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Contmuum equatlons in the dynamics of rareﬁed gases
By MAX KROOK
Harvard University and Sm_tthsoma.n Astrophysxcal Observa.tory

N (Received 16 April 1959)
A procedure is given for translating boundary-value problems of gas dynamics
from microscopic form into approximately equivalent continuum form. The

“continuum formulations involve state-variables that are either half-space -
moments, or complete moments of the molecular distribution functions. Moment
equations derived from the kinetic equations are reduced to a determinate set
by representing the distribution functions as surns of ‘modified Maxwellian
functions based on various characteristic temperatures and velocities’. The
particular choice of such a representation depends on the Knudsen number

‘and on the nature of the microscopic boundary conditions. :

i. Introductmn

Considerable progress has been made in the study of gaseous systems Whose
beha‘nour is governed by the Navier—Stokes equations. These equations are,
however valid only in cases where depa,rtures from local thermodynamic equili-
brium are uniformly small at all positions and times. There are many systems of
" interest ‘that involve considerable departures from states of local thermodynamic
ethbrmm Such systems can be treated only. within the fra,mework of a more
general formalism than the Navier—Stokes formalism. :

Kinetic theory provides a microscopic, and therefore rather general, formula-
tion of gas dynamics. However, very few problems of the theory can be handled
completely and explicitly in microscopic form. Instead, we usually proceed by
first translating a microscopically formulated problem inte an ‘approximately
equivalent’ macroscopic (i.e. continuum) form. We then attempt to solve the
mathematically simpler continuum problem. From a practical standpoint, the
roicroscopic theory is general for just the reason that it constitutes the basis for -
generating an unlimited number of distinet types of continuum theory. In this
paper we shall discuss procedures for translating microscopically formulated
boundary-value problems of gas dynamles into approxxma,tely equlva,lent con-
tinuum problems.

The microscopic state of a system is specified by moleeu.a,r dlst.rzbutlon fune---
_ tions, one for each species of molecule in the system. The microscopic equations
of motion then have the form of non-linear integro-differential equations which
- can be solved only. approxmately, if at all. Asindicated above, we usually begin
by deriving from the kinetic equations a system of differential equations for
a finite set of macroscopic variables. The macroscopic variables may be inter-
preted formally as state-variables that specify the state of some continuum; the
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: dlﬂ'erentlal equa.tlons are then 1nterpreted as the equations of motion for that
continuum. Different types of continua are distinguished one from another by
the number of independent state—vanables, by the physical significance of those :

.state- -variables, and by the partlcular form of the equations of rotion. '

~ For any gaseous system the quantities of direct physical interest are vanous
* macroscopic fields such as density, flow velocity, stress, etc. These variables can
be expressed as simple functions of low-order moments of the molecular velocity .
distributions.. An approximation method may then be counted as adequate if it

.leads to an accurate prediction for the behaviour of the lower-order moments,
even when it determines high-order moments with poor aceuracy. :

' When the physical interaction of gas molecules with boundaries of the system
has been specified, we can formulate the (microscopic) boundary conditions to be
satisfied by the distribution functions. In the translation of a specific microscopic
problem into an apprommately equivalent continuum problem, our choice of
a suitable continuum formalism will depend intimately on the nature of the
microscopic boundary data, and on the values of certain dimensionless parameters

(Knudsen number K, Mach number M, etc.) that charactérize the system of

interest. In particular, it is important that we use a continuum formalism which
, perrmts an adequate (approximate) representation of the physxcal boundary data
in terms of the state-variables of the theory.

The methods to be presented in this paper will be formulated vuth speclﬁc
reference to one-dimensional problems for a simple gas in the absence of external
© fields (the extension to more complex cases is quite straightforward in principle).
The microscopic state of a system is then specified by a single distribution
function f(v, «,t), which is a function of the velocity varlables v = (v, ¥, U3), Of
- a position co-ordinate z, and of the time 7.

The number density n{z, t), the flow velocity q(z, ?), and the kinetic temperature
T'(z,t) are defined by the usual relations (see Chapman & Cowling 1939)

e n=raw nq=j~vfdv,]'
| okt E — j

Where m is the molecular mass, kis Boltzmann s constant, and the integrations
extend over the whole velocity space. It is convenient to introduce also a stress
tensor p; ;(x,t) and a heat flux vector h(z, t) defined by

(L1)

=_fm(”i—%i) ('vj—%') de (%.7 =12, 3)a . ) (1"2) .
h =~ [ gm(v—q(v—q) fdv. a3
The behaviour of the system is governed by the kinetic equation
' of, of _&f - -
E + 94 % = *g. (1 4)

8f/8t denotes a non-linear functional of f, whose exphcxt form depends on the
model used to represent the molecular 1nteract10ns e.g. the Ma,xwell—Boltzmann

-
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model, the Fokker—Planck model (for ionized .gases), and various types of
¢gtatistical model’. In the Maxwell-Boltzmann model, the interaction term has
" the form of a collision integral (see Chapman & Cowling 1939):

U [[[e-rmsmsswrsown dadeaw, a9

where g = |g| = |w—v|, and v', W’ are the final velocities of two molecules in
a binary collision with initial velocities v, w, with impact parameter b, and with-
orientation of the plane of the relative orbit specified by the angle €. For concise-
ness, the arguments z, ¢ of the distribution functions have not been exhibited
explicitly in the integrand of equation (2.3). Statistical models will be discussed
in §12.

2. Moments as state-variables

Let us ignore, for the moment, any limitations that might be imposed by the
nature of the boundary data. Multiplying the kinetic equation (1.1) in turn by
1, v and imv?, and integrating over veloeity space, we can derive five continuum
equations® in which p = nm, q and 7T appear as independent state-variables (see
Chapman & Cowling 1939) thus:

P, 0q _
é;'l‘qlg;;*‘,o%— )

% a_@lv: 0Py, v . )
oT ol , 2 [p dg; ah1] e

2T 05 T k| P T B

These equations are formally independent of the microscopie state of the gas,
and of the special law of force between molecules. This is a consequence of the
conservation of mass, momentum, and energy in molecular collisions. The con-
servation laws guarantee the elimination of all collision terms from the equations;
in fact, the set of equations {2.1) makes maximum use of the simplifying con-

- sequences of the conservation theorems.

The equations (2.1) do not, however, constitute a determinate set. In addition
to the basic state-variables p, g and 7', they also involve the stress tensor p; ; and
the heat flux vector h. To make up a determinate set of continuum equations from
the equations (2.1), we may proceed in either of two main ways.

On the one hand, we may elect to regard the quantities p; ; and h as dependent
state-variables, and therefore expressible in terms of the basic state-variables p,
q, and T (and possibly also in terms of space gradients of p, q, 7). For cases in

, which departures from local thermodynamic equilibrium are uniformly small, the
above equations can now be reduced to the Navier—Stokes equations by applying
the Chapman-Enskog procedure to the kinetic equations. This derivation supplies
not only the form of the Navier-Stokes equations, but also explicit formulae for
the coefficients of viscosity, heat conduction, etc., as functionals of the laws of

* The same set of equations is valid also for composite systems and. for molecules with
internal degrees of freedom, provided q, 7', Pi,; and h are defined appropriately.
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force between molecules For cases in Whlch appreciable departures from local
thermodynamic equilibrium do occur, we might try to relate the variables p; ;and
h-to the basic state-variables in an entirely different manner. We would thereby
obtain continua specified by exactly the same basic sta,te-va,nables agthe ‘Navier-

- Stokes continuum’, but obeying different equations of motion; such continua

have, of course, to be counted as different from the Navier—Stokes continuum.

On the other hand, we may elect to assign to the stress components p, ;, and .
possibly also to some velocity moments of still higher order, the status of basic
state-variables on the same footing as p, q, and 7. We.can construct formal :
equations of motion for the new basic state-variables by multiplying through the .
kinetic equations with suitable functions of velocity, and then integrating over
velocity space. The equations obtained i in this way are again not a determinate
set, and for two reasons. ’

In-the first place, the new equations contain velocity moments which are not
themselves basic sta,te-va,ma.bles, and which have therefore ultimately to be
expressed as functions of the basic variables. In the second place, the equations
contain non-vanishing moments of the collision integrals. These collision moments -
cannot be eliminated by invoking the conservation theorems, since those
theorems have already been ‘nsed up’ in eliminating collision moments from
equa,tlons (2.1). All the non-vanishing collision moments must ultimately also be
expressed in terms of the basic state-variables. :

Continuum theories of the above typeare capable of representmg the behaviour
of gases which depart considerably from local thermodynamic equilibrium, pro-

- vided only that the distribution functions at the system boundaries are not

‘seriously’ singular on surfaces in velocity space. This condltlon is usually satis-

 fied in systems with very small Knudsen number. -

In other cases, however, the distribution functions at the boundaries will
generally be discontinuous on a plane in velocity space, e.g. when gas molecules.
that impinge on a wall are ‘processed’ by the wall before being returned tothegas. .
It is then necessary to use a continuum formalism that is adapted to the form of

* the microscopic boundary conditions (Krook'1955a, b). An appropriate formalism

of this kind can be based on the use of half-space velocity moments a8 state-

- variables instead of complete momeénts.

" For systems with small Knudsen number in which departures from local
thermodynamlc equilibrium are uniformly small, we would of course use the
Navier—Stokes equations. In this paper, however, we shall be concerned primarily
with problems in which the distribution functions exhibit steep gradxents (or
discontinuitieg), in the interior of the gas, or at boundaries, or both. (For casésin
which linearization of the collision terms is permissible, the theory admits
considerable simPliﬁea.tion.) : : -

3. Use of approximating forms

" In any scheme for constructing a determinate set of macroscopic equatlons §
from the kinetic equation, an essential ‘ingredient is the assignment of a specific
form to the distribution function fin its dependence on certain of the independent
variables v, %, and ¢. This form contains arbitrary parameters that are treated as
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' 'unspeciﬁed functions of the remaining independent variables, In the Chapmap-"
Enskog method, the arbitrary parameters appear 23 functions of the velocity v,
In Grad’s methed (Grad 1949), and also in the method of this paper, the unspeci-
fied parameters are interpreted as functions of position and time. An approximate
solution of the problem is then known when the Parameters have been determined
as functions of x and . In practice, however, it is generally more convenient to
select particular moments of the velocity distributions to serve ag state-variables,
and to construct equations of motion for those moments.

We have noted that the formal properties of the distribution function depend
markedly on the values of various dimensionless Parameters that characterize the
system. Of special importance for our consideration is the Knudsen number
K = If|z,—z,|, where L is some typical value of the molecular mean free path, and
@ = &, ¥ = &, are the boundaries of the system. For systems with boundaries at
infinity (and sometimes also for systems with %, and z, finite), K has to be replaced
(or supplemented) by a ‘local Knudsen number’ which is a measure of the steep-
ness of local gradients in the gas. The most general type of approximating func-
tions contemplated in this paper may reasonably be expected to provide repre-
sentations that are, in a sense, uniformly valid over the whole range of Knudsen
number, or of local Knudsen number,

In an approximation of order N, the distribution function is approximated by
a function that involves N arbitrary parameters. The corresponding continuum
equations are then a set of N differential equations for IV state-variables (i.e.
moments). The derivation of the continuum equations is of course only an
intermediate step in the solution of any problem. These equations have still to be
solved subject to appropriate initial and boundary conditions. The solution will
be feasible only when the order of approximation & is not too large. Itis therefore
desirable that the approximating forms be chosen so as o yield optimum
accuracy for given order N,

In this paper, the approximating functions will have the form of sums of
‘modified Maxwellian functions based on various characteristic velocities and
temperatures’. Aswe shallsee, such representations can be motivated on physical
grounds, and have the advantage that all (or most) of the mathematical manipula-
tionsinvolved in the construction of continuum equations can often be carried out
analytically. : .

4. Auxiliary functions

The kinetic equation (1.4) has to be solved subject to conditions imposed at the
boundaries of the system at z = zandx =z, (2, < 2,). In general, the physical
interaction of gas molecules with a solid wall introduces a fundamental distinction
between the velocity distributions of incoming and outgoing molecules at the wall.
In fact, the distribution function is then singular on the plane v; = 0 in velocity
space. . . : :

It is advantageous to recognize the singularity explicitly in the mathematical
formalism by using different approximating forms for f in the two regions v; > 0
and v; < 0 of v-space. To this end we introduce two auxiliary fanctions (v, z,t)
and f_(v,,t) defined only in the half-spaces.»; > 0 and vy < O respectively (see
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Krook 19554, b; Gross, Jackson & Ziering 1957). Within their respective domains
of definition, the values of f, and f-_ are specified by the relation '

f_,_(.V,'.x, t) (1,1 > 0),}
f;(V, Z, t) —‘(vl < 0).

Depending on the type of physical interaction at the walls, the mathematical
boundary conditions may take the form of a specification of f(v,x,1) and
f(v,25,%),0ra specification of relations between f, and f_ata = 2, and z = %, or
ete. ' - ' -
Tt is sometimes convenient, especially when the velocity distribution exhibits
special symametry; to refer velocity space to co-ordinates other than rectangular
Cartesian. Thus, for the case of axial symmetry, we may use polar co-ordinates
(v,0, ), and write f = flv, pyz,t) where p = cos 0. The function f,(v, 4, ,%) is
defined only for0 < g < 1 andf_(v, i, %, t) is defined only for —1 < ¢ < 0,80 that

{f+(’vuu'a x, t)A (‘M > 0),}
f o, ,8) - (m<0).

For systems with bouridaries at finite values of z, and z,, we shall generally
have to use different representations for f.andf . Inan approximation of order
N=N_+N_f. andf_are approximated by functional forms that involve N, and
N_ arbitrary parameters, respectively. - T : :

In certain limiting situations (e.g. Knudsen number K < 1), it is sufficient to
use a single approximating form for the complete distribution f. For systems with
boundaries at. infinity, f is generally not singular on the plane v, = 0, and a
unified representation of f, and f_is again admissible though not necessarily
expedient. - »

S f(v,gq,.t):{ @)

' f(v,ﬂ,$,t) =

5. Moments } - - | B
‘With any function of velocity @(v), we a,ssociate'funetionals, M P, M_[$]
and #[¢], defined as functions of z and ¢ by the relations S

M [P) = f A = L ¢frdv, (5.1a,B)

Mip) = [drav = (A A TG, Bl

o

. where f and f ~ denote intégratidn over the velocity half-spaces v; > 0 and
o +

: v, < 0, Tespectively. The functions ¢ to be considered here generally have theform
of a product of powers of the velocity components, (e.g. v7* v§» v§* or vPu9), and
sometimes the form of a sum of such ferms (e.g. vf vi= bf(v§+v§+v§)).-The

_ functionals (5.1) will be termed ‘“moments’ of the distribution function; . [#]
are half-space moments, and .# [¢] is a complete moment. Our eontinuum
theories will involve either half-space moments or complete moments as basic

‘ state-variables. ' ' '

4.2)
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With the function ¢(v) we also agsoociate half-space inberaction moments
P_{P1. P_{$], and a complete interaction morient (@), defined as functions of
z and t by the relations '

R = ! f\:f 5 ‘ (B 2a. B
2. ]’"j ﬁd‘s, (5.2a,bk)
P91 = [9Gav = 2.181+ 2 18] (5.22)
From the definitions (1.1) and (5.1}, it then follows that
n= H[1] = A [+ 4] (5.3)
ng; = A} = A Jv, ]+ 4 _[v,] (+=1,23), (5.4)
3T e 5 , .
ne— = MV —af] = A [V - QP+ A [V —a)) (5.5

The conservation laws for particle number, momentum and energy in molecular
interactions imply the relations

P]=0, Pv]=0, P[v¥]=0 (5.5)

6. Moment equations

Tet ¢4(v), Pa(V), ..., dx(¥) be any particular set of N simple functions, i.e.
products of powers of velocity components or sums of such produsts. Multiplying
the kinetic equation (1.4) by ¢,(v) and integrating (a) over the half-space v; > 0,
(b) over the half-space v, < 0, we obtain two sets of half-space moment equations:

0 2 _ - ] .
S PN+ o M i) = PG (= 1,2...8), (6.1¢)
é%%,[qﬂj]—f—é%//{-[vl(ﬁj] = 2 [¢] (j=1,2...N). (6.15)

:
Integration over the whole velocity space, instead of the half-spaces, yields
a single set of complete-moment equations

Q)

- ]

Q’| S

L AT g) = PIE) (= 1.2.0) (6.1¢)

IE

Q)|
i

Coﬂsidering for the present only the 2N half-moment equations (6.1a,b), we
wextb deﬁne a set of 2 basic (independent) state-variables M (x,t), Mz, 7},

{j = 1,2...N}, as the hali-space moments that correspond to N paﬂ'tlcu]ar sim 1
functlons B (V), .., Un(v), ie.
MG = A0k, MO =4[] (5=12.N). (6.2c,5)

.’\[oments A . [¥] that are not hasic state-variables will be termed ex’rrm eous

nomenta’. Our aim will be to construct, from the 2V formal equations (8.1a, b},

a detefm}r 240 set of equations of motion for the 2 independent state-variables
ﬁf(i)

)

[

The choice of IV functions ¢, in the equations (6.1), and of N functions ¢y, for the
definitions (6.2), is largely mrmtrav In practice, the functicns ¢, are usualily
34 ) Fhaid Bech. &
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selected to comprise simple functions of lowest degree. It is then convenient to
sélect the IV functions ¥, in such a way that, in the formal equations (6.1a, b), as
' many moments as possible are basic state-variables. For time-independent .
problems, the identification U= ¢j (§ = 1,2...N), would result in the exclusive
- occurrénce of basic state-variables on the left-hand sides of equations (6.1a,3).
However, certain moments will appear naturally in our approximating formulae,
through definitions of characteristic local velocities-and temperatures (see § 9). It
is then’ convenient to include those moments among the basic state-variables.

In general the formal equations will involve some extraneous moments,
_ Furthermore (except with the simpler types of statistical model), the interaction
momentl -2 . [¢;] have purely formal significance, and are not directly expressible
in terms of moments of f. In order toreduce the basic equations (6.1a,b) to a deter-
minaté system, we have to express all extraneous moments and the 2V mteractxon
moments in terms of the basic state-variables.

Slmllar considerations apply to the N complete-moment equatlons (6 1 c), w1th
basw state-va.na,bles M (,t) defined by the relations .

= M[Y;] = M + M) G=12. N) ' | (6._2_0) '

7. Reductlon procedure

~ The- 2N formal equations (8.1a,b) can be reduced to a determinate set by
representmg f.and f_ as specific functions of v, involving 2N parameters 4§ and
A (j = 1,2...N); the parameters aremterpreﬁeda.sunknownfunctlonsofwandt -
* The more, general types of approximating function to be considered here will
depend on the sta.te—va,na,bles M },*) as well as on the parameters A§, thus

fov,z, t) =g.(v; 4", .MS,“ M), ' (7.1a)
Fva =g (v AP MM, (3.1D)

where g+ and g_ are prescribed functions of the mdlca,ted arguments. .
Using the approximations (7.1), we may eva.luate the moments M @ = A, [Yy]

mthef“@ : M(+) Q5 (ALH; M, M& ) (j=1L12...N), . (7.2a)
. M = G5NALY; M, M)) (4 =1,2..N), . (7.2b)

where the G and G‘“’ are known functions of thelr arguments. For the approxi-
mating functlons contemplated in this paper, G§) will be linear functions of the
parameters A{P, with coefficients that may depend on the state-variables.

Solving the two sets of (linear) equations (7.2), we obta.m formulae for the
parameters A‘=‘=) as functions of the state-variables:

A = H M, M), | ' -‘(7.3a)
A = BO(M, M), ' - (1.3b)

' where the H f’ are again known fanctions of their arguments In the important

Al

speclal case that the functions (7.1a,b) do not involve the state-variables

explicitly, the functions H§" and H§™ are simply linear functions of the state-
vana.bles M S;” and M§"), respeetlvely
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Substitution of the formulae (7.3) for 4%*) on the right-hand sides of equations
(7.1)now provides representations for f, that contain only the state-variables, and
not the parameters thus: -

f:l: = k:!:(v; MS;“» Jm?))» {7‘40;: b)
where h, and 4_ are known functions of their arguments. Any functionals of f,
and f_ can now be evaluated, at least in principle, as explicit functions of the 2N
state-variables M. In particular, extraneous moments .# [¢/], and interaction
moments Z_[¢,], canthus bedetermined asfunctionsof thestate-variables. When
these functions are substituted in the formal equations (6.1a,b), we obtain
a determinate set of equations of motion for the state-variables. -

An analogous process with complete moments 3; as state-variables, leads from
the formal equations (6.1¢) to a determinate set of N equations for the M.

The macroscopic boundary conditions satisfied by the state-variables M are
" readily derived from the microscopic boundary conditions on f. and f_. If, for
example, the boundary values f, (v, ;) and f_(v, z,) are specified, direct integra-
tion provides the boundary values M{"(z,) and M{)(z,) for the state-variable.

The formulae for the interaction moments £, [¢,] as functions of the siate-
variables involve coefficients that appear in the form of multiple integrals. Since
the derivation of continuum equations is merely a preliminary stepin the solution
of a problem of gas dynaniics, the usefulness of the procedure outlined above will
depend crucially on the extent to which these multiple integrals can be evaluated
in closed form. (The elimination of extraneous moments in closed form presents
no difficulty.) This circumstance places severe restrictions on the types of
approximating forms that can reasonably be used to represent the velocity
distributions. Sums of modified Maxwellian functions provide satisfactory
representations from this point of view, especially when used in conjunction with
statistical models. ) : '

8. Modified Maxwellian functions
The normalized Maxwell distribution function corresponding to average
velocity Q and temperature ® = ma?/k will be denoted by ¥'(v; Q, ®) or ®(v; Q,a):

3
Y(v;Q,0) = ( —2-%) exp [ —m(v—Q)?/2k0]
| : S
-0 0. = (o) expl-(v- Q22 (8)

A function F(v; Q,a) will be termed a ‘modified Maxwellian function
(MM function), based on (Q, ®) or on (Q, «)’, when it has the form -

F = ¥(v; Q,0) p(g) — O(v; Q,a)P(g), ' (8.2)

where P represents a polynomial in the components of v/e, with coefficients that
may be functions of  and ¢. The velocity Q, and the temperature © or associated
speed o = (k®/m)}, may be prescribed constants or they may be functions of the
basic state-variables. The modifying polynomial P in the formula (8.2)represents
a distortion of the basic Maxwellian distribution ¥'(v; Q, ®). :
: 34.2
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9. Characterlstle: velocmes and temperatures

For any particular system, we can define a number of characteristic macro-
_scopic velocities V, and associated temperatures 0, (A = 1, 2...5). Among such
velocity-temperature pairs, we note in particular the following:
" (a) Constant pairs (Qy, T;) and (Q,, 7}) which generally appear in the specifica-
tion of mlcroscople boundary conditions at « = #; and x = x,, respectively.
() The pair (q,T) consisting of the local macroscopic velocity q(z,?) and
kinetic temperaturs 7'(z,¢). -
~ (¢) Two pairs (q,7,) and (q,7_) where T\ (x,t) and 7' _(z,t) are local kinetic
temperatures associated with the half-space veloclty dlstrlbutxons v, > 0 and
9; < 0, respectively, thus
- KTy _ gy _ Al—00]

—E=pl= A 1] (9.10,8)

(d) Two pairs (q.; T;) and (q'_,‘T' ) which provide a purer’ characterization
than (c) for the ha]f-space velocity distributions. The velocities qi(oc t) and
temperatures 77, (z,) are defined by the relatlons _ :

@h=a @@= =23 . @2

lcT' M (V= q. )]
(ﬂ:{:)z —%I‘E‘IT—— - \

(9.3a, b)

We note that the velocities and temperatures of (), (¢) and (d) areall expressible
directly in terms of complete moments or half-space moments of the velocity
distributions. A different type of characterlstlc local veloclty and temperature
will be introduced in §11.

Instead of the velocity-temperature pairs (V,, @,), it is often convement to use
the corresponding velocity- speed pairs (V,, ;) with '

Loy = (k@A/m) ‘, : ’ | (9,4). :

10. Approximating functions
The approximating functions that we propose to use, in conjunction with the
procedure outlined in § 7, have the general form of sums of modified Maxwellian
functions based on the characteristic veloclty~tempera,tme pairs (V,, ©,) or asso-
_ciated veloclty—speed pairs (V, %) (A =1,2..3). We thus asmgn to fJr and f_orto
J, the general approximate representatlons :

fo = 2 D(v; VA, %) 1_33:&)(1&), | (10.1a, b)

f ZCI)(V V,\,ocA)PA( ) : L ' (10 lc)

' The modlfymg polynommls P, Pf\ ) and P, contain NSﬂ" Nﬁ Y and N,\ terms,
respectively, with coefficients that are rega,rded as unknown functions of « and t.
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0‘°r*e-”aiiy include in the sums
lable velocity-temperature pazm
5! considerations suggest that cert
e representations. Home argiu-

.2). Inomo

2 }?ea,scneﬂﬂ_y De omith

1 funchions in terms of M 4 _[

(=70
fod
W-‘-

13 d the d esirability of using representations that permit the
expression of 1’091% ction moments, in sutficiently simple form, asif otmm oi the
:’oasic state-variabies. This requirement is most siringent
tern *j/&‘ ha ’r. Maxv NH ~Boltzmann form (L.5), Complete interac ni onmoments
san genﬁr ally be reduced in a straightfcrward mansier for representations of
m (10.1¢). Iho reduction of Lo half-space rmoments & [¢;] with approxi-
g forms {10.1, b) iz 1auch more troublescine when §ffot has the Maxwell-
nenn form.
sﬂvc ion of the interachion moments is si
Voi?kp“—i)lara cle form, as for ionized gases (see Rosenbiu

'ﬂ

v when thein

2an ust all

i

without & "‘icuj {751 :
The use of approximating forms ($.5q, 8, ¢) may be regs arded as conshitut 11;;.

a natural generalization of Mott—Smith’s method of solution of the Beltzman
eguation for a stationary plane shock wave in a rzmp‘e gas (Motb-Smith 1951),
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Mott-Bmith represents the distribution functicn f as a sum of two {unmodified)
ia xwelilan functions
f(V, LL‘) :
where {(},1,7) and (@,i,7}) are the iCODSb&Ht) velocity-temperature pairs that
correspond to the eguilibui = —wandz = +0o0, respectively.
’“he application of imations for this pro’blem will be
secl in § 15.
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A possible, but not unique, definition of Q,(z,t) and 7\(x, ) is contained in the
following five equations: i

v f $V) (v, 2, )%(v; Q,, T dv = f $of(v,z,8) dv,

¢ = ]., ?)1, '02, ’03', Vz.

- (11.2)

(A number density »(x, ) is also defined automatically by these equations.) _
The basis for the definitions (11.2) is provided by the property that those
molecules which have suffered collision at z will, after collision, have an approxi-
-mately Maxwellian velocity distribution corresponding to an average velocity
-and a temperature determined by the total momentum and energy of the colliding
.molecules. Since the collision frequency o generally depends on v, the ‘collisional
velocity’ Q.(,¢) and ‘collisional temperature’ 7i(x, t) will differ from the local
_velocity q(z, ) and local kinetic temperature 7'(z, f) of the gas.

'12. Interaction models

The formal complexity of the Maxwell-Boltzmann collision integrals is
a consequence of the fact that they take into account the detailed geometry of all
individual kinds of binary collision. In the Fokker—Planck model (for ionized
gases), the collision geometry is treated statistically to a certain extent.

In the class of ‘statistical” models, the velocity distribution of those molecules
‘that have locally suffered a collision is related purely statistically to their pre-
“eollision veloeity distribution. Two characteristic features of these models are:
(@) the formal simplicity of their interaction terms as compared to those of the

Maxwell-Boltzmann and Fokker-Planck models, and (b) their flexibility in per-
mitting a representation of many detailed aspects of molecular interactions.
A general account of statistical models will be published elsewhere.

In one of the simpler types of statistical model, the interaction term is assumed

to have the form f.
_ ot
- where the collision frequency o(v, z,t) may be prescribed, or may be a functional
-of f as, for example, in equation (11.1). The macroscopic variables v(z, ), Q(z, )
- and 7 (»,t) are determined uniquely by the conditions that particle-number,
‘momentum, and energy be conserved in molecular interactions. The defining
relations for v, Q and 7 are then just the five equations (11.2). :

For the special case that ¢ = n. k(z,t) is independent of v, the interaction
term (12.1) is particularly simple. Here v =7, Q = q and 7 = 7, where n, q,7
are, respectively, the local number density, average velocity, and kinetic
~ temperature (see Bhatnagar, Gross & Krook, 1954). 'We then have

= 0%, 2, {~f + V¥V, Q, 7}, ey

g = —nkf + 0 P(v; q, 7). (12.2)

We note that, with the model (12.2), the interaction moments are obtained
directly in terms of moments of f.
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Apart from its great intrinsic simplicity, this constant collision-time mode] i
of special formal interest for _the reason that numerically exact solutions can be
obtained without excessive difficulty for s number of one-dimensional boundary-
value problems (Krook 19553). Some insight may then be gained into the
accuracy of the present and other approximation methods by comparing approxi-
mate solutions with the exact solutions for the same problem. The results of such
a comparison in the case of Couette flow with boundary walls at different tem-
peratures, and for various values of Mach numbers, Knudsen number and ratio of
wall temperatures, will be reported as soon as exact solutions become availabie
from calculations now in progress on an IBM 704 computer.

13. Integral equations

For one-dimensional, time-independent problems, the kinetic equation (1.5)
can be written in the general form

00D o o(v,0)(~f(v,2) + 6, ), R

where o and ¢ are prescribed functionals of f. The function o(v,z) may be
interpreted formally as a ‘(collisional) absorption coefficient’ for molecules of
velocity v at x. The function o(v, z) & (v, z) may then be interpreted as the ‘rate of
generation’ of molecules of velocity v, by collisions at .

Any boundary-value problem for the equation (13.1) is readily transformable
to an integral-equation problem. To this end, we define a function

AV, z) = f o) da’ (13.2)

which will, in general, be a functional of f. Equation (13.1) may then be written
in the form:

83 {fexp [A(v,2)]} = 1 o (v,z) &(v, x) exp [A(v, z)]. (13.3)
2 vy

Integrating equation (13.3) over (@, ) for vy > 0, and over (, x,) for v, < 0, we
obtain the non-linear integral equations:

f+(V, x) = f+(V, xl) exp [ - )\(V> x)/”l]
: +?71 fx &(v,z)exp [—{A(V,2) — A(v, 2} v, ]dA!, (13.4a)
. : 1 Z .
J-(v,2) = f_(v, 25) exp [ — {A(v, 2,) — A(V, 2)}/|y]
+ !717 fz' EV,z") exp [—{A(v,2") — A(v, @)} vy |1dN,  (13.48)
il Ja
where we have writtend)’ = o(v,z')dz’. The form of these equations is instructive
when considered in connexion with the approximation procedures presented in
this paper.
We note first that, for a fixed x, the emission function o(v,z)& (v,z) is the

velocity distribution (after collision) of just those molecules that have suffered
collision at 2. On general grounds, we may expect &(v,x) to be approximately
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Maxwellian in v; the average velocity and the temperature appropriate to &(v, x)
are the collisional velocity Q. (x) and the collisional temperature 7;(z) defined in -
§ 11. Further, the function [A(v, ) — A(v, z")]/ |'e;1| isthe number of mean free paths
between planes perpendicular to i at # and z’, for molecules of velocity v.

- Equations (13.4) show that, in general, each of f.(v,z) and f_(v,2) can be
regarded as a superposition of two essentially different types of distribution:

_A. A partially-attenuated boundary distribution represented by the first term

on the right-hand side of each equation (13.4). The degree of attenuation depends
- on the position of z relative to the boundary, and depends on the magmtude and

direction of the molecular velocity v.

B. A more complex distribution represented by the second term on the right-
hand sides of equations (13.4), and made up of weighted contributions from the
_collisib_nal emission of v-molecules at all points 2’ < zfor f, (v, z), and at all points
z' > for f_(v,#). In this component, the emission o€ (v, ') at z’ is weighted by
the nega,tlve exponentw,l of the number of mean free paths of a v- molecule
between z' and x. :

In subsequent sections, we will refer to these two types of partial dJstrlbutlon
as component 4 and component B, respectively.

One. negative conclusion can be drawn 1mmedla,te1y from the structure of
equations (13.4) and, in particular, from the structure of the terms corresponding

. to component B: any representation of f,(v,z) (or of f_(v,z)), as a modified
+ Maxwellian function based on a single velocity-temperature pair, is liable to.have

poor accuracy except in certain special limiting cases.

Proceeding rather heuristically, we could approximate the component B by
a sum of MM functions based on the collisional velocity-temperature pairs
(Q.(%5), Ty(x;)) at a number of points zj,;... in the inteérval (z;,2,). Such an
approximation procedure would itseif be rather formidable, and we would of
course prefer to use local velocity-temperature pairs for the field point x rather
than pairs for a sequence of source-points zj. By defining a sufficiently wide
variety of characteristic local velocity-temperature pairs, and by using M M func-
tions based on such local pairs, we may hope to mimic the representation provided -
by M M functions based on collisional pairs in the above way. This argument can
in no-way be regarded as justifying the approximation procedures of the previous -
sections; it serves only to lend some plausibility to those procedures.

In the subsequent sections of this paper, we shall discuss in 3 formal way two
- particular time-independent boundary-value problems: (a) a problem of non-
lmear heat conduction, and (b) the problem of shock—wave structure.

14. Non-lmea.r heat conduction

We consider a system composed of a simple gas in a steady state between
parallel plates x = z, and z == =, (x, > z;). The plates are maintained at constant
temperatures 7' and T, respectively (T, > T,). We shall suppose that molecules
which strike a wall are adsorbed and are subsequently re-emitted into the gas with |
a Maxwellian distribution appropriate to the wall temperature. :

The boundary conditions then have the form

Fiv, @) = a¥(v; 0,Ty), f(v,%) = a¥(v; 0,T,), . (l41a,b) .
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where at most one of the positive constants @1, 4y ay be specified arbitrarily. In
the integral equations (13.4, ) we have now to substitute the formulae (14.1a,b)
forf, (v, ;) and f_(v,x,). (For the simplest statistical models, the exact numerical
solution of these equations is then feasible (Krook 1955 b).)

The system is characterized by two dimensionless ratios, the Knudsen number
K and the temperature ratio of the plates,r = T,/T,. We shall suppose that » is
appreciably less than unity, so that the gradients in the gas are steep, unless
K < 1. The Knudsen number can be defined as the reciprocal of some average
value of the function A(v,1, z)/|v,].

Since the velocity distribution has axial symmetry about a direction parallel to
i, we may refer velocity space to the co-ordinates (v, #, @). The distribution
functions f, (v, 4, z) could be represented generally by a sum of MM functions
based on T}, Tj, and on an extensive set of local characteristic velocity-tempera-
ture pairs. In the interests of mathematical tractability, we would of course
economize as far as possible in the number of M 2 functions to be used in a repre-
sentation of f, . This would generally require the use of different kinds of approxi-
mation in different ranges of Knudsen number. _

To discuss the formal dependence of the velocity distribution on the value of the
Knudsen number, we subdivide the range (0,007 of K roughly into five
subintervals: '

) K <1

(I1) K an order of magnitude less than unity, say A ~ 6-2;

(A1) K ~ 1;

“(IV} K an order of magnitude greater than unity, say K ~ 5;

(Vy K> 1. ‘ ,

Only inranges Iand V can we make a reasonably unambiguous choice of approxi-
mate representations for f, . We shall discuss the five ranges of K separately, and
shall indicate possible, but by no means unique, approximations for each range.

Range I. (K < 1)
The distance z, —, comprises many mean free paths. Kquations (13.4) then
show that the wall distributions (14.1) are completely attenuated in compara-
tively thin layers in the immediate vicinity of the respective plates. Further, the
component 3 for the point 2 is made up of (attenuated) collisional emissions at
‘points ' for which &(v,z’) differs only slightly from &{v, x). The iocal velocity
distribution at 2 thus differs only slightly from a Maxwellian velocity distribution
for a single velocity and temperature, which may therefore be taken to be the
local velocity q(x), and the local kinetic temperature T(x). Moreover, the velocity
distribution f(v,2) at a boundary has only a slight discontinuity on the plane
vy = 0. Inthis case, departures from locai thermodynamic equilibrium are every-
where small, and so the problem for X < 1 can be treated by the Navier--Stokes
formalism.
' Range V. (K > 1)
The distance (z, — ;) is a very small fraction of a mean free path. Nearly all the
molecules emitted by a plate (except those emitted vractically tangentiaily)
strike the opposite plate before they can collide with another gas molecule. Iri the
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formulae. (13.4a,b) for f.(v,x), component A predominates everywhere and
component B is comparatively small everywhere. - C
 Tn this range, the primary requirement is that we should provide representa-
tions for the non-uniformly attenuating wall distributions. We could thus use the
approximating forms ' SR ; AR
T e [ovi@) =T (30, T T AGL ) - (14.20)
) m,n . : .

LV, @) = T(V; 0, Ty) T A5, (@) g, - ‘(14.26.)

Component B in f, or f__ would by itself be represénted ra,thélj inaccurately by
an MM function based on T, or T;. In the derivation of continuum equations from -
the relations (14.2), the presence of component Bgivesrise to a slight modification

of the coefficients A, from what would be their pure component 4 values.

, Range IV. (K ~5) - o
Tn this case, most of the molecules emitted from a wall reach the opposite wall
" before they can collide with other gas molecules. Component 4, i.e. the at-
tenuating wall distribution, is still, 2s in range V, the dominant term in equations
(13.4). Component B, however, is by no means negligible and should receive
‘explicit recognition in our appr ximations for f... : o
] In formula (13.4a) for f, (v, z), component Bincludes significant contributions

from the collisional emission &(v,«") at all points z’ in (2, #). Similarly, com-

ponent Binf_(V, z) includes significant contributions from the collisional emission
at all points in (x, z,). Rioughly speaking, the emission &(v, ') at any point results
from the interaction of two distributions with temperatures T, and T;. We
therefore approximate component B as a sum of MM functions based on the
boundary temperatures T} and 7,. We would then represent the complete distri-
butions f..(V, %) (component 4 + component B) in the form . .

. 9 R )
falV,2) = ;‘2 W(v; 0,Ty) T AL () pmo™, - (14.309)
=1 n, N .
AN zy) = ;03,1%n,000,00 A‘,f‘,;;)(%) = azsx,zam,osn,'o-"_ (14.4a,b)

Range i1, (K ~ 0-2) : :
Most of the molecules emitted from & plate collide in the gas before they can
strike the opposite plate. Component B of equation (13.4) thus predominates, but
component 4 is by no meghs negligible. o : ,
 Forw, > 0, the contributions to component B of f, (v, 4, #) come from collisional
emission £(v, ') at points 2’ < # and within about one mean free path of z. In
this case we may approximate f. (v, 4, x; by the forms :

fe=F(v;0,T(z)) X AB), o + X (v; 0, Ty (2) T B‘%M””v’”,‘ "(14;50/, b)
. mn m,n

where T(z) is the local kinetic temperature and 7', (z), T'.(x) are the temperatures .
* associated with folecules that have v; > 0,9 < 0, respectively, - -
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We note that 7', (z;) = T, T_(x,;) = Tp, so that '
Ag:;i‘,)n(xl) = 0, B(m_,)'n(x}_} = a’18m,08n,0;

and Ag;c—,)n(x 2)

Il

= v
0, Dgn,)n(xz) = Gg 8m, Oan,()'

Range I11. (K ~ 1}
In this range, component 4 and component B of equation (13.4) are of com-
parable importance. The collisional temperature Ty(x) also varies appreciably
. with z between x; and ,. It would appear to be desirable to use sums of at least
three MM functions for this case, e.g. :

2
fo= T ¥v;0,TH) X ADE rmyr 1 (v; 0, 1) X B umom, (14.6a,b)
A=1 : m,n m, n

(or the form with 7'(x) instead of T, (z}).

The types of approximation quoted above for various ranges of K are of course
not the only, or even necessarily the best, approximating forms. When MM
functions based on local characteristic temperatures appear in the representation,
the resulting continuum equations are formally complex (see §15). It may
sometimes be desirable to exploit the formal simplicity that results from the use of
constant velocity-temperature pairs, by using only M ¥ functions based on the
boundary temperatures T,, T, and on a sequence of constant temperatures
intermediate between 7, and 7. '

15. Choice of basic state-variables

In cases where the approximate representation of the distribution function
involves only constant velocity-temperature pairs, the derivation of continuum
squations is completely straightforward. The formalism is somewhat more com-
plicated when the approximations include MM functions based on local charac-
teristic velocity-temperature pairs. We shall illustrate this point by considering
the approximation (14.5) (range II) for the heat transfer problem of the previcus
gection.

Let us define the half-space moments R{5(z) by the equations

B = Hﬁf WL, o aydy (5,0=0,1,2...), (15.1)

where 2 = kT;/m. The local temperatures 7'(z), 7' (x), T_{x) and the corre-
sponding speeds f(z), f.(x), f_(z), are defined by the relations

: M BB

2 ITm e mm .
A m  3(RGT+ RS (16.2)
. _ KT _ B ' ;

If we use the approximating forms

‘ : A% . g\
Jo =00,/ % A%Mm(@) +0(v; 0,4.) 5 5‘*’@"{7}9—} , (15.4a.b)
\7 3=/

m,n My
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we obtain, for the moments, the approximations o

RY- % A%(i1>"+m2*<‘+”>1‘{1}(l+n+3)}(§)‘ )

(.7'+m+1)<«/7r' -
mn (J+m+1) 7 B,

'The Jocal speeds f(x), . (x) that appear in the coefficients on the right-hand
side of equations (15.5a,5) are themselves given in terms of the moments
RiH(x), R§)(x) by the relations (15.3). It is then convenient to include these four

moments RS and R{E) in the set of basic state-variables. The coefficients A,

_ B{f), are then non-linear in R§R and R§E), but are linear functions of the remajinin.
basic state-variables. ‘ » ' .
Examples of continuum equations for such cases will be given in a subsequent
. paper where the methods of this paper are used, in conjunction with statistical
models, to discuss the problem of Couette flow with heat transfer. ’

16, Structure of shock waves ,

We consider a plane stationary shock wave in a simple gas. The boundary

conditions are _ £V, —o0) = n, W(v; ‘Qli,_ T ),_}
(¥, +00) = n,P(v; Q,i, T0).

(16.1a,b)

The number density n, = n(+ ), average velocity Q,i = q(+00), and tempera-
ture T, = T'(+o0) are determined uniquely by 7,, @, T}, and the Mach number
M = Q,/(5kTy[3m)}. ) S ‘ .
Since the boundaries are at infinity, the integral equations (13.4) reduce to the
- form S B SN : ,
Futv) = [ ewaemi-ama-Amenpaar, 6.0

' f_‘(v, z) = !"’_11[ f: 'é’(v, ) exp[ — {A(v,2")— A(v,z)}[v]] ti)u’. ' (16.20)

- The Knudsen number K = 0, and the distribution function f(v,z) is continuous
in v-space. However, the transition from the supersonic régime to the subsonic
régime is practically confined to a layer whose thickness is of the order of a few
mean free paths. In this layer, the distribution function exhibits steep gradients
{the local Knudsen number is of order unity). In this case :

(const. x f(v, —c0) as x-> —,
ety {0 00 22—

const. X f(V, +00) as z—> +o0. h (16.3)
The velocity distribution is axially symmetric about the direction i. We obtain

formally simple continuum equations if we represent the complete distribution as

the sum of MM functions based on the constant pairs (@, i, 7}) (@i, 7}), in the

form g :

f= ,\Z;llF(V; QL TY) X AD, vpven,. © (16.4)

m.n
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Formally more complicated equatlons are obtamed w1th the unsymmetnoal ;
apprommatmn

f=¥; Q1T z Amnvi"vz’“r‘F(v q, T) B nn 0TV (16.5)

Even with the Maxwell-Boltzmann model, the representations (15.4) and (15.5) .
permit the multiple integrals involved in the interaction moments to be evaluated
in terms of error functions. Approximations of the form (16.4) have been used to
analyse the structure of shock fronts inionized gases (Krook 1959).

If we use the simpler forms of statistical model for the molecular interactions,
it is feasible to use separate representations for fo(v,z) and fo(v,z),eg.

fo=FF,@i,T) T ADvmn + (v, q, T) T B v, (16.6a)
- m,n - m,n S &

fo= iP’(v, Q. T3) 4G >v;ﬂv2n+‘1f<v, 0, T) 3 BRlofwn.  (16.65)

m,n

The forms ( 16. 5) and (186, 6a b) contain a more explicit representatxon of the
co]hsxonal emission than does the form (16.4).

"17. Conclusion o

" When the methods of this paper are used to construct continuum equations,
the only place in which we may encounter difficulty is in the expression of the
interaction moments as functions of the basic state-variables. This process

generally involves the evaluation of multiple mtegrals Wlth products of two

M M functions as integrands.

If the law of force between molecules is given in analytic form, and if f is not
smgular on the plane », = 0, these integrals can usually be evaluated explicitly,
even when the interaction term has the Maxwell-Boltzmann form: Iff is singular
on the plane v, = 0, and we therefore use different representations for f, and f_,
the evaluation of the relevant integrals for the half-space interaction moments in
the Maxwell-Boltzmann model is troublesome. It is for just such cases that the
statistical models prove particularly useful; the evaluation of the half-space
interaction moments is generally quite straxghtforward with these models:

In subsequent papers, the methods presented in this paper will be applied to
obtain approximate solutions for the problems of shock~wave structure and
Couette flow with heat transfer.
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