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The electronic band structure of the first-stage potassium-graphite intercalation
compound CgK was calculated by a semi-empirical tight-binding scheme. The calcu-
lated Fermi surfaces can be classified into two distinct types. One is potassium-like and
nearly isotropic; the other is carbon-like and of cylindrical shape. In addition, the
cylindrical portions show nesting property, which is likely to induce charge-density -
wave instability. The isotropic portions of the Fermi surfaces are responsible for the
large reduction of anisotropy in conductivity of CgK relative to graphite. The
calculated density of states has a peak around the Fermi level and is in good agreement
with the observed density of states derived from the specific heat measurements.

§1. Introduction

It is well known that many layered substances
can easily absorb a variety of atoms and
molecules between layers to form intercalation
compounds.!-? Although the effects of inter-
calation upon the electronic properties of the
host substances have been attracting wide-
spread attention recently, all of the theoretical
work up to now has been based on simple
rigid band models.

In view of the fact that no study has been
made of the real band structures of such
intercalation compounds,** we report in this
paper the results for the band structure of the
potassium-graphite = intercalation compound
CgK as obtained by the tight-binding method
and extended-Hiickel approximation. Our
choice of CgK out of numerous graphite
intercalation compounds was motivated by its
relatively simple crystal structure! as well as
by its superconducting property discovered
in 1965.%

In what follows we describe in §2 the crystal
structure of CgK and how we construct our
Brillouin zone, in §3 the methods of calculation,
and in §4 the results and discussion.

The most notable features of our findings

* A preliminary report of this work appeared in
Bull. Amer. Phys. Soc. 22 (1977) 420.

**  Although there have been no published reports
on this matter, the first study was made on the band
structure of CgK by R. Swanson (Ph.D. Thesis, Stanford
University, 1969).

are: (1) The coexistence of isotropic three-
dimensional carriers and extremely two-dimen-
sional carriers; (2) The occurrence of nesting
Fermi surfaces which may possibly give rise to
charge-density-waves. The authors believe that
these features are typical of intercalation com-
pounds and hope that this work will form the
basis for the understanding of the electronic
properties of intercalation compounds in
general.

§2. Crystal Structure and Brillouin Zone

The first-stage potassium-graphite CgK con-
sists of "alternating layers of carbon and
potassium,!’ whose layer stacking sequence is
CaCBCyCoCaCBCyCo—where C denotes a
carbon layer and a, f, etc. stand for potassium
layers  as shown in Fig. 1(a). In each metal
sheet, potassium atoms form a two-dimen-
sional triangular lattice with a side of =4.91 A
(Fig. 1(b)), and the stack of these metal sheets
is staggered. The in-plane structure of a carbon
layer remains the same as in the original
graphite, that is a hexagonal net with a side
of 1.42 A, while the distance between adjacent
carbon layers increases from 3.37 to 5.41A
upon intercalation, reducing the overlap be-
tween carbon 7 orbitals in adjacent layers by
order of 10~ 2. C4K belongs to the space group
Dj}; the point group D, consists of four sym-
metry operations—E, Cj, CJ, C5—, where E
is the identity, and C3, C}, and C3 denote two-
fold rotations about mutually perpendicular
axes X, y, and z respectively. The x and y axes
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(b)

The crystal structure of CgK as seen from the side (a) and as seen from above (b). Here a, §, y and &

denote potassium atoms in non-equivalent staggered layers. The in-plane structure of these metal sheets
is the same. A unit cell, indicated by broken lines, involves two potassium and two carbon layers respec-

tively.

are shown in Fig. 1(b) and the z axis is per-
pendicular to the layer plane.

A unit cell is made of 18 atoms—(C3zK) x 2—
and contains two sheets of carbon and potas-
sium respectively as seen in Fig. 1(a). A set of
primitive translation vectors is

22
a,=(a, 0, 0),
a‘3=(—g, 0, d>, )

where d=10.84 A is twice the distance between
carbon layers. The corresponding reciprocal
lattice vectors are

[ 2
b1=<0, —\7§_a, 0):
Ll
27\a’ J3a’ 2d)’

by= <0’, 0, }1) )

The Brillouin zone defined by these reciprocal
lattice vectors (Fig. 2) has a somewhat com-
plicated shape reflecting the D] symmetry of
the lattice. Instead of using this out-of-the-
ordinary Brillouin zone, let us convert it into
the familiar hexagonal prism without changing
its volume. The procedure for this zone re-
construction is illustrated in Fig. 3.

It must be noted that this new Brillouin zone

v
-y
Fig. 2. The first Brillouin zone of CgK as constructed
from eq. (2) by the standard method.

Fig. 3. The the original

relationship between
Brillouin zone (solid lines) and the modified zone
(broken lines) which is the familiar hexagonal prism.
(The inclination of the slanting sides of the original
zone is exaggerated.)

does not reflect the proper symmetry of CgK
in that some of its ‘symmetry points’ are
spurious. For instance, the original Brillouin
zone has only two M’s, whereas the new zone
has six M’s; that is, four out of the six are
spurious and do not have any special sym-
metry. Let us denote these spurious symmetry
points as M. (Fig. 4) Similarly, since the K’s in
the new zone are not present in the original
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(3
Fig. 4. The notation used for the modified hexagonal

Brillouin zone. The notation ~ indicates spurious
symmetry points.

zone, they are denoted as K and K'. (The prime,
in this case, denotes the inequivalent symmetry
points which are not related to each other by
any of the symmetry operations in the reciprocal
space, namely the point group D, and the
translation group generated by the recipoical
lattice vectors.)

§3. Method of Calculation

Our calculations were performed by the
tight-binding method with carbon 2p, and
potassium 4s orbitals as the basis. Since our
purpose in the present paper is to derive the
electronic structure of CgK around Eg, we
have neglected carbon ¢ orbitals, which are
energetically quite far away from FEy.

The matrix elements of the one-electron
Hamiltonian H for this basis set were evaluated
with the extended-Hiickel approximation®

1, if a=p,

1.75 .
S UA1)S, if a#B,

(3.2)
Hey= (3.b)

where 7, is the ionization potential of the o
atomic orbital, and S,, is the overlap integral

wi(k’ i‘)=
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7%—21 exp [27ik-(r;+ D]¢,, (r—r;—1D, i=1~16,
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between atomic orbitals « and B. S,;’s were
calculated by representing the orbitals as Slater
orbitals® with Clementi’s exponents.®) We
have included seven S,4’s thus obtained (and
corresponding H,,’s) in our calculations. For
the ionization potentials, we used the Hartree-
Fock values obtained by Herman and
Skillman.” We found that the = bands of
graphite obtained by these approximations
agree well with the detailed calculation by
Painter and Ellis.®’

Further we modified eq.(3.a) so as to include
the substantial charge transfer between carbon
and potassium as follows:

{ I,
ax
I,—¢

if a=carbon,
. . (a)
if a=potassium,
where ¢, a disposable parameter, represents
the change of the energy difference between
carbon and potassium caused by the crystal
field and Madelung potential. Since the energy
shift is a relative quantity, we have fixed the
carbon level and shifted the potassium level
only. The energy shift ¢ is determined with the
aid of experimental information.

The energy dispersion is obtained by solving
the following secular equation

<l B > — ECYily ;51 =0. Q)

Here Yk, r)(i=1~18) are the Bloch sums
corresponding to the eighteen atomic orbitals
considered here within the unit cell. If we label
these orbitals so that i=1 to 16 correspond to
carbon and i=17 and 18 to potassium, then
the Bloch sums are

©)

IN Y exp [2nik: (ri+ Dlbas®—ri =D,  i=17,18,

where ¢,, and ¢,, denote carbon 2p, and
potassium 4s orbitals respectively. The sum
is taken over N lattice points in the crystal
and r; is a non-primitive vector specifying an
-inequivalent atom i in the cell.

§4. Results and Discussion

We determined the energy shift parameter
¢ 50 that the calculated Knight shift agrees with
the experimental value. Unfortunately, there

has been no available NMR data on CgK.
So we used the value for CgCs® instead. (A
recent specific heat measurement'® for CgK
and CgCs gives nearly the 'same electronic
specific heat y for the two compounds. This
suggests the close similarity of the electronic
structures of CgK and CgzCs near Ep and,
therefore, of the Knight shifts.) On this basis,
we chose 2.1 eV as the value for e.

We show in Fig. 5 the calculated energy
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Fig. 5. The calculated energy dispersion for CgK. The numbers in parentheses stand for the degrees of
pseudodegeneracy. Here Eg, denotes the Fermi energy of graphite.

dispersion of CgK. CgK is found to be a metal
with two conduction bands which are nearly
degenerate in the peripheral regions of the
Brillouin zone.* Both of the two conduction
bands have the same qualitative feature.
Namely, they are quite potassium-like and
isotropic in the central regions of the Brillouin
zone, i.e. in the vicinity of I' and A; whereas,
in the peripheral regions of the zone, they are
extremely two-dimensional (2D), reflecting the
characteristic of graphite. This two-dimen-
sionality arises from the fact that the carbon-
carbon layer spacing in CgK is considerably
enlarged by the insertion of potassium atoms.
This point is further illustrated in Fig. 6 and
Fig. 7 by showing the Fermi surfaces. The
isotropic portions of the lower band Fermi
surfaces are connected with the 2D portions
as seen in Fig. 7(a).

The existence of the isotropic, potassium-
like carriers is responsible for the large c-axis
conductivity of CgK.'") Also, the small Hall
coefficient obtained by Guérard et al.'? can be
explained by the hole-like closed orbits seen

* The space group DJ gives no degeneracy. For
the origin of the pseudo-degeneracy seen in Fig. 5,
refer to the Appendix.

in Fig. 6(a), which tend to cancel the con-
tribution of the electron-like orbits.

It must also be noted that the 2D portions of
the Fermi surfaces show nesting property,
which is likely to give rise to charge-density-
waves (CDW). (The Fermi surfaces shown in
Fig. 7 bear a resemblance to the Fermi surfaces
of 2H-TaS,, a typical substance where CDW
was observed.!®) This nesting property is
more pronounced for the lower conduction
band than for the upper band.

The electronic density of states D(E) cal-
culated on the basis of the above band struc-.
ture is shown in Fig. 8. It has a peak around
Ep besides a peak corresponding to the loga-
rithmic singularity of 2D graphite. This D(Ef)
enhancement is mainly due to the staggered
stacking of the metal sheets.** Recently
Mizutani et al.'® measured the specific heat of

**  As is seen in Fig. 5, the D(Er) enhancement
results from the mixing of the carbon and potassium
bands. This mixing would not take place, at least in
the I'-K-M plane, if these metal sheets were exactly on
top of each other, because the carbon bands and the
potassium bands, in the I-K-M plane, would have
different parities as to the mirror reflection in the basal
plane. Therefore, the staggered stacking is very impor-
tant in enhancing D(EF).
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(c)

(d)

Fig. 6. The horizontal cross sections of the Fermi surfaces of CgK. (a) Lower conduction band, I-K-M
section; (b) lower conduction band, A-H-L section; (c) upper conduction band, I-K-M section; (d)
upper conduction band, A-H-L section. The shaded regions are filled with electrons. The arrow denotes

a possible nesting wave vector.

(a)

CgK and obtained an experimental value of
D(Ey). If we regard the ratio of the experimental
D(Ey) to the theoretical D(Ey) as 1+, where A
is the electron-phonon coupling constant, then

(b)

Fig. 7. The sketches of the Fermi surfaces for (a) lower conduction band and (b) upper conduction band.

we obtain 41=0.21. According to the McMillan
formula’® for strong-coupling superconduc-
tors, the Coulomb repulsion strength up* is
related to T,, 4, and the Debye temperature
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Fig. 8. The calculated density of states histogram
for CgK and the density of states based on the
rigid band model of 2D graphite (broken curve).
The experimental electronic specific heat y (ref. 10)
is indicated by the circle.

6

0y, as follows:

.1 1.04
wr= 1+O.621'{l_1n (GD/1.45TC)'(1+’1)}' ©

If we substitute 0,=234.8 K,'® T,=0.55K?>
and 1=0.21 in eq. (6), then u*=—0.01. We
speculate that this unreasonable value of u*
results from the following: (1) The phonon
spectra of CgK are quite different from those of
Nb on which eq. (6) is based. Especially CgK
must have low frequency optical modes due to
the intra-layer vibrations of potassium, which
are totally absent in ordinally metals. Equation
(6) should be modified, more or less, if we are
to apply it to CgK; (2) If CDW is really induced
in CgK, considerable portions of the graphite-
like, 2D regions of the electronic spectra have
gaps around Er and do not contribute to super-
conductivity. Then, the effective carriers are
chiefly on the potassium-like Fermi surfaces
and their density is small compared with
ordinary metals, and, therefore, u* is small.
It may be that the low-frequency phonon
modes of CgK compensate for the smallness of
the effective carrier density. Whether this is
really the case or not is left for future investiga-
tions. '

The results derived here suggest that there
are a wide variety of intercalation compounds
in which 2D as well as 3D carriers coexist.
We believe that it is fruitful to study intercala-
tion compounds from this viewpoint.
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Appendix: Derivation of the Rigid Band Disper-

sion

For a better understanding of our results,
let us compare the energy dispersion obtained
in §4 with the rigid band dispersion derived
from the familiar band structure of graphite.

Let us neglect the layer-layer interactions and
consider the hypothetical ‘2-dimensional’ CgK
crystal, i.e. a crystal which consists of a single
carbon layer and a single potassium layer.
Here the only role played by the potassium
atoms is to make the diameter of the unit cell
twice as large as the diameter of the graphite
unit cell (Fig. 9). Thus the Brillouin zone for
CgK, in turn, is half as large in diameter as
the graphite zone. (Here we denote the sym-
metry points of the CgK zone as M, K and the
corresponding points in the case of graphite as
M?, K°.) The rigid band dispersion is obtained
by folding the 2-D graphite bands (Fig. 10)
back into this smaller Brillouin zone of CgK.

The band-folding is performed along the
same line as Harrison’s argument of construct-
ing reduced-zone Fermi surfaces.!® First we
divide the graphite zone into four regions
which are denoted as A, B, C, D in Fig. 11.
Since region A coincides with the CgK zone,
the dispersion along K-I'-M in Fig. 10 remains

Fig. 9. The unit cells for 2D graphite (broken lines)
and 2D CgK (dashed lines).
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Fig. 11. The Brillouin zone for 2D graphite divided
into four regions indicated as A, B, C and D.
Region A is the Brillouin zone of 2D CgK. The
zone-folding is performed by transferring each
triangle outside region A into region A by a proper
reciprocal lattice vector of 2D CgK. As an example,
the translation vector for the shaded triangle is
shown.

unchanged. Next we reduce the six regular
triangles in region B into the CgK zone. This
is done by translating each triangle by a proper
reciprocal lattice vector. We illustrate this
procedure in Fig. 11. By doing this, M°K
is transferred to 'K, M°M to I'M, thus
producing a new band indicated by B in Fig.
12. Similarly the twelve right-angled triangles
in region C(D) are reduced to form another
band indicated by C(D) in Fig. 12.

The final result shown in Fig. 12 tells us
that this band-folding brings about degeneracy.
And when we double the height of the CgK
unit cell, so that it contains two carbon and
two potassium layers respectively, as we did
in the text, then this degeneracy is again
doubled. Now we can understand the origin
of the pseudo-degeneracies we saw in Fig. 3.
(The inclusion of the carbon layer-layer and
carbon-potassium interactions have lifted these
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Fig. 12. The energy dispersion of the upper = band
of 2D graphite after being folded back. A, B, C and
D denote the regions in which the dispersion was
initially located. The numbers in parentheses
represent the degree of degeneracy.

degeneracies, however slight.)

We note that the qualitative features of the
band structure derived in §4 are reproduced
by simply superimposing free electron bands
of potassium on the rigid band dispersion
derived above.
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