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Abstract-An analysis is given of the determination of bulk diffusion lengths in semiconductors from the 
induced current profiles that are obtained by scanning an electron beam with normal incidence on a 
Schottky diode. The discussion assumes that the carrier recombination velocity at the free semiconductor 
surface is Us = 0. In this case the mixed boundary conditions of the diffusion problem for excess minority 
carriers can be converted into normal ones by using polar coordinates, and an explicit expression for the 
induced current profile can be given. This expression is compared to that already known for the opposite 
case 11, = cc, to establish the influence of the surface recombination velocity on a number of profile 
properties, such as symmetry, asymptotic decay, or low-order moments of the derivative. It is shown that 
by evaluating the variance of the profile derivative at two beam energies the diffusion length can be 
determined independently of the knowledge of the value of 0,. 

1. INTRODUCIION 

The electron-beam induced-current (EBIC) tech- 
nique of the scanning electron microscope has been 
widely used to determine the minority-carrier diffu- 
sion length in semiconductors[l,2]. In this kind of 
measurements, a number of different beam-sample 
configurations have been employed; one of these [3,4] 
is such that the electron beam is incident normal 
to the plane of the collecting barrier formed by a 

Schottky diode (Fig. 1) or a shallow p-n junction. 
The value of the diffusion length L is obtained by 
recording the decay of the induced current with the 
beam to Schottky-diode distance and analyzing the 
data on the basis of analytical expressions provided 

by the theory. 
Ioannou and Dimitriadis[4] gave a closed-form 

expression for the current profile in a semi-infinite 
sample with a Schottky diode on half of the surface 
plane, assuming infinite recombination velocity at 
the remaining semiconductor surface. Thus the diffu- 
sion problem for the excess minority carrier density 
p could be formulated and solved explicitly with 
homogeneous Dirichlet boundary conditions (p = 0) 

over the whole surface. 
The analysis for a finite value IJ, of the surface 

recombination velocity is much more difficult, since 
the boundary-value problem becomes of the mixed 
type, in that the condition p = 0 only holds at the 
Schottky contact, while over the remainder of the 
surface the condition is that p is proportional to its 
normal gradient through u,. Von Roos [S] has studied 
a related problem, but adapting his results to the 
present case appears rather difficult. He also analyzed 
the configuration consisting of a circular Schottky 
diode on a sample having finite thickness[6], but 
obtained a system of dual integral equations which 
could not be solved in closed form. However, since 
the diode radius is usually large in comparison to L, 

electron 
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Fig. 1. Schematic representation of the diffusion length 
measurements by the Schottky-barrier EBIC technique. 

the straight-edge approximation of [4] is adequate 
while being easier to deal with. 

The present paper analyzes charge collection in 
this simplified configuration assuming u, = 0; in this 
case an explicit expression for the current profile can 
be obtained by the eigenfunction expansion method. 
It will be shown that the knowledge of the solution 
in the two limiting cases u, = 0,~ elucidates the 
influence of the surface recombination velocity on 
the current profile and also yields a method of de- 
termining L that is free from that influence. 

2. THE MIXED BOUNDARY-VALUE PROBLEM 
FOR?,=0 

The configuration to be analyzed is illustrated in 
Fig. 1. The semiconductor surface is coincident with 
the x-y plane, and the Schottky diode covers the 
half-plane x < 0; the surface half-plane x > 0 is 
characterized by IJ, = 0. 
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Since the configuration has translational invariance Laplace operator that satisfy (3b) and (3~) 
along the y axis, the charge collection problem needs 
to be discussed in two dimensions (x, Z) only. Under 
the usual simplifying assumptions [4,6], the density 

p(i-,B)= : u,,(r)cos(n+$)B. 
P1 =0 

(4) 

of excess minority carriers p( x, Z) injected by a unit 
point source at (x’, z’) obeys the diffusion equation Inserting this expansion into (3a) and making use of 

the delta function representation ([7], p. 719) with 

s+z-+p= -$a(.x-xr)s(Z-z~), q=n+ i 

w 

(1) S( e - e’) = (2/n) 2 cos( qe) cos( 48’). (5) 
II = 0 

where D is the minority carrier diffusion coefficient 
we obtain an ordinary differential equation for the 

and 6 is the Dirac delta function. The boundary Fourier coeEcients a (r). 

conditions are PI . 

p(x,O)=O, x<o; 

ap 
a2 ;=(,=O* x > 0. 

The difficulty in solving this boundary-value problem 

originates from the fact that the boundary condition 
changes from homogeneous Dirichlet to homoge- 
neous Neumann (normal gradient of p equal to zero) 
over the coordinate surface z = 0. Any attempt to 
express the solution in terms of a Green’s function 
which satisfies either (2a) or (2b) along the entire x 
axis would require the introduction of unknown 
boundary values and lead to an integral equa- 
tion. Although integral equations resulting from 
boundary-value problems can often be solved 
by complex variable methods relying on the 
Wiener-Hopf technique ([7, p. 9781; [5]), in the 
present case a direct solution of (1) with (2) is 
possible. As suggested by Naylor[8] for a class of 
similar problems, it is only necessary to convert the 
mixed boundary conditions (2) into normal ones by 
introducing polar coordinates. 

1 a au,, 
- - rx -( q”/r” + A’)a,, 
r ar ( 1 

= -~cos(qe’)s(‘-f). (6) 

The solution of this equation can be expressed in 
terms the modified Bessel functions of half-odd- 
integral order Jq, K, of the argument Xr. Applica- 
tion to this case of the standard method illustrated in 
[9] yields 

u,!(r) =$ cos(qe’>l,(hr<)K,(Xr,). (7) 

where r, (r,) is the smaller (larger) of r and r’. 
Hence from (4) and (7) the solution can be written as 

p(r,6)=$ t cos(qf3)cos(qfl’) 
,I =O 

Xf,(~r<>K,(Ar.,). (8) 

The particle current collected by the semi-infinite 
Schottky diode is given by 

2.1. Direct solution in polur coordinates 
Using polar coordinates r, 8, with x = rcos 8, z = 

r sin&‘, (1) and the conditions (2) become 

la ap 

( 1 

1 a2p 
;z r- +??-X’p 

ar r ae- 
Inserting (8) into (9) we obtain the final result 

= -&S(r-r’)S(B-8’): (34 
I( r’, 0’) = $ S,” $ E (-l)“qcos( ye’) 

PI = 0 

p(r,n) =O, (3b) x~,(~rc>K,(Xr,). (10) 

ap 
ae B=() = O, (3c) 

It is not difficult to check that this expression is a 
particular case of eqn (19) of ref. [8]. Although (10) 
is the exact solution of the original mixed boundary- 

where X = l/L. The original boundary conditions value problem, it has two disadvantages. First, 
(2a), (2b) are now given on the distinct coordinate I( r’, 0’) is expressed in polar coordinates, which are 
lines 0 = 0,~ and the boundary-value problem be- not natural for the configuration of Fig. 1. Second, 
comes of the normal type. Using a standard proce- expression (10) contains both an integral and a series; 
dure ([7], p. 825) the function p( r, 0) is expanded in this can make a numerical evaluation rather trouble- 
terms of the eigenfunctions of the angular part of the some. 
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Nevertheless, (10) has the useful property of yield- 
ing a simple expression for I when the generation 
point is on the positive x axis. It is shown in the 

Appendix A that 

I(r’,O)=I(x’,O)=erfc[(Xx’)i”], ~‘10. 

(11) 

The next paragraph illustrates how this knowledge 
can be used to express 1(x’, z’) through a single 
integral. 

2.2. The collected current in rectangular coordinates 
It is proved in the Appendix B that the function 

1(x’, z’) satisfies the homogeneous version of (1): 

_+2’4q4 a2r 
ax!= a2f2 (12) 

with the boundary conditions (of the mixed type)+ 

I( x’,O) = 1, x’ 5 0; (13a) 

ar - x0 

a2f 9 
x’ > 0. Wb) 

z’=O 

The condition (13a) means that complete charge 
collection occurs when the point source is at the 
collecting plane. Although (13b) specifies the normal 
derivative of I for x’ > 0, the value of the function 
itself is now known from (11). Hence I can also be 
found as the solution of (12) with the boundary 
conditions of the normal type 

I( x’,O) = 1, x’ s 0; 

I( x’,O) = erfc [( hx’)1’2] , 

(14a) 

x’ 2 0. (14b) 

The identity of the solutions of (12) with the 
boundary conditions (13) or (14) follows from the 
uniqueness of the solution. 

Since the new boundary conditions are of the 

Dirichlet type along the entire x axis, we may ex- 
press I through the Green’s function of (12) that is 
zero at z = 0. The Green’s function with this prop- 

erty can be found by the method of images ([7], p. 
812), and is given by 

G’&[ KO( x[(xf-x)2+(z~-z)2]“2) 

-K,,(h[(x’-x)2+(z’+z)2]“2]], (15) 

where K,, is the modified Bessel function of the 
second kind of order zero. The Green’s theorem 

‘The fact that I( x’, z’ ) satisfies (12) with (13) expresses a 
reciprocity property of charge collection: a more detailed 
discussion on this point can be found in [lo]. 

gives now (see (Bl)) 

dx. (16) 

Substituting (15) into (16) and performing the de- 
rivative we obtain 

I(x’,z’)=XI’ +ml(x,O) 
n s 

-CC 

K, A[( x’ - x)’ + Z’Z I l/2 

x (I(x,_x)2+z,2]“’ ) dx7 
(17) 

where K, is the modified Bessel function of the 
second kind of order one. Use of (14) in (17) finally 

yields 

Z(x’,z’) =$J” 
K,(h[(x’-x)‘+z’~]~‘=] dx 

-m [(xLx)2+zq1’2 

K, X[(X’--X)~+Z’~]*‘~ 

x 1[,x._x)2+z!2,“’ ) dx. 

(18) 

The equivalence between (10) and (18) is a conse- 
quence of the uniqueness of the solution of the 
boundary-value problem; however, a direct proof of 
this property seems to be difficult. In (18), it is easy 
to recognize that the first term on the right-hand side 
corresponds to the current that would be collected in 
the case v, = cc [4]. The second term gives the cur- 
rent increase due to carrier reflection at the semicon- 
ductor surface with v, = 0. Both for v,, = 0 and v, = 
00, and actually for any value of v,, we have that 

lim 
x,+-m 

I( x’, z’) 

X2’ =- 
m / 

+mKi[X(x=+z~z)1’2] dx 

--M (x2 + Zrz)l’= 

=exp( -AZ’), (19) 

the last equality following from eqn (6.596.3) of Ref. 
[ll]. The well-known result of (19) reflects the fact 
that when the generation takes place well inside the 
Schottky diode the collected current is hardly in- 
fluenced by the properties of the free semiconductor 
surface. 

3. COMPARISON OF THE CURRENT PROFILES 
WHENq,=mANDq=O 

Figure 2 shows some computed current profiles 
according to (18); the required integrations have 
been performed numerically using the approxima- 
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Fig. 2. Normalized EBIC profiles in a Schottky diode for 
different generation depths and ~1, = ~0.0, as calculated 

from eqn (18). 

tions for the special functions given in [12]. The 
profiles have been normalized to I( - co, z’) using 
the result of (19), and are plotted versus the reduced 
distance xl/L. 

For u, = CC the profiles have a symmetry about 
x’ = 0, in that the function i(x’) - i is an odd 
function of x’; for v, = 0 no symmetry is observed. 
In addition, the profiles with u, = cc decrease more 
rapidly with x’ than the corresponding ones with 
~1, = 0. Figure 2 also shows that a higher generation 
depth produces a smoother profile. These properties 
will be studied in a more quantitative way in the 

following sections. 

3.1. Asymptotic expansions 
It is of interest to study the asymptotic behaviour 

of I( x’, z’) of (18) for large values of x’, since it is 
known that the decrease of 1 at large scan distances 
bears information about the value of the diffusion 
length L [3,4]. It has been shown[4] that for u, = co, 
z’ < x’, the current at x’ B L decays as 

1(x’) = z’(+L/*)l”x’ ‘j2exp( -x’/L). (20) 

This expansion also applies to the first term I, on 
the right-hand side of (18), since I, is just the 
current for u, = co. The second term I, can be 
written in dimensionless quantities X= xx, X’ = 

Xx’, Z’ = Xz’, after changing the integration variable 
to Y= X- x’, as 

I,=z/_xyerfc[(X’+ Y)“‘] 

x K, [(Y’ + Z”)“‘] dY. 

(y’ + Z’“)1/2 (21) 

If Z’ -=K 1, i.e. for generation depths z’ small in 
comparison to Z,, the function 

z’ K, [( Y2 + Z”)“‘] 

77 (y’ + Zd)‘W (22) 

-1 0 1 2 3 X/L 

Fig. 3. Plot of the functions C,(I). c~,(x) (eqn (26). (27)), 
and j(.~) (eqn (25) with (30b)) for :‘/I. = 0.2. The function 

/( \-) has been shifted for illustration purposes. 

is sharply peaked at Y = 0, having a maximum value 
= l/( nZ’) and a full width at half-maximum I= 2 Z’. 
as can be seen using the approximation K, (x ) = 
l/.x [12] for x +z 1. The erfc function of (21) for 
large values of X’ undergoes only minor changes in 

the neighborhood of Y = 0 where the function (22) 
has relevant values (for Z’ +C 1 this function is z 
i(x) of Fig. 3), and can be treated approximately as 
a constant to give 

I2 = erfc( xl’/’ 
K,[(Y’+Z”)“‘] dY, 

( y’ + z”)’ ‘2 

(23) 

Under the above assumptions, the lower integration 
limit in (23) can be replaced by - CC without signifi- 
cant error. The resulting integral is known from (19); 

since exp ( - 2’) = 1 for Z’ K 1, (23) becomes 

I, = erfc ( X”/” ) z ( nX’) ’ ” exp ( - X’) 

= ( L/n)‘?~ “‘exp( -x//L), (24) 

where use has been made of the asymptotic expan- 
sion of the complementary error function[l2]. At a 
given value of x’, the ratio I,/I, is - z’/s c 1. 

therefore Iz of (24) represents the asymptotic trend 
of the current for ~1, = 0. As can be expected, for 
11, = 0 the collected current is both larger and de- 
creases more slowly than in the case 11, = co. 

3.2. The projile us u convolution 
It is useful to express in a unique more compact 

form the current collected in the two limiting cases 
cl, = 0, co. In fact, both (18) and the corresponding 
eqn (AS) of Ref. [4] (i.e. the first term in (18)) have 
the form of a convolution; the convoluted functions 
are 

J(x)=% 
K,[h(x-‘+z”)“‘] 

(_%? + zIz)“2 (25) 
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which represents the current density of minority 
carriers from the point source to the surface when 
v,=co,and 

cm(x) = 
i 

1 xjo 

0 x>o 
(u, = co>, (26) 

or 

i 

1 
co(x) = 

x_Io 

erfc( Xx)1’2 x 2 0 
( 0, = 0). 

(27) 

The function c(x) can be interpreted as the prob- 
ability that a minority carrier reaching the surface 
will be collected by the junction. This probability is 
equal to one for x 5 0 (at the Schottky contact), and 
is zero for x > 0 when v, = 00, since in this case all 
carriers reaching the surface at x > 0 are lost by 
recombination. For v, = 0 the virtual flux of carriers 
to the surface at x > 0 contributes to the collected 
current, but this contribution decreases with the dis- 
tance x from the Schottky diode. A plot of the 
functions cm(x) and Q(X) is shown in Fig. 3. Thus, 
omitting for simplicity the dependence on z’, the 
collected current can be written as 

/ 

+CO 
= c(x’- x)4x) dx, (28) 

-co 

where c(x) is to be specified according to the value 
of v,. It is convenient to normalize 1(x’) to its value 
at x’ = - 00, as done in Fig. 2; by comparing (19) 
with (25) we see that 

I(-cc)= j+mj(x)dx. (29) 
-m 

In terms of the normalized functions 

i( x) = 1( x)/l( - co)) 

j(x) =J(x)/q-m), 

(304 

(30b) 

(28) becomes 

i(x’)=/TIc(x)j(x’-x)dx. (31) 

In the following we will need the absolute value of 
the derivative of i(x’), which by (31) can be written 
as 

(32) 

since i( x’) is a decreasing function of x’. According 

2 I 
I t 3.46 

-----“,=a 

-2 -1 0 1 2 3 4 
x,/L 

Fig. 4. Derivative of the profiles of Fig. 2. 

to the definitions (26) and (27), we have 

-&(x)=8(x) 

and 

(33) 

i 

0 

-c;)(x) = (+px-lWexp( -Xx) 

XI0 

xz 0, 

(34) 

the second equality being a consequence of the de- 
finition of the complementary error function ([12], p. 
297). 

The derivative of the profiles of Fig. 2 are shown in 
Fig. 4. It is seen that a number of properties of i( x’), 

as symmetry or smoothness, are reflected with better 
evidence in i’(x’). In addition, since i’(x’) ap- 
proaches rapidly zero for increasing Ix’I, these prop- 
erties can be described conveniently by examining 
integral quantities related to i’(x’), as the moments 
about the origin. 

3.3. The moments of the profile derivutive 
According to the usual language of probability, the 

moment of order n about the origin of a distribution 
function f(x) is defined as 

a,,[fl = j_+;x”/(X)dx (35) 

The moment of order zero, i.e. the area under the 
curve defined by f(x), is equal to one for a function 
representing a distribution. It is easy to check that 
both j(x) as defined in (30b) and -c’(x) of (33) 
and (34) have this property. The same holds conse- 
quently for (i’(x)l, as can be seen by integrating (32) 
over x’ in the interval (- cc, + 00). We will need the 
moments of Ii’1 of order n = 1,2, which can be 
expressed in terms of the corresponding moments of 
- c’(x) and j(x). Taking into account that 

a,[jl = 0 (36) 

because j(x) is an even function of x, it follows 
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Table 1. Values of the moments about the origin of order 

II = 1.2 and variance of 1,‘) for ,‘> = 3c.0 

from the definitions that 

a,[]i’]] =a,[ -c’] 

and 

(37) 

~,[li’l]=~2[~~‘]+~,[j]. (38) 

The required moments are evaluated in the Appen- 
dix C and turn out to have very simple expressions. 
The resulting moments of li’l, as well as the variance 
u- (the second moment about the mean), are sum- 
marized in Table 1 for v, = co, 0. 

The moments of Ii’1 can be calculated starting 
from the values of i(x) without actually performing 
the derivative of the profile. This is useful in practice, 
since the differentiation of an experimental profile 
with some noise can result in large fluctuations of i’, 

unless some precautions are taken. In fact, let h(x) 
be the function (Fig. 5) 

( 4x1 w=\ i(x)_l ,;:,“, (39) 

This function has the same sign of x and is in 
general discontinuous at x = 0. However, h(x) ap- 
proaches rapidly zero for Ix]+ cc and its moments 
are finite, whereas the moments of i(x) do not exist. 
Using the definition (35) and performing some in- 
tegrations by parts, the following relations between 
the moments of Ii’] and h are found’: 

%[li’ll =%[hl 
(40) 

w[li’ll =2q[hl. 

The central moments of Ii’], i.e. the moments about 
the mean m = a, [ Ii’]] = a(,)[ h], are more conveniently 
related to those of the function h,,,(x) by 

h,,,(.r) = ( j,:‘;!, ,,*>‘I, (41) 

The definition of h,,,(x) is similar to that of h(x). 

except that the discontinuity point is displaced from 
s = 0 to x = tn. Denoting by II,, the central moment 

’ The first-order moment a,[~ + ] of the positive side 
of f(Y) for I’,= m was evaluated previously[l3], obtain- 
ing i I.:‘. but with the normalization of I to f(0.z’) 
= A I( ~ 3~. z’) With the normalization to I( ~ x. ;‘) used 

here. n, [I - ] = : 1.:’ and rx, [h] = if_;‘, bccauae of the odd 
symmetry of /7(.x) for v,, = CT. Hence a,[li’l]= I.;‘. in 
agreement with the value given in Table 1. 

Fig. 5. Plot of the function h(.\-) of cqn (39) for I’, = 0. 
2 ‘/L. = 0.5. The dashed lint illustrates the relation to r( .u). 

of order n, it is found analogously to (40) that 

~,[li’ll =po[hml =Ot 

Puz[li’ll =2P,[h,nl =G. 

(424 

(42b) 

It follows from (42a) that the point x = m has the 
property that the area bounded by h,,,(x) and the x 
axis is the same on either side of x = m. According 
to (42b), u’ is equal to twice the first-order moment 

of h ,,, about this point. The use of these properties 
can make the evaluation of a profile easier. 

4. THE CASE OF ARBlTRARY c, 

The use of polar coordinates, though appropriate 
for solving the diffusion problem (1) with P, = 0, 
does not seem to be of advantage when u, is finite. In 
fact, (3~) would become 

(43) 

and because of the factor l/r in the boundary 
condition (43) the eigenfunction method is no longer 

applicable (see [7. p. 10391). A possibility is to look 
for an approximate solution or to resort to more 
powerful but more complex methods like the 
Wiener-Hopf technique. 

However, the expression of the profile ah a con- 
volution [eqn (17) or eqn (28)] and the consequent 
relations (37) and (38) between the moments of 
Ii’], -c’ and j are valid for any ~1,. This fact and the 
knowledge of the moments of Ii’] for u, = CQ,O give 
some indication, for instance, on the expression of 
a’ for finite u, , even though the corresponding func- 
tion c(x) = I( x, 0) is not known. 

In fact, eqns (37) and (38) show that the variance 
izrz =a, - af of Ii’1 is in general equal to the sum of 
the variances of -co and j. Denoting by a,? the 
variance of - c.’ and using the result of eqn (C3). we 
may write 

~~=(J~+ I,,-’ (44) 

The term u>l will be a function of I!, and I,, but not 
of 2’ , since c(x) does not contain this variable. Since 
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u,? has the dimensions of the square of a length, it 
can be written as 

u,‘= wL’/2, (45) 

where w is a dimensionless function of u, and L, 

and the factor $ has been introduced for conve- 
nience. Thus eqn (44) becomes 

a1 = wL’/2 + Lz’. (46) 

The results of Table 1 show that w = 0 for U, = cc 
and w = 1 for u, = 0; for finite u,, w is likely to 
assume intermediate values. For dimensional rea- 
sons, w is expected to depend upon v, and L only 
through the dimensionless product v,L/D, but the 
explicit dependence can only be established by solv- 
ing the diffusion problem for arbitrary v,. 

Nevertheless, eqn (46) [or eqn (44)] can be used to 
deduce L from profile variance measurements. In 
fact, the unknown factor w in eqn (46) is in any case 
independent of z’; therefore, it is sufficient to de- 
termine u2 at two different beam energies (i.e. at two 
known generation depths z[, z;) and use eqn (46) 
twice to eliminate w. Thus L can be found from the 
expression 

L _ 0,’ - 4 ( 
(47) 

z; - z; . 

where u:( cr:) is the variance of Ii’] when the genera- 
tion depth is z[(zi). If the dependence of w upon v,~ 
were known, eqn (46) would also yield a method of 

evaluating q, A similar procedure has been actually 
applied to evaluate both L and v, in a different 
configuration, where the expression of the profile for 
arbitrary v, was known [14]. 

5. DISCUSSION AND CONCLUSIONS 

The basic assumptions of the model described 
here are essentially those made by Ioannou and 
Dimitriadis[4] for the case v, = co, and the reader is 
referred to that paper for a detailed discussion. The 
present analysis deals with the complementary case 
TV, = 0 and also gives some indication about some 
expected profile properties for arbitrary v,. 

In [4] the diffusion length of some samples was 
evaluated by fitting the profile tail with the law 
X ‘-3/2exp( -x’/L), i.e. by assuming v, = cc (see 
(20)); in practice the value of L was obtained from 
the slope of the straight portion of the plot of 
In ( 1~‘~” ) vs x’. A fit with the opposite assumption 
u, = 0, i.e. with the law x’+ ‘I2 exp( -x’/L) of (24) 
would obviously yield a different value of L. It is not 
difficult to see that by applying the decay law valid 
for v, = co to a hypothetical sample with vJ = 0 one 
obtains an apparent diffusion length L,, which ex- 
ceeds the true value L by a percentage amount 

L,/x ), x’ being the point at which the slope is 
evaluated. For instance, at x’ z 3L, the overestimate 
would be = 30%. This example illustrates that, in the 
absence of information about v,, the values of L 

obtained by the straightforward slope analysis can be 
affected by a systematic error. 

The method introduced in Section 4 allows the 
evaluation of L without requiring the knowledge or 
the determination of v,. An additional advantage of 
the moment method is that use is made of profile 
data at low scan distances, where the current is 
higher and hence usually known with greater relative 
accuracy. Current values at large scan distances, 
which are required to evaluate the moments but are 

frequently not available, can be estimated with suffi- 
cient accuracy by extrapolation of the profile 
&ils[l3,14]. 

The method of Section 4 is based on the de- 
termination of u2 at two beam energies. The reason 
for using u * instead of 0~~ (or OL,) is that u2 is an 
intrinsic property of the profile, whereas the value of 
a, (or a,) is related to the choice of the origin. In 
absence of additional information, there is no simple 
criterion to establish the location of the point x = 0 
from an experimental profile. The next central mo- 
ment of Ji’J is that of third order Pi, but it is not as 
useful as u2. In fact, p3 varies between zero (v,, = co) 
and L3 (v, = 0), being independent of z’; therefore 
the elimination of the unknown weight factor, which 
will appear in the expression of k3 for finite u,, by 
two measurements at different values of z’ is no 
longer possible. The use of higher-order moments is 
not convenient, since usually they can be evaluated 
only with lower accuracy. 

The values of the moments given in Table 1 are 

based on the simple scheme of point generation of 
minority carriers. The generalization to a generation 
along a line is straightforward; according to the 
discussion of [13], it is sufficient to interprete z’ as 
the center of gravity of the electron depth-dose 
function; in silicon z’ = 0.41 R, R being the primary 
electron range [13]. 

Taking into account the finite lateral extension of 
the generation would require a further convolution 
of i(x’) (or i’(x’)) of Section 3.2 with the function 
describing the lateral distribution of the generation. 
Because of the additivity property of the variance of 
convolutions (see (38)) this would increase the u2 
values of Table 1 by a term equal to the variance of 
the lateral distribution function. Since this variance 
is of the order of z’~, we see that as long as z’ -=K L 

this effect introduces only minor changes in a*. 
Therefore, with the above restriction, the use of more 
realistic but more complex generation schemes would 
not modify significantly the expressions given in 
Section 4. 

Ack,lo~ledgemerlfs-The author wishes to thank the re- 
viewers for useful comments on the manuscript: in particu- 
lar he is grateful to one of them for making available the 
relevant papers of [16,17]. 

NOTE ADDED IN PROOF 

Since this work was submitted for publication, two 
papers on the same subject have appeared. Boersma 
et al. [16] solve the mixed boundary value problem 
of Section 2 for arbitrary v, by means of the 
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Wiener-Hopf technique, and give an analytical ex- 
pression for the related current profile. In particular, 
they consider the limiting case u, = 0 and obtain an 
expression, which differs from that derived here but 
is actually equivalent, as proved in Appendix D. 

In a following paper[l7] Kuiken and van Opdorp 
discuss the use of asymptotic expansions of the ex- 
pression by Boersma et al. for the determination of 
L and o, from an experimental profile. The method 
to evaluate L proposed in [17] relies on the analysis 
of the profile decay and is essentially different from 
that suggested here, where integral properties of the 
profile are considered. 
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APPENDIX A 

Proof of (11). 
For 0’ = 0, i.e. when the point source is on the positive x 

axis, (10) becomes 

I(r’,O)=~JT,“$ 

cx 

C (-l)“ql,(Xr,)K,(Xr,) 
,I = (1 

(AlI 

The addition theorem for modified Bessel functions of order 
q = ,t + i ([15, p. 24, eqn (16)]) yields the identity 

(l/R)exp(-AR] 

where R = (r’ + r’l ~ 2rr’cos+)‘/’ and P,, is the Legendre 
polynomial of degree n. For cos + = ~ 1. being P,, ( - 1) = 

( ~ 1)“. (AZ) gives 

I‘L 

C (~l)“YI,(hr,)K,(Xr,) 
,I = (I 

=:(rri~l;i2exp[~h(r+-‘)l 
ri r’ (A31 

Substituting this expression into (Al). we obtain 

I(r’.O)= (l/n)r flil~xr 1j2ev-X(r+r’)l dr, 
0 ri r’ 

(A4) 

From [12], p. 302, eqn (7.4.9), we see that (A4) is Just an 
integral representation of the complementary error function 
of argument (Xr’)““: this proves (11). 

APPENDIX B 

Proof that 1(x-‘, z ‘) satisfies (12) with the conditions (13). 
Let G be a Green’s function of (12); then I can be 

expressed in general through the Green’s theorem [7] as 

Suppose that we choose G so that it satisties the homoge- 
neous version of (13a). Then the contribution of the positive 
.Y axis to the integral of (Bl) vanishes, since both the 
normal gradient of I and G are zero for .r > 0. On the 
negative .y axis G = 0 and I = 1; hence (Bl) gives 

It is easy to recognize that the function G as detined above 
is the same (apart from a factor D which does not appear in 
the final result) as the function p defined by (1) with (2). 
Therefore the definitions (9) and (B2) coincide and the 
above statement is proved. 

APPENDIX C 

Evaluation of moments of j(x), -c!,_(x) and -c’i,(~), 
According to the definitions of (30b). (25). and (19). we 

have 

I(.Y)= (Xz’/n)exp(Xz’) 
K, [ A(.$ + Py] 

( _y2 + zIz )‘/2 

= -(l/r;)exp(Xz’)~K,,[X(r’+;“)‘,‘]. 

(Cl) 

We only need to evaluate a2[~]. Since [ll. p. 705. eqn 
(6.596.3)] 

= (n/X3)exp(-Xr’)(l +X2’), (C2) 

and using (Cl) and (C2) in the defnition of a>[ 11. we have 

.r ‘/ ( .r ) d s = Iz ’ (C3) 

For 11, = co. one has immediately from (33) 
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The moments of -c& can be evaluated starting from the 
identity 

‘/2exp(-Xx)dx=(s/h)“2, (C5) 

which is obtained by integrating (34) from zero to infinity. 
By using the property 

a,,[ -c;,] = (h/n)“‘jomx”-‘/‘exp(-~x)d.x 

= (X/ny( - l)~~~(n,X)l~~ (C6) 

it is easy to see that 

a,[ +)I = L/2, aa[ -ch] =$L2. (C7) 

APPENDIX D 

Proof of the equivalence between the present expression 
for the current profile and that given by Boersma et crl. [16] 
for L’, = 0. 

It seems easier to prove the equivalence between the 
expressions for the profile derivative: since both profiles 
approach zero for x’ + cc, the equivalence of the deriva- 
tives entails that of the profiles themselves. Using di- 
mensionless coordinates X= Xx. Z = AZ without prime 
marks, the absolute value of the motile derivative Dt X) for 
(1, = 0 can be written as (see Se&on 3.2) 

D(X)=d(X)*J(X), Pl) 

where the asterisk denotes the convolution, and 

( 0 X60 

d(X)= (2n)“2(nX))“2exp(-X) x>o, 

J(x)= (Z/~)RJ(X2+Z2Yl 

(X2 + z2)1’2 

W 

(D3) 

The special form of (Dl) suggests considering the Fourier 
transform of D(X), which can be expressed through the 
convolution theorem [7. p. 4641 as 

b(k)=J(k).j(k), (D4) 

where the tilde denotes the Fourier transform. From the 

tables in [1X] we have that 

d(k)=2~‘/‘[(a+l)“‘+i(~-l)~‘~]/p, (D5) 

_?(k)=(2n))“2exp(-pZ). 

where a = (k 2 + 1)“‘. Hence 

(D6) 

b(k)=iTr ~L/2exp(-(lZ)[(~+1)1’2+i(p-l)1’2]/~. 

(D7) 

It is shown now that the Fourier transform of the expres- 
sion for D(X) given by Boersma et ul. [16] is equal to (D7): 
the identity of the transforms proves that of the original 
functions. In fact, by using the substitution h = (I’ - 1)‘/2 
and performing the derivative with respect to X in eqns 
(5.9) of [16], the following expressions for D(X) are ob- 
tained 

o(X)=ll=mcos(hZ)dh 
n 0 u(,- 1)1’2 

X20, 

(D8) 

where y = (h2 + 1) 1/2 These integrals can be evaluated 
explicitly with the aid‘of the identities 3.962, [ll, p. 4981; 
the resulting expression for D(X) valid for any X is 

o(X)=(2n))“2(R+X)‘2exp((R)/R, (D9) 

whereR=(X’+Z ) ’ ‘I2 To perform the Fourier transform 
of (D9) it is convenient to divide D(X) into its even (+) 
and odd ( -) parts D+(X): 

Di(x)=;[D(x)+D(-x)]. 

Simple calculations show that 

(DlO) 

Dk(X)=fn-‘/2(RfZ)“2exp(-R)/R. (Dll) 

The Fourier transform of D(X) can be written as 

+i&WD_(X)sin(kX)dX]. (D12) 

Substituting eqn (Dll) into eqn (D12) and performing the 
integrations by using again the identities 3.962 of [ll], we 
obtain eqn (D7). 


