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ABSTRACT

The refractive index distribution over a cross-section of an optical fiber can differ between core and cladding, can
vary over the core in graded index fibers, or may even have a more complicated form in polarization preserving
fibers. Besides this intended variations the refractive index may vary due to a loading of the fiber like pressure
or bending or due to a faulty production. Digital holographic interferometry is a suitable means for measuring
the refractive index distribution. In the experiments reported here the fiber is embedded into an index matching
fluid, which is mixed so as to match the index of the cladding. Phase-shifted digital holograms are recorded
and the interference phase distribution is calculated. From a single demodulated interference phase distribution
the refractive index field is determined by an algorithm based on a model which takes into account the known
symmetry of the fiber. It can be shown that the obtained accuracy is better than that of classical two-beam
interferometry. Results of experiments with step-index, with graded index, and with polarization preserving
fibers are demonstrated.

Keywords: Optical fiber characterization, refractive index fields, fiber bending, digital holography, holographic
interferometry, phase shifting

1. INTRODUCTION

Optical fibers are dielectric waveguides which have found numerous applications in communication, in illumina-
tion, or as sensors, to name just a few. They have a central core with refractive index nc, in which the light is
guided,1 embedded in the cladding of slightly lower refractive index ncl, see Fig. 1. The most frequently used
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Figure 1. Optical fiber
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Figure 2. Refractive index distribution in (a) step-index fiber and (b)
graded-index fiber

fibers are step index fibers with constant index values in the core as well as in the cladding, se Fig. 2(a). A
solution to the problem of modal dispersion2 is the graded-index fiber with a parabolic or other non-constant
distribution of the refractive index in the core, see Fig. 2(b). Due to imperfections and uncontrolled strains in
the fiber, a random power transfer between the two polarization directions can occur. Thus linearly polarized
light at the fiber input can be transformed into elliptically polarized light. If this effect obstructs the intended
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application, a polarization-maintaining fiber (PM fiber) has to be employed. These fibers typically possess a
stress-induced anisotropy in the refractiv index of the core. This anisotropy can be produced by a non-circular
cladding cross-section, see Fig. 3(a), or by rods of another material within the cladding as seen in Fig. 3(b).
However in all cases the knowledge of the spatial distribution along any cross-section of the fiber is of highest
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Figure 3. Cross-sections of polarization-maintaining fibers, (a) elliptical clad, (b) Panda type

interest. Since long time, nterferometric methods have been used to measure the refractive index field.3–8 Their
main advantages are their nondestructive nature and the achievable high accuracy.

Here we introduce the fiber characterization by holographic interferometry, where holographically captured
and reconstructed wave fields are interferometrically compared. The wave fields are recorded and numerically
reconstructed according to the phase shift method in digital holography. The interferometrically measured phase
differences correspond to the refractive index variation integrated along the light paths. Since we have strongly
varying refractive index fields, refined mathematical models are necessary for an accurate determination of these
fields. We therefore here present the slabs-model, which is used for bent optical fibers and the so called multilayer-
model, employed for graded index fields. Up to now there is no adequate model for analysing the index fields of
the polarization maintaining fibers.

2. HOLOGRAPHIC METROLOGY

Holography is a method for recording and reconstructing three-dimensional complex wave fields, which has found
a lot of applications in 3D-imaging, arts advertising, security applications, and in optical testing and metrology.9

The wavefield O reflected from an opaque surface, scattered by particles, or phase-shifted by a refractive index
field is superposed to a coherent reference wave R and the resulting interference intensity I is registered

I = (O + R)(O + R)∗ = |O|2 + OR∗ + O∗R + |R|2 (1)

For reconstruction the recorded intensity distribution I is illuminated by the reference wave alone and - among
others - the original object wave field is restored

IR = (|O|2 + |R|2)R + O∗R2 + O|R|2 (2)

Here the last term is the object wave multiplied with a pure intensity term.10

2.1 Digital Holography

While in former times the interference between object and reference waves has been recorded on high resolution
photographic emulsions, now in digital holography the photographic plates are replaced by CCD or CMOS arrays,
and the intensity distributions are digitally stored. Instead of illumination of this so called hologram with the
reference wave, the stored hologram now is multiplied with a numerical model of the reference wave.9 From the
product field in the hologram plane, Fig. 4, the field in the image plane is calculated by the diffraction integral

b′(x′, y′) =
1
iλ

∫ ∫
h(ξ, η)r∗(ξ, η)

exp{ikρ}
ρ

dξ dη (3)
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Figure 4. Geometry of digital holography (Explanation of variables in the text)

with λ the used wavelength, h(ξ, η) the hologram, r∗(ξ, η) the complex conjugate of the reference wave, ρ =√
d′2 + (ξ − x′)2 + (η − y′)2, and k = 2π/λ the wavenumber. The coordinates x, y, ξ, η, x′, and y′ are as shown

in Fig. 4. The finite discrete form of the Fresnel approximation to the diffraction integral is9

b′(nΔx′, mΔy′) = A

N−1∑
j=0

M−1∑
l=0

h(jΔξ, lΔη)r∗(jΔξ, lΔη) exp
{

iπ

d′λ
(j2Δξ2 + l2Δη2)

}
exp

{
2iπ

(
jn

N
+

lm

M

)}
(4)

This formula calculates the field in the image plane in distance d′ from the hologram plane. The Δξ and Δη
are the pixel pitches of the used CCD-array having N × M pixels. The stored hologram is h(jΔξ, lΔη). The
distance between object and CCD is denoted by d, normally d′ = d. Complex factors not depending on the
hologram under consideration are contained in A. Given a specific CCD the pixel spacing in the reconstructed
field is

Δx′ =
d′λ

NΔξ
and Δy′ =

d′λ
MΔη

(5)

An alternative to the Fresnel approximation uses the fact that Eq. (3) describes a convolution of h(ξ, η)r∗(ξ, η)
with the impulse response g(x′, y′, ξ, η) = (exp{ikρ})/(iλρ). The convolution theorem now states that b′ can be
calculated by

b′ = A′F−1{F{h · r∗} · F{g}} (6)

where F denotes the Fourier transform and F−1 its inverse. In practice both are calculated by the FFT-algorithm.
The resulting pixel spacing for this convolution approach is

Δx′ = Δξ Δy′ = Δη (7)

2.2 Digital holographic interferometry

From the reconstructed complex fields b′(x′, y′) the intensity I ′(x′, y′) and phase distributions φ′(x′, y′) can be
calculated by

I ′(x′, y′) = b′(x′, y′) · b′∗(x′, y′) and φ′(x′, y′) = arctan
Im{b′(x′, y′)}
Re{b′(x′, y′)} (8)

If we record two digital holograms, one before and one after a phase change in the object wave, e. g. by applying
a mechanical stress, varying the load or any physical quantity that changes the refractive index distribution,
then the corresponding reconstructed phase distributions can be compared by mere subtraction. Since now in
the digital case we know which was the first and which was the second hologram capture, the sign ambiguity of
the former double exposure method and optical reconstruction is not any longer present in digital holography.
Only the 2π-ambiguity due to the principal value of the arctan-function remains: we obtain a wrapped phase
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distribution. A practical formula9 to calculate the phase difference between the two reconstructed fields b′1(x
′, y′)

and b′2(x′, y′) is

Δφ′(x′, y′) = arctan
Im{b′2(x′, y′ · b′∗1 (x′, y′)}
Re{b′2(x′, y′) · b′∗1 (x′, y′)} (9)

From this phase difference in practical applications we can then infere on form, deformation, refractive index
changes etc.9

2.3 Phase shift method in digital holography

If we use a real intensity hologram in the Fresnel or convolution reconstruction we will obtain a strong d.c. term
(|O|2 + |R|2)R, an unsharp virtual conjugate image R2O∗ and a focused real image |R|2O, see Eq. (2). This
drawback can be avoided if in the hologram plane of Fig. 4 instead of a real hologram we have the complex wave
field O as it is propagated from the object. This complex field can be calculated from several recorded phase
shifted holograms in the so called phase shifting digital holography. For this purpose N ≥ 3 holograms with
known mutual phase shifts are recorded. Let these holograms be

In(x, y) = a(x, y) + b(x, y) cos[φ(x, y) + φRn] n = 1, . . . , N (10)

where a(x, y) and b(x, y) are the additive and the multiplicative distortions and φRn is the phase shift given
to the reference wave during recording of In(x, y). An easy phase shift algorithm employs a 90o phase shift:
φR1 = 0, φR2 = π/2, φR3 = π. The phase distribution then is

φ(x, y) = arctan
I1(x, y) − 2I2(x, y) + I3(x, y)

I1(x, y) − I3(x, y)
(11)

In the experiments described in this paper also a 90o phase shift is performed, but 4 or 5 holograms are captured
with φR1 = 0, φR2 = π/2, φR3 = π, φR4 = 3π/2, φR5 = 2π. This approach requires some more effort in
capturing two more holograms but pays back by better accuracy and insensitivity with regard to distortions due
to redundancy. The phase distribution now is calculated by

φ(x, y) = arctan
I4(x, y) − I2(x, y)
I1(x, y) − I3(x, y)

(12)

in the four hologram case and for five holograms by

φ(x, y) = arctan
7(I4(x, y) − I2(x, y))

4I1(x, y) − I2(x, y) − 6I3(x, y) − I4(x, y) + 4I5(x, y)
(13)

There are a lot more formulas of this kind.9 In all cases the numerators and the denominators can be interpreted
as the imaginary and the real parts, resp., of the field in the hologram plane. A propagation into the image plane
then calculates the complex field without d.c. and virtual terms.

3. NUMERICAL EVALUATION

Digital holographic interferometry like each interferometric method applied to optical fibers gives an interference
phase distribution which is due to the integrated refractive index along the optical path.

Δφ(x, y) =
2π

λ

∫
Δn(x, y, z) dz (14)

with Δn(x, y, z) = n2(x, y, z) − n1(x, y, z) and an optical path parallel to the z-axis. Now inhomogeneous
refractive index distributions as well as inclined interfaces between regions of different indices - e. g. between
core and cladding or between cladding and environment - lead to a bending of the light rays. This bending
is recognized by mathematical models which take into account the geometry of the expected refractive index
variation.11 For bended step index fibers here we introduce the slabs model, for the circular symmetric graded
index fibers the multilayer model.
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3.1 Slabs model

The slabs model is recommended for the investigation of bent fiber’s cladding.12 Each cross section of the fiber
is divided into a number N of equally thick slabs perpendicular to the bending radius. It is assumed that the
refractive index is constant in each slab, while it is changing among the slabs, as depicted in Fig. 5. The model

Figure 5. Ray tracing in slabs model Figure 6. Ray tracing in multilayer model

is based on refraction of light beams at all interfaces to the outside (cladding, liquid, environment) and among
the slabs. In the following description the raised indices (i) stand for incident, (r) for refracted, and (e) for
emergent beams. Any incident beam enters the slab numbered by j with angle θ

(i)
j with regard to the normal

on the interface at distance x
(i)
j from the fiber center. Since the refractive index in slab j is nj , this beam is

refracted by angle θ
(r)
j . This is the incident angle for the next slab. Finally the beam leaves the fiber at slab

j + k − 1 under angle θ
(r)
j+k−1 at a distance x

(e)
j+k−1. The approximated optical path length along this beam is

λΔφk

2π
=

⎡
⎣nj

x
(i)
j − xj+1

sin(θ(i)
j − θ

(r)
j )

+
j+k−2∑
l=j+1

nl
xl − xl+1

cos θ
(r)
l

+ nj+k−1

xj+k−1 − x
(e)
j+k−1

cos θ
(r)
l+k−1

⎤
⎦ (15)

−nL

⎡
⎣ x

(i)
j − xj+1

tan(θ(i)
j − θ

(r)
j )

+
j+k−2∑
l=j+1

[(xl − xl+1) tan θ
(r)
l ] + [(xj+k−1 − x

(e)
j+k−1) tan θ

(r)
l+k−1]

⎤
⎦

with λ the wavelength of the light beam and Δφk the optical phase difference due to refraction in k slabs.

3.2 Multilayer model

The multilayer model is suitable to analyse the core of a graded index optical fiber which is circular symmetric.
Therefore we divide a cross-section of the fiber into N circular ring-like layers4 of equal thickness a. If R is the
core radius, we have N = R/a. If there is no additional difference in the refractive indices of the clad and the
environment, then a recurrence relation predicts the optical path difference of the refracted beam crossing Q of
these layers. Let the fiber be illuminated by a collimated beam, with the beam crossing the center of the core
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defining the optical axis. An arbitrary beam crosses the fiber at distance dQ from the optical axis and leaves the
core at distance xQ. Then the corresponding fringe shift is given by ZQ and the optical path difference is

Δφλ

2π
=

λZQ

h
=

Q−1∑
j=1

2nj

(√
(R − (j − 1)a)2 − d2

Qn2
L/n2

j −
√

(R − ja)2 − d2
Qn2

L/n2
j

)

+2nQ

(√
(R − (Q − 1)a)2 − d2

Qn2
L/n2

Q

)
−

(√
R2 − d2

Q +
√

R2 − x2
Q

)
(16)

with Q between 1 and N and h the interfringe spacing.

4. HOLOGRAPHIC ARRANGEMENT

The holographic arrangement used for the experimental investigations of optical fibers is shown in Fig. 7. Light
source is a He-Ne laser with wavelength λ = 632.8 nm whose beam is filtered and collimatied and crosses
a polarizer to get a defined polarization state. The optical fiber is placed on a 2D translation stage and is
immersed into an index matching fluid, a mixture of butyl stearate and paraffin oil in a relative concentration
that the refractive index of the cladding is exactly met or, if wanted, tuned to a slight mismatch. A microscope
objective magnifies the optical field. An identical microscope objective in the reference arm is used to adjust
the field curvature. A piezo mounted mirror introduces the phase shifts with respect to the reference wave. The
holograms are captured by a CCD camera with pixel pitch Δξ × Δη = 4.65 μm × 4.65 μm and pixel numbers
1392× 1040.

Figure 7. Setup for digital holographic interferometry

5. MEASUREMENT RESULTS

5.1 Bent step-index fibers

First experiments have been performed on bent step-index fibers. Mechanical bending leads to optical birefrin-
gence in the optical fiber, so the refractive indices in parallel n‖ and perpendicular n⊥ directions relative to
the optical axis will differ. The mean change in the refractive index occurs in n‖ while n⊥ is not affected by
the mechanical bending.11, 13, 14 The fiber here has been stripped, only core and cladding are left. The fiber is
immersed into a liquid of nL = 1.4598 which after a variation was found to exactly match the refractive index
of the unbent fiber cladding. Two bending radii, R = 7 mm and R = 10 mm have been used. Phase shifting
digital holography with four phase shifted holograms has been employed. The propagation of the light field from
hologram plane to image plane has been calculated by the convolution algorithm given in Eq. (6).

Four phase shifted holographic interferograms of a bent optical fiber, bent by a radius R = 7 mm, with an
incident beam parallel polarized with regard to the optical fiber axis are shown in Fig. 8. A tilt of mirror M1
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produces carrier fringes oriented perpendicularly to the fiber axis. The reconstructed interference phase modulo
2π is given in Fig. 9(a) where a reconstruction distance -26.99 mm is used.. Digital image enhancement is
employed to obtain Fig. 9(b). Then a low order polynomial is fitted to the phase data along the y-direction
for each x. We get the background phase map, Fig. 9(c), which is superposed to the original enhanced phase
map for a visual check, Fig. 9(d). Unwrapping the phase maps and a subtraction of the background lead to the
continuous phase of the bent fiber alone, Fig. 9(e). The results of the same procedure with tilted carrier fringes are

Figure 8. Four phase shifted holographic interferograms of
bent optical fiber with bending radius R = 7mm. Carrier
fringes perpendicular and incident beam parallel polarized
to the optical fiber axis

Figure 9. (a) Reconstructed interference phase mod-
ulo 2π, (b) enhanced phase map, (c) calculated phase
modulo 2π of carrier fringes, (d) superposition of the
results of (b) and (c), (e) Interference phase distribu-
tion after subtraction

Figure 10. Four phase shifted holographic interferograms of
bent optical fiber with bending radius R = 7mm. Carrier
fringes tilted and incident beam parallel polarized to the
optical fiber axis

Figure 11. (a) Reconstructed interference phase mod-
ulo 2π, (b) enhanced phase map, (c) Interference phase
distribution after subtraction

displayed in Figs. 10 and 11. Applying the same evaluation procedure as before we obtain the interference phase
distribution of Figs. 11(c) which closely agrees to that of Fig. 9(e). The refractive index profiles of bent optical
fibers measured in this way for two different bending radii is seen in Fig. 12.The mean error in the calculated
refractive index is 1.11× 10−4.The optical birefringence of the bent optical fiber is inversely proportional to the
bending radius, but in the border region of the bent fiber cladding there are nonuniform changes in the refractive
index as a result of the domination of the liquid in these outmost slabs of the fiber.13 Therefore reliable results
are along a central diameter of 100 μm in the fiber of diameter 125 μm.
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Figure 12. Refractive index profile of bent optical fiber for bending radii R=7mm and R=10mm, fiber radius 62.5 μm

5.2 Graded-index fibers

Another set of experiments was performed on graded-index fibers. Here phase shifting digital holographic
interferometry with five phase shifted holograms was used. The first case is with a fluid surrounding the fiber
with nL = 1.46 perfectly matching the index of the cladding. The five holograms are shown in Fig. 13 with
the reconstructed interference phase distribution modulo 2π in Fig. 14. The distance between hologram plane

Figure 13. Phase shifted digital holograms of graded
index optical fiber immersed in liquid (nL = 1.46) with
additional phases (a) 0, (b) π/2, (c)π, (d)3π/2, (e)2π

Figure 14. Reconstructed interference phase modulo2π
from phase shifted digital holograms of Fig. 13

Figure 15. Unwrapped interference phase data of Fig. 13
with normalized background

Figure 16. Reconstructed interference phase modulo2π
from phase shifted digital holograms of Fig. 13

and image plane here is -150 mm. The phase map after unwrapping and subtraction of the monotonuous
background is given in Fig. 15. Finally the mean interference phase difference across the fiber core as calculated
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by the multilayer model is displayed in Fig. 16. The next example shows the results of the same fiber but for
mismatching refractive indices of cladding and liquid. The wrapped phase in Fig. 17, the unwrapped phase with
normalized background in Fig. 18, and the phase difference across the fiber in Fig. 19.

Figure 17. Reconstructed interference
phase modulo2π from phase shifted digi-
tal holograms

Figure 18. Unwrapped interference phase
with normalized background

Figure 19. Mean interference phase difference across fiber core relative
to liquid for liquid/cladding mismatching

A comparison of the refractive index profiles measured by the digital holographic method introduced in this
paper and normal interferometry for matching and mismatching case leads to Figs. 20 and 21. Here the shape
parameter α is used to fit the refractive index profile in each case. The mean value of α determined by DHI is
2.0265± 0.0696 and it is 1.86± 0.07104 when measured by normal interferometry while the exact value is known
to be 2.0. This clearly shows that DHI is more accurate than the normal interferometric methods.11

Figure 20. Refractive index profiles across core mea-
sured by digital holography (DH) and normal interfer-
ometry (NI), matching liquid/cladding

Figure 21. Refractive index profiles across core mea-
sured by digital holography (DH) and normal interfer-
ometry (NI), mismatching liquid/cladding

5.3 Polarization maintaining fibers
Polarization maintaining optical fibers (PM fibers) are designed to be used in perturbed environments with no
or only very small cross coupling of optical power between the propagated polarization modes. DHI also can be
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used to characterize PM fibers. The polarization state of the incident light beam is selected to be parallel to the
optical fiber axis. The fiber sample now is fixed in a rotating device to adjust the fiber axis with respect to the
Cartesian coordinates, with the angle zero corresponding to the fast axis of the fiber coincident with the x-axis.
Thus the fiber is aligned. Fig. 22 shows four mutually phase shifted holograms of a Panda type PM sample
immersed in index matching fluid. The reconstructed phase modulo 2π and the enhanced phase map are given
in Figs. 24 (a) and (b) with a distance between hologram plane and image plane of -9.3 mm.. The optical phase
difference along the PM fiber is extracted by the subtraction method, Fig. 24 (c). The mean interference phase
due to the two stress rods and the core is displayed in Fig. 23. A plot of the optical phase difference along the
sample is shown in Fig. 25. A mathematical model for reconstruction of the refractive index distribution from the
phase data like the slabs or multilayer model is still lacking. However tomographic methods using interference
phase distributions measured from multiple directions exist and will give the desired results.

Figure 22. Phase shifted holograms of PM fiber, polarization of inci-
dent beam parallel to fiber axis, NL = 1.46

Figure 23. Mean interference phase of the PM fiber

Figure 24. Reconstructed phase (a), en-
hanced phase map (b), demodulated optical
phase difference along the PM fiber (c)

6. CONCLUSIONS
We have shown that digital holographic interferometry is an excellent means to measure optical phase differences
induced by refractive index distributions in optical fibers. Due to the high accuracy of the measured phase
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Figure 25. Optical phase difference along PM fiber sample

differences these can be used as input to refined numerical algorithms which calculate the refractive index
distribution in the fibers. The method can be applied to a wide variety of fibers, here we have demonstrated
the feasibility for bent step index fibers and graded index fibers. The method also can be apllied to polarization
preserving fibers but a suitable mathematical model will be developed in future.

7. ACKNOWLEDGEMENTS

H. H. Wahba gratefully acknowledges the sponsoring by the Channel system of the Egyptian government for his
stay at BIAS. Furthermore the authors thank A. A. Hamza for fruitful discussions.

REFERENCES
1. G. P. Agrawal, Fiber-Optic Communication Systems, J. Wiley and Sons, 2002 (third edition).
2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics,

Hoboken, NJ, 2007 (second edition).
3. A. A. Hamza, T. Z. N. Sokkar, A. M. Ghander, M. A. Mabrouk, and W. A. Ramadan, “On the determination

of the refractive index of a fibre. i. skin-core fibre,” Pure Appl. Opt. 3, pp. 943–961, 1994.
4. A. A. Hamza, T. Z. N. Sokkar, A. M. Ghander, M. A. Mabrouk, and W. A. Ramadan, “On the determination

of the refractive index of a fibre. ii. graded index fibre,” Pure Appl. Opt. 4, pp. 161–177, 1995.
5. A. A. Hamza, M. A. Mabrouk, W. A. Ramadan, and M. A. Shams-Eldin, “Determination of grin optical

fibre parameters from transverse interferograms considering the refraction of the incident ray by the fibre,”
Opt. Commun. 200, pp. 131–138, 2001.

6. A. A. Hamza, M. A. Mabrouk, W. A. Ramadan, and H. H. Wahba, “Core-index determination of a thick
fibre using lens-fibre interference (lfi) technique,” Opt. and Las. in Eng. 42, pp. 121–130, 2004.

7. M. A. El-Morsy, T. Yatagai, A. A. Hamza, M. A. Mabrouk, and T. Z. N. Sokkar, “Multiple-beam fizeau
fringe-pattern analysis using Fourier transform method for accurate measurement of fiber refractive index
profile of polymer fiber,” J. of Appl. Poly. Sci. 85, pp. 475–484, 2002.

Proc. of SPIE Vol. 7389  73890K-11



8. M. A. El-Morsy, T. Yatagai, A. A. Hamza, M. A. Mabrouk, and T. Z. N. Sokkar, “Automatic refractive
index profiling of fibers by phase analysis method using Fourier transform,” Opt. and Las. in Eng. 38,
pp. 509–525, 2002.

9. T. Kreis, Handbook of Holographic Interferometry, Wiley-VCH, Weinheim, 2005.
10. T. Kreis, Holographic Interferometry: Principles and Methods, Akademie-Verlag, 1996.
11. H. H. Wahba and T. Kreis, “Characterization of graded index optical fibers by digital holographic interfer-

ometry,” Appl. Opt. 48, pp. 1573–1582, 2009.
12. T. Z. N. Sokkar, M. A. El-Morsy, and H. H. Wahba, “Automatic fringe analysis of the induced anisotropy

of bent optical fibres,” Opt. Comm. 281, pp. 1915–1923, 2008.
13. F. El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical

fibres,” J. Opt. A: Pure Appl. Opt. 1, pp. 197–200, 1999.
14. F. El-Diasty, “Multiple-beam interferometric determination of poisson’s ratio and strain distribution profiles

along the cross section of bent single-mode optical fibers,” Appl. Opt. 39, pp. 3197–3201, 2000.

Proc. of SPIE Vol. 7389  73890K-12


