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Abstract—A model based on the effective medium approximation is presented which describes surface
diffusivity on an energetically heterogeneous surface as a function of overall surface coverage and
a heterogeneity parameter. The heterogeneity parameter is obtained independently from the equilibrizm
adsorption data. The effect of heterogeneity on surface diffusion depends on the relationship between the
activation energy of surface diffusion and the energy of adsorption. The effect of the coordination number is
discussed. On comparison with other models for both heterogeneous and homogeneous surfaces, it is
shown that the model proposed in this work gives a better representation of the experimental data.

INTRODUCTION

Surface diffusion is the transport of a substance within
an adsorbed phase. Under certain conditions, it con-
tributes significantly towards intraparticle mass trans-
fer. Several models have been suggested in the literat-
ure to describe surface diffusion. These models can be
grouped under three categories: (1) mechanistic
models in which the migrating molecule is viewed as
“hopping” from one adsorption site to another
(Higashi et al, 1963; Smith and Metzner, 1964;
Weaver and Metzner, 1966; Yang et al., 1973; Thakur
et al, 1980; Thakur and Brown, 1983), (2) a two-
dimensional Fick’s law in which surfacec flow is caused
by a gradient in the surface concentration (Carman,
1956; Kammermyer, 1958; Aris, 1983; Rieckert, 1985),
and (3) hydrodynamic models in which surface dif-
fusion is treated as a two-dimensional fluid flow on
the solid surface (Flood, 1955; Flood and Huber,
1955; Gilliland et al., 1958; Suzuki et al., 1984). Monte
Carlo simulations have also been used to describe
surface diffusion. This approach, though very instruc-
tive requires intensive computation. These models
have been recently reviewed by Kapoor et al. (1989b).
It has been shown that surface diffusivity increases
with an increase in adsorbed-phase concentration and
temperature, and follows an Arrhenius-type temper-
ature dependence (Ross and Good, 1956; Sladek et al.,
1974; Okazaki et al., 1981; Tamon et al., 1981). Also it
has been suggested that the activation energy for
surface diffusion is related to and is a fraction of the
energy of adsorption (Robell et al., 1964; Gilliland et
al., 1974; Sladek et al., 1974).

All the studies on surface diffusion so far were on
homogeneous surfaces, except those of Seidel and
Carl (1989), Marchese and co-workers (Horas et al.,
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1988; Zgrablich et al., 1986) and Kapoor and Yang
(1989). Seidel and Carl (1989) assumed that surface
diffusivity is related to the adsorption isotherm
through the adsorption energy distribution. They cal-
culated different adsorption energy distributions
by correlating the equilibrium adsorption data to
different isotherms (e.g. Freundlich, Dubinin—
Radushkevich and Toth isotherms). By using these
energy distributions they developed the functional
forms of concentration-dependent surface diffusivity.
They suggested that surface.diffusivity is independent
of the adsorbed-phase concentration on a homogen-
eous surface, and that the concentration dependence
arose due to the surface heterogeneity. Their results
showed that surface diffusivity increases with an in-
crease in adsorbed-phase concentration, which is con-
sistent with the results reported in the literature. How-
ever, in the limit of zero adsorbed-phase concentra-
tion, surface diffusivity becomes zero in their model
which is in contrast to the results reported in the
literature {Carman and Raal, 1951; Higashi et al.,
1963; Yang et al., 1973; Gilliland et al., 1974; Tamon et
al., 1981).

Horas et al. (1988) and Zgrablich et al. (1986) de-
veloped models for surface diffusion on an energeti-
cally heterogeneous surface based on the percolation
concepts. They assumed that the adsorption sites are
connected by resistances with randomly distributed
values. Their models showed that the surface diffus-
ivity increases with an increase in adsorbed-phase
concentration, and it approaches a finite value in the
limit of zero adsorbed-phase concentration. Their
models, though informative, result in rather complex
expressions for the effective surface diffusivity.

Kapoor and Yang (1989) developed a parallel-path
model (PPM) to describe surface diffusivity on an
energetically heterogeneous surface. They assumed
that the surface consists of a series of parallel paths
such that each path has a uniform but different en-
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ergy, and the surface flow is in the direction of these
parallel paths. By using the HIO model (Higashi et ai.,
1963) to describe surface diffusion on a homogeneous
surface and a uniform distribution of energies, they
developed analytic expressions for the relative surface
diffusivity in terms of the adsorbed-phase concentra-
tion and the heterogeneity parameter. The heterogen-
eity parameter could be obtained independently from
the equilibrium adsorption data.

In this paper, we present relationships based on the
effective medium approximation (EMA) (Landauer,
1952; Kirkpatrick, 1973; Odagaki and Lax, 1981) to
describe surface diffusivity on an energetically hetero-
geneous surface. Simple analytic expressions are de-
rived for one- and two-dimensional EMA. The effect
of the coordination number on the surface diffusivity
is discussed, and finally comparisons are given be-
tween the theoretical predictions and the experi-
mental data taken from the literature.

THEORY

The effective medium or self-consistent approxima-
tion assumes that a typical basic element of a hetero-
geneous system can be regarded as being embedded in
an equivalent homogeneous medium whose proper-
ties are to be calculated (Torguato, 1987). EMA
theories have been discussed by Kirkpatrick (1973)
and Sahimi et al. (1983). Recently, EMA has been used
to describe diffusivity in a pore network (Benzoni and
Chang, 1984; Mo and Wei, 1986; Burganos and
Sotirchos, 1987; Yeh and Yang, 1989) and in dis-
ordered media (Haus et al., 1983; Odagaki and Lax,
1981; Sahimi et al., 1983), and for calculating electrical
conductivity and electromagnetic properties of com-
posites (Hashin, 1968; Milton, 1984). In this study, we
use EMA to describe surface diffusion on an energet-
ically heterogeneous surface.

The effective medium theory can be used to de-
scribe effective transport properties far from the per-
colation threshold. Percolation processes can be de-
scribed as a site percolation, bond percolation, or
correlated bond percolation problem (Kirkpatrick,
1973). The percolation threshold is then defined as the
fraction of blocked sites (or bonds) at which the trans-
port is discontinued. The problem considered here
can be modeled as a site percolation problem, in
which the surface diffusivity value is different for dif-
ferent sites. A blocked site in this case then corres-
ponds to a site on which the surface diffusivity is zero,
i.e. the activation energy of surface diffusion on that
site is infinity. Physically, however, the activation en-
ergy of surface diffusion on any site can not be infinity,
so the process of surface diffusion on a heterogeneous
surface is far from the percolation threshold.

Consider a surface consisting of small patches of
N different energies. The surface diffusivity on each of
these patches is constant. However, it varies among
the patches with different energies. We now consider
surface diffusion due to an adsorbed-phase concentra-
tion gradient. There exist concentration gradients on
the surface due to both a uniform “external gradient™
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and a fluctuating “local gradient.” The EMA stipu-
lates that the average of these fluctuating gradients
over any sufficiently large region of the surface is zero
(Kirkpatrick, 1973).

One-dimensional diffusion

First we consider surface diffusion in one dimen-
sion. The mean mass flux due to the uniform external
concentration gradient (AC,,) is given by

J,, = — bD¥* AC,, )

where D is the mean surface diffusivity on the
heterogeneous surface, and b is the proportionality
constant. The local concentration gradient caused by
patch i with diffusivity DH¢™ is
J
AC,=——2——

The concentration gradient, AC;, includes the uniform
external gradient and the fluctuating local gradient.
As the average of the fluctuating local gradients must
vanish, the following relation should hold:

N

Y. x(AC, — AC,) =0 )

=1
where x; is the fraction of the ith kind of patch of
surface, such that

M=

x; = 1. @)

i=1

Combining eqs (1)—(4) we get

1 L
D:lel= Z Dﬂim' (5)

i=1 %8s,

Equation (5) is similar to that suggested by Yeh and
Yang (1989) for effective diffusivity in a zeolite con-
taining pores of different sizes, and reported by
Torquato (1987) in the review on the thermal con-
ductivity of disordered heterogeneous media. Phys-
ically, eq. (5) corresponds to a surface consisting of
parallel patches of uniform but varying energies and
the flow is perpendicular to the direction of these
patches.

Equation (5) was derived considering patches with
discrete energy distribution of energiecs. We extend
eq. (5) by assuming a continuous distribution of en-
ergy, so that the summation can be replaced by an
integral to give

1 Im fle)de

D:lel - D:-lom ( 8) (6)

fmin
where f(g)de is the fraction of patches with energies
between ¢ and ¢ + de, DH*™(g) is the value of surface
diffusivity on a patch with energy & and e... and
£max are the minimum and maximum values of energy.
The normalized energy distribution, f{g), then follows

j‘m'f(e)u —1. ™

€min
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The functional form of DHY°™(g) is given as [see
Kapoor and Yang (1989)]

Die(e) =

Do oxp(—as/RT)  (8)

where D,, is the frequency factor, ae is the activation
energy for surface diffusion, @ is the fractional surface
coverage, and ¢ is the energy of adsorption. The ac-
tivation energy of surface diffusion has been suggested
as a fraction of the energy of adsorption (Robell et al.,
1964; Gilliland et al,, 1974; Sladek et al., 1974). Sladek
et al. (1974) correlated surface diffusivity data of vari-
ous physisorbed species and found that the value of
a was 1.0 and 0.5, depending on the nature of the
gas—solid system.

Assuming that the equilibrium adsorption can be
described by the Langmuir isotherm, we get

Pb
=1%Pb (9a)
where
b=b,exp (E/RT). {9b)

Equation (9a) gives the fractional surface coverage, 9,
as a function of the pressure P and temperature 7. The
parameter b is related to the energy of adsorption.
Substituting eqs (8) and (9a) in eq. (6) for a = 1, and
noting that ¢ = g for the homogeneous patch, we have

1 feme f(e)de
Dig ], .. D, exp(—e&/RT)+ D_Pb,’

We introduce the subscript 6 for the surface diffusivity
on the heterogeneous surface to suggest the adsorbed-
phase concentration dependence. Equation (10) can
be solved by substituting an energy distribution func-
tion, f(¢). In principle, any suitable distribution func-
tion can be used; however, for mathematical simpli-
city a uniform distribution is used here. The uniform
distribution is given as

(10)

fOI’ smin s £ S £mlx

S =

Emax — in
and

S =0

for € < &min, € > Emax -
(11)

The mean () and square root of variance (o) of the

uniform distribution are given as

£ = (Emax t+ Emin)/2 (12a)
and

T = (Emax — Emin)/(2/3). (12b)

Substituting eq. (11) in eq. (10), and on integration and
simplification, gives

H3 (e — 1)

DHgt = 13
. @ e(es . eZJa—s) ( )
where Dg' is the surface diffusivity on a heterogen-
eous surface at fractional coverage, 8, and DI°7} is the
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surface diffusivity on a homogeneous surface (with
energy equal to the mean energy &) in the limit 6 — 0.
The parameter D{3 is a constant. Parameter s in
eq. (13) is the heterogeneity parameter, and is related
to the spread of the energy distribution. The para-
meter s is given by

s = /3a/RT = Zoez " Pmin

2RT aa

Similarly, an expression was derived for surface
diffusivity for a = 0.5, which is given as

Hom \/_B‘

DHet —_
~1(/Pbe’) — tan~ ' (. /Pbe _')
where
230 _
pr=2"_1 (15b)

& — ez.o—-

Two-dimensional diffusion
The effective diffusivity in two dimensions using
EMA is given by (Kirkpatrick, 1973)

Het
- DS,O

Ipmx D
Pein D 4 (g - 1)D,',*;'

where z is the coordination number, and f(D) is the
probability distribution function of surface diffusion.
The value of § is 3, 4 and 6 for honeycomb, square and
triangular lattices, respectively. A similar expression is
also given by Torquato (1987) for the effective con-
ductivity of two-phase media.

Assuming a uniform distribution of energies [eq.
(11)], and substituting eqs (8) and (9a) in eq. (16), for
a =1 we get

tmin exp( — &/RT) + o, e
emax EXP( — &/RT) + o,

f(D)dD =0 (16)

xp( — &/RT)de =0

(17a)
where
g = 1
RT[exp( - em-x/RT) - CXP( - ‘Bmin/RT)]
(17b)
DHct
= Pb, D. 17¢)
and
ay = Pb, + (5 —1 1;:“. (174d)
=0

Equation (17a) on integration and simplifieation gives

e** + Pb + (f - 1)1)1‘}.'/1)’;;'3

e+ Pb+ (5 - 1) e/ DY

(18)
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where Pb is given by eq. (15b). Equation (18) describes
the ratio of the surface diffusivity on a heterogeneous
surface at fractional coverage, 8, to the surface diffus-
ivity on a homogeneous surface (with energy equal to
£) at 8 — 0 (i.e. relative surface diffusivity) as a function
of @ and s. As mentioned earlier, the parameter s is
a measure of the extent of heterogeneity and is given
by eq. (14).

Similarly, for a = 0.5 an expression was derived for
surface diffusivity which is given by

e~ 4 Pbet? + (g - 1)9;35'/D;*:-3

e? + Phe~%2 + (g - I)DEE‘/DF:E

/2,82 —s/2 __ 8/2
= exp[ _< ¢ + Phle e )] (19)

>Dis/Dfe3

where Pb is again given by eq. (15b).

Parallel-path model

In our earlier work (Kapoor and Yang, 1989) we
presented a PPM to describe surface diffusivity on
a heterogeneous surface. Expressions were developed
for DEg'/DHg'_, as a function of @ and s, for a = 1 and
0.5, respectively. For a comparison between the ex-
pressions developed here for DHg/D}°8, the PPM is
presented in a modified form for a = 1:

& —e " + e**? —1
2s & — 2593

DY3/Dile =

20

and for a = 0.5:

. e — =2 2 _ ¢
Dl§ /D = —S—[l + (e'——ém):l @1

RESULTS AND DISCUSSION

“The surface diffusivity on a heterogeneous surface is
a function of D}*3, s and 0 [see eqs (13), (15) and
(18)—«21)]. The parameter D{°3 is generally not
known. The heterogeneity parameter is, however, ob-
tained directly from the equilibrium adsorption data

according to the LUD isotherm (Myers, 1984;
Kapoor et al., 1989a), which is given as
dm 1 + Pbe
T,P)="ln ———— 22
mT P = M T Phe— (22)

where n is the amount adsorbed at pressure P and
temperature 7, g, is the amount adsorbed corres-
ponding to the monolayer coverage, and b and s are
the parameters related to energy of adsorption and
the energetic heterogeneity, respectively. The LUD
isotherm is derived by assuming that adsorption on
a homogeneous surface can be described by the
Langmuir isotherm, and the adsorption encrgy distri-
bution can be approximated by a uniform distribu-
tion. The experimental equilibrium adsorption data (n
vs P at a given temperature) can be correlated well by
taking q,., b and s as three parameters (Kapoor et al.,
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1989a). The behaviour of the LUD isotherm has been
discussed recently by Ritter et al. (1990).

The effect of heterogeneity on surface diffusion was
studied in terms of DHg!/DoB (relative surface diffus-
ivity) as a function of €, at various values of s. The
results for a = 1 and a = 0.5 are shown in Figs 1 and
3, respectively. Figures 1 and 3 show a comparison
between the predictions from the three models: one-
dimensional EMA (EMA-1D), two-dimensional
EMA (EMA-2D) and PPM. The curve for s = 0 cor-
responds to the HIO model which describes the be-
havior on a homogeneous surface. It is seen that
qualitatively all models show that surface diffusivity
increases with 0. This trend is consistent with the
results reported in the literature (Kapoor et al.,
1989a). From Figs 1 and 3, it can be seen that the
value of the relative surface diffusivity (D¥5'/D§'23) at
a given O and s is different depending on the value of a,
Le. the relationship between the activation energy for
surface diffusion and the energy of adsorption. It
should be noted, however, that for a given
homogenous surface (with the same &) the value of the
diffusivity, D%, is greater for the case of a = 0.5
compared to the case of a =1 (assuming that the
value of D,, is the same in both cases).

Figure 1 shows the relationship between the relat-
ive surface diffusivity and 6, at various values of s, as
predicted by the two models (EMA-1D and EMA-2D)
for a = 1. Also, shown are the predictions of HIO and
PPM for comparison. It is seen that the EMA-1D
model predicts the relative surface diffusivity on a het-
erogeneous surface to be lower than that on the
homogeneous surface (with the same ) for low surface

100

5Q

10

Het *°
5,6

o5

Fig. 1. Comparison of HIO, PPM, EMA-1D and EMA-2D
models (for a = 1). The solid curve is for s = 0; the other two
curves are for s = 3 and 5, with larger deviations for s = 5.
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coverages, and higher at higher coverages, i.e. as the
value of s increases, the relative surface diffusivity vs
0 curve sharpens. This observation can be explained
as follows. The EMA-1D model corresponds to the
case of resistances in series. Thus, the effective resist-
ance (inverse of diffusion) is controlled by the largest
resistance. Atlow values of 8, adsorption occurs most-
ly on the high-energy patches (with ¢ > ) and the
adsorbate molecules are held more strongly on the
surface. This results in a lower overall diffusivity com-
pared to the diffusivity on a homogeneous surface
(with £ = g). However, as 8 increases, the high-energy
patches become saturated, and more adsorption oc-
curs on the lower-energy patches. So at high surface
coverages (high values of 8) surface diffusivity on the
high-energy patches increases due to the concentra-
tion dependence and the contribution from the lower-
energy patches increases due to more adsorption, thus
resulting in an increase in overall relative surface
diffusivity.

The predictions from the PPM show that the rel-
ative surface diffusivity on a heterogeneous surface is
larger than that on the homogeneous surface (with
& = E) for a given value of 8, and it increases with an
increase in the extent of heterogeneity (s). The PPM
corresponds to the case of resistances (patches) in
parallel. Thus, the total flux is the sum of fluxes from
each patch. In this case, there is no possibility of flow
from a patch of one energy to one of different energy.
It is seen from Fig. 1 that the curves corresponding to
the PPM are rather flat for low values of 8, compared
to the HIO model predictions. At low values of 0,
adsorption occurs mainly on the high-energy patches
and, as the diffusivity is low on the high-energy
patches, there is little effect on the overall diffusivity
with increase in 6. At much higher values of 6, how-
ever, more adsorption occurs on the low energy-
patches, which increases the overall diffusivity signi-
ficantly. Thus, the curves corresponding to PPM are
steeper compared to that of the HIO model.

The EMA-2D model assumes the surface consists
of patches of different energies arranged randomly,
and it allows for the flow from a patch of one energy
to one of different energy. In this case, molecules
adsorbed on one patch are allowed to diffuse to its
neighboring patches, which results in molecules find-
ing the path of minimum resistance. Based on the
above discussion, it is expected that the surface diffus-
ivity predicted by the EMA-2D model will be higher
than that predicted by the other models. This is
clearly shown in Fig. 1. As the value of s increases, the
relative surface diffusivity also increases. The curves
shown in Fig. 1 for the EMA-2D model correspond to
the case of a two-dimensional square lattice, i.e. the
coordination number (z) is 4. For a two-dimensional
case there exist other lattices such as triangular (z = 6)
and honeycomb (z = 3). The coordination number
represents the number of nearest neighbors of the
adsorption site. As the coordination number id-
creases, the possibilities for a molecule on a particular
patch to move to another patch increases. This further
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means that the probability of a molecule finding
a patch with lower energy increases, which should
result in a higher value of diffusivity. The effect of
coordination number for three lattices (z = 3, 4 and 6)
is shown in Fig. 2. As discussed above, the effective
diffusivity on a heterogeneous surface increases with
an increase in coordination number, although this
increase in surface diffusivity is small.

For a = 0.5, the relationships between the relative
surface diffusivity and 8 as predicted by the models

80
60 |
Het
D
S,8
Hom %° [~
D
8=0
20 -
2o ”‘,/
____________ -
b
e} L ll-3 1 1
o 0-2 o4 0-6 o8 10

Fig. 2. Effect of coordination number on the surface dif-
fusion on an energetically heterogeneous surface (EMA-2D
results).
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Fig. 3. Comparison of HIO, PPM, EMA-1D and EMA-2D
models (for a = 0.5). See Fig. 1 caption for s values.
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are shown in Fig. 3. Comparison between Figs 1 and
3 shows that the effect of heterogeneity on the relative
surface diffusivity is less strong in the case of a = 0.5.
As mentioned earlier, the value of D}°% is different for
the two cases (@ =1 and 0.5), so it is difficult to
compare the effect of heterogencity on the, absolute
surface diffusivity in the two cases. Qualitatively, how-
ever, the trends predicted by the models for a = 0.5
are similar to those predicted for @ = 1. The effect of
coordination number for a = 0.5 was also similar to
that shown in Fig. 2 for a = 1, e.g. the relative surface
diffusivity increased (only slightly) with an increase in
z at a given 0.

COMPARISON WITH EXPERIMENTAL DATA

Experimental data on the equilibrium adsorption
and surface diffusivity for various gas—solid systems
were used to compare various models for surface
diffusion on heterogeneous surfaces. These gas—solid
systems consisted of 17 systems corresponding to
a=1 and four systems corresponding to a = 0.5.
Also, these systems included a range of temperatures
on six different adsorbents.

The equilibrium adsorption data on 18 systems
were correlated to the LUD isotherm [eq. (22)] by
nonlinear regression, and the three parameters gq,,,
b and s were calculated. The parameter values are
listed in Table 1. The parameter s is related to the
spread of the energy distribution, and thus is
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a measure of the extent of heterogeneity. The value of
s = 0 corresponds to a homogeneous surface, and as
the value of s increases the surface becomes increas-
ingly heterogeneous. It is seen from Table 1 that the
extent of heterogeneity is a function of various factors
such as temperature, and type of adsorbent and ad-
sorbate. The following systems showed weak hetero-
geneity, CF,Cl, on Linde Silica at 251.5K, and
C,H,, on Spheron 6 Carbon Black at 303 and
314.7K, whereas C;Hg on Vycor Glass at 303 K was
the most heterogeneous among all the systems tested.
The parameters for the three systems consisting of
C,H ,COOH on activated carbon could not be cal-
culated due to the lack of experimental adsorption
data. The values of s, however, for these three systems
were calculated by corrclating the surface diffusivity
data using D}2% and s as two parameters (this point
will become ciear later).

The four models, HIO, PPM, EMA-1D and EMA-
2D, were compared using experimental data taken
from the literature. The experimentat data were gener-
ally available in the form of surface diffusivity vs the
amount adsorbed, or vs the fractional coverage (6). In
the case of data with amount adsorbed, the value of ¢,,
from Table 1 was used to convert it to the fractional
coverage. The data were then correlated by the four
surface diffusion models. The HIO model has only
one parameter, D23, whereas the other three models
require DS and s. The value of s obtained from
correlating the equilibrium adsorption data were used

Table 1. Regression parameters for the LUD isotherm [eq. (22)]

T Doy b

System (K) (mol/kg) (1/atm) s

NH} 298.0 2.51 5.26 2.50
SO} 303.0 1.09 7.59 0.72
co;g 195.0 299 4.19 1.11
C,H 273.0 0.81 3.92 1.00
c3H§ 298.0 0.60 2.81 1.28
CF§C1'2 251.5 1.59 6.11 0.10
SO 273.0 327 6.81 1.32
e’} 263.0 4.04 2.43 1.57
CF,Cl1} 251.5 490 100.75 302
CF,Cl1} 239.9 6.13 32.30 1.50
C‘HI ° 303.0 047 0.45 0.50
C,Hg 303.0 0.30 3.31 3.10
CH %{? 314.7 043 11.83 0.02
C,H], 303.0 0.42 21.21 0.01
C,H,COOH" 313.0 — — 0.50
C,H,COOH? 303.0 — — 0.60
CoH.COOH** 293.0 — — 1.00
SOt 273.0 6.33 4.20 1.41
so% 263.0 7.40 4.87 1.69
SO% 252.3 7.39 8.29 1.95
so% 239.4 12.52 3.61 295

t Vycor Glass (Gilliland et al., 1974).

¥ Vycor Glass (Gilliland et al., 1958).

!Linde Silica (Carman and Raal, 1951).

! Carbolac (Carman and Raal, 1951).

YVycor Glass (Okazaki et al., 1981).

1t Spheron 6 Carbon Black (Ross and Good, 1956).
1t Activated carbon (Suzuki and Fujii, 1982).

% Carbon (Ash er al., 1963).



3267

Surface diffusion on energetically heterogeneous surfaces

(2861 ‘MfnJ pue HYNZNG) UOQIED PIIBAIDY,,
(9561 ‘poon) pue ssoy) Yoeg uoqre) g uoayds
(1861 “Iv 12 MEzENQ) S5E[D) 100KA |
(1661 ‘Teey pue ueune)) ov[oqIE),
(1561 ‘leey pue urwIe)) BIINIS SpuUIT,
(8561 “1p 32 puepID) sseD) 109KA
(pL61 “Iv 32 pueID) ssBID 100KA

61°0F L-01 X 9¢°¢ £TEL .01 X €69 £60v L-01 X 68°€ 9%TY .01 X 6T¥ 0'€67 +tHOOO'H®D
179 ,-01 X 199 $9'¢8 -01 X 971 6t'9% L-01 X €89 8999 .01 X 80°L 0'€0E tHOOO'H®D
61¥E -0l X 678 8L18 9-01 X €41 po'pE .-01 X 06'6 678€ 6-01 X €71 0€I€ +tHOOD'H®)
8607 ¢-01 X 8T¢ 86°0¢ 5-01 X 876 36107 ¢-01 X 87§ 86'0C ¢- 01 X 82 0'€0¢ mmd
9L tE -0l X €68 9LPE ¢-0I X €68 9LE 501 X €58 9LYE ¢-0l X €58 LYIE amd
S 444 -0 X pIp 86'LS 01 X $0T 91'0¢ 9-01 X 979 LITE ¢-01 X 097 0'€0E o)
196 -0l X 6L £$°07 01 X 10 98'6 s-01 X 88C L86 5-01 X 96T 0'€0¢ %H"
$8'87 s_01 X OI'T 4884 01 X 657 1682 ¢-01 X 8T SL'6T -0 X €L 6'6€T mcm,_o
1717 9-01 X §67 9T 5-01 X (88 £8°€€ -0 X L9 YA .01 X €07 (9 (Y4 {0%d0
£0'9 501 X TET 9¢'LT -0 X €87 §1'97 5-01 X §6°T 8L'97 s-01 X 681 0€9T Mom
143174 ¢_01 X 9¢°T SO'TL 01 X pEE £8'02 <01 X 281 Ax\4 .01 X 022 0Lz jos
993 -0l X $8'1 §6'6 ¢-00 X p81 $5'6 5-01 X $8°1 £5'6 50T X ¥81 S [44 W0
8L'vl ¢ 01 X ZULL 8991 501 X TST 1691 5-01 X 80' 61 -0 X 901 0862 Mmmo
9T ¢-01 X 89L 18'8% »-01 X 10T 97Ee s-0I X €18 L6TT s-01 X ¥1'6 0'€LT HED
£102 s 01 X $1F SL6E -0 X 06 8707 s-0I X §§¥ ¥S'1T ¢-01 X 00 061 M8
669¢ s 01 X €6 £6°08 -0 x 88 70'8¢ s-01 X 607 01'8¢ 01 X 602 0'€0¢ ‘os
90'1€ 501 X 9T'C 9c0p ¢-01 X ITT 96T¢ 9-01 X 0§€ £6E 501 X ILL 0867 SHN
) (5/,um) ©) (s/,wo) ) (s/7w0) ) (s/,wo) ) wolshg
‘115 'J1 BAy Soda 119 'Ja3 Ay Sona ‘132 '[I Say Sond ‘M3 a1 Fay Soia I
a-vnd ar-vyimd Wdd OH

1 = p 0] Surpuodsaiiod swa)sks aify 1o S[IPOW UCISARIP 9BHNS (JZ-VINT PUB (Q1-VYINH ‘Wdd ‘OIH 2U) woiy suonoipaid gy jo uosueduoy) 7 sjqe],



3268 A. KAPOOR and R. T. YANG

for this purpose. Thus all the models had only one
parameter, so that a fair comparison could be made.
The comparison was made based on the average rela-
tive error (avg. rel. err)), which is defined as

100 X
avg. rel. err. = N Y. abs[{D:%");, cat
j=1
- (Dggt)j.eln]/(D:.l;t)j, exp (22)

where N is the number of data points, and (D}§')

and (Dg)..p are the calculated and experimental
values of surface diffusivity.

The comparison of the predictions from the four
models, for all the systems corresponding to a = 1, is
shown in Table 2. Table 2 lists the values of Df°% and
the avg. rel. err. for each model for all 17 systems. The
PPM, EMA-1D and EMA-2D models are given by
eqs (20), (13) and (18), respectively. The HIO model for
a homogeneous surface is given as

Hom
pHom _ Ds3

= e (23)

It is interesting to note that for the three systems,
CF,Cl, on Linde Silica at 251.5K and C,H,, on
Spheron 6 Carbon Black the parameter D3 and the
avg. rel. err. for all four models were similar. These
systems showed small values of s, which corresponds
to a homogeneous surface. Thus, it shows that the
three models derived for the heterogeneous surface
reduce to the HIO model, in the limit of small value of
s. In fact, all three models for heterogeneous surface
(PPM, EMA-1D and EMA-2D) reduce identically to
the HIO model as s — 0. The system, C;H4 on Vycor
Glass at 303 K, which showed the maximum value of
s, also showed a large difference in the values of the
avg. rel. err. for the three heterogeneous surface dif-
fusion models compared to those for the HIO model.
An overall comparison of the four modeis showed
that the EMA-2D model correlated the experimental
data the best, followed by the PPM, and the HIO and
EMA-1D models. The EMA-1D model corresponds
to the case of molecules diffusing on patches of surface
normal to the direction of the flux. Thus the EMA-1D
model represents a lower bound for surface diffusion
on a heterogeneous surface. The PPM, on the other
hand, allows molecules on a patch of a given energy to
diffuse only on the patches with the same energy and
the patches are parallel to the flux. Thus, the PPM
represents a first-order upper bound, as also reported
by Torquato (1587). The EMA-2D model allows mol-
ecules to diffuse from a patch of one energy to a patch
of different energy, thus representing a more realistic
case.

A comparison between the PPM and the EMA-2D
model [equations (18) and (20), respectively] shows
that both models are analytic in form. The PPM gives
an explicit value of diffusivity as a function of 8 and s,
whereas the EMA-2D model gives an implicit func-
tion. Thus, the PPM can be used to obtain an estim-
ate, whereas the EMA-2D model should be used as
a more rigorous model.

Table 3. Comparison of the predictions from the HIO, PPM, EMA-1D and EMA-2D surface diffusion models for the systems corresponding to a = 0.5

EMA-2D

EMA-ID

PPM

HIO

(%)

Avg. rel. err.

bos
(cm?s)

Avg, tel. err. om Avg. rel, err.
(%) (cm?/s) (%)

Djen
(om?/s)

Jom Avg, rel. ert.
(em?/s) (%)

T
(k)

System

21.10
15.82
15.90
11.14

143 x 1074
799 x 1073

1.63 x 107*
139 x 1074

2474
18.80
18.87
12.81

193 x 1074
178 x 107
174 x 1074
939 x 1073

2244
16.62
16.78
11.76

178 x 107*
168 x 1074
1.65 x 1074
887 x 1073

23.17
17.55
1733
1241

215 x 1074
214x10°*
202 x 1074
108 x 107¢

273.0
263.0
2533
2394

i
i
;
i

SO
50
SO
30

t Carbon (Ash et al., 1963).
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Ash et al. (1963) reported surface diffusion data of
SO, on carbon at four temperatures. For the
SO,—carbon system the value of a = 0.5. The com-
parison of the predictions from the four models for
these four systems is given in Table 3. Similar to Table
2, Table 3 lists the values of D}'° and the avg. rel. err.
for each model for all four systems. For a = 0.5, the
four models (HIO, PPM, EMA-1D and EMA-2D) are
given by egs (23), (21), (15) and (19), respectively. The
results given in Table 3 show trends similar to those
seen in Table 2, i.e. the EMA-2D model showed the
least deviation from the experimental results, followed
by the PPM, and the HIO and EMA-1D models.
Also, all models are analytical and explicit in form,
except the EMA-2D model which gives an implicit
relationship between D§' and the parameters 6 and s.

CONCLUSIONS

(1) Simple analytic expressions were presented for
surface diffusivity on an energetically hetero-
geneous surface. These expressions were derived
using EMA in one and two dimensions.

(2) On comparison with other models, it was
shown that the EMA-2D model gave a better
representation of the experimental data.
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NOTATION
a ratio of activation energy of surface dif-
fusion and energy of adsorption
b constant in the Langmuir isotherm,
1/kPa or 1/atm, or proportionality con-
stant in eq. (1)

b defined by eq. (9b)

C surface concentration

D diffusivity, m?/s

EMA-1D effective medium approximation in one
dimension

EMA-2D effective medium approximation in two
dimensions

f energy distribution function

J mass flux

norg amount adsorbed, mol/kg

P pressure, kPa or atm

PPM parallel-path model

R gas constant

s heterogeneity parameter defined by eq.
(14), dimensionless

T temperature, K

x fraction of surface

z coordination number

Greek letters

defined by eqs (17c) and (17d)
defined by eq. (17b)

cnergy or heat of adsorption, kJ/mol
average value of g kJ/mol

fractional surface coverage

Do ™A
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a square root of variance for energy distri-
bution, kJ/mol

Subscripts

i corresponds to patch i

m corresponds to monolayer, or mean
min minimum value

max maximum value

o refers to a constant

s surface

Superscripts

Het on heterogeneous surface

Hom on homogeneous surface
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