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The existence of bound states in the continuum was predicted at the dawn of

quantum mechanics by von Neumann and Wigner. In this work we discuss the mechanism of
formation of these exotic states and the feasibility to observe them experimentally in symmetrical
heterostructures composed by segments of graphene ribbons with different widths forming a
graphene quantum dot. We identify the existence of bound states in the continuum in these
graphene quantum dot systems by means of local density of states and electronic conductance

calculations.
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The new material denominated graphene is a single
layer of carbon atoms which can be fabricated by
different methods like mechanical peeling or epitaxial
growth [1-3]. Nanoribbons are stripes of graphene which
can be obtained through high-resolution lithography [4],
by controlled cutting processes [5] or by unzipping multi-
walled carbon nanotubes [6]. The electronic behavior of
all these nanostructures is mainly determined by their
geometric confinement which allows the observation of
quantum effects such as quantum interference effects,
resonant tunneling and localization effects. The possibility
to control these quantum effects, by applying external
perturbations to the nanostructures or by modifying
the geometrical confinement, could be used to develop
new technological applications, such as graphene-based
composite materials [7], molecular sensor devices [8,9]
and nanotransistors [10].

An interesting feature exhibited by certain confined
nanostructures, such as quantum dots systems, is the pres-
ence of bound states in the continuum (BICs). Their exis-
tence was predicted at the dawn of quantum mechanics by
von Neumann and Wigner [11] for certain spatially oscil-
lating attractive potentials, for a one-particle Schrodinger
equation. Much later, Stillinger and Herrick [12] gener-
alized von Neumann’s work by analyzing a two-electron
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problem, they found BICs were formed despite the inter-
action between electrons. The occurrence of BICs was
discussed in a system of coupled Coulombic channels and,
in particular, in a hydrogen atom in a uniform magnetic
field [13]. BICs have also shown to be present in the elec-
tronic transport in mesoscopic structures [14-19]. More
recently, exploiting the analogy between electronics and
photonics, Marinica et al. [20], Bulgakov and Sadreev [21]
and Prodanovi¢ et al. [22] reported the presence of BICs
in photonic systems. Several mechanisms of formation of
BICs in open quantum dots (QDs) have been reported in
the literature. The simplest one is based on the symmetry
of the systems and, as a consequence, in the difference of
parity between the QD eingenstates and the continuum
spectrum [23]. Another mechanism takes into account a
nonzero coupling between bound states in the QD and
the continuum spectra. The formation of BICs would be
the result of a destructive interference process of these
resonances, for certain variations of the physical parame-
ters of the QD [24-26]. A third mechanism for the BICs
formation in optics, is associated with the Fabry-Pérot
interferometer [27].

Until nowadays, there is only one experimental work,
reported by Capasso and co-workers [28], in which BICs
were measured in semiconductor heterostructures grown
by molecular beam epitaxy. Thereby, the search of new
systems which could be able to reveal the existence of
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Fig. 1: Schematic view of a GQD structure with leads of width
Nr =9, a conductor region composed by two symmetrical
junctions of width Np =21 and length Lp =3 separated by
a central structure of length Lo =4 and width N¢ =9.

BICs, with the possibility to be measured, is a very
interesting and relevant field of research. The experimen-
tal feasibility exhibits by graphene-based systems and
the great advances in the controlled manipulation and
measurements reported in graphene, together with the
possibility of modifying their electronic properties by
applying external potentials, suggests that BICs could be
observable in graphene quantum dots heterostructures.

In this work we study the formation of BICs in
quantum-dot-like structures, formed by segments of
graphene ribbons with different widths connected with
each other [29]. We identify the presence of BICs in these
symmetrical graphene quantum dots (GQDs) and we
discuss the mechanism for their formation. We found
that the GQD local density of states as a function of the
energy shows the presence of a variety of sharp peaks that
we demonstrate to be BICs. The linear conductance also
shows the presence of resonant states which contribute to
the electronic transmission. By changing the geometrical
parameters of the structure, it is possible to control the
number and position of these resonances as a function of
the Fermi energy.

A schematic view of the considered systems is presented
in fig. 1. The conductor is formed by two symmetric
crossbar junctions of widths Np and length Lp, and a
central region that separates the junctions, of width N,
and length Le. Two semi-infinite leads of width Ny = N,
are connected to the ends of the central conductor. We
studied the different electronic states manifested in the
system as a function of the geometrical parameters of the
GQD structure.

Systems are described by using a single w-band tight-
binding Hamiltonian, taking into account first nearest
neighbor interactions with a hopping parameter -~p.
We consider hydrogen passivation by setting a different
hopping parameter for the carbon dimmers at the ribbons
edge [30], Yedge =1.12y9. To calculate electronic proper-
ties of the system we adopt the surface Green’s functions
matching formalism [9,31]. In this scheme, we divide
the heterostructure into three parts, two leads composed
by semi-infinite pristine graphene nanoribbons, and the
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Fig. 2: (Colour on-line) LDOS (upper panel) and conductance
(lower panel) as a function of the Fermi energy for a GQD
structure based on leads of width N =5, two symmetric
crossbar junctions of width Np =17 and Lg = 3. The central
region has a width Noc =5 and length Lo =5. Marks (a),
(b) and (c) denote position of peaks in the LDOS which
are absent in the conductance. These states are identified
as BICs.

conductor region composed by two nanoribbon crossbar
junctions, as it is shown in fig. 1.

In the linear response approach, the electronic conduc-
tance is calculated by the Landauer formula. In terms of
the conductor Green’s functions, it can be written as [32]
G =22T(E)=2"Tr[T,GETrG4], where T(E), is the
transmission function of an electron crossing the conduc-
tor region, I'r,/r =i[X1 /R — ETL/R] is the coupling between
the conductor and the respective leads, given in terms
of the self-energy of each lead: ¥r gV r/r9L/R VLR, C-
Here, Vo 1/ R are the coupling matrix elements and gy /g is
the surface Green’s function of the corresponding lead [9].
The retarded (advanced) conductor Green’s functions are
determined by [32]: GEA=[E— Ho— x4 —nibA)-1
where H¢ is the Hamiltonian of the conductor.

Figure 2 displays results of the local density of states
(LDOS) (upper panel) and the linear conductance (lower
panel) for a GQD structure formed by two armchair
ribbons leads of width Ny =5 and a conductor region
composed by two symmetric crossbar junctions of width
Np =17, length L = 3 and relative distances between the
junctions Lo =5. The conductance of a pristine N, =5
armchair nanoribbon has been included for comparison
(light green dotted line).

It can be observed in the LDOS and in the conduc-
tance curves a series of peaks at determined energies. This
resonant behavior of the electronic conductance arises
from the interference of the electronic wave functions
inside the structure, which travel forth and back form-
ing stationary states in the conductor region (well-like
states).

We start our analysis focusing on the sharp states
present in the LDOS displayed in this figure. We have
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Fig. 3: (Colour on-line) Corresponding contour plots of some
sharp LDOS resonances marked in fig. 2 LDOS (upper panel).

marked the first three sharp states with the letters (a),
(b) and (c). We note that the corresponding peaks in
the conductance are absent and we identify these states
as BICs. We calculated the spatial distribution of these
states, representing by the corresponding contour plots
exhibited in fig. 3. We observe that BICs are completely
localized at the region defined by the crossbar junctions.
Any electron from the leads, injected at these energies, will
be spatially confined in the junctions due to the practically
infinite (zero resonance width) lifetime of these states.
Therefore BICs do not play any role in the transport
properties of these GQD structures. This can be seen in
fig. 2, where the corresponding resonant peaks are absent
in the conductance curves.

We note that the bound states in the continuum exhibit
a spatial symmetry in the transverse direction of the
conductor, with the presence of nodes and maximum in the
amplitude of the LDOS along that direction. This behavior
is a consequence of the crossbar junction symmetry with
respect to the longitudinal axis of the GQD structure.
The localized states belonging to the crossbar region
could interact with each other through the continuum
of states of the pristine ribbon leading to the formation
of bound states in the continuum. In this sense, one of
the mechanisms of formation of BICS in our systems
correspond to the first one described in the introduction
of this letter. Following the analysis of Moiseyev [33], the
number of BICs can be controlled by varying the gate
potential applied in the up and down barriers of the GQDs.
In order to get a better understanding of this phenomenon,
we introduce a simple model that captures the essence
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Fig. 4: Scheme of side-coupled impurities attached to a perfect
wire.

of the formation of BICs in our GQD structures. The
model consists in two side-coupled impurities attached to
a perfect quantum wire [34] as shown in fig. 4.

By using the Dyson equation G = g+ gV’ G we calculate
the Green’s function (G) in terms of the corresponding
Green’s function of the isolate sub-systems (g), here V is
the matrix coupling between the impurities and the wire
(Vou =Voa = Vo). To obtain the LDOS of each impurity,
Pa, (@=wu,d), we calculate the imaginary part of the
diagonal elements of the Green’s functions, G, . Setting the
site energies as, e, =&9 + 9 and g4 =¢c¢ — J, v =7VZp(0),
where p(0) corresponds to the LDOS in the site 0 of the
wire without impurities, and taking § < v, the density of
states of the entire system is obtained summing over «
and can be written approximately as

1 2y 1
PEa (w—e0)%+ 42

1 8 /2y
7w (w—e0)2+(62/27)2"

(1)

The density of states is then the sum of two Lorentzian
shapes lines with widths I'; =2y and T'_ = §2/2v, corre-
sponding to those states strongly and weakly coupled to
the continuum, respectively. In the limit of § =0, I'_
vanishes and the state weakly coupled to the continuum
becomes a bound state in the continuum. This state arises
from the interference of the localized states in the impu-
rities, through the continuum states of the wire. In this
sense, this interference phenomenon is similar to phenom-
ena like Fano and Aharonov-Bohm effects. If we denote
as 1, and 9, the wave functions of the up and down
impurity, respectively, it is straightforward to show that
the antisymmetric state, (1, —14), is an eigenstate of the
complete system and therefore it is a bound state in the
continuum. In analogy, in the GQD structure the forma-
tion of the BICs follows the same mechanism. According
to it, if any infinitesimal small perturbation breaks the
transversal symmetry, the BICs become resonant states
with infinitesimal widths. The widths of these “quasi-
BICs” can be controlled, for example, by tuning the asym-
metry of the system through gate potentials. For instance,
fig. 5 displays the LDOS and conductance as a function
of the Fermi energy, for the same systems considered in
fig. 2, but now taking into account a small up-down asym-
metric gate potential applied to the edges of the GQD.
Due to this external perturbation, it is possible to observe
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Fig. 5: (Colour on-line) LDOS (upper panel) and conductance
(lower panel) as a function of the Fermi energy for a GQD
structure composed by the same parameters of fig. 2, with
an up-down asymmetric gate potential applied to the junction
regions.

the apparition of new peaks of conductance at the BICs
energies levels in comparison with the unperturbed case.
Therefore, for this phenomenon to be observed, it is neces-
sary to build a GQD as symmetrical as possible and to
control the asymmetry via gate potentials. By measuring
the changes in the widths of the quasi-BICs in the conduc-
tance, it would be possible to obtain indirect evidence of
the BICs.

In summary, in this work we have studied the formation
of bound states in the continuum in quantum-dot-like
structures. We identify the presence of these states in the
LDOS in symmetrical graphene quantum dots structures
and we discuss the mechanism of formation of these kind
of exotic states. Our results suggest that BICs could
be observable in GQDs. The BICs or quasi BICs can
have applications in the fields of the spintronics and the
quantum computing. For instance, by applying a magnetic
field to the GQD structure, the spin degeneracy is lifted
and by controlling the resonances width with a gate
potential, an efficient spin filter can be designed. On the
other hand, the presence of two simultaneous BICs could
be used as a qubit for quantum information. Also, BICs
could have important applications in photonic crystals, so
in this sense, we expect that the study of this kind of states
in graphene nanoribbons quantum dots could open a new
line of applied research.
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