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Résumé. — Nous reconsidérons la description théorique du comportement au scuil et prés du seuil de la
convection électrohydrodynamique des cristaux liquides nématiques dans le régime de conduction (basse
fréquence). Nous présentons essentiellement P'analyse linéaire tridimensionnelle compléte de I'état de basc
ainsi qu'une grande partie de la théorie faiblement non lin€aire de I'état convectif. Les conditions aux limites
aux plaques supérieurc et inféricure et la dépendance du temps sont traitées rigoureusement ; 'sffet
flexoélectrique est toutefois négligé, Nous étendons notre analyse & différentes transitions, comme l'instabilité
de splay-twist périodique qui survient dans les matériaux polyméres avec une anisotropie di€lectrique positive.
Nous donnons des critéres pour I'observation de I'état des rouleaux obliques et pour la compétition entre
différentes instabilités. Dans la mesure du possible, nous comparons nos résultats théoriques avec expérience
en insistant sur Iaccord qualitatif, parfois quantitatif, que nous avons trouve.

Abstract. — The theoretical description of the threshold and near-threshold behavior of electrohydrodynamic
convection in nematic liquid crystals in the (low-frequency) conduction regime is reconsidered. We present
essentially the full three-dimensional linear stability analysis of the basic state and a major part of the weakly-
nonlinear theory of the convective state. Boundary conditions at the upper and lower plates as well as the time
dependence are treated rigorously but the flexoelectric effect is neglected. Related transitions like the periodic

splay-twist instability, which is relevant in polymer materials with positive dielectric anisotropy, are also
considered. We give criteria for finding the oblique-roll statc and for the competition between different
instabilities. Comparison with experiments is made wherever possible. Good qualitative and sometimes

quantitative agreement is found.

1. Introduction.

When a low-frequency alternating voltage is applied
across a thin layer of nematic liquid crystal having
negative or slightly positive diclectric anisotropy,
sufficient (ionic) conductivity, and uniform oren-
tation of the director # in the plane of the layer, an
instability of the basic unstructured state occurs
which under ideal conditions leads to a periodic
pattern of convection rolls (for reviews see [1, 2]).
There is a sharp and reversible threshold for this
phenomenon which is typically between 5 and
10 Volts. When the voltage is increased further one
usually finds either transitions to more complicated
spatio-temporal states which are heavily influenced
by defects [3, 4], or, if the increase is performed
adiabatically slow, well defined secondary transitions
to essentially ideal structures, which in most cases
are periodic in two directions {5, 6]. At sufficiently

high voltage transitions to turbulence occur (often
called the dynamic-scattering mode).

This electrohydrodynamic convection (EHC) in
nematics has a number of properties which dis-
tinguishes it from other convective instabilities like
the thermally driven Rayleigh-Bénard convection in
simple fluids [7], which has been studied more
intensively :

i) Because of the small thickness of the layers in
EHC (usually ~5 —200 pm) the relaxation times
are short.and one can easily produce specimens with
large aspect ratios {= ratio of lateral dimension to
thickness) in one or two directions.

ii) In addition to the amplitude of the applied
voltage one has the frequency as an easily accessible
external control parameter. This, together with the
facts that the material couples strongly to an
additional magnetic field and that a vast variety of
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niematics with different material constants are avail-
able, provides for very rich scenarios. Unfortunately,
only for very few nematics all the parameters are
known and there is often the problem of deterio-
ration and contamination of the specimens.

ifi) As a result of the planar anchoring of the
director at the upper and lower plates that hold the
layer there is an axial anisotropy, so that the patterns
orient with respect to the preferred axis. At the first
threshold only rolls or possibly a rectangular struc-
ture are expected to appear [8, 9]. The existence and
stability of roll solutions above threshold should now
be considered in terms of 2-dimensional wavevector
regions instead of the wavenumber bands adequate
for isotropic systems.

Unfortunately the theoretical description of EHC
is very complicated due to the complexity of the
underlying hydrodynamic equations. The fact that
the external driving is time dependent (ac voltage)
adds to the complication. As a result only the linear
threshold for a pattern of stationary rolls that is
normal to the undistorted director (the so-called
« Williams-domains ») can be considered understood
in the low-frequency range (« conduction regime »),
No systematic treatment of the nonlinear behavior
above threshold is available.

Generalizations of the theoretical description are
highly desirable, even in the conduction regime. On
the one hand the observation of stationary oblique
rolls (or « Zigzag » structures) [5, 6] and of travelling
rolls at the first threshold [10] necessitate a generali-
zation of the linear threshold calculations. On the
other hand a systematic treatment of the nonlinear
effects would allow one to understand the possible
structures, defects and transitions at least slightly
above threshold in the « weakly-nonlinear » region.
As an ecxample we point out the undulated roll
structure observed in the vicinity of the normal-
oblique transition {5, 6]. The weakly-nonlinear
analysis is a standard technique that has been

-applied successfully to many other pattern-forming

systems [11], which would then put EHC into the
general framework of current ideas on pattern-for-
mation and -selection [12].

In this paper a solution to some of the above

problems is presented. In section 2 the basic hydro-

dynamic equations neglecting the flexoelectric effect
{12a] are collected and in section 3 the full three-
dimensional linear theory that allows one to describe
the first threshold as well as the structure at

‘threshold (up to degeneracies) and the fastest-grow-

ing modes above threshold is formulated. The appro-
priate modal analysis and some approximations
pertaining to the spatial dependence of the modes
across the layer (essentially connected with boundary
conditions) and to the time-dependence, which is
mostly treated by Fourier expansion, are introduced.

In scction 4 the results of the lincar analysis, which
have been published in part previously [13]. are
presented. A lowest-order time-Fourier approxi.
mation valid when the director and the velocitips
fluctuate only weakly with the external frequency is
used in connection with free and (realistic) rigid
boundary conditions (Subsect. 4.1 and 4.2). The
« full » Fourier expansion in subsection 4.3 is used
only in connection with free boundary conditions
and with trial functions that approximate rigid
boundary conditions. Although in the formulation of
the analysis in section 3 Hopf bifurcations, leading
to moving patterns, and the modes for the dielectric
regime are included, we leave a detailed investi-
gation of these effects to future work (see also the
discussion in Sect. 6). The oblique rolls can be
explained and interesting predictions for scenarios in
the presence of magnetic ficlds applied in the plane
of the layer and in very thin and clean specimens
(here one needs the full Fourier expansion) are
made. For materials with positive dielectric ani-
sotropy the competition of EHC with the homo-
geneous Fréedericksz tramsition and with the
periodic splay-twist transition discovered recently in
polymer materials {14-17] is discussed. Since the
periodic splay-twist transition comes out naturally in
our framework we discuss it in subsection 4.4 and
present new results on the influence of additicnal
fields.

In section 5, finally, the weakly nonlinear analysis
is presented. We have calculated the amplitude of
the pattern slightly above threshold for normal rolls
and compared it to existing experiments. We always
found a supercritical bifurcation. The parameters for
the universal amplitude (or envelope) equations that

.apply to this type of anisotropic system [8, 9] in the

absence of mean-flow effects [18, 19] are given.
These equations describe the threshold pattern and

_slow variations in time and space around it. Among

others they allow the determination of the stable
wavevector regions of roll solutions, describe point
and line defects and exhibit stable undulated roll
solutions.

Some technical details are deferred to the Appen-
dices. In Appendix A the calculations for the trial-
function approximation for rigid boundary con-
ditions is presented. In Appendix B a method to
treat the low-frequency limit for the ac voltage is
exhibited. Appendix C is devoted to the rigorous
treatment of the time dependence by Fourier expan-
sion and in Appendix D two sets of material
parameters for the standard material MBBA used by
us are tabulated.

2. Basic equations.

The electrohydrodynamic equations of nematic
liquid crystals consist of the hydrodynamic equations
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(mass conservation, balance of momentum and of
angular momentum) {sec ¢.g. [1]) and of the quasi-
static Maxwell equations (charge conservation,
Coulomb’s law) together with suitable (linear)
constitutive relations. The static properties are con-
veniently expressed in terms of a free energy density
whose orientational elastic part is given by [20-23]

1 . . .
Fa =3 [y (V- 2 + kpy (7~ V x AY +
+ kp(Ax Vx Ayl (2.1)

The clastic constants &y, ky, and ky; pertain to splay,
twist and bend deformations, respectively.

The magnetic susceptibility and diclectric tensors
are uniaxial and can be written in Cartesian coordi-
nates in the form _

Xij = X1 SiitXalily, Xa=X§ — XL~
g =€, 8,-j+san,- nj, & =8 — & .

The magnetic anisotropic part x, is usually positive,
whereas &, can be either positive or ncgative. Then
the director-dependent parts of the magnetic and
dielectric free cnergies are

1 . 1 .

Fem = — EMO Xa(n . H)Z — -2- £g sa(n . E)?' (2.3)
where w, and & are the permeability and the
dielectric constant of the vacuum. 7

The balance of torques acting on the director can
now be written as [24-26)

Fr=/ax8=0,

§=—[8F/8a+ (v: N+ v, AA)], (2.4)

where inertial terms involving the second time-de- -

rivative of 7i are neglected as usual. The first term in
the expression for S gives the torque due to elastic,

magnetic and dielectric forces with the functional -

derivative 8/8n; = 8n; — 8;(dn; ;) (the notation
3; = ox;, n; ; = 9;n; will be used freely). The viscous
torque due to fluid motion is given in the other terms
of equation (2.4), with N = di/dt + 124 x (Vx v)
the rate of change of the director relative- to the
moving fluid (d/df = 3, +v-V is the substantial
time derivative), A; ; = 1/2(v; ; -+ v; ;) the symmetric
strain tensor and ¥,, ¥, the rotational viscosities.

Actually equation (2.4) involves only two compo-
nents. To make this explicit in a general situation
one may introduce spherical polar coordinates for
the director

A(r) = (cos 8 cos ¢, cos # sin ¢, sin 8 ) (2.5)

and an orthogonal transformation

cos @ cosip . COS 0siny sin g
D= —sin ¢ cos ¢ 0
_sin@®cosy —sinfsinyg cosd

(2.6)
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which transforms the x-axis into the #A-axis. A
straight-forward evaluation of the transformed
torque I = DI" then shows that I'] vanishes trivially
and

I'j=sin (S, cosp + S,sing)—5;,cos 8,
I'i=—8,sin¢ + S, cos . (2.7)

From momentum balance follows the equation of
motion [23-26]

Pm dv,—/d: = fi+ ani/axf (2.8)

(p,, = mass density). The volume force f is in our
case

f=p E (2.9)

{(p. = charge density, E = electric ficld) and the

stress tensor is

T, =—pd;— (8F/8ny ;) my ; +t; (2.10)

(p = pressure). The second term on the r.h.s. is of
second order in the deformations of 7 and thus drops
out of the linearized equations considered in the
next section. The general form of the viscous stress
tensor contains six viscosity coefficients [25, 23, 26]

—aymmAgmn+a;m N +asm N, +
=+ 054A[~J' -+ Q5 Ny Hy Akj + g n-j (13" Aki . (2.11)

The isotropic viscosity corresponds to a4/2. A mice
visualization of the other viscosities is presented in

reference [27]. From the Omnsager reciprocity re-
lations follows [28]

aﬁ—as=a2+a3- (2.12)

For comstraints on the &; due to thermodynamic
stability see e.g. [29, 26]. The rotational viscosities
can be expressed in terms of the (shear) viscosities

'y-1= aj_a23 ")12= a3+a2. (2.13)
The fluid will be treated as incompressible so that
V-v=0. (2.14)

Finally we have the equations of electrostatics

V-(eE)=p., VXE=0, (2.15)
and charge conservation
V-j+dp.=0, j=gEp.v, (2.16)

where the conductivity tensor o has the same form
as x and e (see Eq. (2:2)). In most cases o, is
positive. : )

Tt is convenient to eliminate the pressure by taking
the curl of the momentum equation (2.8} and to
eliminate the charge density from equation (2.8) and

12
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from the equation of charge conservation (2.16) with
the help of the first equation (2.15) (Coulomb’s
law). The second equation of (2.15) is satisfied by
writing
E=E,- V¢ (2.17)
where E, is the applied electric field. One is then left
with six equations (two from (2.4), two from (2.8),
as well as (2.14) and (2.16)) for the quantities ¢, 8,
i, v, Uy, Up.
We consider a nematic slab of thickness d (Fig. 1)
and now turn to the question of boundary conditions
at the upper and lower plates. All lengths (velocities

T

Fig. 1. — Sketch of the geometry and the periodic convec-
tion structure.

included) will be measured from now on in units of
d/m so that the plates are at z = + w /2. On each
plate one boundary condition is needed for each
quantity. The conditions

$=v,=0, z=xm/2 (2.18)

result from the geometric constraint and will always
be assumed to hold. The condition

#8=0, z=xm/2 (2.19)

results from the assumption of strong anchoring with
respect to splay deformations at the boundaries.
Condition (2.19) will always be used. Amalysis is
usually simplified by taking (unrealistic) torque-free
and stress-free (« fully free ») boundary conditions

I: aqu=0, azUy=O, afvz=0,2=t'n'/2.
(2.20a)

The last equation is equivalent to 3,#, = 0 when
equation (2.14) and the other boundary conditions
arc taken into account. For most situations the case
of fully rigid boundary conditions is quite realistic

I: ¢=0,v,=0,8,=0,z=xx/2.
(2.20b)

The last equation is equivalent to v, = 0. Under
some conditions the combination of forque-free and
velocity-rigid boundary conditions

Hi: 3,4 =0,0,=0,80,=0, z==m/2
(2.20¢)
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appear relevant. The opposite combination does not
scem important, but will be discussed occasionally
later on. In equations (2.20a) and in (2.20b), (2.?.()(:')
it is assumed that the anchoring against twist defor.
mations at the surface is weak and strong, respect-
ively, compared to the destabilizing torques.

3. Linear analysis.

We consider a situation with the undistorted director
/i in the x-direction, applied wvoltage V(1) =
V2Ed cos wt = 2V cos wt (V = effective voltage)
between the plates (see Fig.1) and an applied

Q =
T 8
.S
—
i)
&
g 7r
3
=
B -
1 |
1 ' 2
wavenumber g
Fig. 2. —The neutral curve Vi{g,p=0) and the

wavenumber ¢,(V) corresponding to the maximum
growth rate above threshold are shown for free (dashed
line) and rigid boundary conditions (solid line) at the
external frequency wry = (1.5. The physical wavenumber
is obtained by multiplying g by = /d. The material
parameters for MBBA I (see Appendix D) have been

used.

magnetic field H, in the direction of one of the
coordinate axes. In this section the general analysis

leading to the determination of the threshold for

instability of the rest state is presented. Thus the
quantities b, 8, ¥, v Uy, v; are assumed small. No .
further assumption about the spatial structure is
made, and therefore a full 3-dimensional analysis is

necessary.

3.1 THE LINEARIZED EQUATIONS. — From trans-

Iational invariance in the x-y-plane follows that the

linear modes are harmonics in x and y. Since the

magnetic field is along one of the coordinate axes

there is also reflexion symmetry in x and y and the

following Ansatz is convenient

6 =8(z,t)cos (gx +py),

g = §(z,1)sin (gx +py),

¢ = ¢ (z;¢)sin (gx + py)

vy sy = B, sy (2, 1) cos {gx +py),
v, = U,(z, r}sin (gx + py)

(3.1)
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[—eole1 g+ e, PO — (o1 g7+ 0, p))+ (0, +e5e, 8)0] x

xd)+%2Ve"‘"’[cra+egsa(iw+af)]q0+cc=0,

_ 2
Eosa\/ive:mrqd)_!_ |:,},]_:i_za:+L2_

aw

1 - .
£g £a = V(1 +e¥'°') — ky 3§:| b
k)

{3.2a)
X0 — (ky—kp)pd, ¥ +ayd, +agv,+cc=0, (3.2b)
(3.2¢)

d2
(kyy — kn)p 8.0 + ['Y] ;—za: +Ly—kyp af] Y~ azpl, —aqv, +cc=0,

2

2

2

d d* d
—ayp 280+ (@ q - p?) 539 [Pm_zar + (o= — &) g7+ mpi— 6‘,} po,+
- .

d’ oy
+ [— Pam—0 + (n; - a3 —a,)p*—m 512'5‘7
o

o :
af] qv, — qp ("?z — g - 74 ) a,v, +cc.=0  (3.2d)

. ) 2 _ _
?V Loy q°+ e, pP—e, 3] 5qb - [(“2‘12‘5‘ as a?)i—za, + g anizV?'qz(l +e2“"’)] 6 —

2

d® d
— a3P1—T—23: B, + [Pmﬂ_—zar + (Mg — @,y — n;)q2+ ﬂzpl— M2 63:| a,v,

a4 d2 2 2
+qp(n2—a3—?)azvy— Pan—+ M4 + (N, — as—ay) 9+
T

—qu, —pv, + 3,0, = 0

(cc = complex conjugate) where the following ab-
breviations were introduced

L, =k11P2+k33 ‘1’2+hx2—h;',-

3.3
Ly=kppi+kaq' +hi—hl. G
The shear viscosities
ny = (e +as—ay)/2
M= (ay+ o+ og)/2 (3.4)
Mg =Gy + Qs+ a5+
are defined as usuai [1] and
hi= \/x; moH;d/m =ky H/He. (3.5)

(H; = splay-Fréedericksz-transition field). We re-
mind that only one of the components H; is allowed
to be nonzero.

The system of equations can be written in matrix
notation in the form

Bdu=Llu (3.6)
where B and L are linecar matrix-differential
operators (differentiation with respect to z) and
u(z,t)={(¢, 6, ¢, v, v,, v;). B and L depend
(parametrically) on ¢ and are in fact 2 @ /w-periodic.
From Floquet theory (see e.g. Ref. [30]) one there-

@y

7 (3.2e)

pz] gv, +cc=0

(3.2f)

fore knows that the solutions of (3.6) can be
expressed in the form

u(z, £) = €7 ¥ u,(z) €™ (3.7)

- where o is the Floquet exponent, which we assume

real (unless stated otherwise) and which plays the
role of the growth rate. The reality condition gives

‘u_, = u¥. Substituting (3.7) into the system (3.2)

shows that the odd Fourier coefficients of the
induced potential ¢ do not couple to the even
Fourier coefficients of the other components, and
vice versa. Therefore one has two classes of solutions
which are, respectively, relevant in the low-fre-
quency « conduction » and high-frequency « dielec-
tric » regime [31-34]. In the conduction regime at
threshold we thus have

$(z,1) ="y $,(2) eBnret L g ey = ¢

u(z, t) =e”'y u(z) gltnet H_p = Uy
H

(3.8)

where now u =0, 4,0, U, O ¥..

In general the set of equations (3.2) together with
the boundary conditions (2.18)-(2.20) and the expan-
sion (3.7), (3.8) have to be solved numerically to

find the growth rate o(p, ¢; V, @) and from
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o =0 the neutral surface V = Vy(g.p; w) for a

steady bifurcation. Maximizing o and minimizing
V, with respect t0 g and p provide the fastest
growing rate o,(V, w) and the absolute threshold
V.(w ) together with the corresponding wavevectors
9; = (95 pr) and g = (ge, Pc)- ,

There exist, however, simplifying cases where
analytic progress is possible, The most important
one will be considered in the next subsection. There
the z-dependence is eliminated by using appropriate
analytic functions and the Fourier expansion in time
is confined to the lowest-order terms. In Appendix C
a scheme for keeping an arbitrary number of Fourier
terms is introduced.

3.2 ANALYTIC THRESHOLD FORMULA. — Equations
(3.2) as well as the fully free boundary conditions
(2.18)-(2.20a) are satisfied by choosing '

¢,(z)=A,cosz,
y,(z)=C,sinz, v,(z)=F,cosz,
v,,(z)=D,sinz, v,(z)=E,sinz. (3.9)

#,(z)=B,cosz,

In principle one could choose for the z-dependence
higher harmonics but they lead to a higher threshold
[35]. To obtain an analytical expression for the
threshold voltage omnly the lowest components
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N
n =0 in the Fourier expansion equation (3.8) are
kept. This corresponds to the assumption that the
electric quantities ¢ and p, follow the external ficld
essentially instantaneously whereas the director ang
velocity are essentially time independent. This is
roughly justified if Ty ® 1 and 7y 7y (7.~
v, d*/k,, = director  relaxation  time,
gy €, /o, = charge relaxation time). The validity of
the approximation as well as corrections to it are
discussed in more detail later in subsection 4.3 (see
also Ref, [34]).

With these specifications equations (3.2) become
fully algebraic. Their final form is obtained by the
following replacements ;

az—r{
6,—»{

Also the cc can be omitted everywhere when ¢ is
replaced by 1/2(¢ + ¢ *) in equations (3.2b) and
(3.2e). The resulting set of homogeneous linear
equations vields a determinantal condition which
gives the following expression for the threshold of

the effective voltage V= Eqd:

To~

1 when actingon , ¥,, ¥
E v, oy y;a§-+—1

— 1whenactingon ¢, 8,0,

iw when actingon ¢ . ot
3

. — 1, ﬁzmr —+0.
0 otherwise

(3.10)

Z(kil - k22)2 12 [4/K1]

Vi=

where
Ki=L+knplg; Ky =Ly+kyl )
S=q*oy /o, +p*+1,; Dy =q*g /e, +p*+1,

D, = (QZEI/E.L +pH Iy +1y;

(3.11)

& 50lg? GM + DT H@*+ p*+ 1)) (D, §™ 1 + w? 7%)]

(3.12)

G=o,8 D /(o £ 8)—1+w>73(Dy)/D; - 1)

(3.13)

T = "'UD1/§S; To= g€ /0,
M= {p*[(ayp*— a,q%) By — a3 By Il (ky — k) I/K; + '
+ (az I Is— ay1,4%) By — a3 3112P2}/(ﬁz Bs—p?ByBY)

1 ; 1
B, = [5 —-2—a4q2+ 7?215] Ig, B1= (5—55"4&'2) I;+ M2l

(3.14)

1
By= [3p2+ g+ (nzp2+§a4qz) Is]

a4 ) .
Bi3= ‘i’z( 74}’2""'71‘12) + Ny lglg— ((my+ y— "’Io)qz— ﬂsz)IGI'f — (M —ay—ay)ly gq*

5= (n+my+a)gi+m,yp°

with I, =-.-=1I;; = 1. As shown in Appendix A Galerkin procedure with simple trial functions. This
the above threshold formula with I, ..., I;; different  approximation will be used again in subsection 4.3.

from 1 can be obtained as an approximation to the
problem for the other boundary conditions by a

The expression (3.11) includes all well-known
limiting cases : for ¢°» 1 and p = 0 the one-dimen-
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sional description of the Willlams domains, which
has been used extensively, is obtained |36, 32]. For

=0 and I, = 1 the result for the two-dimensional
analysis for free boundary conditions is recovered
[37]. For ¢ =0 the recently discovered periodic
splay-twist instability is described [14] (see also
Subsect. 4.4). Setting w = 0 in equation (3.11) gives
the threshold for an applied dc voltage.

We emphasize that according to equation (3.11)
the voltage threshold is independent of thickness d.
This result is exact in the time-independent casc. As
can be seen from equation (3.2) the thickness
appears explicitly, even in the conduction regime,
when higher-order terms in the time-Fourier expan-
sion (3.8) are included (see Appendix C).

4. Results of the linear analysis.

In this section we present our results for the two-
dimensional neutral surface V(g, p; @) and its
minimum V,.(w) with respect to q = (g, p) giving
the critical wavevector g (w ). Some resuits on the
fastest-growing modes q;(V, @ ) above threshold are
also given. V gives the absolute threshold for the
instability as long as the bifurcation to the new state
is steady and supercritical (or forward) leading to a
continuous, reversible transition. If the system is
driven slowly across threshold the critical
wavenumber g, first established should be main-
tained even above threshold under appropriate con-
ditions (i.e. no secondary tranmsitions, no
wavelength-changing processes initiated by instabili-
ties — see c.g. Ref. [38] and references cited therein
—, or by finite fluctuations or perturbations). If, on
the other hand, a sudden jump to a supercritical

state ¥, w is imposed the fastest-growing mode -

q; should be favored under similar ideal conditions.
This type of hysteretic behavior is characteristic for

macroscopic pattern-forming systems and will be

discussed in greater detail in the next section.
The following presentation is subdivided into four

subsections ; first we consider normal rolls (p = 0)

and then oblique rolls, both in the lowest-order
time-Fourier approximation for frec and (rigorous)
rigid boundary conditions (Subsect. 4.1 and 4.2).
Next, the higher-order time-Fourier expansion,
which is essentially a full solution in the time-
variable, is presented in subsection 4.3, This is done
only in connection with free boundary conditions
and with trial functions that approximate rigid
boundary conditions. The technmical parts of the
calculations are given in Appendix C in connection
with Appendix A. Finally in subsection 4.4 we
discuss the case ¢ = 0, p # 0, which corresponds to
the periodic splay-twist transition. In the actual
computations of this section we mostly used material
parameters of MBBA which were measured fairly
recently and which are summarized in Appendix D
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(« MBBA i »). Some computations in this section
and all in the next section werc done with older
parameter values also given in Appendix D
{(« MBBA IL »). Actually the two parameter sets
lead only to minor quantitative changes.

4.1 NORMAL ROLLS, LOWEST-ORDER FREQUENCY
EXPANSION. — We first discuss the traditional case
of normal rolls which is obtained by setting p =0 in
the equations of section 3 (two-dimensional descrip-
tion). In figure 2 the neutral curve V(q) is shown
for MBBA 1 (material parameters see Appendix D)
at wty = 0.5 for free (as calculated from Eq. (3.11})
as well as for (rigorous) rigid boundary conditions.
Also included is the wavenumber g.(V) correspond-
ing to maximum growth rate above threshold. In
figure 3 the minimum V_ of the neutral curve and the

voltage V, [Volt]

wavenurnber g,

frequency wTt,

Fig. 3. —The voltage V. (absolute threshold) and the
critical wavenumber g, (physical units: multiply by
= /d) are shown as a function of the external frequency for
free and rigid boundary conditions (v, = &, &, /o, , ma-
terial parameters for MBBA I).

critical wavenumber ¢, is shown as a function of
frequency for free and (rigorous) rigid boundary
conditions. Going over to rigid boundary conditions
mainly rescales the whole neutral curve to higher g
and V. This can be understood in terms of the
boundary layers resulting from the friction at the
upper and lower plates which reduce the effective
thickness of the layer. With increasing frequency the
width of the neutral curve decreases but the nor-
malized curvature (d®V,(g)/dg")/V at g, remains
essentially constant. The same is true for Vc/qf.
For g°» 1 equation, (3.11) goes over into
7M1+ w? ) ky of ¢°

(.1)

Il

2
0
{83 g B Sa(wz_ C)
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so that V', increascs linearly with . Here

il [_ag(ﬂ_?_“)_f:} (4.2)
efe, L M\ & € £

Since in this limit effects from the upper and lower
plates become negligible equation (4.1) also holds
for rigid boundary condition (it is even the same in
the one-dimensional model [32]). For e, < 0 (nega-
tive dielectric anisotropy) the constant C is positive
and then @, = +/C is the so-called cut-off frequency.
At o_both V_ and g, diverge such that V. /q¢ goes to
a finite limit and above w_ there is no EHC with the
modes of the conductive regime. The reason for this
is that build-up of space charges via the Carr-
Helfrich mechanism which is governed by the charge
relaxation time and which drives EHC (see e.g. [36,

C =

32, 1, 13]) becomes less effective with increasing.

frequency, so that the destabilizing effects eventually
cannot overcome the diclectric torques which are
stabilizing for s, < 0.

For £, < 0 and all frequencies w (< @) the neutral
curve V4(g) diverges on the low-g side at a nonzero
wavenumber gq,,,. Although with decreasing &, the
stabilizing effects become stronger and ¢, increases
there is no critical value below which EHC does not
occur at all. A conclusion to ‘the contrary was
reached previously in the context of the one-dimen-
sional model [32, 1]. This conclusion depends on the
assumption that the critical wavenumber remains of
order 1 (or 7 /d in physical units), which is in fact
incorrect.

For &, =0 the neutral curve Vy(g) tends to a
finite value for g—0 and Vy(0)=Ve=
(72 kyy/ g €4 )M then corresponds to the threshold
of the spatially homogeneous splay Fréedericksz
transition. Varying g, and lcaving all other par-
ameters fixed leads to a critical value g, of
e, below which EHC has a lower threshold than the
Fréedericksz transition whereas for s, > g, the
reverse is true. For MBBATI at @ =0 one has
e, = 0.29 and 0.56 for rigid and free boundary
conditions, respectively. An additional magnetic
field H, in the z-direction lowers the threshold of the
Fréedericksz transition more effectively than the
threshold of the convective transition. Thus for
U< e =gy
thresholds become equal. Usually the neutral curve
Vo(g) has minima at ¢ =0 and g=g¢g. and a
maximum in between. For free boundary conditions
this is easily seen by expanding the expression (3.11)
for small g*(p = 0):

Vi/VE=1+ [ﬁ—1+ [-U—'—1+
kyy

o,

)]/(uw%&)}q?.

(4.3)

g Qg O, 8y
+witf—+—(1-
g, M2 o) &

and a definite value H,(e,) the.
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The term in curly brackets is positive for all materiajg
we know of. The fact that the threshold for EHC
increases with increasing frequency can also be useq
to reverse the order of the tramsitions and this j
shown for MBBA I in figure 4. The situation where
the two thresholds are equal is of special interest. It
represents one type of a so-called codimension-2
bifurcation {39]. This situation is similar to that
found in the shear-flow instabilities in nematics [40],
For increasing H, of w the eritical wavenumber
q. first increases and then decreases down to values
g.~ 0.6 — 1.2 at the codimension-2 point.

vallage V, [Volt]

8.0 SR NP S S S SR .
1X4] 0.3 1.0 15

wavenumber g

Fig. 4. — The neutral curve Vy(g,p =0} is shown for
different reduced external frequencies w7, and rigid
boundary conditions. The material parameters for
MBBA 1 have been used, but £, was changed to 0.1 in
order to exhibit the possibility of equal thresholds for the
two instabilities.

Applying a magnetic field £, in the x-direction
stabilizes the undistorted orientation (x,=0) and
also makes the surface anchoring less important.

_The threshold for EHC as well as the critical

wavenumber ¢, increase in agreement with the
observations [42] (see also Fig. 11).

4.2 OBLIQUE ROLLS, LOWEST-ORDER FREQUENCY
EXPANSION. — A necessary condition for the nor-
mal-roll threshold discussed above to be the absolute
threshold is that 8*V,(g, p)/dp’=0 at g = g, and
p = 0. Otheiwise there exists a lower threshold at
|p| = p. >0 (oblique ‘rolls). In figure 5 we have
plotted V, and 8°V,/dp® as a function of g at
p=0and @ = 0 for MBBA I (¢, = — 0.53) and free
boundary conditions. Although in this case normal
rolls have the lowest threshold (8°V,/ap” slightly
positive at g,) the plot demonstrates a very general
feature ; whereas for large g one always has
8%V ,/0p° = 0, there is generally a value g, at which
3’V,/ap? changes sign. By changing the materiai
parameters- one ecasily finds situations with ¢, =
q. at low frequencies w. Most effective is a change of
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10 Lz .14 16 ‘18
wavenwmber ¢

Fig. 5. — The neutral curve V,(g, p = 0) and the curva-
ture (32V,/9p%) (g, p = 0) are shown for material par-
ameters of MBBA 1. This illustrates that for smaller values
of g oblique rolls are favored. '

e, to values above about — 0.1 (for rigid boundary
conditions) or oy /o, from the standard value 1.5 to
1.77 (for rigid boundary conditions). With increasing
frequency g, — g, always decreases and changes sign
at some value w,.

In the cases that we have studied the quantity
a*v,/ap* is always positive so that p, increases
smoothly from 0 when the normal-oblique transition
at w,, where g, — ¢, becomes positive, " is crossed.
This transition was observed experimentally by cros-
sing the neutral curve by increasing V at fixed

frequency w, and repeating the process at a sequence -

of decreasing frequencies, in a material where one
has oblique rolls for small  [5, 6]. Such a transition

is described by the theory. In figure 6 the frequency-

dependence of the roll angle a, = arctan (p./q.) is
shown for MBBA I with o /o, = 2 (free and rigid
boundary conditions). At «, there is the typical
pitchfork bifurcation which we always find for the
transition to the oblique-roll state. The divergence
of the slope of p.(w ) at w, has apparently not been
observed [5, 6]. Figure 6 exhibits the general tenden-
cy of rigid boundary conditions to suppress oblique
rolls. Also included in figure 6 (dotted line) are the
results from the approximate rigid boundary con-
ditions as obtained from the analytical formula
(3.11) with the Z; given in Appendix A. In figure 7
the contour lines of the neutral surface V(q, p) are
shown for three different frequencies : @ > w, {nor-
mal rolls), @ = w, («Lifshitz-point », see Sect. 3)
and @ < o, (oblique rolls). One can see that at the
minima the curvature in the p-direction is much
smaller than that in the g-direction. The two curvat-
ures become nearly equal for frequencies above
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20 I ’ i T T T T
Tigid
——— free .
appr. rigid .

angle o

0 L 1 I ] : s
0.0 02 04 0.6

Sfrequency wT,

Fig. 6. — The roll angle a, = arctan {(p./q.) with respect
to the y-axis is shown for rigid (solid line) and free
boundary conditions (dashed line) as welt as for the
approximate rigid boundary conditions (dashed-dotted
line) (Eq. (3.11) with /, from Appendix A). Material
parameters for MBBAI with modified conductivity
UI/O'J. =2.0.

a) normal rolls, w>w,

wavenwmber q

woverurmber p

Fig. 7.— The comtour lines of the neutral surface
Vo(g,p; w) are plotted for the frequencies ® = o, (a).
w = w,/(b), and w < w, (c). Material parameters of
MBBA Il and the modified ratio oy/o, =2.0 and
g, = — 0.2 and rigid boundary conditions.

about 50% of the cut-off frequency (see also
Figs. 15b and 17b). By using material parameters for
PAA (see c.g. Ref. [41]) our calculations show that
for rigid boundary conditions oblique rolls have the
lowest absolute threshold in a large frequency range
0 < wry < 1.31. In the early experiments done by
Williams [43] and later by Penz [44] oblique rolis
seem actually to have been observed in PAA,
The angle a, = arctan (v,/v,) of the motion of
the fluid projected onto the x-y-plane is different
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from e, so that the tluid does not move perpendicu-
lar to the rolls. For the parameters of MBBA If and
the modified values e, = — 0.2 and oy /o | = 2.0 we
find a,/a,~=0.78 for frec boundary conditions
(independent of z and weakly dependent on w). For
rigid boundary conditions the maximum of o/, is
about 0.23 (again weakly dependent on w). We note
that due to the = z-symmetry the fluid particles
move on closed trajectories.

In principle the value of w, depends on all
material parameters. In figure 8 we show the very
sensitive dependence of w, on ¢, (Fig. Ba) and
oy /o, (Fig. 8b). In Figure 8b the casc of torque-
free  and  velocity-rigid boundary conditions
(Eq. (2.20c)) is included in order to demonstrate the
general feature that this case is seen to lic between
the fully free and rigid cases. A detailed study of the
dependence of w, on small changes of parameters
for an MBBA-like material was published previously
for free boundary conditions (see Tab.I in Ref.
[13]). We have repeated this study with rigid bound-
ary conditions and generally found the same tenden-
cies. The only exceptions are a; and a5 which must

0.8 i T T T T 14 i T
s
/
a) ’
7
N it
* 2 -
3ot o
g e
2 s
& i
3 s
g oz ’
.y /
<, ’
/
/
!
0.0 . 1 . 1 . !
—0.8 —0.6 04 -0.2

dielectric anisolropy &,

L0 \ . . . . ,

05 -

Frequency w,T,

0.0

conductivity anisotropy o/o,

Fig. 8. — The reduced frequency w, 7o, which limits the
range of oblique rolls from above, is plotted as a function
of the anisotropies £, (a), and oy /o, (b) for different
boundary conditions. Material parameters for MBBAI
and £= (2, + &)= 1522 are used.
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be varied in the opposite direction to favor obligue
rolls (the dependence of V¥V, and g, remains the
SAING ).

Of course w, is also influenced by a magnetic field
applied along one of the coordinate axes. A magnetic
field in the x-direction increases V' and g, (see Scct.
(4.1)). For free and torque-free boundary conditions
it suppresses or favors oblique rolls, depending on
the chosen parameters, whereas for rigid boundaries
it generally favors them. A magnetic field in the z-
direction decreases V', and ¢.. For free boundary
conditions the oblique rolls are favored whereas for
the other two boundary conditions they are suppres-
sed. A magnetic field in the y-direction can only be
used for rigid boundary conditions since for the
other cases the critical field for the twist-
Fréedericksz transition is zero. Application of the
field favors oblique rolls. The changes that can be
produced by H, and H, are smalt because the fields
are limited by the Fréedericksz transition.

Finally we point out that for £, > 0 one can have
competition between the oblique-roll state and the
homogeneous splay Fréedericksz transition. The
situation then is analogous to the one discussed in
subsectiont 4.1 for normal rolls.

It is not easy to understand all the trends in terms
of simple physical ideas because of the combination
of aritagonistic effects. A direct manifestation of this
is shown by the fact that g, and g, (see Fig. 5) have
to be affected in opposite directions to favor oblique
rolls, It is easy to see that the basic Carr-Helfrich
mechanism that drives EHC also provides the driving
force for oblique rolls. A fairly detailed discussion is
given elsewhere [13, 45].

We conclude this section by giving some results on
the fastest-growing modes above threshold for free
boundary conditions. In figure 9 the p-dependence

14 T T T T i T T ‘
1z T~ A
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— ~—P1
e . ~
- ~ -
g .
L] | N
g} N
S gl \ i
3 \
<}
2 . Vo '
6 - ! -
/ /
N e
-
-
4 - ]
. 1 A 1 . 1 .
0.0 0.2 0.4 0.8 0.8

wavenumber p

Fig. 9. —The neutral curve Vo(p) (solid line) and
wavenumber p,(V) (dashed line) corresponding to the
maximum growth rate above threshold is shown for free
boundary conditions and constant wavenumber g = ¢
Material parameters for MBBA I with modified values
¢ =—102 and oy /o, = 1.7 are used.
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of the neutral surface, i.e. Vo(g., p), is shown tor
w =0 (solid curve). It has a very small positive
curvature. The dashed curve gives the fastest grow-
ing wavenumber p; In figure 10 the curves with
constant angle a, — arctan (p¢/g;) arc plotted in the

w-V-plane (solid curves) together with the threshold
V¥, (dashed curve). One sees that slightly above
threshold oblique rolls (or larger angles) are favored
somewhat, whereas higher up the trend reverses and
eventually normal rolls are favored. This trend is
similar to the behavior in transient spatial periodic
patterns [46].

voltage {Volt]

0.0 0.3 10 15
fregquency wT,

Fig. 10. —The threshold V. (w) {dashed line) and the
contour lines oV, w)= arctan (pi/q;) =0, 2.5°, 5,
10°, 15°, 20°. For given values ¥ and o the linear growth
rate has its maximum at gy, p Free boundary conditions

and material parameters for MBBA I with the modified
parameters e, = — 0.2 and oy /o, = 1.7 have been used.

4.3 HIGHER-ORDER TIME-FOURIER EXPANSION
(« FULL THEORY »), — In the calculations of this

subsection we treat the z-dependence only by trial

functions which are exact for free boundary con-
ditions and approximate for rigid boundary -con-
ditions, and which are introduced in subsection 3.2
in connection with Appendix A, The technical part
of the calculations for this subsection are given in
Appendix C.

Before presenting results of the more general
calculations we discuss the range of validity of the
lowest-order time-Fourier approximation (conduc-
tion regime) and the limit @ — 0. For the validity of
the approximation the conditions that the director
relaxation is slow compared to charge relaxation and
to the external time-dependence imposed by the ac
voltage is sufficient. The first condition ‘can be
written as

(02 ¢ —a3) d: 5
«rd=[~,1_ 2 2 W2K2>(1+V2/R)r

(4.4)

PATTERN FORMING INSTABILITIES [N NEMATICS 1885

where 74 is the director relaxation time at V =0
{and p = 0), 7is the charge relaxation time, equation
{3.13), and

R=-(B:K; 7"2/50 Ea)/[BB + (e ‘12' ay) qz}_
(4.5)

The second condition is simply

Tgws1. (4.6)
For g = p = 0 and no magnetic field one has esscn-
tially T145= v dz/kn wl, T=1, and R=
— ky, 7%/ &g £, The last expression for R coincides
with — Vi if £, =0 (V = Fréedericksz transition
voltage). :

Actually our numerical results indicate that, as
long as (4.4) holds, the neutral curve obtained in
lowest-order tirme-Fourier approximation remains
valid even for quite low frequencies where (4.6) is
definitely violated. This would meagp that, if (4.4) is
valid, the ac threshold for w — O coincides, at least
approximately, with the dc threshold. This can
indeed be understood by analysing in equations (3.2)
the limit 74 @ — 0, which is done in Appendix B for
normal rolls. The analysis shows that the corrections
are of order 7/74, which is small when (4.4) holds,
and usually positive, so that one expects the
threshold to increase slightly with decreasing fre-
quency for 74w =1. This effect has presumably
been observed [47].

We point out that in the limit 74 @ <1 one can
still define a sharp threshold where the growth rate
(Floquet “exponent) becomes positive 50 that a
pattern which is coherent over long times builds up.
This threshold, however, might be difficult to ob-
serve because fluctuation-induced patterns may oc-
cur already when only the voltage peaks exceed the
dc -threshold. These patterns do not exhibit long-
time coherence, but they prevent a determination of
the actual threshold.

Relation (4.4) has the consequence that the low-
est-order time-Fourier approximation always fails
sufficiently near to the cut-off frequency where
V. becomes large. Here indeed the behavior changes
qualitatively (see beiow). Even at low voltages,
equation (4.4) is easily violated by choosing a
sufficiently small thickness d and clean material (low
conductivity) [see e.g. Ref.[1]]. For MBBAT at
g=1, p=0, one has 74~ 0.6.107° (d/pm)* and
r~04.10%s/(o, Om), so that for a typical
value o, = 10730~ ' m™! (this value will be used
subsequently, if not stated otherwisc) ome has
Tg=7T at d=25pm T4 is also decreased by
applying a magnetic, field H, in the x-direction
through the influence on K; (sce Egs. (3.3) and
(3.12)). .

In figure 11 the threshold (a) and the critical
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voltage V, [Volt]

wavenumber g,
[

0 0 20 30 40
reduced Tnagnetic field h,

Fig. 11. —The threshold V_ (a), and the critical
wavenumber ¢, (b) are plotted at p=0 and wry=
0.5 for lowest-order time-Fourier approximation {dashed
lines) and «full theory » as a function of the external
magnetic field in x-direction hl= x,no Hf d%/w°
102 N-! = 6.66 HX/HZ  (Hjy = splay-Fréedericksz-tran-
sition field). Frec boundary conditions and material par-
ameters for MBBA I have been used.

wavenumber g, (b) are shown for free boundary
conditions as a function of H, for a layer of MBBA 1
with thickness d = 50 pm at w7, = 0.5. The differ-
ence between the broken curves (result for the
lowest-order time-Fourier approximation) and the
solid curves (« full theory », i.e. expansion to suf-
ficient order) goes in parallel with the violation of

equation (4.4). The increase of V is typical and

well-known [42]. The decrease of g, at higher fields
indicates that there is a tendency towards oblique

rolls, although in this case one still has normal rolls

(see below). For rigid boundary conditions the
results are qualitatively the same. ‘
The effect of decreasing the thickness d is shown
in figure 12 (MBBA I). In the limit d — c0, where
the lowest-order time-Fourier approximation is cxact
(dotted curve in Figs. 12a and b, free boundary
conditions), the conduction regime is limited from
above by the cut-off frequency w, (w, 7o = 2.53 for
MBBAT and free boundary conditions). For finite
thickness (Fig. 12a and b, d = 8 pm) the threshold
curve bends over leading to a maximum frequency
@, above which the instability does not exist with
the conduction mode [see e.g. 67-70, 48, 34, 1].
w ., tends to w for increasing thickness d. In the case
of figure 12 one has w 7o = 1.13 for approximate
rigid and @, 7o = 1.23 for free boundary conditions.
The decrease of the reduced wavenumber g,
(wavenumber in physical units = g, 7/d) by de-
creasing the thickness d can be seen from figure 12b
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Fig. 12. —In a} and b) the threshold voltage V', and the
critical wavenumber g, is plotted as function of the
frequency wr, for the «full theory » at the thickness
d = 8 pm {solid and dashed lines) and lowest-order time-
Fourier expansion (dotted line : free b.c., i.e. Eq. (3.11)
with f, = 1). In ¢} and d) V_ and g, are plotted as function
of the thickness 4 at the frequency w T, = 0.5 for free and
approximate rigid boundary conditions. Material pat-
ameters for MBBA L

for free boundary conditions {)y comparing the
dashed and the dotted lines. For rigid boundary
conditions the behavior is qualitatively the same. In
figures 12c and 12d the increase of V. and the
decrease of g, with decreasing thickness at fixed
frequency wty = 0.5 are shown. The curves end at
low d when w,_, 7, reaches 0.5.

Actually for & = w, one has the well-known
instability to the dielectric mode {1, 2], which we do
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not consider here. The dielectric threshold curve
crosses the restabilizing branch of the conduction
mode. The restabilization is essentially due to the
stabilizing dielectric torques, which exceed the des-
tabilizing torques at high voltage. Therefore for

more megative &,, restabilizing occurs at lower

voltage. For a material with &, = — 5 the restabili-
zation was actually measured [48]. There, however,
only normal rolls were found in agreement with our
results.

For lowest-order time-Fourier approximation ob-
lique rolls do not appear at any frequency for
MBBA (I and II). By decreasing d we find with the
full theory 3 typical scenarios for the position of the
Lifshitz-point @, 7, which are demonstrated in fig-
ure 13 by using MBBA I with different conduction

0.5 — T T T T

o3 b . 4

frequency w7,

thickness d [ um]

Fig. 13. — The position of the Lifshitz-point o, 74 is
plotted as function of the sample thickness d for MBBA I
with different conduction anisotropies oy /o, = 2.0 (dot-

ted line), o /o, = 1.85 (dashed) and oy/o =177 '

(solid) for approximate rigid boundary conditijons.

anisotropies : for oy /o, = 2.0 one has in lowest-
order time-Fourier approximation (d — o) a Lif-
shitz-point at wry = 0.43 which decreases for de-
creasing thickness d as shown by the dotted line in
figure 13. For o/, = 1.77 (and lower values of
oy /o, ) there is no Lifshitz-point within the lowest-
order time-Fourier approximation. By decreasing
the thickness d a Lifshitz-point appears at low
frequencies which increases up to w, 7g = 0.176
(solid line). This scenario is consistent with some
experiments [47a]. Shortly before the conduction
regime vanishes w, 7y decreases slightly. For an
intermediate value o /o, = 1.85, w, 7y decreases
at first for decreasing thickness d, then increases and
decreases again before the conduction regime van-
ishes (dashed line). For standard MBBAI
(o /o, = 1.5} an oblique-roll range appears 1o
occur only at extremely low frequency (w, 75 =
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25% 1077 at d = 50 pm). This point is not yet
completely clear and will be investigated further.
By applyving a stabilizing magnetic field H, in x-
direction a somewhat similar behavior of the Lif-
shitz-point w, 7 can be observed as in the case of
decreasing the thickness. In figure 14 we have plot-
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Fig. 14.— The position of the Lifshitz-point w, 7y as
function of the external magnetic field k7= x, #o H:
d%/=*102 N-' is plotted for free and approximate rigid
boundary conditions. Material parameters of MMBA I
with the modified ratio o /o, = 1.72.

ted w, T4 as a function of H, for free and approxi-
mate rigid boundary conditions for MBBAT with
o/, = 1.72 at d = 50 pm. For approximate rigid
boundary conditions w, 7y increased monotonically
in all investigated cases, which appears consistent
with experiment [47b], whereas for free boundary
conditions both dependences on A, were found. The
same tendencies are obtained in the lowest-order
time-Fourier approximation (see Subsect. 4.2).

As already remarked in section 4.2 it is not casy to
understand all the trends in terms of simple physical
ideas. It appears that the results on the oblique-roll
behavior are usually the comsequence of a compli-
cated balance of antagonistic effects. A further
complication is due to the fact that, when corrections
to the lowest-order time-Fourier expansion become
important, the influence of the flexoelectric effect
can nolonger be neglected (see Sect 6).

4.4 THE PERIODIC SPLAY-TWIST (PST} TRANSITION.
Recently, Lonberg and Meyer [14] discovered that
in nematic materials with a ratio of the twist and
splay elastic constants r = ky/k,; smaller than a
critical value r, = 0.303, the usual homeogeneous
splay Fréedericksz tramsition is replaced by a spa-
tially periodic, static splay-twist distortion. This
range of small r is important since it is often reached
by mainchain polymer materials.

“The distortions are periodic in the y-direction and
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therefore correspond in our analysis to the casc
g =0, p# 0. Then equation (3.11) reduces to

Rolp)=ly !l + kzzPZJr R,

_ (kn - kzz)z Iy I?PZ
kyp?+kplg+ R, —R,

(4.7)

where R, = V,-2 £ Ea/ﬂ'2+ H;?' Mo Xa dz/,‘,rz_
Although in this formula electric and magnetic fields
along any coordinate axis are allowed (including
crossed electric and magnetic fields), the system
should be driven across the instability by the field in
the z-direction. As before one has 7, = 1 for free
boundary conditions. For approximate rigid bound-
ary conditions the I; are given in Appendix A.
For p =0 equation {(4.7) describes the homo-
geneous Fréedericksz transition which can be driven

magnetically (y, > 0) or, for g, = 0, also electrically. -

A field in the x-direction is stabilizing (R, = 0)
except for the case of an electric field and
g, < 0(R, < 0). Clearly the threshold can be lowered
by having a finite wavenumber p if

1,15 (kyy — kzz)z/kzz >kyls+ R, — R,(=0)
(4.8)

holds. Then one has the PST transition. For vanish-
ing fields in the x- and y-direction the relation (4.8)
becomes

r=ro=1/Q+ \/I/Us17}), r=kn/ky

which reduces to r, = 0.5 for free and r. = 0.298 for
the approximate rigid boundary conditions. This last
value is close to the exact result r, = (B2 + B)° —
By = 0.303 (B, =8/7>—1) [15, 17].

For stabilizing ficlds (R, — R, >0) r, is dccreased
and can be made arbitrarily small Destabilizing
fields (R, — R, <0) have to remain below the
threshold for the homogencous twist-Fréedericksz
transition. This threshold is zero for free boundary

conditions and k,, for rigid boundary conditions.

Thus, according to (4.8), in the latter case r, can be
increased to 0.329 (the exact value is 1/3 [14, 15]).
The critical wavenumber p. is obtained by -min-

imizing R4 in equation (4.7) with respect to p. This .

yields p, =0 or

(ki — kn) 1
P3={[—ETI4IT(k2215+Rx—Ry) -

—kpleg— R, + Ry} /Ry (4.9)

which is zero at r = r, (equality sign in (4.8)) and
finite for r<r. Without fields in the x- and y-
direction equation (4.9) reduces to

Pe= \/1416 Li(t—r/r).

(4.10)

JOURNAL DE PHYSIQUE N

For r = 0 and rigid boundary conditions this gives
p. = 1.3, which should be compared to p, = 1.5 from
the rigorous analysis [14, 15]. For stabilizing ficlds
(R, — R, = 0) p, tends to infinity for r » 0.

We conclude that the simple analytical formula
(4.7), which is a special case of equation (3.11), gives
a good semiquantitative description of the threshold
scenario for the periodic splay-twist transition. In
principle one can use the transition to determine
ky; and k5. This can be done even without a
measurement of p, if the threshold is measured as a
function of R, and is then compared with the theory.
Alternatively, one might first measure ky; at values
of R, sufficiently large such that p.=0. Then a
measurement of the value of R, where p. becomes
finite, i.e., where the equality sign in (4 8) holds,
leads to a determination of k..

In the electrically driven case the above results
pertain to the dc case or to the ac case in lowest-
order Fourier expansion. In this approximation all
velocities are zero (no flow). Including higher
Fourier modes shows that there is a small alternating
flow proportional to w3/ 1, in the x-direction, i.e.
along the stripes of the pattern. The changes of the
neutral curve due to higher Fourier modes appear to
favor the finite-p PST state, at least for not too low
frequency. We plan to study these effects in morc
detail.

Finally we wish to discuss briefly the interplay of
the PST transition and EHC as described by the fuil
equation (3.11). When r is slightly below r,, so that
p, is small, then there exist parameter ranges where
the two-dimensional neutral surface has two minima,
one with g, = 0 (PST) and one with g, = 0 (EHC).
This situation is amalogous to the competition of
normal- or oblique-roll EHC with the homogencous
Fréedericksz transition discussed in subsections 4.1
and in 4.2, The relative heights of the two minima
can again be adjusted by an additional magnetic field
in the z-direction or by the frequency « of the
voltage. For larger values of p, there exists only one
minimum of the neutral surface. By varying the
external parameters one can then go smoothly from
EHC to PST.

5. Weakly nonlinear region.

In the vicinity of the threshold of a continuous
(supercritical) bifurcation into the structured statc
the basic spatial periodic solutions and their slow
modulations can be described by a complex ampli-
tude (or envelope). This is well known for quasi-
one-dimensional systems and for isotropic quasi-
two-dimensional systems like Rayleigh-Bénard con-
vection [49, 11]. The case of quasi-two-dimensional
systems with axial anisotropy was discussed recently
[8, 9]. Accordingly the complex envelope has to
satisfy three different envelope equations, valid in
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the normak-roll and oblique-roll regimes as well as in
the vicinity of the Lifshitz point (@ = w,). Mean-
fiow effects are not included in this treatment {18,
19]. They are presently under investigation.

5,1 NORMAL-ROLL REGIME. — In the region where
normal rolis appear at the absolute threshold of the
electrohydrodynamic instability (w > w;) and not
too near to the Lifshitz point (w = ) the descrip-
tion of the physical quantities u= (¢, 9, ¢,
vy, Uy, U,) close to threshold has the form

X
w(r,t)y=e[U AX, Y, T) e 4 ce] x

x fB;(z, 1) +0(e), (5.1)

(see also Sect. 3.1), Here

e= (Vi-VH/Vviel (5.2)
measures the distance from threshold V. The
U, are constants with | U;| = 1, which can be chosen
real for 6, v,, v, and imaginary for ¢, ¢, v, (see
Eq. (3.1)). A(X,Y,T) is the slowly varying en-
velope (on the scale of 2w /q.) with the slow

variables chosen as
X=cPy Y=ePy, T=c¢t. (5.3)

(X and Y have the same scaling because the neutral
surface is parabolic in ¢ and p). Then the envelope
equation reads

TyorA= [6f 0+ 61 8F +1— |A|’]A. (5:4)

Note that the parameters Ty, & and £, can all be
scaled away from equation (5.4). The linear analysis

of the previous sections provides these parameters as

well as the functions #;(z, ¢) in equation (5.1) up to

an overall normalization. This will be discussed

presently.

The relaxation time T, is equal to (do/de)~" at
e=0 and g =¢q,, p=p, =0 (o=linear growth
rate, see Sect. 3.1). The longitudinal and transverse
coherence lengths & and &, are determined from
the curvatures of the neutral surface at £ = 0 and

q=4q, p=p.=0.
To see this we note that

A=Fexpli(QX/& + PY/§, )]
x f(T)/[1+ FADI*, (5.5)
F = (1 _ Q2_;P2)11'2 \ (5’6)
F(T) = foexp(F*T/Ty)

corresponds to roll solutions of equation (5.4) with
wavenumbers

g=q.+e7Q/&, p=¢"P/E, .

and a time-dependent amplitude. Clearly for Q@+

(5.7)
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Pl=1 the rolls grow and bccome stationary for

T — oc. Thus the neutral surface to lowest nontrivial
. . . 3 2

order in e is given by @+ P°=1, or

(5.8)

Therefore £f and §i are, respectively, the second
derivatives of % VS/ V2 with respect to g and p at

g. (and p, = 0). From equations (5.5} and (5.6) one
also sees that the fastest linear growth rate is
T; !, so that in physical units one has o = /T, near
threshold, or, as pointed out before, do/de =
Ty

To determine the overall normalization of the
i1, one has to add to equations (3.2) the nonlinear
terms up to third order in ¢, 8, ¥ v, v,
v,. Then the g -periodic solution is expanded in the
form

u=ePp® 4+ P2u® 4 @4 ] (5.9)
where u®® corresponds to the linear approximation.
Its normalization is determined by a solvability
condition at order £¥2 The procedure is well-known
in the analysis of the hydrodynamic instabilities of
simple fluids [49, 11]. Unfortunately in our case it is
very cumbersome due to the fact that the solutions at
order £ are rather complex.

In our derivation we used the support of computer
algebra (Macsyma) and calculated the equations for
frec and rigid boundaries for the conduction regime
in the lowest-order Fourier expansion in time (sce
also Ref. [49a]). The final expressions are too
complex to write down here, even in the case of fully
free boundaries (except for 7p). In effect we have
computer programs whose inputs are the parameters
of the liquid crystal and the frequency of the electric
field and the outputs are the quantitics w0z, 1),
Ty, &) and £, .

We also looked for dominant terms in the non-
linearities, but unfortunately without success. All
contributions of the nonlinearities appear to have
similar order-of-magnitude.

For w —» w,, £, behaves as /o — w,. In fig-
ure 15, To/d’, &/d and &, /d are plotted as a
function of w7 for fully rigid (solid curves) and fully
free (dashed curves) boundary conditions (standard
parameters of MBBAII, see Appendix D). In
figure 16a, b the amplitudes of 6@ v®d and
v0) d at their respective maxima with respect to z are
plotted as a function of wr, for fully rigid (solid
curves) and fully free (dashed curves) boundary
conditions for the same parameters. The amplitude
Iay Of the external electric current carried by
convection which can be expanded in ¢ is to order
& given in figure 16c. We have normalized it to the
amplitude of the .conductive current. The quantity
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Fig. 15. — The relaxation time T, (a) and the coherence
lengths £ and £, (b) corresponding to equation (5.4) are
plotted as a function of the reduced external. frequency
w7, for free and rigid boundary conditions. We have used
units that exhibit the scaling with the layer thickness d and
the conductivity o, {7, = g £, /o, , material parameters
for MBBA II).

may be termed « electric Nusselt number » in analo-
gy to the corresponding quantity in Rayleigh-Bénard
convection [50].

The quantities plotted exhibit the scaling proper-
ties with respect to changes of the thickness d.
T, is of order of the director relaxation time
ry, which scales tike d=%, and v is of order
d/ 74 The magnitude of the conductivity & enters
only through 7, (see Eq. (3.13)) into the scaling of
w. This behavior is strictly valid within the range of
validity of the lowest-order time-Fourier expansion
where the inequality (4.4) holds.

An estimate of the velocity by observing smali
glass spheres rotating with the fluid has been re-
ported by Joets and Ribotta [6]. In the range
0.1 = ¢ = 0.5 they find this velocity to be roughly
proportional to & (v/e =~ 11.4 pm/s for w/2 7 =~
200s~! and v/& =~ 16.5 pm/s for /2 7 = 550577 ;

s

thickness d = 50 pm). For standard parameters of
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Fig. 16. — The normalized amplitudes of the director
distortion 6 (a), the velocities v, and v, (b) and the
convective current . (c) are shown as a function of the
reduced external frequency w7, for free and rigid bound-
ary conditions. The physical values are obtained by
multiplication with £'* (a, b) and & (¢} (material par-
ameters for MBBA 1II).

MBBA 11 we find v /" = 16.8 umss, v/ ? =
26.8 pm/s for w /2 m = 200 s~ ! (fully rigid boundary
conditions).  The  magnitude of o) =
7 % 10~ (mQ)~! was chosen to give a cut-off fre-
quency of about w/2 m = 700s~'. Obviously the
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measured velocity is smaller than what one would
expect from our lowest-order theory by a factor
between about 6 at # = 0.1 and 2.8 at ¢ = 0.5, and
the dependence on ¢ is stronger than predicted. The
inclusion of higher-order terms in the e-expansion
probably cannot improve the situation., The reason
for this is that, if the terms proportionat to & would
become dominant, their contribution would have to
exceed that of the £%terms, which are already too
large. The discrepancy is probably not grave, since
the experiments are not very accurate, and moreover
the particles do not move with maximal velocity
along their trajectory. A more significant comparisen
could presumably be made for the time of revolution.

We point out that in two optical experiments,
which should both be sensitive to the amplitude of 8,
an &2 behavior was claimed to be found in the range
0.1 = £ = 0.5, and a saturation for larger & [51, 52].
Whereas Carroll [51] measured in PAA the focal
length of the system of rolls, which act as a lattice of
cylindrical lenses [44], Kai et al. [52] measured in
MBBA the intensity of the transmitted polarized
monochromatic light. In a very new experiment [53]
an £Y2behavior of the director orientation was
found for ¢ < 0.1 by measuring the change of the
amplitude of the light modulation with . We suggest
to measure the electric Nusselt number for compari-
son with our results.

At order = one obtains contributions to higher
spatial harmonics in u. Thus the complete expansion
of 8, for example, can be written as

8 = &1+ 0(e¥®)] 0y(z, £) cos gx +
+ e[l +0(e"™)] 81(z, t)cos 2 gx + ... (5.10)

In our treatment a determination of ¢, and the -

corresponding contributions to the other quantitics,
is included. For fully free boundary conditions and
lowest-order time-Fourier ¢xpansion one has

B, = Agcosz, 0,=A;sin2z. (511)

For standard paramecters of MBBAII we find
Ay =84.4" and A, = 16.4°, The term 8, leads to an
observable asymmetry in the optical properties
sometimes called « squint » [54].

The one-dimensional version of equation (5.4)
without Y-derivatives was considered previously for
the dc case and fully free boundary conditions [35].
We have only checked the expression for & and
found it to be incorrect,

Of course equation (5.4) can also be applied to the
periodic splay-twist instability (then & and £,
would be interchanged). We have as yet not deter-
mined all parameters for that case.

From- the envelope equation (5.4) one can easily
show that a two-dimensional wavenumber band of
stationary straight-roll solutions exists inside the
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region Q0° + P* < 1/3 (two-dimensional Eckbaus eri-
terion) [8, 9]. This means that, if fluctuations are
sufficiently small and effects of boundaries and other
disturbances of the idcal system are negligible, all
solutions in the stable region should, under appropri-
ate preparation, be experimentally accessible.

Experiments by Lowe and Gollub [56] have essen-
tially verified this for the one-dimensional
wavenumber band with 0% < 1/3 and P =0 (rolls
always exactly in the normal direction). Unfortu-
nately fluctuations, which lead to the nucleation of
dislocations, appear to be of some importance in the
stable region.

It would be very interesting to test also the
stability against variations of P, i.e. finite tilt of the
rolls with respect to the normal axis. One possible
method for such an experiment with appropriate
materials would be to prepare tilted rolls by first
going to a point in the V-e-plane where oblique rolis
develop spontancously, and to alter subsequently V
andfor o into the normal-roll regime. One must be
aware that lateral boundaries, which are not perpen-
dicular to the roll axis, can lead to additional
restrictions as is well-known from quasi-one-dimen-
sional systems [57]. A discussion of boundaries that
are perpendicular to the rolls is given in reference
[58].

The envelope equation (5.4) can also be used to
describe the structure and dynamics of dislocations
as well as their nucleation. As pointed out before [9,
59] stationary dislocations exist only at Q=
(@, P)=0. For Q#0 the direction of motion is
perpendicular to Q and can therefore take on any
direction (« climb » and « glide »). This is different
from isotropic systems where glide can occur only in
nonpotential situations [60, 61]. There is another
essential difference concerning the velocity V of a
dislocation. Whereas in isotropic systems V scales
essentially like Q*? near the band center [60, 61] this
nonanalyticity is absent here so that V' is essentially
proportional to Q. Introducing X' = X [&, Y =
Y/€, the results of detailed calculations [39] can be
written as |V'|'= n|Q'| (V' = (V./&. V,/E.)
Q' = (Q#, P£,)) where for |V'| <1 one has

_ {Z/In (R'/1.13) for |V|R' <1
2/ln (3.29/1V’|) for |[V'|R'>1.
(5.11a)

Here R’ is the size of the system in the primed units.
Equation (5.11a) is valid for |Q'| <1 and R'> 1.

5.2 OBLIQUE-ROLL REGIME. — For @ < , and not
too near to the Lifshitz point, where the periodicity
at threshold is described by the wavevector ¢, =
(4., P ) equation (5.1) has to be generalized to

w(r, 1) = e[UAX, Y, T) e @ TP | o] x
w @z, 1)+ 0(e), (5.12)
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and the cnvelope equation reads
T4 =
= [E1a + £30% + 28 Eaby iy + 1 — JA|FTA.
{(5.13)

with |a| < 1. Similar reasoning as before shows that
to lowest nontrivial order the neutral surface is given
by

e=£5(g—a ) + E30 —p) +

+2 §1 fza(q - QC}(p _pc) . (514)
This corresponds to a paraboloid whose principle
axes are, in general, not parallef to x and y (and
neither in line with the rolls). The quantities
Ty, €, £, and a can again be determined from the
linear analysis. :

We have as yet not determined the overall normal-
ization of the &; in the oblique-roll regime, but work
in this direction is in progress. One has here to be
aware of a peculiar difficulty that arises when free
boundary conditions, that do not provide a surface-
torque against twist, are used. Then the preferred
axis is defined only by the initial planar alignment.
Since oblique rolls actually exert a net torque on the
boundaries there is no static solution. The difficulty
does not show up in linear order because here the
torques balance due to the symmetry z »—z. It
would be interesting to perform an experiment with
approximately free boundary conditions. Perhaps
this can be done by having the nematic material
floating on mercury and a free space between the
upper surface and the electrode. The resulting
rotation can be stopped by applying an axial mag-
netic field.

The quantities Tp/d?% &/d, £,/d and a are plotted
in figure 17 for MBBA II (see Appendix D) with
modified values of &, = — 0.2 and oy = 2. For this
case w, exists. For @ > w, the corresponding quan-
tities for normal rolls are included. Note that
&, and ¢, vanish at the Lifshitz point and behave as
{w, — @)'? in its vicinity. In section 5.3 we derive a
connection between a and the derivatives of £} and
£2at w = w, '

The two-dimensional wavenumber bands for exist-

ence and stability now correspond to ellipses cen-

tered around (g.., p.) and (g, — p.). Since equations
(5.4) and (5.13) are mathematically equivalent, all
results from the normal-roll case can easily be
transferred to the oblique rolls by a rotation of the
X, Y-coordinate system. Indications for the two-
dimensional stable wavenumber band were obtained
by experiments where a given point in the V-w-plane
sufficiently far above threshold and inside the ob-
lique-roll regime was either approached by a sudden
jump from the subcritical region (V < V) or by
small voltage steps [6]. In the first case the system
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Fig. 17. — The relaxation time T (a) and the coherence
lengths £ £, , €. &, and the constant & {b) corresponding
to equations (5.4) and (5.13) are plotted as a function of
‘the reduced external frequency wr, for free and rigid
boundary conditions. Material parameters for MBBAII
with modified values of z, = = 0.2 and 0| /o, = 2.0 are

. used.

settied down at .a tilt angle which presumably
corresponded more or less to the most-rapidly
growing mode, whereas in the second case the
system remained locked into the angle corresponding
to q, at threshold. The motion of dislocations is also
analogous to the normal-roll case [59].

Domain walls connecting regions with p ~ p_ and
p ~ — p, may be described by two coupled equations
of the type (5.13).

We point out that the trajectories of the fluid
particles in a roll are closed, even if corrections of
order & are included. This appears to be a result of
the symmetry with respect to inversion at the roll
axis and is therefore presumably exact for the full
nonlinear problem. The flexoelectric terms lead in
the case of an applied dc-voltage to helical motion
(74].
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5.3 VICINITY OF THE LIFSHITZ POINT. — At the
Lifshitz point (@ = w,) the prefactors of all Y-
derivatives vanish in equations (5.4) and (5.13).
Thus for @ = w, a different scaling for ¥ and a
scaled version of w — w, may be introduced

Y=:"y, w-wo,=:"0 (5.15)
(X and T as before). This leads to a different

envelope equation

TodedA = [(£, 9, - i£30% )Z—b‘fa 8y +

ceNelR 11— |AP]A (5.16)

with & = Q. Here the physical quantities are again
given by equation (5.1). T, and £, are the same as
before, now taken at w = w, (here &, = £). For
g. in (5.1) one has to take the critical normal-roll
wavenumber at the actual @, or ¢, = q.(w,) +
(dg./dw Y@ — @,). Similarly one must take the
normal-roll threshold V (w ) at the actual frequency
in the definition (5.2) of &. The neutral surface
described by equation (5.16) is

e=EHg—q.V + [26:(q9 — q) + c(w — w,)] x

PP+ (L+bYEph. (5.17)
For ¢(w — »,)> 0 the neutral surface has a mini-
mum at g = ¢, and p = 0. For very small values of
g —g.| and |p| one can then approximate (5.17)
by

£ = §f(q—qc)2+c(w—wz)§%p2 (5'18)
Comparison with equation (5.8) shows that
cti=8,61, (5.19)

Forc(w — w,) < 0 the neutral surface has minima at

g, =qc_c(wz_w)/2b§1a

5.20
pi=clo,—w)/2b8]. 20

For very small values of |q¢ — §;| and |p— p.| one
can then approximate (5.17) by

cz(mz. —w )2

E=—-—2-b—-—+§12(q'"'(z:)2+
+21+bc(a)z—w)§3?(P—Pc)2
[

o JR Dy g - 200 - po)

(5.21)

(choose the positive root for p, > 0). Comparing this
with equation (5.14) (7, has to be identified with the
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g. there) and making use of (5.19) leads to the
relations

b=203,61/(|9.¢7] —20,60), (5.22)
at=1-208,61 /0,63, a=0 for p.=0, (5.23)

where a and the quantitics on the r.h.s. are to be
taken at w = w,. The quantity &;, which is as yet
undetermined, can be obtained from the neutral
surface by

= (&) 8, VeV, (5.24)

From (5.23) one derives the interesting inequality
a §l< |2,£3] at @ = w,

ameters of MBBAIl with oy/0, =2 and
g, = — 0.2 we find for fully free boundary conditions
w, 7o=0.80, ¢ =034d, £ =016d, b=323
and ¢ = 0.90 7 and for fully rigid boundary con-
ditions w, 7o = 0.32, ¢, =0.304d, £§;=0.124, b =
4,00 and ¢ = 0.61 7.

From (5.16) one can deduce interesting stability
regions in the g-p-plane for straight-roll solutions,
which exhibit the splitting of one stability island on
the normal-roll side into two islands on the oblique-
roll side [8]. In a small range of {2 there should even
exist three separate stability islands. Equation (5.16)
also possesses stable undulated (or wavy) normal
angd slightly oblique roll solutions. They exist in a
narrow range inside the oblique-roll regime c{2 <0
and are in fact less stable than the oblique rolls {8].
The undulated rolls observed experimentally [5, 6]
appear to be more stable. Possibly mean-flow effects,
which are expected to occur for the undulated rolls,
can explain the discrepancy. Work towards inclusion

For standard par-

" of such effects is in progress.

In the oblique-roll regime equation (5. 16) also has
domain-wall solutions connecting regions with p > 0

“and p<0. Their wavevector-selection properties

were considered before [9] and are presently under
further study, These domain walls may be arranged
periodically and then they describe the Zigzag
structure observed experimentally [5, 6]. The inter-
action between well-separated domain walls can be
shown to behave in an oscillatory manner, so that
many equilibrium positions are possible. This exp-
lains the exotic undulated structure observed some-
times [62] and indicates that spatially chaotic states
may be expected [63]. Some aspects of the behavior
near the normal-oblique transition even far above
threshold are captured by a two-dimensional phase-
diffusion equation given elsewhere [64].

6. Concluding remarks.

The investigation of the threshold and near-
threshold behavior of the electrically (and magneti-

cally) driven pattern-forming instabilities in nematic
. ' 123
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tiquid crystals presented in this work is a fairly
general one. We have mainly uscd the parameters of
MBBA, because this is the only room-temperature
nematic cxhibiting EHC where most of the par-
ameters are known with some accuracy. However,
we have often varied some material parameters to
show that various features are independent of the
material considercd and therefore typical for nematic
liquid crystals.

In section 5 the coefficients of the amplitude
equations are calculated within the lowest-order
time-Fourier approximation. We expect that in situ-
ations where the corrections become relevant one
would obtain only quantitative changes.

The « full » time-expansion presented in subsec-
tion 4.3 was done for rigid boundary conditions only
with the trial function approximation for the z-
dependence introduced in subsection 3.2 in connec-
tion with Appendix A (« approximate rigid boundary
conditions »). Meanwhile we were able to test this
approximation against an essentially rigorous high-
er-order Galerkin expansion [76]. We found the
corrections to be generally small on the order of a
few percent. The most important point in choosing
« good » trial functions is apparently to take care of
the symmetries, as demonstrated in Appendix A.

The following essential limitations of the presented
work remain : -

i} We have neglected the flexoelectric effect. For
dc voltage it was shown recently that this effect
provides an alternative driving force for oblique rolls
[73, 74]. This is consistent with the fact that the
flexoelectric effect can also lead to a periodic
structure that is aligned parallel to the director [75],
similar to the periodic splay-twist structure discussed
in subsection 4.4. For ac voltages the flexoelectric
effect drops out of the lowest-order time-Fourier
approximation and therefore its influence is expected

to vanish for d — 0o. Preliminary computations with =

the inclusion of the flexoelectric effect have indeed
shown that in the frequency range where the con-
ditions (4.4) and (4.6) hold, the results remain
almost unchanged. For smaller thickness the
flexoelectric effect becomes more important, but the
changes at intermediate frequencies seem to be
mainly of quantitative nature. Thus one now has an
oblique-roll regime, i.e. w, > 0, for standard MBBA

[76].

ii) The dielectric regime was not considered ex-
plicitly, although the relevant modes are included in
our framework. The full threshold behavior includ-
ing the interaction between the « conduction mode »
and the « dielectric mode », which are coupled by
the flexoelectric effect, are now under investigation.

We have also looked for Hopf-bifurcations, but
never found them to occur as the first (primary)
instability. For MBBA-like materials and free or

approximate rigid boundary conditions this resany
can be obtained analytically. With the inclusion of
the flexoclectric effect we have as yet found primary
Hopf-bifurcations only for very special situations in
the frequency range where the conduction mode and
the dielectric mode interact strongly [76]. Possibly
other generalizations of the basic equations (c.g.
charge injection, non-ohmic behavior) have to be
invoked in order to describe the observed traveling
waves [10].

At this point quantitative discrepancies between
our theory and existing experiments should not be
taken too seriously. On the one hand the flexoclec-
tric effect does lead 1o quantitative changes, and on
the other hand uncertainties in the experimentaf
arrangements, including uncertainties in the material
parameters, are presumably important.

The periodic splay-twist instability was investi-
gated in subsection 4.4 only for a planar configur-
ation without pre-twist in the z-direction. We remark
that in a twisted nematic cell one has also a different
periodic instability [77] which can compete with the
splay-twist instability [16]. We moreover point out
that there are quantitative differences between the
situations where these static periodic instabilities are
driven by a magnetic field or by an electric field [45,
78], which may be important for display design.

From the results of section 5 one can extract the
velocity v = 2 ££V2/Ty with which a plane wave-
front building up the pattern behind it propagates
into the unstructured state slightly above threshold
[79]. Mecasurements of this velocity have been per-
formed in the Taylor-Couctte [80] and the Rayleigh-
Bénard instability [81]. Whereas in the first exper-
iment there is disagreement with theory the latter

. one shows good agreement. In our case of an

anisotropic system the coherence length ¢ depends
on the direction of propagation. -

There is now hope that in the near future a fairly
complete and rigorous description of the threshold
behavior for EHC and related instabilities is pos-
sible. We plan to standardize the relevant computer
programs and make them available. This may be
important since we have very likely missed interest-
ing scenarios due to the vast size of the parameter
space. Moreover we shall persue the investigation of
the weakly nonlinear region in order to describe
more complicated structures and defects and mean-
flow effects [18, 19].

A brief comparison of EHC with thermally driven
Rayleigh-Bénard convection in planarly aligned
nematics might be in order {82]. Here a convenient
second control parameter is a (stabilizing) magnetic
field applied parallel to the undistorted director.
One may have normal or oblique rolls at zero field
(for standard MBBA and boundary conditions that
fix the temperature, normal rolls are expected [83.
45)). A weak field first favors normal roils. At highet

&
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fields (and higher thresholds) a transition to oblique
rolls occurs and at very high ficlds they become
« paraliel » (wavevector perpendicular to undistorted
director). Part of this scenario has been observed

83]-

Acknowledgments.

In the course of this work we have benefitted
especially from contributions and communications
with R. M. Clever, A. Joets, W. Pesch and R.
Ribotta. We also wish to thank M. Kaiser, R. B,

¢ (z), 6(z) : symmetric under z » — z,
v.(z), v,(z), ¥ (z}: antisymm. under z —
v,(z): symmetric underz —» -z,

Choosing the first (second, third) class proportional
to a function f,(z){(f2(z), f3(z)) which has the
correct symmetry and satisfies the boundary con-
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7r/2
I = j F1(2) 8y (2) dz /T,
—-w /2

w/Z
L= j 1) . fa(2) dz/ Ty
—w/2

71'/2
= j £1(2) Fa(z) dz /iy
- /2

~

/
Iy=- ’ fz(z)azfl(z)dz/.fz:12.11/12,
Vw2
"Tr/z
Iy=— f1(z)y8lf,(z)dz/T; s
vom /2
ﬂ,r‘,/z
Ig=— f2fz) 8, f2(z)ydz/ 1y,
[USE )
T /2
n=| R OLE
-7 /2

/2 5 _
=" n@anean,
-w/2
Ig =13.J1/J3 I

T /2
fip=— J /2f3(2)33f2(2)d2/]3=

ﬁz,

- eg(e1 g2+ e, )8, ~ (a1 g*+ o, )] ¢ +

v2 5
w

a’ v?
+ [[7133— (@rq° - a3)2w—26{+;83K2— [B3+ (20" — a3) 4°] % & 332—-20032 Wf]} g6 =0.
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Appendix A.
Trial-function solution for rigid boundary conditions.

We here describe the procedure to determine the
constants {; which have been introduced in equations
{3.11-14). For rigid boundary conditions the physical
variables can be divided into three classes:

¢ =0=0 at z=+ /2
v, =v,=y =0 at z=xa/2 (A1)
v, =38,0,=0 at z=zxm/2.
T2 5
w=- | p@anEda, (A2)
-r/2
with

w /2
Ji = J fi(z)dz

i=1,2,3. (A3)
7 /2 .

In particular we have used
fi{z)=cosz,
fi(z)=sin2z,

cosh (A, z)
fi(z) = :

cosh (As%) cos (.AS%)

(A, = 1.50561873 (see Ref. [50]). One then obtains
1, = 1.0000, I, = 0.8488, I, =1.3948, I, = 0.8488,
I = 4.0000, I = 1.5724, I, = 0.7862, I3 = 0.6973,
I, =0.6973, I,y = 3.1448, I, = 1.2465.

(A.4)
cos (A, z)

AppendixB.
The limit @ — 0.

We here derive the ac threshold in the limit
w — 0. For simplicity we only consider free bound-
ary conditions and normal rolls (p = 0), and the
time derivative acting on v, is neglected, since it is
extremely small. For p = 0 one only has equations
32a, b and d. After replacing 8 by —1 and
eliminating v, between 3.2b and d one is left with the
following two equations :

V2

—;V[Ua-i- £ £, 9,](g0 cos wt) =0, (B.1)

Veole, By + (51 ¢°+ 5L Moy g*— a3)] g ¢ cos wt +

(B.2)
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These two coupled first-order differential equations
can be transformed into one second-order equation
of the form

[82 +g,(t) 3, +go(1)] 0 =0. (B.3)

1

We need the quantities go and g, only for @ — 0.
Then one finds

g1 = '[1 +::: (1 +2(V*/B) cos® “’t)] /7

go=[1- 2(172/V§c) cos? wt]/7q 7 » (B.4)

where the charge relaxation time 7 and the director
relaxation time 4 are given in (3.13) and (4.4), and
the dc threshold Vg is obtained by (3. 11) with
w = 0. B is given by
B=-7r ’K, g q2+e',_ ' (B.5)
£0fa £, (1+g°)

In the limit @ — 0 we solve (B.3) by a WKB-Ansatz
8 =exp(S(w . t)/w) with §= S8+ oS5 +... To
order w® one immediately obtains

$3+9,5+9,=0 (B.6)
which yields
285=—g1+~/91—440- (B.7)

Clearly the growth rate (Floquet coefficient in
equation (3.7)) is given by the average of 53 over one
period: o = (S'0>. Inserting (B.4) into (B.7) and
requiring (So> = O determines the threshold V7 at
w = 0. For /7, <1 one finds

V= V&c[l +Tl (Vi/2B+4) +0( ( _;i )2)1
‘ ‘ (B.8)

Appendix C.
Rigorous treatment of time dependence.

Here we include higher-order time-Fourier terms
but keep the treatment of the z-dependence as in
section 3.2 in connection with Appendix A, A recur-
sion relation for the determination of the threshold
is derived and transformed into a continued fraction.

Eliminating from the six coupled equations (3.2)
for the n-th Fourier mode (see Eqs. (3.8)) the
quantities ¢,, ¥,, Uy, V), and v, the following
recursion relation for ¢ can be obtained

Fn9n+Gn9n+1+Hnen—l=0 (Cl)

Zg= LX)

with

F o= [ZiYP+ (28 + 27—
+pYlZ] Z} Yi+ ZF
+ZNZE+ Z§ T - Z) Y]

G,= [Z3Y?+ ZEYT) Z2+ P2 Z7 + Z3 Z5) Y}
= [Z Y+ 2P Y ZE +
+piZ3 1 27+ 23237 Y3

Zg) YT Z8 +
_ZEZIYT

(C2)

and
Yi=ay 37— aslylg— ayp* Iy pi/un)
Yi=a3lg+ (aspz—azqz)#i’/ﬂf
Y= pi+pieini/ug (C.3)

z ’ 1,1
Zl = '\znd (T1+‘13P——4)+
w? 7%

V?.
+ K; — £ Saz—wz [2- qz(Un +U,_1)]

1 V2
i =~ 3 2] Ea;‘r_z - ‘IzUn)

n 4’
Z3 = [lzn;—z (C!z qz— aapz) a3/}L£+ kn - kzz} I

Z] = Zy I/,
n d? 2 232 n
ZS=AZJ1:2[71_ (a3 p*— a3 ¢°¥/ni] + K,
V7?2 3 2 2
wz[(em +e pit+e DU - 2lq

d2 N n n
Zi=— )‘zn;z [— o3Iy + (@2 q° — a3 p?) wifni]

n d2 y A
VAR )‘Zn;'j (g Iy g — as I I + aspilypl/udl

(C.4)
d2
“‘{[=_h zpmlﬁ ﬁl’
1T
B _ ) d* 2, .2
pi=Ar,—Puld"+2)+ B2,
w
n d* 2
#3=A2n'—zpm(q _ISIT).+B3’
w
dZ
mi=Arys—pPmis+ By (C.5)
o
U, _(0' o' Ve el DY AL Y
(1+'\2n+17)’ (C.G)
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The recursion relation (C.1) can be transformed into

Fo—zRe [GGHI/KC] =O, (C.S)
G, H,
Y - S C9
KE Fl - GZH:i ( )
2 Fi—..

The integral I, ... I, are defined in Appendix A and
are for fully free boundary conditions all equal to 1.
For given material parameters and wavenumbers g
and p, equation (C.8) is an implicit condition for the
growth rate o (g,p; V,w), and from o =0 the
neutral surface V,{g,p ; w) is obtained. the con-
tinued fraction K, can be calculated by standard
methods [65].

The recursion scheme presented above is easily
programmable on a (small) computer and reduces
the computation time compared to that needed for
naive solution of the problem considerably. One
would then deal with 10 n + 6 coupled real algebraic
equations where n is the order of the Fourier
expansion. Equation (C.1) is equivalent to a homo-
gencous system of algcbraic equations with a
tridiagonal matrix. There exist efficient algorithms
[66] to solve such tridiagonal systems which take
nearly twice the computation-time as the method
with continued fractions, but have the advantage
that the symmetry in equation (3.8) is not needed
and therefore is also appropriate for the calculation
of the Hopf-bifurcation.

For a harmonic driving field higher-order Fourier
components were considered previously within the
one-dimensional model by Sengupta and Saupe [34].
For a square-wave driving field rigorous treatment
of the time-dependence was introduced within the
one-dimensional model by Dubois-Violette [67, 68].
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Generalization to two dimensions for free boundary
conditions has been also done [69, 70].

Appendix D.
Material parameter.
The following two sets of the material parameters

for the nematic liquid-crystal material MBBA (N-(p-
methoxybenzylidene)-p-butylamiline) are used :

Material parameter MBBA 1 MBBAII
ki 6.66 6.1
ka3 4.2 4
ks 8.61 7.25

oy - 18.1 6.5
a, — 1104 -77.5
a; —11 -1.2
oy 82.6 83
o5 77.9 46
ag —33.6 -35
g 4.72 4.72
£, 5.25 5.25

o1 /o, 1.5 1.5

The rotational viscosities ¥, and v, are defined in
equation (2.13). The often used shear viscositics
1, (=m,) and n, (= 7n,) are given in equation
(3.4), and m, = ay/2 [2, 26]. The elasticities
k,; are given in units of 10~ !? N and the viscosities in
units of 103 kg m™! s~ !. For MBBA I the values for
the elastic constants are taken from reference [71]
and the values for the viscosities from reference [72]
at 25°C. The parameters for MBBA II are takcn
from the reference [41]. If not stated otherwise we
have used for the conductivity ¢, =10"80"1m™".

- In cases where the dielectric tensor was varied, its

trace was kept constant at £ = (2 &, + g ) = 15.22.
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