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Abstract— An analysis is given of the determination of bulk diffusion lengths in semiconductors from the
induced current profiles that are obtained by scanning an electron beam with normal incidence on a
Schottky diode. The discussion assumes that the carrier recombination velocity at the free semiconductor
surface is v, = 0. In this case the mixed boundary conditions of the diffusion problem for excess minority
carriers can be converted into normal ones by using polar coordinates, and an explicit expression for the
induced current profile can be given. This expression is compared to that already known for the opposite
case v, = oo, to establish the influence of the surface recombination velocity on a number of profile
properties, such as symmetry, asymptotic decay, or low-order moments of the derivative. It is shown that
by evaluating the variance of the profile derivative at two beam energies the diffusion length can be
determined independently of the knowledge of the value of v,.

1. INTRODUCTION

The electron-beam induced-current (EBIC) tech-
nique of the scanning electron microscope has been
widely used to determine the minority-carrier diffu-
sion length in semiconductors[l,2]. In this kind of
measurements, a number of different beam-sample
configurations have been employed; one of these[3,4]
is such that the electron beam is incident normal
to the plane of the collecting barrier formed by a
Schottky diode (Fig. 1) or a shallow p~n junction.
The value of the diffusion length L is obtained by
recording the decay of the induced current with the
beam to Schottky-diode distance and analyzing the
data on the basis of analytical expressions provided
by the theory.

Ioannou and Dimitriadis[4] gave a closed-form
expression for the current profile in a semi-infinite
sample with a Schottky diode on half of the surface
plane, assuming infinite recombination velocity at
the remaining semiconductor surface. Thus the diffu-
sion problem for the excess minority carrier density
p could be formulated and solved explicitly with
homogeneous Dirichlet boundary conditions ( p = 0)
over the whole surface.

The analysis for a finite value o, of the surface
recombination velocity is much more difficult, since
the boundary-value problem becomes of the mixed
type, in that the condition p =0 only holds at the
Schottky contact, while over the remainder of the
surface the condition is that p is proportional to its
normal gradient through v,. Von Roos[5] has studied
a related problem, but adapting his results to the
present case appears rather difficult. He also analyzed
the configuration consisting of a circular Schottky
diode on a sample having finite thickness[6], but
obtained a system of dual integral equations which
could not be solved in closed form. However, since
the diode radius is usually large in comparison to L,
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Fig. 1. Schematic representation of the diffusion length
measurements by the Schottky-barrier EBIC technique.

the straight-edge approximation of [4] is adequate
while being easier to deal with.

The present paper analyzes charge collection in
this simplified configuration assuming v, = 0; in this
case an explicit expression for the current profile can
be obtained by the eigenfunction expansion method.
It will be shown that the knowledge of the solution
in the two limiting cases v, =0, elucidates the
influence of the surface recombination velocity on
the current profile and also yields a method of de-
termining L that is free from that influence.

2. THE MIXED BOUNDARY-VALUE PROBLEM
FOR v, =0
The configuration to be analyzed is illustrated in
Fig. 1. The semiconductor surface is coincident with
the x—y plane, and the Schottky diode covers the
half-plane x < 0; the surface half-plane x>0 is
characterized by v, = 0.
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Since the configuration has translational invariance
along the y axis, the charge collection problem needs
to be discussed in two dimensions ( x, z) only. Under
the usual simplifying assumptions([4,6], the density
of excess minority carriers p(x, z) injected by a unit
point source at (x’, z") obeys the diffusion equation

2p, 2p
Jdx- dz- L

=~%3(x)x’)8(zfz’ s

5

(1)

where D is the minority carrier diffusion coefficient
and 8 is the Dirac delta function. The boundary
conditions are

p(x,0)=0, x<0; (2a)
ir|  _
3 ::O—O, x> 0. (2b)

The difficulty in solving this boundary-value problem
originates from the fact that the boundary condition
changes from homogeneous Dirichlet to homoge-
neous Neumann (normal gradient of p equal to zero)
over the coordinate surface z=0. Any attempt to
express the solution in terms of a Green’s function
which satisfies either (2a) or (2b) along the entire x
axis would require the introduction of unknown
boundary values and lead to an integral equa-
tion. Although integral equations resulting from
boundary-value problems can often be solved
by complex variable methods relying on the
Wiener—Hopf technique ([7, p. 978];[5]), in the
present case a direct solution of (1) with (2) is
possible. As suggested by Naylor({8] for a class of
similar problems, it is only necessary to convert the
mixed boundary conditions (2) into normal ones by
introducing polar coordinates.

2.1. Direct solution in polar coordinates

Using polar coordinates r, 8, with x = rcosf, z =
rsin@, (1) and the conditions (2) become

1 d( dp
7E(r8r)+

1 ’ _f
=—EB(r—r)8(0 6,

iéz_p,)@
r? 96?

(3a)

p(r,@)=0, (3b)
dp -
55 0:“—0, (3C)

where A =1/L. The original boundary conditions
(2a), (2b) are now given on the distinct coordinate
lines @ =0, 7 and the boundary-value problem be-
comes of the normal type. Using a standard proce-
dure ([7], p. 825), the function p(r, ) is expanded in
terms of the eigenfunctions of the angular part of the
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Laplace operator that satisfy (3b) and (3c)

o

p(r.8)y=73 a,(r)cos(n+1)4.

n=0

(4)

Inserting this expansion into (3a) and making use of
the delta function representation ([7], p. 719) with
g=n-+ !

8(8-87)y=(2/m) T cos(g8)cos(qf’). (5)

n=40

we obtain an ordinary differential equation for the
Fourier coefficients a, (r):

1 9 da, 2,2 32
7;(’ 3r)—(q /r+XN)a,

2 4 ’
= ~;Ecos(q0)6(r—r).

(6)

The solution of this equation can be expressed in
terms the modified Bessel functions of half-odd-
integral order 7, K, of the argument Ar. Applica-
tion to this case of the standard method illustrated in
[9] yields

a,(r) =~ cos () I,(Ar) K (Ar). (7)

where r_(r.) is the smaller (larger) of » and r"
Hence from (4) and (7) the solution can be written as

2 o
p(r.0)=—"5 ) cos(gf)cos(qf’)
n=0

XTI, (Aro ) K, (Ar.). (8)

The particle current collected by the semi-infinite
Schottky diode is given by

<1 dp
dx=-pf ~ <&
=0 X /() r

_pf® 9
I—Dfmx Sl el dr.

=7
(9)

Inserting (8) into (9) we obtain the final result
, , 2 < dr e " ’
1(r.,8) _;fo T’EO(~1) geos(48”)

XTI, (Ar ) K (Ar.). (10)
It is not difficult to check that this expression is a
particular case of eqn (19) of ref. {8]. Although (10)
is the exact solution of the original mixed boundary-
value problem, it has two disadvantages. First,
I(r’,8") is expressed in polar coordinates, which are
not natural for the configuration of Fig. 1. Second,
expression (10) contains both an integral and a series;
this can make a numerical evaluation rather trouble-
some.
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Nevertheless, (10) has the useful property of yield-
ing a simple expression for / when the generation
point is on the positive x axis. It is shown in the
Appendix A that

I(r’,O)=I(x’,0)=erfc[(>\x’)l/2], x'z20.

(11)

The next paragraph illustrates how this knowledge
can be used to express I(x’,z’) through a single
integral.

2.2. The collected current in rectangular coordinates
It is proved in the Appendix B that the function
I(x’, z") satisfies the homogeneous version of (1):

S T |

2
axlz a /2—>\I O

(12)

with the boundary conditions (of the mixed type)'

I(x,0)=1, x'<0; (13a)
a1 ,
5o =0 x>0, (13b)

The condition (13a) means that complete charge
collection occurs when the point source is at the
collecting plane. Although (13b) specifies the normal
derivative of I for x’ > 0, the value of the function
itself is now known from (11). Hence [ can also be
found as the solution of (12) with the boundary
conditions of the normal type
x'g0;

I(x’,0)=1, (14a)

l(x’,0)=erfc[(}\x’)l/2], x'20. (14b)
The identity of the solutions of (12) with the
boundary conditions (13) or (14) follows from the
uniqueness of the solution.

Since the new boundary conditions are of the
Dirichlet type along the entire x axis, we may ex-
press I through the Green’s function of (12) that is
zero at z=0. The Green’s function with this prop-
erty can be found by the method of images ({7, p.
812), and is given by

%[KO{)\[(x’—x)2+(z’

- o

~K (M =22+ (#2777} ]. (9)

where K, is the modified Bessel function of the
second kind of order zero. The Green’s theorem

7 J‘The fact that I(,\ , 2 ) satlsﬁes 12) w1th (13) expresses a
reciprocity property of charge collection; a more detailed
discussion on this point can be found in {10}].
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gives now (see (Bl))

N
I(x"z’)=f ooI(x,O)—‘Z—G Jdx. (16)
. -

Substituting (15) into (16) and performing the de-
rivative we obtain

I(x', z)——z—,f_+:1(x,0)

" Kli)\[(x' -x)+ 2,2]1/2}

[(x’ - x)2 + z’Z]l/2

dx,

(17)

where K, is the modified Bessel function of the
second kind of order one. Use of (14) in (17) finally

yields
A o k(A -x' e[
R TR

+ Aq—:—,fw erfc[(kx)l/z]

KlL(x -x) 4z ’211/2} i

(o427

I(x,z) =

(18)

The equivalence between (10) and (18) is a conse-
quence of the uniqueness of the solution of the
boundary-value problem; however, a direct proof of
this property seems to be difficult. In (18), it is easy
to recognize that the first term on the right-hand side
corresponds to the current that would be collected in
the case v, = oo [4]. The second term gives the cur-
rent increase due to carrier reflection at the semicon-
ductor surface with v, =0. Both for v, =0 and v, =
o0, and actually for any value of v,, we have that

lim I(x’,z’)

x'—= —o0

=Mf+oo Kl[)\(x2 +z’2)1/2]
L4 (x2+z’2)1/2

dx

-0

=exp(—Az)), (19)
the last equality following from eqn (6.596.3) of Ref.
[11). The well-known result of (19) reflects the fact
that when the generation takes place well inside the
Schottky diode the collected current is hardly in-
fluenced by the properties of the free semiconductor
surface.

3. COMPARISON OF THE CURRENT PROFILES
WHEN ¢, = co AND 1, =0
Figure 2 shows some computed current profiles
according to (18); the required integrations have
been performed numerically using the approxima-
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Fig. 2. Normalized EBIC profiles in a Schottky diode for
different generation depths and v, = 00,0, as calculated
from eqn (18).

tions for the special functions given in [12]. The
profiles have been normalized to 7(—oc,z’) using
the result of (19), and are plotted versus the reduced
distance x'/L.

For v, = oo the profiles have a symmetry about
x’ =0, in that the function i(x’)— 3 is an odd
function of x’; for v, =0 no symmetry is observed.
In addition, the profiles with v, = oo decrease more
rapidly with x’ than the corresponding ones with
v, = 0. Figure 2 also shows that a higher generation
depth produces a smoother profile. These properties
will be studied in a more quantitative way in the
following sections.

3.1. Asymptotic expansions

It is of interest to study the asymptotic behaviour
of I(x’,z") of (18) for large values of x’, since it is
known that the decrease of I at large scan distances
bears information about the value of the diffusion
length L [3,4]. It has been shown[4] that for v, = o0,
2z’ < x’, the current at x’ > L decays as

I(x)y=z/(3L/7) x 3 exp(—x'/L). (20)

This expansion also applies to the first term [, on
the right-hand side of (18), since J, is just the
current for v, = oo. The second term [, can be
written in dimensionless quantities X=Ax, X' =
Ax’, Z' = Az’', after changing the integration variable
toY=X- X', as

’

L i/jc)(,erfc[(/\”ﬂL Y)l/zl

i

y K [(v2+ 22"

2 123172 dy.
(Y’ +27)

(21)

If Z'<1, ie. for generation depths z’ small in
comparison to L, the function

z K [(v2+ 2%

: (22)
7w (Y2+ Z/z)l/—
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Fig. 3. Plot of the functions ¢, (x). ¢y(x) (eqn (26), (27)),
and j(x) (eqn (25) with (30b)) for =’ /L = 0.2. The function
J{x) has been shifted for illustration purposes.

is sharply peaked at Y =0, having a maximum value
=1/(7Z") and a full width at half-maximum =227",
as can be seen using the approximation K (x)=
1/x{12] for x < 1. The erfc function of (21) for
large values of X’ undergoes only minor changes in
the neighborhood of Y =0 where the function (22)
has relevant values (for Z’' <1 this function is =
J(x) of Fig. 3), and can be treated approximately as
a constant to give

z - K[y + 2" oy

I =erfc( X'/?)
2 5 2312
(Y~_+_Z/_) /

(23)

Under the above assumptions, the lower integration
limit in (23) can be replaced by — o without signifi-
cant error. The resulting integral is known from (19);
since exp(—Z") =1 for Z’ < 1, (23) becomes

,=erfc( X'y =(7X) 1/zexp( =X

=(L/m) " x Pexp(—x/L), (24)
where use has been made of the asymptotic expan-
sion of the complementary error function[12]. At a
given value of x’, the ratio 7/, is =z'/x’ <1,
therefore 7, of (24) represents the asymptotic trend
of the current for v, =0. As can be expected, for
v, =0 the collected current is both larger and de-
creases more slowly than in the case v, = c0.

3.2. The profile as u convolution

It is useful to express in a unique more compact
form the current collected in the two limiting cases
v, = 0,00. In fact, both (18) and the corresponding
eqn (AS) of Ref. [4] (i.e. the first term in (18)) have
the form of a convolution; the convoluted functions
are

_Az K [>\(x1 + Zrz)l/z]

{(x?+ z’z)l’/2

J(x) (25)
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which represents the current density of minority
carriers from the point source to the surface when
v, = 00, and

xs0

c()={g ¥E0 (u=w) (20)
B 1 x=<0 _
C()(x)_<erfc(>\x)1/2 x20 (v,=0).

(1)

The function ¢(x) can be interpreted as the prob-
ability that a minority carrier reaching the surface
will be collected by the junction. This probability is
equal to one for x < 0 (at the Schottky contact), and
is zero for x > 0 when v, = o0, since in this case all
carriers reaching the surface at x >0 are lost by
recombination. For v, = 0 the virtual flux of carriers
to the surface at x > 0 contributes to the collected
current, but this contribution decreases with the dis-
tance x from the Schottky diode. A plot of the
functions ¢, (x) and ¢y(x) is shown in Fig. 3. Thus,
omitting for simplicity the dependence on z’, the
collected current can be written as

I(x") =f_+:c(x).](x’ -x)dx

=/j:c(xl—x)1(x)dx, (28)

where ¢(x) is to be specified according to the value
of u,. It is convenient to normalize I(x’) to its value
at x’ = — o0, as done in Fig. 2; by comparing (19)
with (25) we see that

1( - ) =f_+°:°.l(x)dx. (29)
In terms of the normalized functions
i(x)=1(x)/I(- ), (302)
J(x)=J(x)/I(-), (30b)
(28) becomes
i(x) =fj:c(x)j(x’ “x)dx.  (31)

In the following we will need the absolute value of
the derivative of i(x’), which by (31) can be written
as

_di(x)
dx’

(x)| = =[ T eitx - xax,

(32)

since i(x’) is a decreasing function of x’. According
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Fig. 4. Derivative of the profiles of Fig. 2.

to the definitions (26) and (27), we have

i (x)=8(x) (33)

and
0 xg0
_Cf’(")={(>\/w)‘/2x‘/lexp(—kx) x>0,
(34)

the second equality being a consequence of the de-
finition of the complementary error function ({12}, p.
297).

The derivative of the profiles of Fig. 2 are shown in
Fig. 4. It is seen that a number of properties of i(x”),
as symmetry or smoothness, are reflected with better
evidence in i'(x"). In addition, since i’(x’) ap-
proaches rapidly zero for increasing |x'}, these prop-
erties can be described conveniently by examining
integral quantities related to i’(x’), as the moments
about the origin.

3.3. The moments of the profile derivative

According to the usual language of probability, the
moment of order n about the origin of a distribution
function f(x) is defined as

a,[f] =f_;wx”f(x) dx (35)

The moment of order zero, i.e. the area under the
curve defined by f(x), is equal to one for a function
representing a distribution. It is easy to check that
both j(x) as defined in (30b) and —¢’(x) of (33)
and (34) have this property. The same holds conse-
quently for |i’(x)|, as can be seen by integrating (32)
over x’ in the interval (— o0, + o). We will need the
moments of |i’| of order n=1,2, which can be
expressed in terms of the corresponding moments of
—c¢’(x) and j(x). Taking into account that

«[j]=0 (36)

because j(x) is an even function of x, it follows
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Table 1. Values of the moments about the origin of order
n=1.2 and variance of |i’| for ¢, = 5.0

Moments of 2 2
oy a, 0%= a,~ af
[i' (x|
v = 0 Lz’ Lz'
s
VT 0 3L Lz'+ % L2 Lz'+ 3L?
from the definitions that
alif) = e[ ¢ (37)

and

[l =a[—cT+a[ /] (38)

The required moments are evaluated in the Appen-
dix C and turn out to have very simple expressions.
The resulting moments of |i’|, as well as the variance
o? (the second moment about the mean), are sum-
marized in Table 1 for v, = o0, 0.

The moments of |i’| can be calculated starting
from the values of i(x) without actually performing
the derivative of the profile. This is useful in practice,
since the differentiation of an experimental profile
with some noise can result in large fluctuations of i/,
unless some precautions are taken. In fact, let #(x)
be the function (Fig. 5)

[ i(x)
\i(x)—l

This function has the same sign of x and is in
general discontinuous at x = 0. However, h(x) ap-
proaches rapidly zero for |x| — oo and its moments
are finite, whereas the moments of i(x) do not exist.
Using the definition (35) and performing some in-
tegrations by parts, the following relations between
the moments of |i’| and # are found':

afli’l] = ay| #]
a[|i'] =2e[#].

The central moments of |i’|, i.e. the moments about
the mean m = a,[}i'|} = o[ 1}, are more conveniently
related to those of the function 4, (x) by

i(x) x<m
\ (x)~1 x>m.

The definition of 4, (x) is similar to that of h(x),
except that the discontinuity point is displaced from
x =0 to x = m. Denoting by p, the central moment

xz0
x <0.

h(x)= (39)

(40)

h(x)= (41)

"The first-order moment « [/ + ] of the positive side
of i(x) for 1, =20 was evaluated previously[13], obtain-
ing )1z, but with the normalization of / to [(0,z")
= !1(—,z). With the normalization to /(- . :’) used
here, e [i+]= ;Lz" and eq[h]= )1z, because of the odd
symmetry of h(x) for ¢, =oc. Hence a,{|i’[]=171:". in
agreement with the value given in Table 1.
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Fig. 5. Plot of the function A(x) of eqn (39) for v, =0,
z' /L = 0.5. The dashed linc illustrates the relation to i{ x).

of order n, it is found analogously to (40) that
m 1] =polh.]=0,

I'LZ[II’I] = 2""][hm] =0

It follows from (42a) that the point x = m has the
property that the area bounded by 4, (x) and the x
axis is the same on either side of x = m. According
to (42b), 6 is equal to twice the first-order moment
of h,, about this point. The use of these properties
can make the evaluation of a profile easier.

(42a)

(42b)

4. THE CASE OF ARBITRARY ¢,

The use of polar coordinates, though appropriate
for solving the diffusion problem (1) with ¢, =0,
does not seem to be of advantage when v, is finite. In
fact, (3¢) would become

1Lap
r a6

2N

o0 Dp (43)

10:(1

and because of the factor 1/r in the boundary
condition (43) the eigenfunction method is no longer
applicable (see [7, p. 1039]). A possibility is to look
for an approximate solution or to resort to more
powerful but more complex methods like the
Wiener—Hopf technique.

However, the expression of the profile as a con-
volution [eqn (17) or eqn (28)] and the consequent
relations (37) and (38) between the moments of
|i’l, —¢’ and j are valid for any v,. This fact and the
knowledge of the moments of |i’| for v, = 00,0 give
some indication, for instance, on the expression of
¢ for finite v,, even though the corresponding func-
tion ¢(x)=I(x,0) is not known.

In fact, eqns (37) and (38) show that the variance

=a, — af of |i’| is in general equal to the sum of
the variances of —¢’ and j. Denoting by ¢’ the
variance of — ¢’ and using the result of eqn (C3), we
may write
(44)

k] R
o =g-+ Lz

The term o> will be a function of v, and L, but not
of z’, since ¢(x) does not contain this variable. Since
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o2 has the dimensions of the square of a length, it
can be written as

o.\'2 = WL2/2’ (45)

where w is a dimensionless function of v, and L,
and the factor 4 has been introduced for conve-

nience. Thus eqn (44) becomes
ol=wL?/2+ Lz (46)

The results of Table 1 show that w=10 for v, = 0
and w=1 for v, =0; for finite v, w is likely to
assume intermediate values. For dimensional rea-
sons, w is expected to depend upon v, and L only
through the dimensionless product v, L/D, but the
explicit dependence can only be established by solv-
ing the diffusion problem for arbitrary v,.
Nevertheless, eqn (46) [or eqn (44)] can be used to
deduce L from profile variance measurements. In
fact, the unknown factor w in eqn (46) is in any case
independent of z’; therefore, it is sufficient to de-
termine ¢ at two different beam energies (i.e. at two
known generation depths z{,z5) and use eqn (46)
twice to eliminate w. Thus L can be found from the
expression
2

2
6, 0

L= (47)

25— z{
where 07(03) is the variance of |i’| when the genera-
tion depth is z{(z5). If the dependence of w upon v,
were known, eqn (46) would also yield a method of
evaluating v,. A similar procedure has been actually
applied to evaluate both L and u, in a different
configuration, where the expression of the profile for
arbitrary v, was known [14].

5. DISCUSSION AND CONCLUSIONS

The basic assumptions of the model described
here are essentially those made by Ioannou and
Dimitriadis[4] for the case v, = co, and the reader is
referred to that paper for a detailed discussion. The
present analysis deals with the complementary case
v,=0 and also gives some indication about some
expected profile properties for arbitrary v,.

In [4] the diffusion length of some samples was
evaluated by fitting the profile tail with the law
x'"3?exp(—x'/L), i.e. by assuming v, = oo (see
(20)); in practice the value of L was obtained from
the slope of the straight portion of the plot of
In(Ix"*/?) vs x’. A fit with the opposite assumption
v, =0, ie. with the law x'~?exp(—x'/L) of (24)
would obviously yield a different value of L. It is not
difficult to see that by applying the decay law valid
for v, = 0o to a hypothetical sample with v, =0 one
obtains an apparent diffusion length L,, which ex-
ceeds the true value L by a percentage amount
L,/x’, x' being the point at which the slope is
evaluated. For instance, at x” = 3L, the overestimate
would be = 30%. This example illustrates that, in the
absence of information about v, the values of L
obtained by the straightforward slope analysis can be
affected by a systematic error.
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The method introduced in Section 4 allows the
evaluation of L without requiring the knowledge or
the determination of v,. An additional advantage of
the moment method is that use is made of profile
data at low scan distances, where the current is
higher and hence usually known with greater relative
accuracy. Current values at large scan distances,
which are required to evaluate the moments but are
frequently not available, can be estimated with suffi-
cient accuracy by extrapolation of the profile
tails[13,14).

The method of Section 4 is based on the de-
termination of ¢ at two beam energies. The reason
for using ¢ instead of a, (or @) is that ¢ is an
intrinsic property of the profile, whereas the value of
a, (or a;) is related to the choice of the origin. In
absence of additional information, there is no simple
criterion to establish the location of the point x =0
from an experimental profile. The next central mo-
ment of |i’| is that of third order y;, but it is not as
useful as o2. In fact, p; varies between zero (v, = o0)
and L* (v, =0), being independent of z’; therefore
the elimination of the unknown weight factor, which
will appear in the expression of p, for finite v,, by
two measurements at different values of z’ is no
longer possible. The use of higher-order moments is
not convenient, since usually they can be evaluated
only with lower accuracy.

The values of the moments given in Table 1 are
based on the simple scheme of point generation of
minority carriers. The generalization to a generation
along a line is straightforward; according to the
discussion of [13], it is sufficient to interprete z’ as
the center of gravity of the electron depth—dose
function; in silicon z’ = 0.41 R, R being the primary
electron range[13].

Taking into account the finite lateral extension of
the generation would require a further convolution
of i(x") (or i’(x")) of Section 3.2 with the function
describing the lateral distribution of the generation.
Because of the additivity property of the variance of
convolutions (see (38)), this would increase the o?
values of Table 1 by a term equal to the variance of
the lateral distribution function. Since this variance
is of the order of z'2, we see that as long as z’ < L
this effect introduces only minor changes in ¢2.
Therefore, with the above restriction, the use of more
realistic but more complex generation schemes would
not modify significantly the expressions given in
Section 4.
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NOTE ADDED IN PROOF

Since this work was submitted for publication, two
papers on the same subject have appeared. Boersma
et al.[16] solve the mixed boundary value problem
of Section 2 for arbitrary v, by means of the
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Wiener—Hopf technique, and give an analytical ex-
pression for the related current profile. In particular,
they consider the limiting case v, =0 and obtain an
expression, which differs from that derived here but
is actually equivalent, as proved in Appendix D.

In a following paper[17] Kuiken and van Opdorp
discuss the use of asymptotic expansions of the ex-
pression by Boersma et al. for the determination of
L and v, from an experimental profile. The method
to evaluate L proposed in [17] relies on the analysis
of the profile decay and is essentially different from
that suggested here, where integral properties of the
profile are considered.
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APPENDIX A

Proof of (11).
For §’ = 0, i.e. when the point source is on the positive x
axis, (10) becomes

1(r'.0) =%[0°°% Y (-1)"ql, (Ar YK, (Ar).

n=0

(A1)

The addition theorem for modified Bessel functions of order
g=n+} ([15, p. 24, eqn (16))) yields the identity

(1/R)exp(—AR)

=2(mry i gl (Ar YK, (Ar.) P, (cosd).

n={

(A2)

where R = (r> + r® — 2rr’cos )72 and P, is the Legendre
polynomial of degree n. For cos¢ = —1, being P,(—1)=

C. DONOLATO

(—1)". (A2) gives

2 (-D"a(Ar) K, (Ar.)

n=0

prexp[—A(r+r)]

1 ’
=,(r') P . (A3)
Substituting this expression into (Al), we obtain
£ exp[—=A(r+r)]
1(r.0) = /2 1/2 )
(r'.0)=(1/7)r f“ r - dr
(A4)

From [12], p. 302, eqn (7.4.9), we see that (A4) is just an
integral representation of the complementary error function
of argument (Ar)1/2; this proves (11).

APPENDIX B
Proof that I(x’, z’) satisfies (12) with the conditions (13).
Let G be a Green’s function of (12); then I can be
expressed in general through the Green’s theorem[7] as

., + % 2
I('\”")=~,/: ‘(Gg;.=

Suppose that we choose G so that it satisfies the homoge-
neous version of (13a). Then the contribution of the positive
x axis to the integral of (Bl) vanishes, since both the
normal gradient of / and G are zero for x> 0. On the
negative x axis G =0 and /= 1; hence (Bl) gives

G
B Al
0 dz

:zo)d.\; (B1)

, a0 G )
I(X”-)—fac dz ‘_—:ndA\'

(B2)

It is easy to recognize that the function G as defined above
is the same (apart from a factor D which does not appear in
the final result) as the function p defined by (1) with (2).
Therefore the definitions (9) and (B2) coincide and the
above statement is proved.

APPENDIX C
Evaluation of moments of j(x), —c, (x) and —¢{(x).
According to the definitions of (30b), (25). and (19), we
have

K, [)\(.\‘2 + z’z)l/l]

J(x) = (Az'/m)exp (A') =

(x2+27)7?

= - (1/W)exp(>\:')%](0[>\(v\.z + __,g)l/mz] '

(C1)

We only need to evaluate a,[j]. Since [11, p. 705, eqn
(6.596.3)]

fj x.\‘zKO [ A(xP+ 3,2)1/2] dx

=(7/X)exp(—Az )1 +Az"). (C2)

and using (C1) and (C2) in the definition of a,[ /], we have

. t o 5 ,
wli]=f "x¥(x)dx=rLz. (C3)
-
For v, = oo, one has immediately from (33)
o[- ]=0.  af-c]=0. (C4)
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The moments of —¢{ can be evaluated starting from the
identity

/wx,,/zexp(A)\x)dx=(W/}\)l/z, (Cs)
()

which is obtained by integrating (34) from zero to infinity.
By using the property

a, *c(’)] = (>\/7'r)1/zfomx”“/2 exp(—Ax)dx

N "

= (/)20 S () (o)
it is easy to see that
al-al=L/2.  a]-¢]=3L% (o))

APPENDIX D

Proof of the equivalence between the present expression
for the current profile and that given by Boersma ez a/.{16]
for v, =0.

It seems easier to prove the equivalence between the
expressions for the profile derivative; since both profiles
approach zero for x’ — co, the equivalence of the deriva-
tives entails that of the profiles themselves. Using di-
mensionless coordinates X =Ax, Z=Az without prime
marks, the absolute value of the profile derivative D( X) for
v, = 0 can be written as (see Section 3.2)

D(X)=d(X)*J(X), (D1)
where the asterisk denotes the convolution, and
0 X<0
= - = (D2)
4«0 {(h)‘”(wx) Viexp(~X) X>0.
Z/m) K [ (X2 + 23
N CZo L1 (Gt ) >3

(X2+ 23"
The special form of (D1) suggests considering the Fourier
transform of D(X), which can be expressed through the
convolution theorem [7, p. 464] as
D(k)y=d(k)-J(k). (D4)

where the tilde denotes the Fourier transform. From the
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tables in [18] we have that

Ay =22+ i -1 o, (DS)

J(k)=@2n) Pexp(-pZ),
where p = (£ + 1)'/2. Hence

(D6)

Dk =in 1 exp(—pZ)[(u+ 1) + i(a- 1) fu.
(D7)

It is shown now that the Fourier transform of the expres-
sion for D( X) given by Boersma er al.[16] is equal to (D7);
the identity of the transforms proves that of the original
functions. In fact, by using the substitution & = (r? — 1)!/2
and performing the derivative with respect to X in eqns
(5.9) of {16], the following expressions for D(X) are ob-
tained

o - X
D(X):%j(; h—e(xELI;—l/—zlcos(hZ)dh X=>0,
viv—
(D8)
X
D(X)=%f()w%sin(hz)dh X<0,
Vv

where »=(h?+ 1)!/2. These integrals can be evaluated
explicitly with the aid of the identities 3.962, [11, p. 498];
the resulting expression for D( X) valid for any X is

D(X)=2n) "*(R+ X)?exp(~R)/R, (D9)
where R = (X2 + Z%)1/2, To perform the Fourier transform
of (D9) it is convenient to divide D(X) into its even (+)
and odd (—) parts D, (X):

D (X)=3[D(X)+D(-X)]. (D10)
Simple calculations show that

D (X)=1n"12(R+2)exp(-R)/R. (DI1)

The Fourier transform of D( X) can be written as

(k)= (z/w)‘/z[fo‘”m(X)cos(kx)dx

+if°°D‘(X)sin(kX)dX]. (D12)
0

Substituting eqn (D11) into eqn (D12) and performing the
integrations by using again the identities 3.962 of [11], we
obtain egn (D7).



