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A theory of hopping conduction is developed for compensated crystalline and amorphous semi-
conductors subjected to a strong electric field. It is shown that at sufficiently low temperatures
the current—voltage characteristics should be given by the equation I xexp [—(Ey/E)YY. The
theory is compared with the experimental data for amorphous germanium films, The value of
E, is deduced from the experimental data and used to estimate the characteristic length of the
fall of the wave functions of the states located near the Fermi level. The paper is concluded
with a discussion of the influence of longitudinal and transverse magnetic fields on the hopping

conduction in a strong electric field,

The theory of hopping conduction in semiconduc-
tors subjected to weak electric fields corresponding
to the ohmic region has a long history, and it has
achieved considerable success (see reviews {1, 2]). The
interest in hopping conduction in strong electric fields
is much more recent, This is due to the fact that the
first experimental investigations have been concerned
with the hopping conduction between impurity levels
located quite close to the allowed band, In this case an
increase in the electric field results in fairly rapid
ionization of impurities (impurity breakdown) so that
conduction ceases to be of hopping nature, However,
in the case of strongly compensated semiconductors
which are now used very widely [3, 4], only the deepest
impurity levels are occupied by electrons at low tem-
peratures, andthese levels appear because of fluctua-
tions in the charged-impurity potential [2, 5] (Fig. 1).
In this case the separation of the Fermi level from the
nearest allowed band is considerably greater than the
binding energy of isolated impurities, and this means
that the ionization of impurities is a difficult process,
so that there is a wide range of fields in which non-
ohmic hopping conduction can be observed,

In recent years an increasing amount of work has
been done on electronic properties of amorphous semi-
conductors. According to modern ideas [6], the forbid-
den band in these substances is replaced by a band of
energies in which the density of states is low but finite,
The Fermi level is located somewhere near the mid-
dle of the band, Electron states close to the Fermi lev-
el overlap weakly and are localized. Thus, the en-
ergy-level schemes of amorphous and compensated
crystalline semiconductors are similar near the Fermi
level,
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Fig. 1. Energy-level scheme of a compensated semiconductor. The
continuous line represents the bottom of the conduction band and the
chain line is the Fermi level, Short horizontal dashes are the energy
levels of impurities and the black dots are electrons occupying these
levels; gy is the bindingenergy of an isolated impurity, The energy depen-
dence of the density of states is shown on the right. The filled states
are shown shaded.

The large gap between the Fermi level and the al-
lowed bands makes an amorphous semiconductor the
most convenient material for the study of nonohmic
hopping conduction in a wide range of fields and cur-
rents. A crystalline semiconductor is a suitable mate-
rial only if it is almost completely compensated so
that the Fermi level is depressed by an amount com-
parable with the forbidden-band width [7].

At low temperatures the ohmic conductivity o of
amorphous and compensated crystalline semiconductors
is due to the jumps of electrons between states located
in a narrow band of energies A & near the Fermi level
{2, 6, 8] (Fig. 1), For this reason the value of ¢ is in-
dependent of the distribution of the density of states in
the forbidden band, but is governed by two quantities,
which are the density of states at the Fermi levelgiu)
and the characteristic length a of the fall of these states.
Mott [8] showed that when the temperature is lowered
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. the conductivity o should decrease in accordance with
3

6 == 139 CXp {— (lTO. I/‘} ) (1)

where T, =~ 16/ g(u)a®. Dependences close to Eq. (1)

- have been reported for crystalline and amorphous. semi-

- conductors [2, 6, 8]. A superlinear rise of the current

- Iin a wide range of strong electric fields has been re-

ported for amorphous films of germanium, silicon, and
carbon [9] and for strongly compensated crystalline

 germanium [4]; this rise has been observed at tem-

- peratures in the range of validity of Eq. (1), Figure 2
gives, by way of example, the current—voltage charac-
teristics of an amorphous germanium film obtained at
various temperatures [10].

The present paper is devoted to the nonohmic de-
pendence I(E) in the range of temperatures in which the
ohmic conductivity is governed by Eq. (1), We shall
assume that the temperature is so low that all the ef-
fects associated with the transfer of carriers to the al-
lowed bands (for example, the Poole —Frenkel effect)
can be ignored, However, we must bear in mind that in
most cases the superlinear part of the current—voltage
characteristic is followed by breakdown and a nega-
tive resistance region, These phenomena are obvious-
ly due to the transfer of carriers to the allowed bands
and will not be considered here, We shall discuss only
the lower, positive, part of the current—voltage charac-
teristic sufficiently far from the turnover field. We
shall rustrict our discussion to the nonlinearities of
electronic origin and we shall ignore the heating of the
lattice and the establishment of equilibrium in the pho-
non system,

The problem considered here was first discussed
by Mott [11]. According to Mott, the rapid rise of I
in strong electric fields is due to the following physical
factors, As is known, the hopping conduction in weak
electric fields involves phonon absorption and emis-
sion (Fig.1). In a weak field, when the slope of the
Fermi level can be ignored, the absorption and emis-
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Fig, 3. Hopping conduction accom-
panied by phonon emission, The in-
clined line represents the position of
the quasiequilibrium Fermi level in
a strong electric field,

sion of phonons should occur equally frequently, The
absorption of phonons is responsible for the exponential
temperature dependence of the conductivity given in

Eq. (1). In a strong electric field, when the fall of the
potential energy of an electron eER(T) over a typical
length of a jump R(T) becomes comparable with the
width of the band of energies around the Fermi level
Ag (T), an electron can move along the field, emitting
phonons at each jump (Fig. 3), According to Mott [11],
the current in this case is independent of the tempera-
ture and it rises with the field in accordance with the law

I (Ejec exp {— —E%} @)

Although no objection can be raised to the idea of
activation-free phonon-emission-assisted hopping con-
duction in strong fields, Eq. (2) seems to be in error,
We shall show that in strong fields the current should
obey the law

Eo\'ls
1 (E) - exp (— (f’) }, 3)
where
al
0= ea() » (3a)

a is a coefficient of the order of unity (our theory is in-
sufficiently refined to give its value) and T, is the same
temperature as in Eq. (1),

We note, firstofall, that an electron can be trans-
ferred from a filled to an empty state, located "down
the field" at a distance r, without absorption of a pho-
non, provided the difference between the energies of
these states does not exceed eEr (Fig, 3). Therefore,
the effective density of states involved in jumps over
distances of the order of r is

Negp (r) =g (p) eEr, @)
and the average distance r to one such state is given by
Nege (F) P81, 5)
which leads to
P o (eEg (1) )
The probability of an electron jump over a distance r is
(1, 2]

z (7)
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Substituting Eq, (6) into Eq. (7), we obtain Eq. (3).
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We have mentioned earlier that the transition from
Ohm's law and the conductivity of Eq. (1) to the pro-
cess described by Eq. (3) occurs in an electric field
E. which can be found by equating eE.R(T) and A e(T),
According to [2, 6, 8], R(T) =~ a(T,/T)V4, Ae(T) =
T*/4T}/%, and Eg is given by

T
Ecza‘. (8)

We can easily show that in this field the principal ex-
ponential terms in the expression for the ohmic cur-
rent oF and in Eq. (3) become equal,

We shall now discuss the question of comparison
of Eq. (3) with the experimental results. We shall use
the data for an amorphous germanium film [10] plotted
in Fig. 2. We can see that at low temperatures the cur-
rent is independent of the temperature of the sample
and that it rises very rapidly with increasing field,
which is in qualitative agreement with Eq, (3). The
curve I(E) at 4,2°K (with the possible exception of the
lowest part) corresponds to the limit of the low-tem -
perature range. We shall compare it with Eq, (3) by
plotting log I as a function of E~4 (Fig, 4). We can
see that the experimental dependence has a slight but
finite curvature, Deviations from Eq. (3) on the high-
field side (low values of E'1/4) may be due to prebreak-
down effects, whereas on the low-field side the devia-
tions may be due to a temperature-dependent contribu-
tion to the current. For this reason it would be inter-
esting to compare Eq, (3) with the data obtained at still
lower temperatures. The results considered here can
be described satisfactorily by the expression I o E3
(see [10]),but this expression has no theoretical justi-
fication, The low-temperature dependences I(E) ob-
tained for other substances can also be approximated
satisfactorily by an expression of the type I« EN where
n can have all possible values right up to 15-16 [12].
It is likely that this range of values of n is wide because
the law (3) is obeyed in a relatively narrow range of
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Fig. 4. Open circles represent the experimental dependence of the cur-
rent on E/4 in the case of amorphous germanium at 4.2°K [10]. The
straight line gives the best approximation to the experimental results
by Eq. (3).
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fields centered on values of E,/E which differ greatt
from one substance to another,

Equation (3) can be used to estimate the value o
a. This can be done by finding E; from Fig. 4, Next,
the temperature dependence of the ohmic conductivity
can be used to determine T, and both these quantities
can be substituted in Eq. (3a). Such an analysis of the
data for amorphous germanium gives E; =4.8- 1010
V/em, Ty =1,1+10% °K, and a = 20 A,

We have considered so far the high-field range
E > E;,wherethe current is completely independent ¢
the temperature, Mott [13] and Hill [14] considered th
influence of an electric field in the case when the drop
in the electron energy in a typical jump, eER(T), is
less than the average energy of the emitted and ab-
sorbed phonons (E <Eg). In this case the electric
field reduces by eER(T) the energy of the phonons
which are absorbed in jumps along the field and in-
creases by the same amount the energy in jumps agai
the field, Mott [13] and Hill [14] conclude that if
eER(T) > T, the argument in the exponential function',;
in the equation for the conductivity should be corrected.
by a term which is linear in E, For example, if the
ohmic conductivity o is given by Eq, (1), the current
density j calculated by Hill [14] is

eERT(T)}

eEaT "
j=sEexp {

=dE exp { T
This result is based on the assumption that an elec-
tron jumps mainly along the field in fields E < E, and
in fields E > E.. It is difficult to agree with this as-
sumption, In weak electric fields an electron moves
along percolation paths which are zigzag-shaped [2]. ;
An electric field which satisfies the condition eER (T) «
Ae(T) cannot alter a percolation path because this
would reduce the current by a much larger factor than
the increase implied in Eq, (9). Therefore, electrons
are equally likely to jump along and against the field,
The net result of the application of an electric field
is an increase in the probability of some of the jumps'
and a reduction in the probability of others, In view
of our limited knowledge of percolation paths we can-
not say whether these two effects will be compensated
exactly. However, we cannot exclude the possibili- :
ty that as a result of such compensation the correlation
to the argument of the exponential function in Eq. (1)
is proportional not to E,butto E?, In any case, Eq. (9)
and the corresponding results obtained by Mott [13]
cannot be regarded as justified,

We shall conclude this discussion by considering
the influence of a magnetic field on the hopping con-
duction in a strong electric field, It is known [2] that
a magnetic field compresses the wave functions of elec-
trons in the transverse direction and reduces the
hopping conductivity. In the case of relatively short
distances between electron states r < Az/a, where A =
(cti/eH)"? is the magnetic length, such compression
reduces the probability of a jump at right angles to the
magnetic field by a factor exp —sr3a/A%), where s is
a numerical coefficient of the order of 0.1, If T <
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z%/a, i.e., H <Hg = (cha/e) (E,/E)"*, this reduction in the
probability applies to a considerable number of jumps
in HLE and H|E, In fact, in the absence of the field
the jumps leading to the dependence given by Eq. (3)
occur in the right-hand half-space, and the average
distance of a jump is ¥, The frequency of the jumps
depends naturally on the angle ¢ between the "jump
vector™ r and the electric field E, However, this fre-
quency decreases considerably only in the angular
range m/2-— ¢ « 1/2. A magnetic field H < Hg sim-
ply alters slightly the argument of the exponential func-
tion in the jump probability (7) and, therefore, it has
practically no influence on the electron path., Thus,
electron jumps are characterized by vectors r with
large projections along E and at right angles to this
field, Thus, we find that in the HLE and H||E config-
urations the influence of a magnetic field smaller

than Hy can be described by the equation

2aH2 | Eg\
I(H)=1(0)exp{—s%— —Eﬂ) } (10)

Some anisotropy in the probability of a jump in H =0
simply means that the numerical coefficients in the
argument of the exponential function in Eq, (10) may
differ slightly for HLE and H |E (s, > sy).

In stronger magnetic fields H > H, the main term
in the argument of the exponential function in the jump
probability becomes strongly anisotropic and electron
jump paths change considerably [2]. In this case we
can use the method for calculation of the hopping con-
ductivity developed in [2, 15] for strongly anisotropic
jump probabilities and we can show that the current,
considered as a function of E and H, varies in accor-
dance with the law

oG
in the H L E configuration and in accordance with the law
I(H, E)~exp {_ (Hc;"?)l/’ (F‘E—")/} (12)

in the HJ|E case.
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