|

334

Development of a Scalable Web Crawler

By Hajime TAKANO* and Nobuya KUBO*

ABSTRACT

fresh as possible.

KEYWORDS World Wide Web (WWW), Web crawler, Web search service, HTTP (Hypertext Transfer Pr
HTML (Hypertext Markup Language), Parallel architecture

1. INTRODUCTION

The World Wide Web (WWW) has already become
the most important software to view worldwide in-
formation on the Internet, and it has been used as an
infrastructure to build various information services
since its invention in 1990. A search service for the
WWW is indispensable to find relevant information
from a huge number of WWW pages from around the
world. Such a service must consist of three functions;
gathering WWW pages, storing and managing gath-
ered pages in a database, and searching information
by users’ queries. A Web crawler is an agent system
for gathering WWW pages. Because finding and
fetching WWW pages are time-consuming tasks and
the number of WWW pages on the Internet exceeds
40 billion, a Web crawler should be designed to
gather these pages quickly. In addition, it should
have a configurable architecture to build services of
various sizes.

To meet these requirements, we have developed a
scalable Web crawler, which we call “Nexplorer.” Its
parallel architecture enables its performance to be
improved by adding another workstation according
to service demands. This paper describes design
issues of Nexplorer, its architecture, and evaluation
in practical use in an Internet search service. Section
2 explains the requirements of a Web crawler when
building a WWW search service. The architecture of
the crawler will be described in Section 3. Usage of
the crawler in the practical WWW search service
NETPLAZA and an evaluation of the crawler are
both described in Section 4, and Section 5 will con-
clude this paper.

*C&C Media Research Laboratories

This paper describes the Nexplorer web-crawler system, which has a scalable architect
crawler is an indispensable component of Web-search services. It should have high perfor
to gather millions of pages as fast as possible, and be configured to meet various service demands. 1
these requirements, we have designed Nexplorer to be a parallel system and configurable by controlling
parameters. Nexplorer has been used in the practical search service NETPLAZA of NEC, and w
confirmed through experiences there that it has a high enough performance to keep downloaded Web

2. REQUIREMENTS FOR A WEB CRAWL

This section explains various requirements |
Web crawler.

2.1 General Requirements '

There are reportedly over 430 million hosts ¢
Internet at the beginning of 1999. This mean
over 43 billion pages exist, as each host is assun
have a hundred pages on average. It is also s
there are over two hundred million pages in J
main. Because WWW can be thought of as a '
information database, some kinds of search cap
ties are required to use it. Actually, we can aln
use search services, such as Yahoo!, AltaV
InfoSeek, and Excite.

Because WWW pages are managed only in a
server all Web pages should be gathered togethi
find necessary information from all pages in the
servers. Therefore, a WWW search service cons
of the following three functions: 1) gathering W
pages, 2) storing and managing gathered pages
database, 3) searching information by users’ quel
Obviously, a Web crawler is the system for execu
the first function. _

The fundamental method of a web crawler i
peating the following steps: finding the Uni
Resource Locators (URL)[2] in a document writte
Hypertext Markup Language (HTML)[5,6], goin
those URLs, and getting the documents indicated
them. This method is based on the concept that
address, which is linked to a document, is rej
sented as an Anchor Tag (“A” tag) on the H
However, the method would be a time-consum
task if it executed sequentially. For example, if|
fetch only 864,000 pages a day, even if it took
milliseconds for each process, and this mean

ltake several months or more to gather every
n the Internet.

srefore, the design of a Web crawler for the
et should reflect consideration on both hard-
tonfigurations using multiple CPUs and a par-
rchitecture in software. In addition, the design
equires considerations on reducing the heavy
f a Web server, the incomplete Hypertext
sfer Protocol (HTTP)[3,4] response some Web
18 may return, and documents written in in-
ete HTML format.

rthermore, WWW search services are also
sary even in an enterprise Intranet environ-
‘because many companies establish their own
nation-sharing tools based on the WWW. For
ind of search service, it is enough that a Web
er can handle at most a hundred thousand
. However, the search service is required to
h its information as fast as possible, because
ness of information is the most important for
on making in an enterprise.

cording to the above discussions, requirements
Web crawler in summary are the following:

find and fetch WWW pages as fast as pos-

follow evolutions of Internet formats such
P and HTML, and should be robust enough
ndle incomplete data formats.

trategy of crawling should be configurable
ntrollable.

can be configurable to provide performance
ate for the demands of the service.

unctional Requirements
g basic algorithm to find and fetch WWW pages
following:

tting the URL to visit from the URL database
cessing the Web server where the URL belongs
th an HTTP, and trying to fetch a document
at matches that URL

ting the status of access into the URL database
an attribute of the URL

tracting other URLs from a downloaded docu-
ent, if it is an HTML document

ding extracted URLs into the URL database
peatedly running from Step 1 to step 5

lexecuting these steps, the crawler can gather
e pages that are similar to one another on the
net. In practical use, it should follow some re-
ions, such as hostname or domain name, depth

Special Issue on Software Agents 335

from a root directory or start URL, and Content-
Type.

To achieve the functions described above, a Web
crawler must consist of the following components:

- A URL database storing URLs

- A system to manage the database

- A method to communicate with Web servers

- A method of analyzing HTML documents to ex-
tract URLs

Furthermore, there are many requirements for a
Web crawler from the viewpoint of service. To meet
them, we have considered the following functions:

- Gathering WWW pages as fast as possible

- Giving priorities to important sites

- Giving less priority to unimportant pages

- Filtering WWW pages to download by their con-
tent type

- Choosing sites to crawl

- Eliminating a WWW page which includes re-
served strings

- Ignoring WWW pages in deeper depth of a direc-
tory or link than the specified one

2.3 Performance Requirements

Although the performance of a Web crawler de-
pends on the hardware configuration it works on, we
decided to design a Web crawler to get the best per-
formance on a given hardware configuration.

When a 30-second interval is inserted between
each access to a Web server to satisfy the Robot
Exclusion Standard[7], one connection can access
only 2,880 pages a day. Then, if a crawler handles
256 connections at the same time, it can download
737,280 pages a day. Moreover, in consideration of the
persistent connection mechanism in HTTP/1.1[4],
which is supported by recent popular Web-server
software, such as Apache, Netscape Server, and
Microsoft IIS, the number of pages accessed in each
connection becomes more. Therefore, a crawler will
be able to access over a million pages a day, if it has
software architecture with parallel connections and
hardware sufficient to handle over 256 connections.
Of course, the more hardware the system uses, the
higher the performance becomes.

3. CONFIGURATION OF Nexplorer

This section describes the configuration of a scal-
able crawler, Nexplorer.

—

336 NEC Res. & Develop., Vol. 40, No. 3, July 1999

3.1 Overall architecture

We have designed a Web crawler which we call
Nexplorer. It is a parallel system running on several
workstations, and is configurable to adapt its perfor-
mance requirements, by changing the number of
workstations, the number of connections, and so on.

As shown in Fig. 1., there are two kinds of
machines: an Access Machine (AcM) and a Master
Machine (MsM). The following components work
together on these kinds of machines.

- Access Database (ADB): a set of database files,
each of which is assigned to a server and stores
URLSs within the server.

- Web Server Management Program (WSMV): as-
signs a file from the Access Database to a proper
AcM.

- Access Database Management Program (ADBM):
manages database files as its own ADB.

- Web Server Access Program (WSVA): gets URL
from its ADB and repeatedly accesses to the
server of the URL.

- Tag Extraction Program (EXTR): extracts HTML
Tag attributes from downloaded documents.

- Database Location Management Program
(DBLM): sends extracted URLs in EXTR to a
proper AcM.

- URL Registration Program (RGST): registers a
new URL into ADB.

- System Management Program (SMAN): sets up
shared memories and controls other processes.

The processes communicate with each other
through a socket or a shared memory as shown in
Fig. 1. Table I also explains which processes use a
socket and which use a shared memory.

3.2 Role of Each Component
3.2.1 Access Database

The Access Database (ADB) is a URL database in
an AcM. It consists of database files, each of which is
assigned to only one server. Therefore, URLs on the
same server are stored in the database file assigned
to the server. Here, a server means a Web server and
is represented by the form “<hostname>:<port num-
ber>.” As mentioned earlier, each AcM has its own
ADB and a database file assigned for a server is
unique in the crawler system.

To reduce 1/O overhead, each database file of the
ADB includes a data file and an index file. B+Tree is
used for the index here. Because operations to the
database file are only inserting a new URL and
searching for it, the latest-added URL is at the end of

Paraliel Connections ~ ACCESS Macnlne 1

F/#;?Wﬁﬂﬁ_ [ﬂ"“‘".r
PO . il 8
e {0 TR !

= e - —
{ Inlaalléce’;sfﬁ | |

Master Machine

Fig. 1 Nexplorer architecture.

Table I Communication methods.

From To Method
WSVA TADBM ;]'socket
DBLM on a| DBLM on | socket
AM others
DBLM WSVA | socket
EXTR DDDL [socket
ADBM - | WSVA | SHM_SERVE|
R 2
'ADBM | RGST | SHM_REGIS |
WSVA EXTR | SHM_FILE
"EXTR | DELM SHM_URL |
DBLM | RGST SHM_REGIS |
T E

a data file and the position of each record is ma
in an index file. This simple construction elin
any needs for a lock mechanism and thus allg
system to execute as fast as possible.

Note that the initial ADB on the WSVM
different role. It is a set of URLs used for era
start points and is distributed to every AcM|
WSVM when the system starts. &

3.2.2 Web Server Management Program "'

Only one WSVM process runs on the MsN
WSVM assigns each server to one of the Ac
balance their loads. According to this assign
the initial ADB and newly found URL are distr
to an AcM corresponding to the server of the Ul

3.2.3 Access Database Management Prog
One ADBM process runs on each AcM. The
manages the ADB for an AcM where it runs.
When the system starts, ADBM receives a p

tial ADB that the WSVM distributes and saves
s own ADB. Then, according to a “server list,”
is generated from server names assigned to
e databases in its own ADB, the ADBM fills
jared-memory “SHM_SERVER” with server
i gotten from the server list. Because the
l memory works as a ring buffer, the ADBM
wously puts the next server name on the server
henever there are empty slots in the shared
until all server names are sent.
feover, when the ADBM receives a URL in a
not stored in the ADB, it hands the URL to the
‘through the shared-memory “SHM_REGIST”
e a new database file for the URL.
Web Server Access Program
ral WSVA processes run at the same time on
Each process gets a server name from the
l-memory “SHM_SERVER,” and opens a data-
ile assigned to the server name. Then, it re-
ly reads the next URL from the database and
p access the URL to the server.
ause our crawler system follows the “Robot
ion Standard,” the WSVA checks to see if
ts.txt” exists on the server just before it
the first URL in the database file. If
8.txt” exists on the server, the WSVA down-
t, then ignores any URLs that match restric-
escribed in “/robots.txt.”
je WSVA is going to access a URL it has never
| before, it uses the “HEAD” method of the
request to avoid getting the document itself.
the “HEAD” method, the WSVA can know if
L exists or not and which Content-Type (ex-
below) the URL is. This step is skipped if the
already been visited before.
the URL exists and is worth downloading,
accesses it by the “GET” method of HTTP
ad the document. The document fetched in
pis saved as a local file on the AcM. The local
8 a header block in front of the document
ghich stores some fields of HTTP response of
such as Status-Code, Content-Encoding,
it-Type, and Last-Modified. This information
 used to decide whether to access or not in
me, and replaced when the URL is accessed.
'WSVA does not always access to URLs. It
whether or not to access, according to many
on parameters. Some examples are:

th of directory in URL string
ision of a special character in URL string
us-Code of previous accesses

Special Issue on Software Agents 337

- Content-Type
- Last-Modified date

3.2.5 Tag Extraction Program

Plural EXTR processes run together on each AcM.
The EXTR extracts HTML tag attributes from
documents fetched by the WSVA. The WSVA informs
the local file names through the shared-memory
“SHM_FILE” and the EXTR opens the file and starts
extracting.

Although the content of the local file has one of a
variety of “Content-Type,” the EXTR handles only
HTML-formatted documents to find hyperlinks to
Web pages. By analyzing the “A” tag and “FRAME”
tag of HTML, the EXTR finds URL strings as
hyperlinks, and the URL strings are transferred to the
DBLM through the shared-memory “SHM_URL.”

For some applications, it also extracts several
tags,; ‘such {as' SIMG, > “APPLETS,” *TITLE,”
“PLUGIN,” and “SCRIPT.”

3.2.6 Database Location Management Program

One DBLM process runs on an AcM. The DBLM
delivers a new URL found in the EXTR to a proper
process of its own RGST, DBLMs on other AcMs, and
the WSVM on MsM. For this purpose, it makes a
copy of the server correspondence list on the WSVM
at the start of the system.

In case a server of the URL is included in the ADB
on the same AcM, the URL is just sent to the RGST
through the shared-memory “SHM_REGIST.” If the
server is assigned to the ADB on other AcMs, the
URL is sent to the DBLM on the AcM through a
socket connection. Moreover, if the URL is com-
pletely fresh to the system, it is sent to the WSVM
through a socket connection.

3.2.7 URL Registration Program

One RGST process runs on an AcM. The RGST
reads a URL from a shared-memory “SHM_REGIST,”
and stores it into a database, if the URL has not been
registered yet.

3.2.8 System Management Program

The SMAN manages the start and end of every
process of the crawler system. It also keeps and
manages shared-memories.

3.3 Further Issues
3.3.1 Robustness against Various Behaviors of
Web Servers

There are two popular versions of HTTP,
HTTP/1.0 (RFC1945), and HTTP/1.1 (RFC2068).

338 NEC Res. & Develop., Vol. 40, No. 3, July 1999

Because HTTP does not require verifying of its ver-
sion in the handshake of a communication, a Web
server is generally implemented to ignore unknown
fields of HTTP. Although the Web crawler speaks
HTTP/1.1, many Web servers still understand only
HTTP/1.0. Therefore, some such servers return in-
complete responses to the requests of HTTP/1.1 from
the crawler.

For example, there is a server which returns docu-
ment data after responding to the “HEAD” method of
a request. It is assumed that the server cannot un-
derstand the HEAD method of HTTP.

Another example is an action to the URL string of
a directory. When the crawler wants to access a
directory on a server with a URL string without “/” at
the end of the string, some servers return a directory
structure. In addition, some others return the redi-
rect response including the correct URL string,
which asks users to access again with the correct
URL.

To handle this kind of behavior, Nexplorer has
been designed to handle incomplete responses from
some Web servers.

3.3.2 Robustness against Incompletely Format-
ted HTML Documents

Almost all HTML documents are still written by
hand, and they may have many grammatical errors.

The anchor tag should begin with “<A>” and ends
with “.” Some common errors, for example, are a
sentence beginning with “<A>” does not end with
“.” or Anchor tag itself is not enclosed with “>.”

Moreover, the Japanese encoding system is an-
other problem. There are three popular encoding
styles in Japanese documents: ISO-2022-JP, Japa-
nese EUC, and Shift-JIS. Therefore, it is necessary
for Japanese documents to handle these three styles,
even if a document includes all three encoding styles
at the same time.

4. BUILDING A SEARCH SERVICE

Nexplorer has been used in a practical search
service NETPLAZA (http:/netplaza.biglobe.ne.jp),
which is managed by BIGLOBE Personal Sales
Division, NEC Corporation. This section describes
the service architecture of NETPLAZA and the ex-
perimental evaluation done there of Nexplorer.

4.1 Configuration of a Search Service

Like to other search services, NETPLAZA consists
of three parts: Nexplorer as a Web crawler,
RetrievalExpress[1] as a full-text database, and spe-

cialized CGI programs for user interaction.
shows an example page of a search result$
keyword. i

Nexplorer crawls WWW pages in JP dor
predefined period. The documents fetched
crawling are transferred to RetrievalExpre
makes full-text indices for quick response
queries. Because Nexplorer can currently ¢
lions of WWW pages a day, in spite of a rati
hardware configuration, its performan
enough to keep the freshest informatio =
services. . Ui

If the service requires higher performs
Nexplorer provides, it means the serviee
check more pages than it currently does. T
mance will be improved by adding anofl
station to Nexplorer. I/

4.2 Experimental Evaluations
Table II shows a performance example
in Nexplorer. Because the result is fro

,rJ ! Lz !
—J—F: £
LE T EEs-T 1}
RE=_"]
.111_&7_:; 1
- Ty
[P T -
wooe—r ® $—T—FEBN TR O Nk CHDES
A EIRONE (AR AR

‘b.._n,l LN | b, i HES X]

1999/ 1 4
A% B e
"

199806/ 10 B

Thr et Y "
]

pete 5.
FA20 A PONF 3 95 o il
MRS Iy
p B

PYSEES

g%é [[!EEEEEEEEEE_

Fig. 2 Example of NETPLAZA seart

Table I Communication method

Ttem i Value

| 17:25 to 19:22 on Mar | 0
18

Sampling period

“Successful
requests

91,718

worked with some restrictions, it does not
performance of Nexplorer. However, it is
to understand that the performance of
er is potentially almost equal to other Web
§ used in famous search services, such as
a, HotBot, goo, and InfoNavigator.

USION

1ave developed Nexplorer, which is a Web-
system having a scalable architecture. As
d in Section 3, Nexplorer consists of several
g components and its configuration is valu-
esponse to the demand of a search service.
er has already been used in the service of
AZA, and its crawling performance is fast
0 maintain the quality of the services.

Iso plan to apply Nexplorer to small-size
i environments to verify its scalable architec-
foreover, we will extend the functions of
r to include strategic crawling.

DGMENTS

authors would like to thank Dr. Satoshi Goto
‘Shiro Sakata of C&C Media Laboratories,
orporation, for their direction. They would
 to express our gratitude to Dr. Yoshiyuki
and Dr. Tomonari Kanba of C&C Media

ST T R G

Hajime TAKANO received his B.E. and M.E.
degrees in electronics and communication engi-
neering from Waseda University in 1988 and
1990, respectively. He joined NEC Corporation
in 1990, where he has been engaged in the de-
~ velopment of hypermedia systems and window
nd design of WWW information services. From 1997 to
jas a visiting scholar at the Computer Science Depart-
Stanford University. He is now Assistant Research
of the C&C Media Research Laboratories.
akano is a member of the Information Processing Soci-

Special Issue on Software Agents 339

Laboratories in NEC Corporation for their discus-
sions and supports. Then they would like to thank
Mr. Takehiko Shimojima of the BIGLOBE Personal
Sales Department of NEC Corporation and other
members of the NETPLAZA project for their valu-
able comments on Nexplorer and for their encourage-
ment to us. They also thank their colleagues in C&C
Media Laboratories, NEC Corporation, for their sup-
port.

REFERENCES

[1] S. Akamine and T. Fukushima, “Flexible String Inversion
Method for High-Speed Full-Text Search,” Proe. Advanced
Database Symp. '96, Tokyo, Dec. 2-4, 1996 (in Japanese).

[2] T. Berners-Lee, et al., “Uniform Resource Locators (URL),”
RFC 1738, Dec. 1994.

[3] T. Berners-Lee, et al., “Hypertext Transfer Protocol
—HTTP/1.0,” RFC 1945, May 1996.

[4] R. Fielding, et al., “Hypertext Transfer Protocol
—HTTP/1.1,” RFC 2068, Jan. 1997.

[5] T. Berners-Lee and D. Connolly, “Hypertext Markup Lan-
guage —2.0," RFC 1866, Nov. 1995.

[6] D. Raggett, et al., HTML 4.0 Specification,
http:/ lwww.w3c.org/ TR/REC-html40/, Apr. 1998.

[71 M. Koster, A Standard for Robot Exclusion, http://
info.webcrawler.com/mak/projects/robots/norobots.html,
June 1994.

Received April 6, 1999

* % % * * ¥ * *

Nobuya KUBO received his B.E. and M.E. de-
grees in information and computer sciences
from Osaka University in 1989 and 1991, re-
spectively. He joined NEC Corporation and has
been engaged in research and development of
CSCW systems and WWW information ser-
vices. He is now Assistant Research Manager of the C&C Media
Research Laboratories.

Mr. Kubo is a member of the Information Processing Society
of Japan.

WAHE %% % bF % % S LU0 S

