

First-Principle Calculation of Elastic Compliance Coefficients for BiFeO₃

Y. L. WANG,* Z. H. WU, Z. C. DENG, L. Z. CHU, B. T. LIU, W. H. LIANG, AND G. S. FU

College of Physics Science and Technology, Hebei University, Baoding 071002, China

The elastic compliance coefficients of PbTiO₃ with/without geometric optimization are firstly calculated by using density-functional theory (DFT) under different exchange correlation functions. It is found that the best results are not obtained by LDA/CA-PZ and optimized structure although these induce the nearest lattice constants to experimental ones, however, the results of PbTiO₃ without geometry optimization under GGA/PW91 function are in great consistent with the experimental data. Based on the same calculating method of PbTiO₃, the elastic compliance coefficients for BiFeO₃ are obtained. And the data are compared with previous results predicted by fitting experimental data to Landau-type phenomenological theory, which possessing the difference of an order of magnitude with our data.

Keywords BiFeO₃; elastic compliance coefficients; first-principle theory

PACS: 30.15.A-, 62.20.Dc, 81.05.-t

1. Introduction

As a kind of important functional material, ferroelectrics [1–5], especially multiferroic material [6–10], simultaneously possessing ferroelectric, ferromagnetic, and/or ferroelastic properties, has attracted more and more attention for potential applications in transducers, actuators, sensors and improved data-storage media. These applications are based on some interesting phenomena brought forth by multiferroic materials. For example, a strong coupling between ferroelectric and antiferromagnetic domain walls has been found in YMnO₃ [7], in orthorhombic TbMnO₃ and TbMn₂O₄ the ferroelectric polarization can be reoriented by a magnetic field [8, 9], and ferromagnetic ordering can be "switched on" by an electric field in hexagonal HoMnO₃ [10]. They further intrigue scientists world-wide to study the physics behind the phenomena.

BiFeO₃, one of the most popular multiferroic materials, has simultaneously demonstrated strong ferroelectricity and ferromagnetism at room temperature [6], with Curie temperature of 830°C and Neél temperature of 370°C. In order to better study the physics behind the phenomena referred to BiFeO₃, it is fundamental and necessary to determine the basic parameters that affect properties of BiFeO₃. However, to date not enough information

Received January 22, 2009.

^{*}Corresponding author. E-mail: hdwangyl@hbu.edu.cn

has been known about these parameters for BiFeO₃ both from the experimental measurement and theoretical calculation. Facing with these difficulties, Jiang et al. estimated its parameters including elastic compliance coefficients (ECCs) by fitting experimental data to Landau-type phenomenological theory, and using these parameters, they discussed the influence of the thickness of epitaxial BiFeO₃ thin film on ferroelectric/ferromagnetic

properties [11].

As was already known, the first-principle calculation can predict some basic parameters of a novel material with known structure. Using this method, some materials such as BaTiO₃, CaTiO₃, PbTiO₃ and KNbO₃ [12–16] have been investigated. From our best knowledge, however, no results have been reported on the ECCs of BiFeO₃ with R3C rhombohedral structure calculated by first-principles. The calculation of elastic constants is potentially very useful, since the full tensor has only been measured experimentally for a very small percentage of all known solids. This is primarily because the practical determination typically requires single crystals with a size of a few micrometres at least. In this paper, we carry out the calculation by using CASTEP software package based on density functional theory (DFT), and the results are compared with previous data predicted by Landau-type phenomenological theory [11].

2. Model and Method

The choice of exchange correlation functions (ECFs) is crucial for precision in CASTEP calculation. For BiFeO₃, no experimental data can be used for comparison with our calculation results. In order to search appropriate ECF in the calculation, ECCs of PbTiO₃ are firstly calculated. Here, crystal lattice parameters of tetragonal PbTiO₃ which belongs to *P4mm* space group are taken as a = 3.904 Å, c = 4.152 Å [17], and crystal lattice parameters of rhombohedral BiFeO₃ which belongs to *R3C* space group are $\alpha = 59.35^{\circ}$, a = c = 5.616 Å [18].

Before calculating ECCs of PbTiO3, Geometry optimization was carried out using the Broyden-Fletcher-Goldfarb-Shannon algorithm (BFGS), enabling us to obtain the best unit-cell parameters (lattice parameters, unitcell angles, internal atomic coordinates). The electron-ion interactions were described by ultrasoft pseudopotentials, and electron exchange and correlation energies were calculated with the generalized gradient approximation (GGA) and the local density approximation (LDA) respectively. In which four various ECFs, i.e., GGA/PW91, GGA/PBE, GGA/RPBE and LDA/CA-PZ are chosen, respectively. Then, the ECCs are calculated based on the same ECFs. The parameters used in geometric optimization are as follows: for GGA/PW91, the cut-off energy is 380 eV and Monkhorst-pack k-point meshes are $7 \times 7 \times 5$; for GGA/PBE, the cut-off energy is 380 eV and the Monkhorst-pack k-point meshes are $7 \times 7 \times 5$; for LDA/CA-PZ, the cut-off energy is 380 eV and the Monkhorst-pack k-point meshes are $6 \times 6 \times 6$; The energy tolerance was 1.0×10^{-6} eV/atom, the force tolerance was 0.002 eV/Å, and the displacement tolerance was 1.0×10^{-4} Å. But for GGA/RPBE, the cut-off energy and Monkhorst-pack k-point meshes are taken as 340 eV and $6 \times 6 \times 5$, and the energy tolerance was 2.0×10^{-6} eV/atom, the force tolerance was 0.006 eV/Å, and the displacement tolerance was 2.0 \times $10^{-4} \text{ Å}.$

For examining the impact of lattice constants on ECCs of PbTiO₃, the experimental structure without geometric optimization is also calculated with cut-off energy of 340 eV and k-point set mesh of 6 \times 6 \times 6 under the four ECFs. At last, the different calculated

Table 1
Optimized lattice constants of PbTiO₃ calculated with different exchange correlation functions (ECFs)

Aggregape annua an gant tri christia annua goga eg de de de de la	oo ka	Lattice constants		
Pseudopotential	ECF	a/Å	c/Å	
ultrasoft ultrasoft ultrasoft ultrasoft	GGA/PW91 GGA/PBE GGA/RPBE LDA/CA-PZ	3.8249 3.8347 3.8605 3.8670	4.7922 4.7817 5.1318 4.0473	

ECCs are compared with the experimental ones, and the ECF which induces the best result is used to calculate the ECCs of BiFeO₃.

3. Results and Discussion

3.1. Analysis on Calculated Results of Elastic Compliance Constant of PbTiO3

The optimized lattice constants of PbTiO₃ under various ECFs are listed in Table 1. Obviously, the calculation value with LDA/CA-PZ is the nearest to experimental data (a = 3.904 Å, c = 4.152 Å) among the four ECFs.

Table 2 shows theoretical and experimental ECCs (Label C) of PbTiO₃ with (Label A)/without (Label B) geometric optimization under ECFs of GGA/PW91 (Label 1), GGA/PBE (Label 2), GGA/RPBE (Label 3) and LDA/CA-PZ (Label 4). It is obvious that various ECFs, especially lattice constants result in different ECCs, which indicates various discrepancies with experimental values. EEC is composed of six independent values,

 $\begin{tabular}{ll} \textbf{Table 2}\\ \textbf{Comparably analysis on theoretical and experimental data of elastic compliance coefficients}\\ \textbf{of PbTiO}_3 \end{tabular}$

Elastic compliance coefficients/(GPa) ⁻¹							
Lable	ECF	S_{11}	S_{12}	S ₃₃	S ₄₄	S_{66}	RMSE
A1 B1 A2	GGA/PW91 GGA/PW91 GGA/PBE	0.0082858 0.0060685	-0.0011905 -0.0018087 -0.0011028	0.0359725 0.0284642	0.0235413 0.0159731	0.0116430 0 .0101548	0.005585 0.002753
B2 A3 B3	GGA/PBE GGA/RPBE GGA/RPBE	0.0059939	-0.001923 -0.0012195 -0.0034862	0.0237283	0.0142719	0.0100898	0.004201
A4 B4 C	LDA/CA-PZ LDA/CA-PZ	0.0070721	-0.0003146	0.0712281	0.0156354	0.0103958	0.017442

Notion: From A1 to A4, the results is calculated with experimental lattice constants. From B1 to B4, the results is calculated with optimized lattice constants. C is experimental data of elastic compliance coefficients of $PbTiO_3$.

namely, S_{11} , S_{12} , S_{13} , S_{33} , S_{44} and S_{66} due to its symmetry. These values possess different errors, compared with the corresponding experimental data [20]. For example, regarding group B2 obtained using GGA/PBE function, S_{11} , S_{12} and S_{33} better agree with experimental data, but, S_{44} and S_{66} is not satisfied; for group B4 calculated by using the LDA/CA-PZ function, S_{11} , S_{44} and S_{66} are consistent with experimental values, nevertheless, S_{12} and S_{33} are not satisfied. The root of mean square error (RMSE), shown in the last column in Table 2, is used to scale the calculation precision. It can be seen that RMSE of group A1 is the smallest, implying that EECs calculated under GGA/PW91 with experimental lattice constants (without geometric optimization) are in best agreement with experimental values among these six groups. It should be emphasized that the best results are not obtained by LDA/CA-PZ and optimized structure although these induce the nearest lattice constants to experimental ones. Lattice constants (with or without geometric optimization), merged with ECF, determine the ECCs.

In CASTEP calculation, ECCs are obtained by linearly fitting the stress tensor inducing a given strain series according to Hooke's law. Note that maximum strain cannot exceed the scope of flexibility, and at the same time, it cannot be too small so that change of the corresponding stress is bigger than the error of stress settled in the calculation. Therefore the "amplitude of maximum of strain" should be appropriately chosen. In above calculation, the "amplitude of maximum strain" is chosen as 0.004. To examine if it is in the scope of flexibility, altering the "amplitude of maximum strain" ranging from 0.004 to 0.008 with the same calculated process as A1, ECCs of PbTiO₃ are listed in Table 3. We find that the numerical values hardly vary, which indicates the "amplitude of maximum strain" of 0.004 is appropriate for the deformation of PbTiO₃.

It is noted that although geometric optimization can ensures the structure to be in a stable state, it induces lattice constants deviating from the experimental data. Thus, some times, In the first-principle calculation of some properties of the material, experimental lattice constants can be directly used in order to the consistency of calculated and experimental data [21].

3.2. Analysis on Calculated Results of Elastic Compliance Coefficients of BiFe O_3

Similar to PbTiO₃, experimental lattice constants without geometric optimization and ECF of GGA/PW91 are used for ECCs calculation of BiFeO₃. The calculated data are shown in Table 4. Due to the symmetry difference, for BiFeO₃, there are seven independent ECC elements, S_{11} , S_{12} , S_{13} , S_{14} , S_{33} , S_{44} and S_{66} . In order to test if the strain is in its scope of flexibility, the ECCs corresponding to the "amplitude of maximum strain" of 0.004, 0.006

Table 3
Elastic compliance coefficients of PbTiO₃ with different amplitudes of max strain

Amplitude of max	Elastic compliance coefficients/(GPa) ⁻¹						
or max strain	S_{11}	S_{12}	S_{13}	S ₃₃	S ₄₄	S ₆₆	
0.004 0.006 0.008	0.0064923	-0.0011905 -0.0003668 -0.0002445	-0.0073083	0.0315096	0.0144935	0.0101730	

Table 4
Elastic compliance coefficients of BiFeO₃ with different amplitudes of max strain

Max	Elastic compliance coefficients/(GPa) ⁻¹						
strain	S_{11}	S_{12}	S_{13}	S ₁₄	S ₃₃	S ₄₄	S_{66}
0.00.	0.010101	-0.0006753	0.0 2.17 07 2	0.00	0.0.7		
		-0.0004835					
0.008	0.018571	-0.0005638	-0.0018379	0.0012712	0.0476491	0.0188542	0.0349572

and 0.008 are calculated, respectively. The data of different groups are almost the same, which indicates our calculation is appropriate for the deformation of BiFeO₃.

To discuss the thickness dependence of ferroelectric and magnetic properties in epitaxial BiFeO₃ thin films, Jiang et al roughly estimated a few of elastic compliance coefficients of BiFeO₃ by fitting experimental data to Landau-type phenomenological theory [11], which gave $S_{11} = 0.00425$ (GP)⁻¹, $S_{12} = -0.004$ (GP)⁻¹, $S_{13} = -0.00155$ (GP)⁻¹, possessing the difference of an order of magnitude with our data.

4. Conclusions

In conclusion, we use CASTEP package based upon density-functional theory to calculate elastic compliance coefficients of BiFeO₃. To choose the crucial factors impacting precision, *i.e.*, lattice constants and exchange correlation functions, elastic compliance coefficients of PbTiO₃, with known experimental data and similar structure as BiFeO₃, are firstly calculated. For BiFeO₃, the calculation with experimental lattice constants and GGA/PW91 function shows $S_{11} = 0.0182167$, $S_{12} = -0.0006753$, $S_{13} = -0.0179691$, $S_{14} = 0.0011707$, $S_{33} = 0.0492076$, $S_{44} = 0.0192123$ and $S_{66} = 0.0377839$ with unit of (GP)⁻¹.

Acknowledgments

The authors are grateful for the financial supports by the 973 program (2007CB616910), the NSFCs (50572021, 10774036, and 60876055), the NSFs of Hebei Province (E2008000620, E2008000631), State Education Ministry (207013) and foundation of Hebei University.

References

- 1. C. A-Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. *Nature* 374, 627–629 (1995).
- O. Auciello, J. F. Scott, and R. Ramesh, The physics of ferroelectric memories. *Phys Today* 51, 22–23 (1998).
- M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
- B. T. Liu, C. S. Cheng, F. Li, L. Ma, Q. X. Zhao, Z. Yan, D. Q. Wu, C R. Li, Y. Wang, X. H. Li, and X. Y. Zhang, Ni–Al diffusion barrier layer for integrating ferroelectric capacitors on Si. Appl. Phys. Lett. 88, 252903–252905 (2006).
- Y. L. Wang, T. R. Wei, B. T. Liu, and Z. C. Deng, Effect of thickness of epitaxial PbZr (0.4)Ti (0.6)O₃ film on the physical properties. Acta Phys Sin. 56, 2931–2936 (2007).

- 6. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO₃ multiferroic thin film heterostructures. *Science* 299, 1719–1722 (2003).
- M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, Observation of coupled magnetic and electric domains. *Nature* 419, 818–820 (2002).
- 8. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization. *Nature* **426**, 55–58 (2003).
- 9. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Electric polarization reversal and memory in a multiferroic meterial induced by magnetic fields. *Nature* **429**, 392–395 (2004).
- 10. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Magnetic phase control by an electric field. *Nature* 430, 541–544 (2004).
- 11. Q. Jiang and J. H. Qiu, The thickness dependence of ferroelectric and magnetic properties in epitaxial BiFeO₃ thin films. *J. Appl. Phys.* **99**, 103901(1-6) (2006).
- 12. R. E. Cohen, Origin of ferroelectricity in perovskite oxides. *Nature* 358, 136–138 (1992).
- 13. Y. X. Wang, W. L. Zhong, C. L. Wang, and P. L. Zhang, First-principles study on the tendency to ferroelectricity of CaTiO₃. Solid State Commun. 117, 461–464 (2001).
- 14. Y. P. Peng, Y. X. Wang, L. Zhang, P. S. Zhang, and W. L. Zhong, First-principles study of tetragonal ferroelectric structure of K(Ta_{0.56}Nb_{0.44})O₃. *Acta. Phys. Sin.* 49, 1140–1143 (2000).
- 15. Y. X. Wang, W. L. Zhong, C. L. Wang, P. L. Zhang, and X. T. Su, First principle study on the ferroelectricity of the perovskite ABO₃ ferroelectrics. *Chin. Phys.* 11, 714–719 (2002).
- 16. Z. J. Liu, J. H. Qi, Y. Guo, Q. F. Chen, L. C. Cai, and X. D. Yang, Thermoelasticity of CaO from first principles. *Chin. Phys.* 16, 499–505 (2007).
- 17. H. D. Megaw, Crystal structure of double oxides of the perovskite type. *Proc. Phys. Soc.* 58, 133-152 (1946).
- 18. A. J. Jacobson and B. E. F. Fender, A neutron diffraction study of the nuclear and magnetic structure of BiFeO₃. *J. Phys. C.* 8, 844–850 (1975).
- 19. V. G. Gavrilyachenko and E. G. Fesenko, Piezoelectric effect in lead titanate single crystals. *Sov. Phys. Crystallogr.* **16**, 549–550 (1971).
- 20. L. Despont, C. Koitzsch, F. Clerc, M. G. Garnier, P. Aebi, C. Lichtensteiger, J.-M. Triscone, F. J. Garcia de Abajo, E. Bousquet, and Ph. Ghosez, Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films. *Phys. Rev. B.* 73, 094110(1–6) (2006).