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The magnetic properties simulation of extended networks containing quantum spins, by
original FORTRAN code “MCIsing”, is presented. The computer code is based on Ising
model and uses Monte Carlo-Metropolis (MCM) algorithm. The results of magnetic
Monte Carlo studies on a garnet type lattice, Ising model ferrimagnet, provide insights
into the exchange interactions involved in the Ferrites of Formula 5Fe2O3.3Y2O3 with
Garnet Structure.
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1. Introduction

Cubic iron garnets of formula A3Fe5O12 are a large class of ferrimagnetic oxides
which have applications in magneto-optical devices, waveguide optical isolator and
magnetic bubble memories.1 The study of ultrathin metallic magnetic films is
an active field where many efforts are being devoted to investigate the dimen-
sionality effects, anisotropy, interfacial properties, giant magnetoresistence and
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magneto-optical properties.2 When magnetic layers become very thin, their proper-
ties depart from those of bulk materials due to new low-dimensional magnetic inter-
actions. Although thin magnetic-oxides are less studied, many interesting magnetic
interactions are expected to occur in ultrathin magnetic oxides films. We expect
that a Monte Carlo Simulation of Magnetic Ordering in Ising Ferrites of formula
Fe2O3.3R2O3 with Garnet Structure (where R3+ = Y3+, Gd3+ or a rare-earth ion),
must be the next step3 in testing MCIsing code, by classical theoretical and exper-
imental results on bulk samples. Subsequently, it can be used for low-dimensional
samples in order to study the finite size effect in magnetical properties.

The two crystal types, the most intensely investigated ferrimagnets, are known
as “spinel” and “garnet”, classes of materials with important technical applica-
tions; it is now well known that the spinel and garnet structures are favorable to
ferrimagnetism.4

Following Néel’s suggestion,5 the name ferrimagnetism is used to cover the
behavior of materials in which the overall spontaneous magnetization is a resul-
tant of two or more sublattice magnetizations of this kind. Generally, it is the
crystal structure of a ferrimagnetic compound that determines the detailed form of
the ordering into magnetic sublattices. The general chemical formula for the com-
pounds which may crystallize in the garnet structure is the complex oxides formula,
A3B2X3O12, where

• A site distorted cubic environment;
• B/X octahedral & tetrahedral sites.

A typical garnet, grossularite,6,7 with ideal formula Ca3Al2Si3O12, belongs to
space group O10

h − Ia3d with Ca2+ ions in 24c, Al3+ ions in 16a, Si4+ ions in
24d and O2− ions in 96 h.4 Structure for Rare Earth Iron Garnets (REIG) e.g.
Ln3Fe5O12 and Y3Fe5O12 (ytrium iron garnet, YIG) was established, realizing the
substitutions8

Ca2+(24c) + Si4+(24d) → R3+ + Fe3+, Al3+(16a) → Fe3+

As a result, Fe3+ is in the octahedral positions 16a, and in the tetrahedral positions
24d, while R, a rare earth or ytrium ion, is in the positions 24c, centre of highly
deformed cubes.

The magnetic moments in 24d and 16a positions are antiferromagnetically cou-
pled and oriented along the body diagonal.9,10 In heavy REIG, at room temper-
ature, the magnetic structure of the iron sublattice is the same as in YIG, the
magnetic moment of RE3+ is antiparallel to the total magnetic moment of the iron
sublattice.11 There is a useful drawing4 where only the metal ions in the four
front octants are shown. The Full Cubic Elementary Cell (FCEC or unit cell)
refers to all the eight octants from that drawing. Y3Fe5O12 (YIG) is the proto-
type for the Rare Earth Iron Garnets (REIG); its crystal structure was described
in the space group Ia3d12 and the coordinates of the metal ions (crystal data)
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represent the starting point in our MCIsing Fortran Computer Code. The 1D,
2D, or in our case, 3D metal ions sites network is generated by a subrou-
tine of MCIsing Code, using metal ions’s coordinates12,13 from the first FCEC
(unit cell).

The first idea of ferrimagnetic structures as interpenetrant magnetized sublat-
tices came from Néel’s quantitative interpretation5 of the magnitudes of low tem-
perature saturation moments for some simple ferrites. For more complex systems
involving many sublattices or canted moments the net spontaneous magnetization
is not very informative, so other experimental or theoretical methods for detecting
magnetic ordering on the sublattices are required.

For canted materials in particular, the application of large enough magnetic
field to align Ms against anisotropy can modify14 the pattern of ordering.
Neutron diffraction from a magnetite crystal provided the first direct confirma-
tion of Néel hypothesis of interpenetrant differently oriented magnetic sublat-
tices. Neutron experiments15 have shown, in fact, that there are several kinds
of ferrimagnetic ordering involving canted spins, as well as the straightforward
co-linear arrangements of the simple ferrites. Magnetic measurements14,16–19 of
resultant spontaneous magnetizations or magnetic susceptibility20 for ferrimag-
netic samples suppose particular theoretical models21–24 in order to separate
the sublattice magnetizations and show the inadequacies of the molecular-field
models.26

In principle, the mean field approximation can be applied in the paramagnetic
region and in the ordered phase; however, this method leads to a large overes-
timation of the ordering temperature.26 The differences between the specific heat
obtained by the mean field approaches and the experimental values are closely asso-
ciated with spontaneous sublattice magnetizations; they are due to the neglect of
the energy associated with short-range order.

We demonstrate that besides the neutron-diffraction method, Ising-Monte Carlo
simulation based on the Metropolis algorithm could possibly determine Néel (or
Curie) temperature TN(TC), compensation temperature, variation with tempera-
ture of spontaneous sublattice magnetizations, and magnetic susceptibility. This
paper presents the results of Monte Carlo simulations of an Ising ferrimagnet on a
YIG garnet type lattice. This work presents new advances in the simulation of the
magnetic properties of extended network containing quantum spin.3

2. Methodology

The Ising Spin model was chosen for this study, since it is known to show a transi-
tion to the long-range order at a finite, non-zero temperature.27 Among the variety
of approximate methods available in the literature, the Monte Carlo technique
(MC), based on the Metropolis algorithm,28 generates a sampling of states follow-
ing the Boltzmann distribution that preferentially contains configurations which
minimize interaction energy of the system and bring important contributions for
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Table 1. Samples sizes used in simulations.

Nr. of “nn” Metal Ions
Nr. of FCEC Nr. of Metal Ions from Extension for PBC Nr. “Surface” Sites / Nr.
for Sample for MC Analysis Conditions Bulk Sites

8 512 458 0.895
27 1728 974 0.564

magnetization at temperature T.29 All simulations were performed on finite sam-
ples, thus systematic errors may be present. To minimize these errors, the edge
perturbation and to accelerate convergence towards the infinite lattice limit, peri-
odic boundary conditions (PBC) were adopted.30 To obtain reliable results, the
optimal sizes of the samples were determined by carrying out simulations on a
range of different sample sizes. The minimum size that showed a finite-size effect
for the studied reduced temperature range, kT/ |Jab|, was only from one Full Cubic
Elementary Cell (FCEC). The tested samples sizes are presented in Table 1.

As the CPU time increases significantly with the size of the Monte Carlo ana-
lyzed sample, the results of this paper are obtained at the beginning by using 27
FCEC sample, then for better statistics, we use 8 FCEC sample in the same run-
time (100 hours for each case). The results from both cases (8 FCEC sample or 27
FCEC sample) are the same, meaning that the same critical temperatures, magne-
tizations or susceptibilities versus T are obtained. For each site, at least 104 Monte
Carlo steps were performed (MCS) and first 5 ∗ 103 were discarded as the initial
transient stage.30 To avoid a freezing of the spin configuration,30 we have used a
low cooling rate according to the following equation:

(P0)i+1 = 0.99 ∗ (P0)i (1)

where P0 ≡ kT
|Jad| , the reduced temperature parameter.

A periodic boundary “garnet lattice” with 512 (8 FCEC) or 1728(27 FCEC) sites
was populated with two (or three, for Gd3Fe5O12 case) spin types, S

24(d)

Fe3+
= 5/2,

S
16(a)

Fe3+
= 5/2 (±5/2,±3/2,±1/2) (or S

24(c)

Gd3+ = 7/2 (±7/2,±5/2,±3/2,±1/2) on
two or three separate sublattices: tetrahedrally coordinated Fe3+ ions in 24(d) sub-
lattice, octahedrally coordinated Fe3+ ions in 16(a) sublattice and dodecahedrally
coordinated Y3+ or Gd3+ ions in 24(c) sublattice. Initial spin states were randomly
assigned.

The energy of each “a” site was calculated from the Hamiltonian:
For each “a” site:

Ea
i = giµBHzS
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∑
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for each “d” site:

Ed
i = giµBHzS

d
zi + Dd

i
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a
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ziS

d
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and for each “c” site :

Ec
i = giµBHzS

c
zi + Dc

i

(
Sc

zi

)2 − 2Jca

∑
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Sc
ziS

a
zj

− 2Jcd

∑
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cSd

zi − 2Jcc

∑
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ziS

c
zi (4)

where na, nd or nc indicate summation over the nearest neighbours (“nn”) from
sublattices “a”, “d” or “c”. Jad, Jac, Jcd are the nearest neighbour exchange con-
stants between the “a”, “d” and “c” spin sublattices and Jaa, Jdd or Jcc indicate the
nearest neighbor exchange constant between the sites within the same sublattice
“a”, “d” or “c”, depending on the sublattice to which “i” belongs.

We have considered for the nearest-neighbor exchange parameters:

• Jad and Jcd antiferromagnetic interactions;
• Jac, Jaa, Jdd and Jcc ferromagnetic interactions.

The parameters Jad, Jcd, Jac, Jaa, Jdd and Jcc could be related to the Heisenberg
theory, which assumes localized atomic moments coupled through exchange inte-
grals that depend on the overlap of nonorthogonal, atomic orbitals of neighboring
atoms. In the present work, the Hamiltonian parameters Hz, strength of an external
magnetic field and Da,d,c

i , the crystal field, were fixed at zero. The FORTRAN code
allows for including terms to take into account the noncollinear configurations. The
data on YIG and GdIG could be fitted, assuming collinear spin arrangement, but
in the case of other rare-earth garnets, the saturation magnetization calculated at
0K from the Néel model, e.g. is different from that observed experimentally. This
discrepancy has been attributed by Dionne22 to canting within the “c” sublattice,
which is assumed to arise from the strong anisotropy field of R3+ ions, in compari-
son to the exchange field on the “c” sublattice. In these cases, it is possible to take
into account the canting by D parameter. In order to avoid the overparametrization
event, it was necessary to take into account previous results5,8,16–20,25 and also to
consider Jcc = 0. For the Y3Fe5O12- case, Jad, Jaa and Jdd remain to be deter-
mined from comparison with experimental data.14 Since amongst the rare-earth
iron garnets, Tc is approximately constant, it can be assumed that the transition-
ion-transition–ion interaction, Jad, is the dominant interaction and if it is obtained
from the Y3Fe5O12- case, it remains constant for Gd3Fe5O12 and for all Rare Earth
Garnets (RE), e.g. Ln3Fe5O12. For each Monte Carlo Step (MCS), one site of the
lattice is picked at random and the spin state is changed. If this change results in
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Table 2. Values of |Jad| in cm−1 correlated with values of parameters
P1 (rows) and P2 (columns) (was considered TC = 560K).

P2 P1

0.00 0.18 0.35 0.43 0.51 0.57 0.63

0.00 37.9 31.8 27.7 26.1 24.6 23.7 22.8
0.21 34.5 29.4 25.8 24.4 23.1 22.3 21.5
0.25 33.9 29.0 25.5 24.1 22.9 22.0 21.2
0.29 33.3 28.5 25.1 23.8 22.6 21.8 21.0
0.33 32.8 28.1 24.8 23.5 22.4 21.5 20.8
0.35 32.5 27.9 24.7 23.4 22.2 21.4 20.7
0.39 32.0 27.6 24.4 23.1 22.0 21.2 20.5
0.45 31.2 27.0 23.9 22.7 21.6 20.9 20.2
0.49 30.8 26.6 23.7 22.5 21.4 20.7 20.0

a lower energy, Ei, the change is accepted automatically; otherwise, the change is
accepted with the probability28

p = e−∆E/kT (5)

where ∆E is the energy difference between the new and the old spin states. Con-
figurations were generated by randomly sweeping through the lattice and flipping
the spins one at a time, according to the heat-bath algorithm (i.e. to do one sweep
means to visit randomly all system spins, or more precisely, to at least visit every
spin once). The parameters Jad, Jaa or Jdd are substituted by the following reduced
parameters,

P0 ≡ kT

|Jad| , P1 ≡ Jaa

|Jad| , P2 ≡ Jdd

|Jad| . (6)

We mainly present the results of 63 runs for a sample with 27 FCEC, meaning
that P1 and P2 are fixed for each run at one of the values presented in Table 2; and
for each of the 63 runs, P0 is varied by Eq. (1) which gives “the cooling rate”.

The critical temperatures, Tc or (P0)crit. ≡ kTc

|Jab| , were calculated by locating
the inflexion point in MS versus T curve (Fig. 1). There are two regions in the left
and right neighboring of Tc, where the critical exponents33β, γ and α are defined
by equations:

M(T ) ∼ (TC,N − T )β for T ≤ TC,N , with βexp ∈ [0.33, 0.37] (7)

χ(T ) ∼ (T − TC,N )−γ for T ≥ TC,N , with γexp ∈ [1.3, 1.4] (8)

and

c(T ) ∼ (T − TCN)−α for T ≥ TCN , with αexp ≤ 0.1 (9)

for zero intensity of external magnetic field (B0 = 0). Our “MCIsing” code
calculates the Internal Magnetic Interaction Energy, the Specific Magnetic Heat, the
Resultant and Sublattice Magnetizations, and the associated susceptibilities, with
equations which are given elsewhere.31 Figure 1 shows that Eqs. (7)–(9) display
this kind of behavior in our results.
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Fig. 1. Critical temperature as inflexion point in sublattices and resultant magnetizations versus
temperature reduced parameter.

3. Results

As Jaa and Jdd increase, there is a monotonic increase in TCN , reflecting the increas-
ing of the total magnetic system energy. Variation of (P0)crit. ≡ kTc

|Jad| with P1 = Jaa

|Jad|
and P2 = Jdd

|Jad| is shown in Figs. 2 and 3. These results are confirmed for magnetite3

and for layered, bimetallic ferrimagnets32 that showed both compensate and non-
compensate behavior at low temperatures.

Plane surface equation is

kTC = 4.87JDD + 10.86JAA + 10.27|JAD|. (10)

Below the Néel (Curie) temperature of a collinear ferrimagnet is a spontaneous
magnetization, just as in the ferromagnets. However, in this case, the magnetization
is the vector sum of the magnetizations of the two antiparallel sublattices and
therefore has magnitude

MS RES = |MS DD − MS AA|. (11)

As sublattice magnetizations have quite different temperature dependences, the
Ms vs. T curves are not restricted to a Brillouin-type shape, as in the case of
ferromagnets. Since it is shown by Srivastava et al.24 that MS vs. T data could be
fitted with more than one set of exchange constants, by using the molecular field
approximation, it is interesting to see from Figs. 4 and 5 that based on Ising model,
with the Monte Carlo-Metropolis (MCM) procedure, the computed MS vs. T curves
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for different sets of exchange constants are completely different and comparison with
experimental data is possible only for

P0 ≡ kT

|Jad| = 11.2, P1 ≡ Jaa

|Jad| = 0.05, P2 ≡ Jdd

|Jad| = 0.11

or

Jad = −34.7 cm−1, Jaa = 1.7 cm−1, Jdd = 3.9 cm−1,

values obtained by comparing calculated with experimental data.14

If only one sublattice is saturated or near saturation, then it is apparent that the
interaction acting on the unsaturated paramagnetic ions is smaller than that acting
on the saturated paramagnetic ions. Therefore, the magnetization of the unsatu-
rated sites decreases with T faster than that of the saturated sites, so MS−RES

decreases if it is parallel to the unsaturated sites.

4. Conclusions

We have demonstrated that a comparatively simple model can reproduce ferrimag-
netic behavior of garnets, particularly for Y3Fe5O12 case. We have to underline
that stable results capable of explaining the behavior of Y3Fe5O12 garnet were
obtained, considering the hypothesis above and using Ising model with Monte-
Carlo procedure. It is only a matter of time for anybody to compute the parameters
described, using the mentioned algorithm. We obtained Jad, Jaa and Jdd param-
eters from measured magnetic data on YIG,14 and considering the same hypothesis
for the rest of the garnets, it will be possible to study the next “collinear case” for
Gd3Fe5O12, in order to obtain Jac, and Jdc. For the next rare earth garnets, it
could be necessary to use crystal field term, in order to take into account “non-
collinear contributions” for rare earth garnets with important spin-orbit interaction.
Since the anisotropy fields, as functions of distances and angles, are temperature-
dependent, it could be possible to consider temperature dependence of parameters
used in the interpretation of experimental magnetic data. It could also be possible
to study the magnetic properties of 1D- or 2D-dimensional samples, devoted to
understanding dimensionality effects and anisotropy.
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