

THE INFRARED ACTIVE LOCALIZED MODES OF SOLITON IN *TRANS*-(CH)_x*

Xin Sun and Chang-qin Wu

Department of Physics, University of Fudan, Shanghai, China

and

Xue-chu Shen (S.C. Shen)

Shanghai Institute of Technical Physics, Shanghai, China

(Received 30 July 1985 by W.Y. Kuan)

Five localized vibrational modes have been found for the soliton in a finite ring of *trans*-(CH)_x from the SSH model, among them three are infrared active, i.e. Goldstone, third and staggered mode, and they can be used to interpret the three observed infrared absorption lines at 900, 1260 and 1370 cm⁻¹.

IN RECENT YEARS, three infrared absorption lines have been observed in *trans*-(CH)_x, i.e. 900, 1260, 1370 cm⁻¹ for doping induced absorption [1], and 500, 1260, 1370 cm⁻¹ for photoinduced [2]. While 900 cm⁻¹ being considered as a pinning Goldstone mode [2, 3], 1260 and 1370 cm⁻¹ are intrinsic feature of soliton. By using a force field model Mele and Rice [4] got several localized vibrational modes or resonances, among which the first two modes were used to interpret the absorption lines at 900 and 1370 cm⁻¹. Then other authors investigated this problem based on the TLM model [5]. Nakahara and Maki found two localized modes for soliton by variational method [6], Hicks and Blaisdell got the same modes by Green function [7], and Ito, Terai, Ono and Wada established an integral equation and found one more localized mode, the third mode in the soliton case, which is infrared active and accords with the 1370 cm⁻¹ line [8]. However, both in doping induced and photoinduced absorption, there are two lines at 1260 and 1370 cm⁻¹, none of the above theories could give these two close standing lines. Besides, since the TLM model is a continuum approximation of SSH model [9], the rapidly varying configurations should be smeared out, and some localized modes could be lost in TLM model.

Instead of TLM model we start from SSH model with a finite length of ring and investigate the small oscillation around the soliton. The SSH Hamiltonian reads

$$H = - \sum_{n,s} [t_0 - \alpha(u_{n+1} - u_n)] (C_{n+1,s}^+ C_{n,s} + h.c.) + \frac{K}{2} \sum_n (u_{n+1} - u_n)^2 + \sum_n \frac{M}{2} \dot{u}_n^2, \quad (1)$$

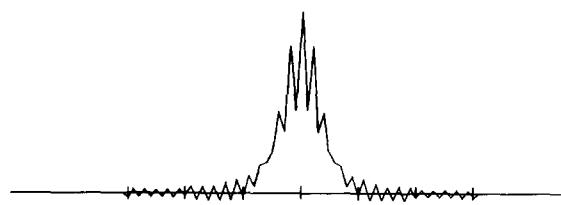
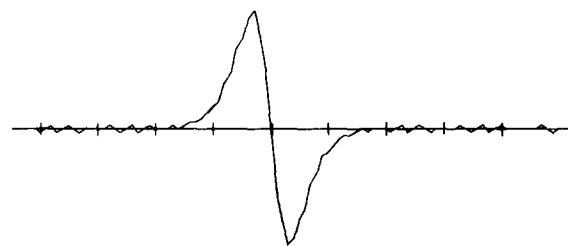
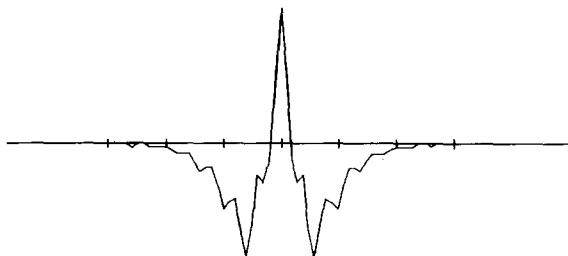
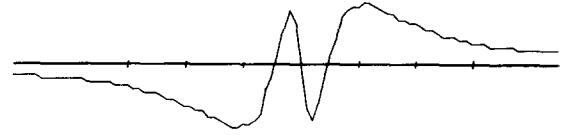
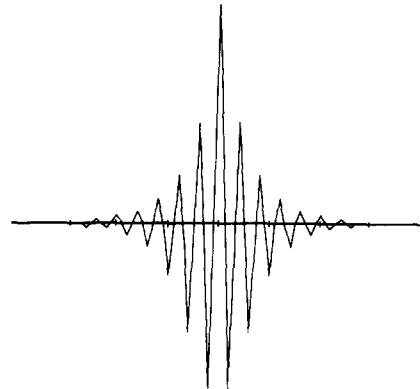
and

$$u_n = (-1)^n (\psi_n + \delta\psi_n), \quad (2)$$

where $\psi_n = -u_0 \text{th}(n/\xi)$ is the static soliton configuration and $\delta\psi_n$ is the small displacement from the equilibrium position. In the adiabatic process and small deviation limit,

$$H = E_0 + E_s + \sum_n \frac{M}{2} (\delta\dot{\psi}_n)^2 + \frac{1}{2} \sum_{m,n} U_{mn} \delta\psi_n \delta\psi_m, \quad (3)$$

where E_0 is the ground state energy and E_s the soliton energy,






$$U_{mn} = K(\delta_{m,n+1} + \delta_{m,n-1} + 2\delta_{m,n}) + 2\alpha^2 (-1)^{m+n} \sum_{\mu(\text{occ})} \sum_{\nu \neq \mu} \frac{C_{\mu\nu}^m C_{\mu\nu}^n}{\epsilon_{\mu} - \epsilon_{\nu}}, \quad (4)$$

$$C_{\mu\nu}^m = Z_{m,\mu} (Z_{m+1,\nu} - Z_{m-1,\nu}) + Z_{m,\nu} (Z_{m+1,\mu} - Z_{m-1,\mu}). \quad (5)$$

ϵ_{μ} and $Z_{n,\mu}$ are the eigenvalue and eigenvector of electron in eigenstate μ .

By diagonalizing U_{mn} we can get all phonon modes. In our preliminary work [10] we found indication that 5 localized modes may exist. To confirm these results with better accuracy and explore the connection between these localized modes and observed infrared absorption, in this paper we take a ring of 101 atoms with parameters $t_0 = 2.5 \text{ eV}$, $\alpha = 7.3 \text{ eV \AA}^{-1}$ and $K = 52 \text{ eV \AA}^{-2}$. The

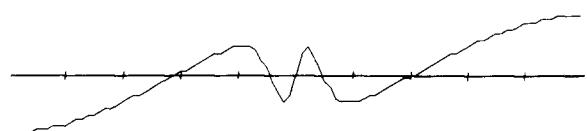
* Projects supported by the Science Fund of the Chinese Academy of Science and the Laboratory of Infrared Physics of Shanghai Institute of Technical Physics, Academia Sinica.

Fig. 1. Goldstone mode g_1 .Fig. 2. Amplitude mode g_2 .Fig. 3. Third mode g_3 .Fig. 4. Fourth mode g_4 .Fig. 5. Staggered mode g_s .

result shows that five localized modes emerged very distinctly from the extended modes, which form the acoustic and optical branches. The shapes of these

Table 1. The properties of localized modes

Mode	Parity	Number of nodes	Frequency (Ω/ω_0) ²
g_1	even	0	≈ 0
g_2	odd	1	0.68
g_3	even	2	0.90
g_4	odd	3	0.99
g_s	even	staggered	0.93


localized modes are shown in Figs. 1–5, and their properties are listed in Table 1.

It is easy to identify our g_1 , g_2 and g_3 with those obtained in work [8]. The fourth mode g_4 and the staggered mode g_s are new findings. As is expected, following g_1 , g_2 and g_3 , g_4 should have 3 nodes with odd parity. For mode g_s , the odd atoms are fixed whereas the even atoms oscillate in alternate direction one by one, obviously it comes from the optical mode in Brillouin zone boundary ($k = 1/4a$), and that is the reason for this mode to be called as staggered mode. Since g_s is even, it is infrared active. Therefore among these five localized modes, three are infrared active, i.e. Goldstone, third and staggered.

Due to the existence of soliton the extended phonon will have phase shift in their asymptotic behavior. According to the Levinson theorem, the optical phonon mode with $k = 0$, which frequency is ω_0 , should have the phase shift $\delta = N_L \pi$, where N_L is the number of localized modes. By examining our first optical phonon mode ($k = 0$) shown in Fig. 6, it does have phase shift 5π , which confirms the fact that there exist a total of five localized modes.

The remarkable feature is that it happens to be three infrared active modes in our calculation, while the Goldstone mode corresponding to 900 cm^{-1} , the third mode is such close to the staggered mode as the two close standing absorption lines 1260 and 1370 cm^{-1} . Therefore these three infrared active modes can be used to interpret three observed infrared absorption.

Finally we should mention that the parameters taken in the present calculation are somewhat artificial for saving the computer time. In order to get quantitative comparison with the observations we are going to make a further computation with real parameters and longer ring.

Fig. 6. Optical phonon mode with $k = 0$.

Acknowledgement — The authors wish to thank Professor Yasushi Wada for fruitful discussions.

REFERENCES

1. T. Tanaka *et al.*, *Mol. Cryst. Liq. Cryst.* **83**, 75 (1982).
2. G. Blanchet *et al.*, *Phys. Rev. Lett.* **50**, 1938 (1983); Z. Vardeny, J. Orenstein & G. Baker, *Phys. Rev. Lett.* **50**, 2032 (1983).
3. B. Horovitz, *Solid State Commun.* **41**, 729 (1982).
4. E. Mele & M. Rice, *Phys. Rev. Lett.* **45**, 926 (1980).
5. H. Takayama, Y.R. Lin-liu & K. Maki, *Phys. Rev. B* **21**, 2388 (1980).
6. M. Nakahara & K. Maki, *Phys. Rev. B* **25**, 7789 (1982).
7. J. Hicks & G. Blaisdell, *Phys. Rev. B* **31**, 919 (1985).
8. H. Ito, A. Terai, Y. Ono & Y. Wada, *J. Phys. Soc. Japan.* **53**, 3519 (1984); H. Ito & Y. Ono, *J. Phys. Soc. Japan.* **54**, 1194 (1985).
9. W. Su, J. Schrieffer & A. Heeger, *Phys. Rev. B* **22**, 2099 (1980).
10. C. Wu, X. Sun & L. Fu, *Chinese Phys. Lett.* (to be published).