

M 1/2 _ 2 A - 1/2 _
(¢) _ Mv2/4cT a2 Ey/xT
P (o) dv, = <4m<T> ¢ oo, (4KTEa ¢ (82)

is the probability per unit time for the occurrence of a coincidence event, x, =
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Zpi1, in which the “relative” velocity, v, = v, — V41 = (d/dt) (2, — Tp41) lies
in a specified differential range, and where (see I1 9),
2xJ* 1

R Al (83)

Wip—p+1) =
is the probability that, in such an event, a site-jump takes place."®
One may, in addition, show that the activation energy, E,, is the minimum
potential energy (in excess of the absolute minimum, — E;) of a configuration
for which z, = z,41 . It should, in particular, be emphasized that E, is substan-
tially smaller than the binding energy of the polaron,

1 f 2ka (84)

(see Eq. 13). This inequality means simply that the energy necessary to estab-
lish a “neighbor” coincidence must always be less than that required for the
thermal dissociation of the polaron.

Having discussed the behavior of Wr(p — p =+ 1) in the classical limit, let
us utilize the general quantal expression (77) to estimate the ‘“transition” tem-
perature, T, at which the mean life of the localized state,

7_1_ =Wep—p+1) +Walp—op—1) =2Welp—p+1) (85)
o, T

is equal to 1/% times the mean polaron bandwidth
AEr = 2J 7, (86)

From the discussion of Eqgs. (44)—(46), T, is to be considered as defining the
boundary between the two regions of high and low temperature, in which the
random site-jump and band descriptions of polaron motion are respectively valid.
Equating (85) to 1/# times (86), and employing (71) and (64), one obtains

Al 1 [7 2 o Bhep o, [
7 [Zré_[o 2'Yk0)lc CSCh Tdk]

= exp {}r fo Y& |:2 esch @zﬂ — coth A i;wa dk}.

For an order of magnitude estimate of T, it will be sufficient to consider the
case of a narrow-band vibrational spectrum (in which w; =2 ). Then, upon
taking logarithms on both sides, one has

1/2
esch B0 _ ot Bn _ - log [ﬁ—"’“ (V——_cs"h Bifcn/ 2) ] (38)

(87)

J T

16 The fact that, when (82) and (83) are inserted into (81), the resultant expression re-
duces to (79) may readily be verified.
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which constitutes a transcendental equation for 8, = 1/«7T;. Choosing for v a
representative value' of 10, one finds that, for %w/J contained between the
extremes of units and 100, 7', lies in the range 0.4-0.55 times the Debye 6.

It may be remarked that, in view of the exponential temperature dependence
of both AEr and %/7,,r, the transition region, within which neither the site-
jump or band approaches are valid, is quite small, and may in practice be ig-
nored.

It may also be pointed out here, that, in the neighborhood of the transition
temperature, and with v large compared to unity, as is the case at hand, in-
equality (67) (or (74)) holds; it then follows that (77), rather than (66), is
the appropriate formula to use for Ws(p — p £ 1) in the high-temperature
domain in which the site-jump approach applies.

IV. NONDIAGONAL TRANSITIONS BETWEEN POLARON-BAND
STATES: MEAN LIFETIMES

In order to round out the theory, it is desirable to obtain an expression for
the mean probability per unit time, Wr(s — ¢’), that a nondiagonal transition
between polaron-band states ¢ and ¢’ takes place. Due to limitations of space,
the derivation of this expression will not be given in detail; a brief outline fol-
lows.

One starts with (41), which, with the aid of (36), (40) and the Fourier inte-
gral expression for the delta function, may be written as

W, «++ Ny o —a, e N -+-)

_ ]%22 PO (0 Ny e o, N o) (89)
2
where
W(p,q - Ne--- =04, - N/ +-+)
1 + i(Acoa )t /R Y ’
==l ¢ exp ;wt (N’ — Np) (90)
X (p,’ P Nk, “ee [le’ . e Nlc ...)
(g, N |V]g- Ny )dt
and
A€y = —2J[cos o € 5 M) — gog g e 50 NEI], (91)

Substituting (18) into (90), one carries out the sum over N’ and the thermal
average over N; in essentially’® the same way as was done for the computation

17 With this value, the activation energy E; ~ v (fwo/2) is five times the Debye energy,
hwo ; taking the latter to be, e.g., 0.04 ev, one has E; = 0.2 ev. The corresponding value of
the polaron binding energy, E: , is = 0.4 ev. These estimates are suggested by experiments
on hole conduction in transition metal oxides [see Heikes and Johnston (5)] to which the
present theory may find application.

18 Some difficulties arise in principal because of the dependence of the N (via the fac-
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of Wz(p — p'). The result is
WT(O' e 0")

+Ma 2 — o , N

+w . ? 4
% f ez(Aem‘r Y exp {Z 2E'Yk csch @ CO8 wkt, CcOoS kM} dt’)
— k

where, in accordance with footnote 18, the N’ in (91) are to be replaced” by
the N k-

One may now treat (92) in a manner analogous to (65) to obtain formulae
for the two cases in which X (2y:/N) esch (Bfiwr/2) issmall or large compared
to unity. In the first case, one obtains an expression analogous to (66), which
incorporates the added feature of wave-vector conservation, via the occurrence
of Kronecker-delta factors of the form 8,4 1ksk-2k ... . This case will not be dis-
cussed further, since it is most likely that, in the domain in which it is valid,
other scattering mechanisms, such as impurity scattering, would be dominant.

In the alternate case, defined by inequality (67), the method of steepest
descents is applicable. One finds here that the term in (92) for which M = 0
and ¢ = 1 gives by far the largest contribution. Ignoring the other terms, and
replacing exp [¢(Aes)t'/%] by unity, in accordance with footnote 19, one then
sees that, apart from the factor, 2/N, the expression for Wr(¢ — ¢’) is identical
with that for Wr(p — '), i.e.,”

2J2 sy or 1/2

Wele >6') = e .
N# -1 f 2 Bl
T . 2vwy csch 5 dk (93)
X exp {r_l f 2y, esch M;" dk }
L)

tor expl—S8(--- Ny --+)]). However, as can be inferred by examination of the higher
order terms in (66), or in fact verified by a computation of

<2k(ANk)2>Av EE’°(EN};’ (Nk - Nk)ZW(o', - Nlc e —» o_l’ . Nk' . ))T/
Sy W, -+ Npo-- >a', - Now oo Dy

the average number of phonon emissions and absorptions accompanying a transition is
finite [in fact, of the order of v csch (8hwo/2)] rather than, say, ~N. For such transitions,
the difference between S(--- Ny --+-)and S(--- N3 ---)is ~1/N, and hence to be ignored.

1 Actually, in view of the smallness (~107%) of A, in comparison with hw; , one may,
for all practical purposes, ignore the factor exp{iAe,t/h} in (92) altogether.

20 Tt js of interest to note, in passing, that (93) does not depend on either the initial or
final electron wave vectors, ¢ and o’. This feature is analogous to the lack of occurrence in
(93) (or 77) of energy delta functions, both features being characteristic of multi-phonon
processes.
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The mean lifetime of a polaron-band state, 7,,r, is given by summing (93)
over all ¢/, i.e.,

1 ’
— =2 Wilo—=d') = 2Wal(p =) = 1/rpr (94)

¢, T a’ .
where 1/7,,r is the total site-jump probability, given by (85). Equation (94)
exhibits the fact that the lifetimes of the localized states and the polaron-band
states are equal.

V. TRANSPORT PHENOMENA: POLARON DIFFUSIVITY

The stage has now been reached where applications to transport properties
may be considered. In what follows, attention will be focussed on the diffusivity,
D, which, for the case of a nondegenerate polaron gas, is related to the mobility,
b, through the Einstein relation

b==. (95)

Two cases have to be considered:

Case I. T > T, : Here, as discussed above, polaron motion takes place via a
succession of random site-jumps, in each of which the electron hops to a neighbor
site with probability, Wr(p — p & 1). For the one-dimensional model under
consideration, the diffusivity is easily seen to be

D=adWip—p=x1) (96)

where a is the lattice spacing. For illustrative purposes, let us consider the nar-
row-band approximation of wr = we. One then hasg, from (77) and (96)

J? o vz Bicoo
D=wda=|—— exp {-—27 tanh ——~}
a 2v esch @) : 4 (97)
2
The “relative” diffusivity
D = D/wd (98)

is plotted in Fig. 1 as a function of Bhiws = «T for representative values of the
model parameters [J = fiwo, v = 10 (see footnote 17)]. Also, shown (as the
dotted curve) is the classical approximation, obtained by using (79) in place of
(77).

Case II. T < T, : Here, the band approach applies, and one has the conven-
tional formula™ (adapted to a one-dimensional model)

D = (vf,r‘fa, T)Av

21 In the ease at hand, the independence of Wy (s — ¢’) with respect to ¢’, permits iden-
tification of the momentum-transfer rate with the total collision probability.
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1073

Relative ODiffusivity
3
H
i

F1c. 1. Polaron diffusivity versus temperature. The solid curves labelled “D,,’ and

“Dpana’’ Tepresent the contribution arising from random site jumps and polaron-band
motion, respectively. The dashed curve gives the classical approximation to Dae .

where, from (36),

_a i) __2J . —S
Vor =z oz Bap = Sosinoe (99)

is the expectation velocity in a state of wave-number o, and where the average
in (98) is to be taken over the distribution in ¢. In view of the extreme smallness
of the bandwidth (~107° %wy < «T), one may assume the o’s to be equally
populated, so that

D = 1r_1f v pTer do
0
which, with (99) and (94), becomes

2 2
D=2 dr,re ™" (100)
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Using (85), (71), and (64) (in the narrow-band approximation), one then has
for the relative diffusivity

D ar 28
3)=w—oc—té=ﬁ2—‘%—2wo‘rp're T
v csch @’ " (101)
=2 —= exp{—Z'y csch @’}
T 2

This expression is also plotted in Fig. 1 for the same numerical values of the
model-parameters as (97) (i.e., J = fiwy, v = 10). As is to be expected, (101)
and (97) attain comparable numerical values in the neighborhood of the transi-
tion temperature, 7'; .

VI. LIMITS OF APPLICABILITY OF THE PERTURBATION TREATMENT

It is now of interest to discuss the limitations of the perturbation approach,
upon which the treatment of the present paper is based. Specifically, one wants
an estimate of the upper limit of the electronic bandwidth parameter, Jmax , for
which perturbation theory is valid. Two extreme ecases will here be considered:
(a) random site-jumps in the classical limit, «T > fiwy, and (b) the polaron-
band at the absolute zero of temperature.

Case (a): For this case, the limitations of the perturbation approach are
treated in Appendix III. It is found [see (III 7) and subsequent discussion],
that

Tmax ~ (AF | vpi1 — v, |/27)" (102)
where v, 41 — v, = (d/dt) (xp41 — T,) is the velocity with which a crossing point
Zp41 = Zp is approached; in line with the discussion of Eqgs. (81)—(83) (as well

as with Appendix IT), such crossing (or coincidence) events are crucially signifi-
cant for the occurrence of site-jumps. Taking | v — v, | ~ (2«T/xM)"”, one

finds
1/2 1/4
e ()
2 =M

which, in the narrow-band case of wi = wy, may be transformed via (80) to

read
1/4 1/2
max ~ B3/ (?ﬁz) <fi—°’°> ) (103)

™ ™

When J is larger than (103), the adiabatic approach (also discussed in Ap-
pendix ITI) becomes valid. In particular, Wr(p — p -+ 1) is obtained by inte-
grating the coincidence probability (82), over all positive values of v, = vy —
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vy . The result of such an integration is

T\ 4 v
Wip—p+1) = <7T"‘ZT4) o 4_—K;E e Pl T

which, again in the narrow-band limit, becomes
Welp—p+1) = ‘;—;e"E"’“T. (104)

Case (b): For the polaron-band at absolute zero, the discussion will be based
upon preliminary computations which have been carried out for the simplest
possible case, namely, a linear chain consisting of only two molecular sites.
While this case represents a considerable oversimplification of the multi-site
chain, it is, in the opinion of the present author, still relevant.”” The basic equa-
tions are (with neglect of intermolecular coupling, i.e., w; = 0)

E # o 3 lM 2( 2 2) A (
+.2_M 530_124-%22 _i wo (21 +22) + Axy |aa(z, 22)

= —Ja2($1 ’ .’132) ’

2 2 2
[E’ + 2%_[ (_6_ + i) - %Mw(f(xf + xzz) + sz:l az(xl ,xz)

o Ox?

(105)

= —Jag(xl , x2) .

Two limiting methods are available for the treatment of (105); the perturba-
tion and the adiabatic approaches, valid in the extremes of small and large J,
respectively. These will now be developed; comparison of the results will then
provide an estimate for Jmax .

In the perturbation approach, one takes odd and even combinations of the
zeroth order “wave functions”

1M
o = exp{ 5 hwo[ 1 — A/Mw) + xzzl}; as’ =0,

leo
2

(2) (2)

a’ =0; a =eXp{ [ + (22 — A/Mw')?;.

These combinations are

afi) = exp { 5 ﬂlﬁwo (o — A/Mw02)2 + 7522]},

(106)
aéi)

+ exp{ LMoo (g, — 4/ M)+ 1}

22 In particular, preliminary calculations indicate the existence of a rather good possi-
bility that the adiabatic treatment of the two-site case, given below, will be capable of
generalization to the multi-site case of physical interest.
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where the superscript (=) designates the even and odd combinations, respec-
tively. The corresponding eigenvalues, E®, of (105) are obtained by the stand-
ard secular calculations, and are

2
E® = — zljt,& + fiwy F AE (107)
where®
AE = J exp { —A*/2M o’ i) . (108)

In the adiabatic approach, one assumes a wave function of the form

a1($1,x2) = X(x1,$2)01(901;2?2)’

(109)
as(21,%2) = x(@1,%0)c2(1,3),
where the ¢’s are solutions of the ‘“‘electronic” equations
(6 + Az = —Jeg,
(110)

i

(8 + A.’,UQ)CQ

the eigenvalue &(zi,2:) constituting the “electronic” energy. As is known,
&(z1,73) also plays the role of a potential energy term in the equation for the
“vibrational” wave function, x{x;,%2), which reads

—JCl,

E+ o 8 18 Ly ) — elanm) | xlanm) = 0. (111)
+2Z—W(—9}?+@_Q wo (X + 22) — Z1,T2 x\Z1,%2) = V.

The eigenvalues of (110) have already been obtained in the latter part of
Appendix IT; of these, only the lowest

_A(xl + 272) _ A2($1 -
2 4

8(»—)($1,$2) =

z )2 1/2

2+ J2:| (112)
is of interest in the adiabatic approximation.

Upon substituting (112) into (111), one observes that the transformation

X_x1+$2’
2 (113)

T =2 —

leads to & product solution of the form x(z1,2:) = ¢(X)¢(x). The equation for
¢(X) is that of a simple harmonic oscillator in the presence of a constant force,

23 Apart from a numerical factor of 2, (108) is just what would be obtained from (28)
and (27) in the narrow-band limit of w; = wp . The absence of the factor of 2 in (108) is
due to the special feature of a two-site system, in which the number of nearest neighbors
is one, rather than two.
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A; apart from the fact that its lowest eigenvalue is —(A*/4Mw’) + (fiwe/2),
it is of no further interest.
The equation for ¢(z) is

A Rey (B8 u g Az\* | M B
I:E‘i‘%?““g‘i‘z——#&;—éwoitﬁ‘ 9 +J np(x)—O (114)
where

p= M2 (115)
The potential energy for this problem, namely

2 1/2
V(z) = ;wo2x2 — {(111218) + J2}

possesses two minima, which, for J small compared to A%/2Mw, (small-polaron
condition), are approximately located at x = A4 /2uw,’, and have the common
value

A2

Viin &2 — —.
" Suwg?

These two minima are separated by a barrier whose height (relative to the
minima) is A*/8pwy’ — J = A*/8uws. The potential is thus quite similar to
that encountered in the theory of the inversion spectrum of the ammonia mole-
cule. As in that case, the condition, fiwy < barrier height, (y 3> 1) permits solv-
ing for the energy splitting of the two lowest states by WKB tunnelling tech-
niques. Omitting the detailed computations, one finds

B 1 A? ﬁwo:r/z A2
AE - J |:1_r 2Mw02 F exp 2Mwo2ﬁw0
J J? A?
"0\ Sn( A2 ) T Tran( A% 20 ) 08 Mw&]}'

It will now be noticed that, apart from the logarithmic term, (116) and (108)
are of comparable magnitude when

T~ Tmax = (A/2Me®) ™ (i) . (117)

(116)

From this comparison it may be inferred that Jmax , as defined by (117), gives
the upper limit of applicability of perturbation theory.
Considering, now, the logarithmic term, one sees that, since, for J ~ Jo,

2 2 172
A < 4 ) >1

Mo — \ Mgt

deviations between (112) and (108) occur at J values somewhat smaller than
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the right-hand side of (117). Strictly speaking, then, J..x should be redefined
as

Jmax — (A2/2Mw02)1/2(ﬁ0.‘0)llz/log(A2/Mw()2ﬁw0)1/2.

However, in view of the circumstance that the logarithm is numerically com-
parable to unity, this last expression is essentially equivalent to (117).

Let us note, in passing, that (117) may be written in a form analogous to the
high-temperature limit, namely,

Jmax = (Aol j20) 2 (118)
where
pf0 = (rA/Mwy) = (wA/2uw). (119)

It may now be noted, from (114) and subsequent text, that (119) is of the same
order as the “imaginary’’ velocity

(2 A’ ) _ A
p8uwi?)  2uwo’

which the system possesses in the neighborhood of the barrier maximum at
z = 0, l.e., in the neighborhood of the crossing point of the unperturbed (J = 0)
potential energy curves. In the high-temperature case, this point is classically
accessible, so that, in the general formula, », = (2Eyin/u), the actual kinetic
energy ~ T is to be used. In the case of the ground state, the crossing point is
classically inaccessible; from the analogy to conventional barrier problems, one
takes Ekin ~ A2/8yw02.

It is now of interest to obtain numerical estimates for Jm.x . In terms of the
numbers given in footnote 9, these estimates are

TEE), = 0.67hwo(T/0)" = 0.027(T/0)" ev
and
I =2 3wy = 0.12 ev

for the cases of high-temperature site-jumps and ground-state bandwidths, re-
spectively. Selecting for 7'/0 a representative value of 3 (while this choice pushes
(108) to the limit of its domain of applicability, the formula should still be serv-
iceable for order-of-magnitude considerations), one has J&x ~ 0.035 ev ; both
this value and that of 0.12 ev, cited for the ground-state limit, J% , represent
rather small electronic bandwidths, indeed. It is thus apparent that the perturba-
tion approach covers only part of the total region (J < A*/2Mw," ~ 0.4 ev) of
significance for the small polaron; for the remainder of this region, the adiabatic,
rather than the perturbation, approach is to be employed.



STUDIES OF POLARON MOTION 375

Some orienting calculations, based on the adiabatic approach, have been per-
formed for the energy levels of the ground-state polaron band. On the basis of
these calculations, it appears likely that the levels in question are given by an
expression of the form of (26), in which the coefficient, 2J¢*, gets replaced by
twice the right-hand side of (116).

In the other extreme of high-temperature site-jumps, it appears that the
adiabatic expression (104) will hold, subject to the stipulation that formula (80)
for the activation energy will have to be modified to take account of the progres-
sive lowering of the potential barrier” with increasing J.

VII. COMPARISON WITH OTHER SMALL POLARON TREATMENTS

The discussion given here will deal exclusively” with the paper of Y and K
£3). These authors were primarily concerned with computing the probabilities
of thermally activated site-jumps. Using a method originally developed for the
treatment of optical transitions in F-centers (which is substantially equivalent
to that of the present paper), but also restricting themselves to the Kinstein
approximation (w. = wy), they obtain an expression for the site-jump probabil-
ity, which reads (see their Eq. 43)

27 9 1 teo 1/2
W = = |M\ exp{—‘S(Zn + 1)} 2_1%[_@ exp{2Sin(n + 1)] (120)
- cos wt} dt

where n = [#® — 1], M is the electronic-overlap. parameter (= J), and

where S apparently®® corresponds to twice the vibrational overlap parameter,
v = A’/2Mw,’, employed in the present paper. Noting that 2n + 1 = coth
(Bfiwo/2), and [n(n 4+ 1)]"* = 14 csch (Bhwo/2), one sees that, apart from the
term, —1, in the integrand of (76) (this term being absent from Y and K’s
formula, because of their neglect to subtract the diagonal transitions from the
total transition probability expression), (120) is completely equivalent® to (76),
and is hence also infinite. The finite result given by Y and K, namely

W= 2T M exp (—S(2n + D) o Lf2S[ate + DI (120)

24 It may be remarked that barrier lowering also results in an enhancement of quantal
barrier penetration; this feature is responsible for the appearance of the positive terms,
proportional to J2, in the exponent of (116).

25 The treatment of Tjablikov, cited in Ref. 2 (as well as that of a recent paper by Sewell)
is limited to the consideration of the polaron-band states (Tjablikov, in particular, {0 the
ground state band at absolute zero). In neither of these papers, is any attempt made to
include the non-diagonal transitions within the framework of the theory.

26 The reason for this uncertainty will become evident shortly.

27 Note that, in (76), Sy is to be equated to v coth(Bhws/2).



376 HOLSTEIN

[where Iy(x) is the modified Bessel function of the first kind] was apparently
obtained by replacing the infinite integral of (120) by one going from zero to
2.

It should here be remarked that, despite the above-discussed error in its
derivation, Y and K’s formula (121) is still applicable to the case of a narrow-
band vibrational spectrum in the region defined by inequality (75). As dis-
cussed above, in connection with the derivation of (77), a consequence of this
inequality is that the maximum of the integrand of (65) at ¢t = 0 is so large,
relative to the other maxima, that in effect the integration may be restricted to
the interval —x £ ¢t £ + 7, thereby coinciding with Y and K’s procedure.
[The actual equivalence of (121) to (77) is readily demonstrated by inserting
for Iy(z) the standard asymptotic expression, ¢/ (2mrz)'* )

On the other hand, in the domain in which the converse of (75) holds (either
at low temperatures or for small values of v), (121) is clearly incorrect. In this
region, as shown by equation (66) and subsequent discussion, the site-jump
probability is expressed as a sum of terms each representing site-jumps in which
two, three, etc., phonons are emitted or absorbed, and hence possessing both
the temperature variation and dependence on vibrational frequency spectrum”
characteristic of such processes. These features are not exhibited by (121).

Y and K have also obtained an expression analogous to (36) for the energy
bands of the polaron-bands (see their Eq. 26 and its generalization, stated in
the subsequent paragraph)

E = Eo + 2M{cos(k.a) + cos(k,a) + cos(k.a)le” ®* (122)

where M and S have the same significance as in (120). (Also, the band energy
is here a function of three wave numbers, since Y and K’s treatment is three-
dimensional.) If, now, one introduces Y and K’s symbols into Eq. (36) of the
present paper and goes over to the narrow-band approximation in which wi — we
and N, — n, one has

E, ... = By + Zk (n + 18)hwy — 2J cos o ¢ "TPS (123)

which differs from (122) by a factor of 14 in the exponent of the last term.
This numerical difference is far from trivial; in particular, from (122) Y and
K apparently concluded that band-type motion of the polaron could never be
of any practical significance (irrespective of temperature), and that thermally-
induced, site-jump transport would always be dominant.
Due to the circumstance that Y and X gave only a brief outline of their cal-

28 The dependence of (66) in the vibrational frequency spectrum is contained implicitly
in the frequency delta functions. Integration over any one of the k’s contained in a given
delta function results in its replacement by a typical ‘“frequency-density’’ factor, of the
form, 3k /0wy, .
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culation, the present author has not succeeded in tracking down the discrepancy.
However, the fact that the exponent of (122) is too large by a factor of two may
be established by the following considerations. .

If one takes the special case of absolute zero, at which the vibrational quantum
numbers are all zero, one may establish a simple correspondence between the
exponents occurring in (122) and the site-jump-probability expression, (120).
Disregarding the question of the actual divergence of (120), which was dis-
cussed earlier, one sees that, for n = 0, the exponents are apparently identical.
It is now to be realized that, in both cases, the exponential factor enters in as
part of the matrix element for the transition p — p + 1. This matrix element,
given by the product of the right-hand-side of Y and K’s Eq. (27) and the vi-
brational overlap integral immediately following [or, in the present paper by
(17), enters lnearly into the band-energy (123)], but quedratically into the
random-jump probability (120) (as is evidenced by the M dependence of these
two expressions). It therefore follows that the exponent occurring in (122) should
actually be half that contained in (120).

APPENDIX 1

In this appendix, the maxima of the integrand of the text Eq. (65) will be
computed for the “narrow-band” case, in which

w K wy. (I-1)
In this case, (7) may be approximated by
_ wr = wo + wp coS k (I-2)
where
W = w1’/2w0 (I-3)

is the half-width of the band.
Subject to (I-1), one may also introduce the approximations

wo S =21 — 3(wp/wg) cos k, (I-4a)
sch ZL,} Zw,} (1 — (Bhwy) < ) (cos k) coth ﬂi‘%) (I-4b)

so that the quantity H(k), defined by the text equation (73), becomes

H(k) =~ ( ?:ob cOoS k) (1 — cosk) (1 — (Bhwy) ( )cos k eoth Bﬁ;"). (I-5)

0

Neglecting terms of quadratic or higher order in wy/wy , one may further approxi-
mate H(k) by
H(k)=1—(1+a)cosk + acos’k (1-6)
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where

(3 4 Bhes B}“’"’ coth ﬁh“"’) @ (1.7)

2 wo

Using (I-6), one then has for the argument of the exponential term in the inte-
grand of (65)

K(r) = 2y esch === ﬁﬁw“ 1 f H(k) cos wr dk

2v csch Bﬁwo

lf [1 — (14 a)cosk + acos’k]

-[cos wyr cos(wor cos k) — sin wor sin (wyr cos k)1 dk  (I-8)

2v esch @ {COS woT |:<1 + g) Jolawr) — ng(wa):I

4 sin wer[(1 4 a)J1(wa)]}

where the J’s are Bessel functions.
The absolute maximum of X(7) is attained at + = 0, and is

_ ﬁﬁwo a
%(0) = 2v csch 5 <1 + Q)'

For the computation of the other maxima, it is expedient to rewrite (I-8) in
the form

x(r) = x(0) {[Jo (Z—Zx) + J2 (wo x>:|2

+a) 12 (1-9)
+ () 74 (Re)] ot~ oo
where
(1 + a)J 1 (wpr)
o(7) = arc tan
a a (1I-10)
<1 + 2) Jo(wa) - éJ2(wa)
and
T = wor (I-11)

In the case of those maximal points for which (ws/we)x; < 1, the Bessel functions
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may be expanded, yielding, to the lowest order in wy/wg,

x(r) = x(0) (1 - ‘é’iﬁ2> cos [z — o(r)], (I-12)

(1) = wr/2w. (I-13)

It is now to be noted, that, since ¢(7) is small, the maximal points, z;, may to
a sufficiently good approximation, be set equal to 2zn; . One then has

%i(7) = x(0) [1 — (’;2:)’;2) n] (I-14)

From (I-14), it is then seen that, in order for the contributions of these maxima
to (65) to be negligible, it is required that

2 2
T Wy

%(0) Dot >1

or, in view of (I-3), and of the definition of &(0) [given between (I-8) and
(I-9)]

h Bheo o’

5 Bag 1. (1-15)

2v csce
Turning now briefly to the other maxima, for which (wy/wo)z; > 1, one sees
that their magnitudes are essentially given by the curly bracket of (I-9). In
particular, if this bracket does not approach unity in the domain (w/wp)x; > 1,
the contributions to (65) will be negligible. The fact that this is actually the
case may be established by numerical analysis of the curly bracket. However,
in view of the above results, and of the arguments already presented in the text
subsequent to Eq. (74), this analysis will not be carried out here.

APPENDIX II

In this appendix, the classical oceurrence-probability derivation of the text
Eq. (79) for Wr(p — p +1) will be presented. The basis of the treatment is
the set of equations

it %’ = —Az,($)an — J(@npr + tny) (I1-1)

which is obtained from the text set (5) by omitting the vibrational Hamil-
tonian. The z,(t) are to be considered as given functions of time, determined
by classical trajectories.” It is assumed that, at some initial time, ¢; , the electron

2 In the zeroth approximation, in which the electron remains localized on a given pth

side, the time dependence of x,(f) is determined by the Hamiltonian, H® = H; — Az,
(Hy representing the purely vibrational Hamiltonian of the host crystal). When, in the
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is in a definite (pth) site, so that
an(ti) = 8np . (I1-2)

The application of first-order perturbation theory then gives, say, for a,..(2),
at a time ¢ > t;

) = = Fop () [ 2putt) dt’}

f: exp {% ft [2,(t") — 2o (t7)] dt”} ar

%

(I1-3)

where the lower limit of the “phase integrals,” occurring in the exponents of
(II-3), is to be specified later.

The procedure to be used in the evaluation of the integral on the right-hand
side of (1I-3) is based on the fact that, over the region of interest for the present
classical treatment, in which the inequalities

A /My > fiw, (11-4)
«T > how (11-5)

obtain, the relative variation of £, — #,.1 in a time of the order of an instan-
taneous “period,” fi/A(x, — %p41), [i.€., the quantity (£/A |z, — x4 | ) (8/01)
log(x, — Zp41)], is small, except at a “coincidence’’ point, ¢, [at which z,41(t,) =
2,(t.)].¥ It then follows that the oscillations in the exponential integrand will
interfere destructively, except at the coincidence points, {., at which the phase
of the exponential is momentarily stationary.

Let us assume that such a point of stationary phase, i. , occurs in the interval
between t; and ¢. Let us further introduce the assumption® that, in the neighbor-
hood of ¢,, the time variation of z,(t) — z,+1(f) may be considered linear, so
that

xp(t) - xp+1(t) = (vp - vp+l)(t - tc) (11'6)

where the velocities v,41 and v, are evaluated at ¢, .

next approximation, site jumps of the type p — p 4 1 are computed, the question arises
as to whether H® or H{»*D (or some mixture thereof) should be used in determining the
z,(t). It turns out, however, that, as will be seen below, within the domain of validity of
the classical calculation, this ambiguity does not cause any trouble.

3 That such a situation prevails when (II-4) and (II-5) are satisfied, can be seen by
noting that | z, — Zp41 [2 T/ Mw?)V? and | (d/dt) log(z, — Zps1) | ~ we s0 that

[R/(A | 2p — 2p4a | )] ] 8/08) log(zp — Zps1) | K 1.

31 The domain of validity of this assumption will be discussed later.
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Inserting (I1-6) into (II-3), and choosing the lower limit of the phase inte-
grals to be ¢, , one has

J [ N g
ap(t) = —=% exp {zAft 2, (1) dt }

(2
14
[ e
H

i

(11-7)

{% [A(vp - vp-{-l)/ﬁ](t, - tc)2} dt.

It will now be noticed that important contributions to the integral occur over
a time interval,

_ vz e _ 1 Fiwp vz
At ~ [fi/A(vy, — vpp1)] [Z/AGT/M))" = o [(A/Mw02)1/2(KT)1/2] .
If the spacing in time between successive coincidence points be assumed large
compared to At (this assumption also will be examined later), the contributions
of different coincidence points will not overlap. One may then replace the inte-
gration limits, ¢ and £; , by plus and minus infinity, respeetively, so that

J . !
ap+1(t) = _E exp {iAj; $p+1(t') dt’}

[ ew {’2 A, — vy /] (¢ — n)ﬁ} at (IL$)

_ J . ft ’ ’ —iw/4 ( 27h )1/2
= 'L—ﬁ exp {’LA N $p+1(t ) dt } (4 m—;—l .

In going from occupation amplitudes to occupation probabilities, it will be
assumed that there is no phase correlation between successive coincidence points
(or, alternatively, that any such correlation for a given classical trajectory aver-
ages to zero when all possible trajectories are taken into account).” Then, upon
taking the absolute square of both sides of (II-8), one has

orJ? 1

Wop—p+1) =Tm

(11-9)
where Wo(p — p + 1) = | ap4a(©) |” represents the probability of a site jump,
p — p + 1, occurring in a single coincidence event.

In order to obtain the transition probability, Wr(p — p + 1), giving the
average site-jump probability per second, one multiplies (II-9) by the proba-

32 In view of the generally large number of oscillations between successive coincidence
points (this number can be estimated from the material given in footnote 30), such corre-
lations would occur only if the motion were perfectly periodic. This possibility, however,
is specifically ruled out by the frequency dispersion of the vibrational frequencies.
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bility per second, P’ (v,) dv,, for a coincidence in which the relative velocity,
vy = U, — Upn, lies within a given differential range, and integrates over all
values of v, .

To compute P+’ (v,) dv, , one notes that, in a time dt, all configurations for
which z, — z,11 = 0, dt will give rise to the coincidence, &, = Z,41, in time dt.
The classieal occurrence-probability of such a configuration, in which », is also
specified to lie within a given differential range, is

2 [ [ (S, — ) — S(a, — 2y — v d0)]

X [S(vp — Upy1 — vr) - S(Up - Vp+1 -V — dvr )]
-dxl e de dl)l v dUN

where
7= f fe_(H"_”")/"T dz, - - dey dvy -+ - doy
and where

S(z) = [_: o(z’) da’

is the conventional step function. It will be noticed that both of the square
brackets are equal to zero, except for the differential intervals, z,4; < z, <
Zpi1 + v dt and 2,11 + v, K v, £ vp1 + v, + dor, respectively, within which
they are unity. These differential impulse functions may more conveniently be
represented by the expressions 8(x, — Zp41)v.df and (v, — Vo1 — 0,) dv,.
Then, upon carrying out the velocity integrations, and dividing by dt to obtain
the occurrence-probability per unit time, one has

o) _ < M \" dv g Mt | v | F (I1-10)
T 47T ! )

where

f e f e VLA §( 2, — Tppr) dy -+ - daw

—(Vr— T
f...fe VL—dap) kT go oo day

V . representing the vibrational potential energy of the host crystal.
At this point it is expedient to introduce the Fourier-integral formula for the
delta function:

F

(I1-11)

1 (™,
8(z) = — ™ da

27I'—ea



STUDIES OF POLARON MOTION 383

and to transform to the normal coordinates, ¢ , via the relations
2 1/2
To = 2, (N) g sin(kn + w/4) (1I-12)

The numerator and denominator of the resulting expression for & are each re-
duced, therewith, to a product of integrals over the g: . The individual integra-
tions are readily carried out, the result being

D B () — 8:(0)
F =5 /_w exp {; N MwrT do (I1-13)

where
Bi(a) = (—A + taxT) sinlkp + 7/4] — joxT sinlk(p + 1) + =/4]. (I1-14)

One now introduces a new integration variable
. tA
Y =« + 2[(—T (II-15)

Then, upon pairing terms of plus and minus k, one may write the exponent of
the integrand of (1I-13) as

A’ «T 2
Zk: ANt (1 —cosk) — 2 NMar (1 —eosk)y”. (II-16)
From the form of this exponent, it is clear that the wy-integration limits

(—w + t4/2«T, +o + 1A/2«T) may be replaced by (—*, 4+ =), so that,
upon introducing the “activation energy”

E, = ZlTIZ A’ (1 — cos k) /4M
k

I1-17
_1 ® A1 — cos k) dk ( )

mJ0 4M ka ?

one obtains

A ™ 1z ~Eq/kT
T o <4KTEG> ¢

which, when inserted into (10), yields
M 1/2 _ 2 A T 1/2
P(c) . . = ( ) X M2 [4kT N —Eq kT _
v (v.) dv i dv, e | v, | 5r \GeTE, e (I1-18)

Multiplying (II-18) by (1I-9), and integrating over all v, = v, — v,,1 one ob-
tains the text relation (79), q.e.d.
The assumptions introduced in the derivation of (II-9) will now be examined.
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Of these, the most delicate is embodied in (II-6). The significance of the approxi-
mation implied by this expression is that the relative velocity, v, — 541, does
not change appreciably in a time

At ~ [B] Aty — vpp)]"* ~ wi ' [iwo/ (A*/ Ma’) (eT)

as pointed out in the discussion subsequent to (II-7), At defines the neighbor-
hood of a coincidence-point within which the principal contribution to the right-
hand side of (II-7) is contained.

In order to assess the validity of this assumption, an estimate of the relative
acceleration, (d/dt) (v, — vz11), is required. In obtaining this estimate, the
vibrational coupling between the individual molecules will be neglected («; = 0);
this procedure should be quantitatively accurate for a narrow-band vibrational
spectrum {(w; < wg), and should be suitable for at least order-of-magnitude eon-
siderations in the more general case of w; ~ wy .

Neglecting, then, the intermolecular vibrational coupling term in the lattice
Hamiltonian, one has for the relative acceleration at a coincidence point (z, =
xp+1)

d

dt
wherein it has been assumed that the effective Hamiltonian is® H® = H, —
Az, . On the other hand, the order of magnitude of the relative velocity is

2%T\"*
[vp = Vpyr| ~ (%) (11-20)

From (II-19), (II-20), and the estimate for At, it follows that, in order for (11-6)
to be applicable, it is necessary that

| < (%)
Moy | (A Mad) B (TR i)

2 1/2
<—A ) o o 1,
Mai) («T)P

A
(vp - vp+1) = —woz(ﬁp - xp-*-l) + i (1I1-19)

or

ie.,

«T > [(ﬂf—‘j&,) (ﬁwo)2]1/3. (I1-21)

33 If, instead, one assumed the effective Hamiltonian to be H@*D, the sign of the right-
hand side of (II-9) would be changed but the magnitude would remain unaltered; if one
took some average of H® and H®*D, the relative acceleration would still be ~A4, times
a numerieal factor < 1.
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It is of interest to point out that (II-21), rather than «T" >> fiw, is the appro-
priate condition for the approximation of the quantal relation (77) by (79).
Namely, if in the Taylor expansion of the hyperbolic tangent occurring in the
exponential factor of (77), one retains two terms, i.e.,

Bhiwr R _ 1 (i \°
tanh == — 7 3<4—T>

one obtains (79) multiplied by the factor

17 A* (1 —cosk)(fwr)’ jl
eXP|: o M 3(4«T)3 dk

which, for order of magnitude considerations, may be approximated by

oo | =) i)

In order for this quantity to be replaceable by unity, it is necessary that

2 1/3
> [3 zT;l‘w‘o‘z (ﬁwo){l
which, apart from numerical factors, is identical with (I1-21).

It remains to discuss the assumption, introduced in the paragraph preceding
(I1-8), that the time between successive coincidence points is large compared
to At ~ wp [fiwe/ (A*/ M) *(«T)**. Apart from one special feature, said
time is of the order of 1/w,, and hence larger than At by a factor

(A*/ Mwy' [ hewe) " (kT [hian) 't > 1.

The special feature in question arises from the fact that, when A%/ M’ is large
compared to 7T, the coincidences tend to oceur in closely-spaced pairs. For exam-
ple, using the same narrow-band limit of &1 = 0, as in the previous discussion,
one sees that every coincidence in which ¥, — 9,4, is positive is preceded by one
in which it is numerically equal, but negative, and that the time interval between
them is of the order of twice the mean relative veloeity divided by the mean
relative acceleration {given by (II-20) and (II-19), respectively], 1e.,
Aty ~ (2«T/A%/Mwi’)"*(1/wo). It is then immediately clear that the require-
ment that Ai, be large compared to At is equivalent to (II-21).

It may finally be remarked that the uncertainty, discussed in footnote 29, as
to the proper choice of vibrational Hamiltonian to be used in computing classi-
cal orbits, would affect only the relative acceleration; hence, in the approxima-
tion represented by (II-6), in which acceleration effects are neglected altogether,
this uncertainty is of no consequence.
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APPENDIX III

In this appendix, the classical treatment of site-jump probabilities, given in
Appendix IT, is further developed to cover the case in which the electronic band-
width parameter, J, is too large for perturbation theory to be applicable. The
problem has actually been discussed rather extensively in the literature, princi-
pally from standpoint of the theory of nonadiabatic transitions between molecu-
lar potential energy curves. In the case at hand, these potential energy curves
are the eigenvalues E(x, -+, zx) of the equations

E(CE] y "7 T xN)an(xl y T xN)
= [Vi(ay, ---, 2v) — Az,Ja, — J(@psa + ana)  (III-1)
obtained from the text Eq. (5) by discarding the vibrational kinetic energies;

as in Appendix II, V.(x:, ---, zx) is the vibrational potential energy
2 2
Vilay, <o, an) = 2 <y2"’—° T + 442“—‘ x,,,x,,,+1). (I1I1-2)

If one attempts a development of the solution of (III-1) as a power series in
J, via perturbation theory, one obtains

E(p)(xl, "‘,xN) = VL(xl, ~'-,£L‘N) d Axp

2
—‘i[ . + - _1x 1]+---,a£3” (I11-3)
» P—

ALz — 2pn

by —
Az — o)

Generally,” z, — 2,30 ~ A/Muwg, so that in the case of the small polaron
for which J < A*/Muq (see I, Eq. 43), (II1-2) and (I1I-3) are accurate. Within
the domain of applicability of these relationships, the electronic state correspond-
ing to a given potential-energy curve, E®(x,, -+, zy), is strongly localized
about a single site, p.

However, in the neighborhood of the “crossing-points’ of two potential energy
curves, say, E? and E®*”, (in particular, when |z, — z,.1| < J/A4), the
perturbation expansion must be modified to take account of the fact that a, and
.11 are both appreciable. One is thus led to the consideration of the two equa-
tions

[5n+l,p + 5n—-1,p] + M

E(xl y "y xN)ap = (VL - Axp)ap - Jap+1, (111—4)
E(xi, -+, aw)apn = (Vi — Axpn)apn — Ja,,

3¢ In the limiting case of w1 = 0, for example, the equilibrium z.’s are (for the small
polaron), z, = A/Mw?, Tox, = 0.
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Potential Energy

Xp+l‘xp

F1a. 2. Potential energy curves for the two-site system

the eigenvalues of which are

E(i)<x1, tt Yy xzv)

2 2 1/2
= Vil o) — A (B ) [ A Ty 2TV ()

These two solutions are shown in Fig. 2 as the solid curves. The dashed lines,
denoted by E® and E®*", give the unperturbed (J = 0) potential curves;
they are also the asymptotic limits of the actual curves for sufficiently large
’ Tp+1 — Tp |

In a site jump of the type p — p 4+ 1, the system is initially in a configuration
in which z, >> 2,41 ; since the associated electronic state is localized about the
p’th site, its limiting potential energy curve is E . It may thus be represented
in Fig. 2 by a point which moves along the lower solid curve, E(_ , approaching
the crossing point from the left. In the neighborhood of the crossing point a
variety of possibilities is available.

Firstly, the system may remain on the lower potential curve, E(, , continu-
ing its motion to the right,® and thereby eventually attaining the region of

35 Tn this discussion, as in the perturbation treatment of Appendix II, the relative veloe-

ity, vp41 — ¥, , in the vicinity of the crossing point is assumed sufficiently large so as to be
considered essentially constant in this vicinity.
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Tps1 > &, on the curve E®*. The net result of this process is the realization of
a site-jump event.

The alternate possibility, in which the system jumps from the E., to the
E 4, curve, on going to the right, results in a situation in which the system is
moving “uphill”; it must then eventually “turn around” and reapproach the
crossing point from the right. If in the latter trajectory, it jumps to the lower
curve, it moves “downhill” towards the initial configuration, with the net result
that no site jump takes place. On the other hand, if the system remains on the
E(4) curve, it gets another chance to traverse the crossing region from left to
right; if, in this traversal, it jumps to the E, curve, the site-jump event is
realized.

By summing over all possibilities of this type, one may compute the site-jump
probability, W.(p — p + 1), in terms of the probability, P, , of (nonadiabatic)
transitions between the potential energy curves.*® Specifically, one obtains for
W.p — p 4+ 1) the series

Wc(p—)p+1) =1 —Pt+Pt(1 —Pt)Pt+Pt(1—Pt)Pt+ vy
which is readily summed, the result being

1—-P,;
2 — P,

Wp—p+1) =2 (IIL-6)

As stated above, the problem of computing P, has been treated in the litera-
ture. In particular, an explicit solution has been given by Zener (7), which, in
the notation of the present paper, reads

orJ?

P o= o) )

From (III-6) and (III-7) it is seen that, when J® & hA | vy — v,]/2m,
W.(p — p + 1) reduces to

onJ?
hA I Uptr — vpl

which is twice the right-hand side of the perturbation result (II-9). In this limit,
the system may be considered as moving up and down the zeroth order energy
curve, E® (represented in Fig. 2 by the appropriately-labelled dashed line).
At each of fwo transits through the crossing point (in which the relative velocity
is first positive and then negative) a transfer to the E®*Y curve may take place
with a probability given by (II-9). The total probability (for the two transits) is
then equal to the right-hand side of (II1-8), as it should be.

W, =2 (II1-8)

36 Ag will be seen immediately below, this probability is symmetrical in the direction
of the transition (£, — E=), and independent of the sign of the relative velocity.
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In the alternate limit of J* > %4 |v,41 — v, |/2w, the site-jump probability,
We.p — p + 1), is unity. In this limit the system simply stays on the lower
potential curve, E,, in its left-to-right motion, and thus effects an adiabatic
site-jump transition, without further ado.”
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37 In all of the above discussion, it has been tacitly assumed that once the system moves
downhill from the crossing point (in the E(_, curve), in either direction, its energy gets
sufficiently dissipated so that the likelihood of an immediate return (say within a time of
the order of 1/w,) is negligible. Without going into this question in detail, it seems safe to
say that a necessary and sufficient condition for its validity is the existence of adequate
frequency dispersion. For the case in which the perturbation treatment, given in the text
of this paper, applies, an estimate of the required amount of dispersion is in fact contained
in the inequality (75).



