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Abstract-A model based on the effective medium approximation is presented which describes surface 
diffusivity on an energetically heterogeneous surface as a function of overall surface coverage and 
a heterogeneity parameter. The heterogeneity parameter is obtained independently from the equilibrium 
adsorption data. The effect of heterogeneity on surface diffusion depends on the relationship between the 
activation energy of surface diffusion and the energy of adsorption. The effect of the coordination number is 
discussed. On comparison with other models for both heterogeneous and homogeneous surfaces, it is 
shown that the model proposed in this work gives a better representation of the experimental data. 

INTRODUCTION 

Surface diffusion is the transport of a substance within 
an adsorbed phase. Under certain conditions, it con- 
tributes significantly towards intraparticle mass trans- 
fer. Several models have been suggested in the literat- 
ure to describe surface diffusion. These models can be 
grouped under three categories: (1) mechanistic 
models in which the migrating molecule is viewed as 
“hopping” from one adsorption site to another 
(Higashi et al., 1963; Smith and Metzner, 1964, 
Weaver and Metzner, 1966; Yang et al., 1973; Thakur 
et al., 1980; Thakur and Brown, 1983), (2) a two- 
dimensional Fick’s law in which surface flow is caused 
by a gradient in the surface concentration (Carman, 
1956; Kammermyer, 1958; Aris, 1983; Rieckert, 1985), 
and (3) hydrodynamic models in which surface dif- 
fusion is treated as a two-dimensional fluid flow on 
the solid surface (Flood, 1955; Flood and Huber, 
1955; GiIliland et al., 1958; Suzuki et al., 1984). Monte 
Carlo simulations have also been used to describe 
surface diffusion. This approach, though very instruc- 
tive requires intensive computation. These models 
have been recently reviewed by Kapoor et al. (1989b). 
It has been shown that surface diffusivity increases 
with an increase in adsorbed-phase concentration and 
temperature, and follows an Arrhenius-type temper- 
ature dependence (Ross and Good, 1956; Sladek et al., 
1974; Okazaki et al., 1981; Tamon et al., 1981). Also it 
has been suggested that the activation energy for 
surface diffusion is related to and is a fraction of the 
energy of adsorption (Robe11 et aZ., 1964, Gilliland et 
al., 1974; Sladek et al., 1974). 

All the studies on surface diffusion so far were on 
homogeneous surfaces, except those of Seidel and 
Carl (1989), Marchese and co-workers (Horas et al., 
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1988; Zgrablich et al., 1986) and Kapoor and Yang 
(1989). Seidel and Carl (1989) assumed that surface 
diffusivity is related to the adsorption isotherm 
through the adsorption energy distribution. They cal- 
culated different adsorption energy distributions 
by correlating the equilibrium adsorption data to 
different isotherms (e.g. Freundlich, Dubinin- 
Radushkevich and Toth isotherms). By using these 
energy distributions they developed the functional 
forms of concentration-dependent surface diffusivity. 
They suggested that surface.diffusivity is independent 
of the adsorbed-phase concentration on a homogen- 
eous surface, and that the concentration dependence 
arose due to the surface heterogeneity. Their results 
showed that surface diffusivity increases with an in- 
crease in adsorbed-phase concentration, which is con- 
sistent with the results reported in the literature. How- 
ever, in the limit of zero adsorbed-phase concentra- 
tion, surface diffusivity becomes zero in their model 
which is in contrast to the results reported in the 
literature (Carman and Raal, 1951; Higashi et al., 
1963; Yang et al., 1973; Gilliland et al., 1974; Tarnon et 
al., 1981). 

Horas et al. (1988) and Zgrablich et al. (1986) de- 
veloped models for surface diffusion on an energeti- 
cally heterogeneous surface based on the percolation 
concepts. They assumed that the adsorption sites are 
connected by resistances with randomly distributed 
values. Their models showed that the surface diffus- 
ivity increases with an increase in adsorbed-phase 
concentration, and it approaches a finite value in the 
limit of zero adsorbed-phase concentration. Their 
models, though informative, result in rather complex 
expressions for the effective surface diffusivity. 

Kapoor and Yang (1989) developed a parallel-path 
model (PPM) to describe surface diffusivity on an 
energetically heterogeneous surface. They assumed 
that the surface consists of a series of parallel paths 
such that each path has a uniform but different en- 
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ergy, and the surface flow is in the direction of these 
parallel paths. By using the HI0 model (Higashi et al., 
1963) to describe surface diffusion on a homogeneous 
surface and a uniform distribution of energies, they 
developed analytic expressions for the relative surface 
diffusivity in terms of the adsorbed-phase concentra- 
tion and the heterogeneity parameter. The heterogen- 
eity parameter could be obtained independently from 
the equilibrium adsorption data. 

In this paper, we present relationships based on the 
effective medium approximation (EMA) (Landauer, 
1952; Kirkpatrick, 1973; Odagaki and Lax, 1981) to 
describe surface diffusivity on an energetically hetero- 
geneous surface. Simple analytic expressions are de- 
rived for one- and two-dimensional EMA. The effect 
of the coordination number on the surface diffusivity 
is discussed, and finally comparisons are given be- 
tween the theoretical predictions and the experi- 
mental data taken from the literature. 

THEORY 

The effective medium or self-consistent approxima- 
tion assumes that a typical basic element of a hetero- 
geneous system can be regarded as being embedded in 
an equivalent homogeneous medium whose proper- 
ties are to be calculated (Torquato, 1987). EMA 
theories have been discussed by Kirkpatrick (1973) 
and Sahimi et al. (1983). Recently, EMA has been used 
to describe diffusivity in a pore network (Benzoni and 
Chang, 1984; MO and Wei, 1986; Burganos and 
Sotirchos, 1987; Yeh and Yang 1989) and in dis- 
ordered media (Haus et al., 1983; Odagaki and Lax, 
1981; Sahimi et al., 19833, and for calculating electrical 
conductivity and electromagnetic properties of com- 
posites (Hashin, 1968; Milton, 1984). In this study, we 
use EMA to describe surface diffusion on an energet- 
ically heterogeneous surface. 

The effective medium theory can be used to de- 
scribe effective transport properties far from the per- 
colation threshold. Percolation processes can be de- 
scribed as a site percolation, bond percolation, or 
correlated bond percolation problem (Kirkpatrick, 
1973). The percolation threshold is then defined as the 
fraction of blocked sites (or bonds) at which the trans- 
port is discontinued. The problem considered here 
can be modeled as a site percolation problem, in 
which the surface diffusivity value is different for dif- 
ferent sites. A blocked site in this case then corres- 
ponds to a site on which the surface diffusivity is zero, 
i.e. the activation energy of surface diffusion on that 
site is infinity. Physically, however, the activation en- 
ergy of surface diffusion on any site can not be infinity, 
so the process of surface diffusion on a heterogeneous 
surface is far from the percolation threshold. 

Consider a surface consisting of small patches of 
N different energies. The surface diffusivity on each of 
these patches is constant. However, it varies among 
the patches with different energies. We now consider 
surface diffusion due to an adsorbed-phase concentra- 
tion gradient. There exist concentration gradients on 
the surface due to both a uniform “external gradient” 

and a fluctuating “local gradient.” The EMA stipu- 
lates that the average of these fluctuating gradients 
over any sufficiently large region of the surface is zero 
(Kirkpatrick, 1973). 

One-dimensional diflusion 
First we consider surface diffusion in one dimen- 

sion. The mean mass flux due to the uniform external 
concentration gradient (AC,,,) is given by 

J, = - bDp AC WI (I) 

where Dp’ is the mean surface diffusivity on the 
heterogeneous surface, and b is the proportionality 
constant. The local concentration gradient caused by 
patch i with diffusivity D$“’ is 

Tbe concentration gradient, ACi, includes the uniform 
external gradient and the fluctuating local gradient. 
As the average of the fluctuating local gradients must 
vanish, the following relation should hold: 

,tl x&C, - AC,,,) = 0 (3) 

where n, is the fraction of the ith kind of patch of 
surface, such that 

f xi = 1. 
i=1 

Combining eqs (l)-(4) we get 

(4) 

Equation (5) is similar to that suggested by Yeh and 
Yang (1989) for effective diffusivity in a zeolite con- 
taining pores of different sizes, and reported by 
Torquato (1987) in the review on the thermal con- 
ductivity of disordered heterogeneous media. Phys- 
ically, eq. (5) corresponds to a surface consisting of 
parallel patches of uniform but varying energies and 
the flow is perpendicular to the direction of these 
patches. 

Equation (5) was derived considering patches with 
discrete energy distribution of energies. We extend 
eq. (5) by assuming a continuous distribution of en- 
ergy, so that the summation can be replaced by an 
integral to give 

1 

s 

=--= f(E) ds 
$iz= 

S D-“(E) =nun * 
(6) 

where f(~) & is the fraction of patches with energies 
between E and e + de, D,H”“(e) is the value of surface 
diffusivity on a patch with energy a, and emln and 
a,-= are the minimum and maximum values of energy. 
The normalized energy distribution, fly), then follows 

(7) 
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The functional form of D.Hom(s) is given as [see surface diffusivity on a homogeneous surface (with 
Kapoor and Yang (198911 energy equal to the mean energy Z) in the limit 6 + 0. 

D,H”(&) = &exp( - a&,RT) 
The parameter m is a constant. Parameter s in 

(8) eq. (13) is the heterogeneity parameter, and is related 
to the spread of the energy distribution. The para- 

where D, is the frequency factor, as is the activation meter s is given by 
energy for surface diffusion, 6 is the fradtional surface 
coverage, and E is the energy of adsorption. The ac- S=&/RT=E”UX-E”‘“. (14) 
tivation energy of surface diffusion has been suggested 2RT 

as a fraction of the energy of adsorption (Robe11 et al., Similarly, an expression was derived for surface 
1964, Gilliland et d, 1974; Sladek et al., 1974). Sladek diffusivity for a = 0.5, which is given as 
et al. (1974) correlated surface diffusivity data of vari- 
ous physisorbed species and found that the value of 0,“;’ = 

D~‘&/i% 

a was 1.0 and 0.5, depending on the nature of the tan-‘(JFZF) - tan-‘(JXF) 
Wa) 

gas-solid system. 
Assuming that the equilibrium adsorption can be 

where 

described by the Langmuir isotherm, we get Pb= 
eZsd - 1 

e’- &qd--I Wb) 

Pb 
0=- 

1 + P6 (94 
Two-dimensional diffusion 

where The effective diffusivity in two dimensions using 

b = b, exp (E/RT). 
EMA is given by (Kirkpatrick, 1973) 

(9b) Dnu. 
Equation (9a) gives the fractional surface coverage, 0, 
as a function of the pressure P and temperature T. The 
parameter 6is related to the energy of adsorption. 

D - D$ 

I D=‘= D + ; _ 1 
( > 

f(D) dD = 0 (16) 
DE;* 

Substituting eqs (8) and (9a) in eq. (6) for a = 1, and where z is the coordination number, and f(D) is the 
noting that E = .? for the homogeneous patch, we have probability distribution function of surface diffusion. 

1 

. s 

=-l f (&W 
The value of 6 is 3,4 and 6 for honeycomb, square and 

o.“p= 
=“I*., D, exp ( - E/RT) + D, Pb, . 

(10) triangular lattices, respectively. A similar expression is 
also given by Torquato (1987) for the effective con- 

We introduce the subscript 8 for the surface diffusivity ductivity of two-phase media. 

on the heterogeneous surface to suggest the adsorbed- Assuming a uniform distribution of energies [eq. 

phase concentration dependence. Equation (10) can (1 l)], and substituting eqs (8) and (9a) in eq. (16), for 
be solved by substituting an energy distribution func- a = 1 we get 

tion, f(s). In principle, any suitable distribution func- ‘ml= 
tion can be used; however, for mathematical simpli- B 
city a uniform distribution is used here. The uniform s 

exp ( - e/RT) + a, 

em.i exp ( - EIRT) + a2 
exp( - s/RT)ds = 0 

distribution is given as (17a) 

-0s) = E,,, : hi” 

where 

for Emin d E < E,,, 
8= 

1 

and RTCexp( - a,,JRT) - exp( - %,,IRT)] 

f(E) = 0 for a < Emin, E > E,.,. 
(17b) 

(11) D.H$ 
cx, = Pb,-- (17c) 

The mean (a) and square root of variance (CT) of the DXO 

uniform distribution are given as and 

and 

Q = (&I,x - Emin)/(2fi)- WW 

Equation (17a) on integration and simplitieation gives 

Substituting eq. (11) in eq. (lo), and on integration and e+’ + P6 + f - 1 *:/@E; 
simplification, gives ( > 

D.“c = 
*z;(e= - 1) 

e(ed - e*sy (13) 
e’-ee-’ 

where DC;’ is the surface diffusivity on a heterogen- 
eous surface at fractional coverage, 0, and D$%‘Z’ is the 

= exp 
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where Pbis given by eq. (15b). Equation (18) describes 
the ratio of the surface diffusivity on a heterogeneous 
surface at fractional coverage, 0, to the surface diffus- 
ivity on a homogeneous surface (with energy equal to 
Z) at 8 + 0 (i.e. relative surface diffusivity) as a function 
of 0 and s. As mentioned earlier, the parameter s is 
a measure of the extent of heterogeneity and is given 
by eq. (14). 

Similarly, for a = 0.5 an expression was derived for 
surface diffusivity which is given by 

e-‘f’ + P6e”2 + f - 1 
( > 

DEC/DFSj 

tif2 + P6e-‘12 + f - 1 
( > 

D$‘/DF=$ 

[ 

e’l’ _ e-at2 + p&e-d2 _ e”2) 
= exp - 1 (19) 

~D~:/D$!zT~ 

where P6 is again given by eq. (15b). 

Parallel-path model 

In our earlier work (Kapoor and Yang, 1989) we 
presented a PPM to describe surface diffusivity on 
a heterogeneous surface. Expressions were developed 
for Dzg’/ D$‘= ,-, as a function of 0 and s, for a - 1 and 
0.5, respectively. For a comparison between the ex- 
pressions developed here for DEC/DFE?j, the PPM is 
presented in a modified form for a = 1: 

and for a = 0.5: 

(20) 

. (21) 

RESULTS AND DISCUSSION 

‘The surface diffusivity on a heterogeneous surface is 
a function of DFS$, s and 8 [see eqs (13), (15) and 
(18)-(21)]. The parameter DrZlr; is generally not 
known. The heterogeneity parameter is, however, ob- 
tained directly from the equilibrium adsorption data 
according to the LUD isotherm (Myers, 1984, 
Kapoor et al., 1989a), which is given as 

n( T, P) = E In 
l+P@ 

1 + P6ees 
(22) 

where n is the amount adsorbed at pressure P and 
temperature T, q, is the amount adsorbed corres- 
ponding to the monolayer coverage, and 6 and s are 
the parameters related to energy of adsorption and 
the energetic heterogeneity, respectively. The LUD 
isotherm is derived by assuming that adsorption on 
a homogeneous surface can be described by the 
Langmuir isotherm, and the adsorption energy distri- 
bution can be approximated by a uniform distribu- 
tion. The experimental equilibrium adsorption data (n 
vs P at a given temperature) can be correlated well by 
taking q,, 6 and s as three parameters (Kapoor et al., 

1989a). The hehaviour of the LUD isotherm has been 
discussed recently by Ritter et al. (1990). 

The effect of heterogeneity on surface diffusion was 
studied in terms of D~~‘/D~=Yj (relative surface diffus- 
ivity) as a function of 0, at various values of S. The 
results for a = 1 and a = 0.5 are shown in Figs 1 and 
3, respectively. Figures 1 and 3 show a comparison 
between the predictions from the three models: one- 
dimensional EMA (EMA-lD), two-dimensional 
EMA (EMA-2D) and PPM. The curve for s = 0 cor- 
responds to the HI0 model which describes the be- 
havior on a homogeneous surface. It is seen that 
qualitatively all models show that surface diffusivity 
increases with 0. This trend is consistent with the 
results reported in the literature (Kapoor et al., 

1989a). From Figs 1 and 3, it can be seen that the 
value of the relative surface diffusivity (D~C/DfZ$) at 
a given 0 and s is different depending on the value of a, 
i.e. the relationship between the activation energy for 
surface diffusion and the energy of adsorption. It 
should he noted, however, that for a given 
homogenous surface (with the same E) the value of the 
diffusivity, DpZ& is greater for the case of a = 0.5 
compared to the case of a = 1 (assuming that the 
value of D, is the same in both cases). 

Figure 1 shows the relationship between the relat- 
ive surface diffusivity and 0, at various values of s, as 
predicted by the two models (EMA-1D and EMA-2D) 
for a = 1. Also, shown are the predictions ofHI and 
PPM for comparison. It is seen that the EMA-1D 
model predicts the relative surface diffusivity on a het- 
erogeneous surface to be lower than that on the 
homogeneous surface (with the same i?) for low surface 

50 

10 
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Het 5 

SF@ 
Horn 

Dt3=0 
1 

Fig. 1. Comparison of HIO, PPM, EMA-1D and EMA-2D 
models (for a = 1). The solid curve is for s = 0; the other two 
curves are for s = 3 and 5. with larger deviations for s = 5. 
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coverages, and higher at higher coverages, i.e. as the 
value of s increases, the relative surface difksivity vs 
f9 curve sharpens. This observation can be explained 
as follows. The EMA-1D model corresponds to the 
case of resistances in series. Thus, the effective resist- 
ance (inverse of diffusion) is controlled by the largest 
resistance. At low values of 0, adsorption occurs most- 
ly on the high-energy patches (with E > 9) and the 
adsorbate molecules are held more strongly on the 
surface. This results in a lower overall diffusivity com- 
pared to the diffusivity on a homogeneous surface 
(with E = 8). However, as 8 increases, the high-energy 
patches become saturated, and more adsorption oc- 
curs on the lower-energy patches. So at high surface 
coverages (high values of 0) surface diffusivity on the 
high-energy patches increases due to the concentra- 
tion dependence and the contribution from the lower- 
energy patches increases due to more adsorption, thus 
resulting in an increase in overall relative surface 
diffusivity. 

The predictions from the PPM show that the rel- 
ative surface diffusivity on a heterogeneous surface is 
larger than that on the homogeneous surface (with 
E = 5) for a given value of 8, and it increases with an 
increase in the extent of heterogeneity (s). The PPM 
corresponds to the case of resistances (patches) in 
parallel. Thus, the total flux is the sum of fluxes from 
each patch. In this case, there is no possibility of flow 
from a patch of one energy to one of different energy. 
It is seen from Fig. 1 that the curves corresponding to 
the PPM are rather flat for low values of 0, compared 
to the HI0 model predictions. At low values of 0, 
adsorption occurs mainly on the high-energy patches 
and, as the diffusivity is low on the high-energy 
patches, there is little effect on the overall diffusivity 
with increase in 0. At much higher values of 8, how- 
ever, more adsorption occurs on the low energy- 
patches, which increases the overall diffusivity signi- 
ficantly. Thus, the curves corresponding to PPM are 
steeper compared to that of the HI0 model. 

The EMA-2D model assumes the surface consists 
of patches of different energies arranged randomly, 
and it allows for the flow from a patch of one energy 
to one of different energy. In this case, molecules 
adsorbed on one patch are allowed to diffuse to its 
neighboring patches, which results in molecules find- 
ing the path of minimum resistance. Based on the 
above discussion, it is expected that the surface diffus- 
ivity predicted by the EMA-2D model will be higher 
than that predicted by the other models. This is 
clearly shown in Fig. 1. As the value of s increases, the 
relative surface diffusivity also increases. The curves 
shown in Fig. 1 for the EMA-2D model correspond to 
the case of a two-dimensional square lattice, i.e. the 
coordination number (2) is 4. For a two-dimensional 
case there exist other lattices such as triangular (z = 6) 
and honeycomb (z = 3). The coordination number 
represents the number of nearest neighbors of the 
adsorption site. As the _ coordination number ih 
creases, the possibilities for a molecule on a particular 
patch to move to another patch increases. This further 

means that the probability of a molecule finding 
a patch with lower energy increases, which should 
result in a higher value of diiusivity. The effect of 
coordination number for three lattices (z = 3,4 and 6) 
is shown in Fig. 2. As discussed above, the effective 
diffusivity on a heterogeneous surface increases with 
an increase in coordination number, although this 
increase in surface diffusivity is small. 

For a = 0.5, the relationships between the relative 
surface diffusivity and f3 as predicted by the models 

60 

0 0.2 04 0.6 043 1-o 

0 
Fig. 2. Effect of coordination number on the surface dif- 
fusion on an energetically heterogeneous surface (EMA-2D 

results). 
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Fig. 3. Comparison of HIO, PPM, EMA-1D and EMA-2D 

models (for o = 0.5). gee Fig. 1 caption for s values. 
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are shown in Fig. 3. Comparison between Figs 1 and 
3 shows that the effect of heterogeneity on the relative 
surface diffusivity is less strong in the case of a = 0.5. 
As mentioned earlier, the value of D$!?? is different for 
the two cases (a = 1 and 0.5), so it is difhcult to 
compare the effect of heterogeneity on the. absolute 
surface diffusivity in the two cases. Qualitatively, how- 
ever, the trends predicted by the models for a = 0.5 
are similar to those predicted for a = 1. The effect of 
coordination number for a = 0.5 was also similar to 
that shown in Fig. 2 for a = 1, e.g. the relative surface 
diffusivity increased (only slightly) with an increase in 
2 at a given 8. 

COMPARISfBN WITH EXPERIMENTAL DATA 

Experimental data on the equilibrium adsorption 
and surface diffusivity for various gas-solid systems 
were used to compare various models for surface 
diffusion on heterogeneous surfaces. These gas-solid 
systems consisted of 17 systems corresponding to 
a = 1 and four systems corresponding to a = 0.5. 
Also, these systems included a range of temperatures 
on six different adsorbents. 

The equilibrium adsorption data on 18 systems 
were correlated to the LUD isotherm [eq. (22)7 by 
nonlinear regression, and the three parameters q=,. 
6 and s were calculated. The parameter values are 
listed in Table 1. The parameter s is related to the 
spread of the energy distribution, and thus is 

a measure of the extent of heterogeneity. The value of 
s = 0 corresponds to a homogeneous surface, and as 
the value of s increases the surface becomes increas- 
ingly heterogeneous. It is seen from Table 1 that the 
extent of heterogeneity is a function of various factors 
such as temperature, and type of adsorbent and ad- 
sorbate. The following systems showed weak hetero- 
geneity, CF,Cl, on Linde Silica at 251.5 K, and 

CbH,, on Spheron 6 Carbon Black at 303 and 
314.7 K, whereas C,H, on Vycor Glass at 303 K was 
the most heterogeneous among all the systems tested. 
The parameters for the three systems consisting of 
C,H,COOH on activated carbon could not be cal- 
culated due to the lack of experimental adsorption 
data. The values of s, however, for these three systems 
were calculated by correlating the surface diffusivity 
data using DpZlt; and s as two parameters (this point 
will become clear later). 

The four models, HIO, PPM, EMA-ID and EMA- 
2D, were compared using experimental data taken 
from the literature. The experimental data were gener- 
ally available in the form of surface diffusivity vs the 
amount adsorbed, or vs the fractional coverage (0). In 
the case of data with amount adsorbed, the value of q,,, 
from Table 1 was used to convert it to the fractional 

coverage. The data were then correlated by the four 
surface diffusion models. The HI0 model has only 
one parameter, Dr27j, whereas the other three models 
require DfE’;; and s. The value of s obtained from 
correlating the equilibrium adsorption data were used 

Table 1. Regression parameters for the LUD isotherm [eq. (22)] 

System (& 
4n 6 

(mol/kg) (Mm) s 

NH: 
so: 
co; 
C,H’ 

CsH: 

C,H,COOH’* 
C& ,COOH ** 

SOi 
SOT 
soy 

298.0 
303.0 
195.0 
273.0 
298.0 
251.5 
273.0 
263.0 
251.5 
239.9 
303.0 
303.0 
314.7 
303.0 
313.0 
303.0 
293.0 
273.0 
263.0 
252.3 
239.4 

2.51 5.26 
1.09 7.59 
2.99 4.19 
0.81 3.92 
0.60 2.81 
1.59 6.11 
3.27 6.81 
4.04 2.43 1.57 
4.90 100.7s 3.02 
6.13 32.30 1.50 
0.47 0.45 0.50 
0.30 3.31 3.10 
0.43 11.83 
0.42 21.21 

- 
6.33 4.20 
7.40 4.87 
7.39 8.29 1.9s 

12.52 3.61 2.95 

2.50 
0.72 
1.11 
1.00 
1.28 
0.10 
1.32 

0.02 
0.01 
0.50 
0.60 
1.00 
1.41 
1.69 

* Vycor Glass (Gilliland et al.. 1974). 
3 Vycor Glass (Gilliland et al., 1958). 
# Linde Silica (Carman and Raal, 1951). 
1 Carbolac (Carman and Raal, 1951). 
7 Vycor Glass (Okazaki et al., 198 1). 
*+ Spheron 6 Carbon Black (Ross and Good, 1956). 
“Activated carbon (Suzuki and Fujii. 1982). 
eCarbon (Ash et al., 1963). 
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for this purpose. Thus all the models had only one 
parameter, so that a fair comparison could be made. 
The comparison was made based on the average rela- 
tive error (avg. rel. err.), which is defined as 

avg. rel. err. = F i abs[(DE$)j ,=., 
I-1 

where N is the number of data points, and (DE$‘)sal 
and (Di!Ch., are the calculated and experimental 
values of surface diffusivity. 

The comparison of the predictions from the four 
models, for all the systems corresponding to u = 1, is 
shown in Table 2. Table 2 lists the values of DtiZ?j and 
the avg. rel. err. for each model for all 17 systems. The 
PPM, EMA-1D and EMA-2D models are given by 
eqs (20), (13) and (18), respectively. The HI0 model for 
a homogeneous surface is given as 

(23) 

It is interesting to note that for the three systems, 
CF,Cl, on Linde Silica at 251.5 K and C,H,, on 
Spheron 6 Carbon Black the parameter DrEs and the 
avg. rel. err. for all four models were similar. These 
systems showed small values of s, which corresponds 
to a homogeneous surface. Thus, it shows that the 
three models derived for the heterogeneous surface 
reduce to the HI0 model, in the limit of small value of 
s. In fact, all three models for heterogeneous surface 
(PPM, EMA-1D and EMA-2D) reduce identically to 
the HI0 model as s + 0. The system, C,H, on Vycor 
Glass at 303 K, which showed the maximum value of 
s, also showed a large difference in the values of the 
avg. rel. err. for the three heterogeneous surface dif- 
fusion models compared to those for the HI0 model. 
An overall comparison of the four models showed 
that the EMA-2D model correlated the experimental 
data the best, followed by the PPM, and the HI0 and 
EMA-1D models. The EMA-1D model corresponds 
to the case of molecules diffusing on patches of surface 
normal to the direction of the flux. Thus the EMA-1D 
model represents a lower bound for surface diffusion 
on a heterogeneous surface. The PPM, on the other 
hand, allows molecules on a patch of a given energy to 
diffuse only on the patches with the same energy and 
the patches are parallel to the flux. Thus, the PPM 
represents a first-order upper bound, as also reported 
by Torquato (1987). The EMA-2D model allows mol- 
ecules to diffuse from a patch of one energy to a patch 
of different energy, thus representing a more realistic 
CaSe. 

A comparison between the PPM and the EMA-2D 
model [equations (18) and (20), respectively] shows 
that both models are analytic in form. The PPM gives 
an explicit value of diffusivity as a function of 8 and s, 
whereas the EMA-2D model gives an implicit func- 
tion. Thus, the PPM can bc used to obtain an estim- 
ate, whereas the EMA-2D model should be used as 
a more rigorous model. 



Surface diffusion on energetically heterogeneous surfsces 3269 

Ash et al. (1963) reported surface diffusion data of cr square root of variance for energy distri- 
SO1 on carbon at four temperatures. For the bution, lcJ/mol 
SO,-carbon system the value of a = 0.5. The com- 
parison of the predictions from the four models for Subscripts 

these four systems is given in Table 3. Similar to Table i corresponds to patch i 
2, Table 3 lists the values of @‘Z?j and the avg. rel. err. m corresponds to monolayer, or mean 
for each model for all four systems. For a = 0.5, the min minimum value 
four models (HIO, PPM, EM A- l D and EM A-2D) are max maximum value 
given by eqs (23), (21), (15) and (19) respectively. The o refers to a constant 

results given in Table 3 show trends similar to those s surface 
seen in Table 2, i.e. the EMA-2D model showed the 
least deviation from the experimental results, followed Superscripfs 
by the PPM, and the HI0 and EMA-1D models. Het on heterogeneous surface 
Also, all models are analytical and explicit in form, Horn on homogeneous surface 
except the EMA-2D model which gives an implicit 
relationship between D$ and the parameters 6 and s. 

(1) 

(2) 
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