JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 11, 1-24 (1991)

INVITED PAPER

The DARPA Image Understanding Benchmark for Parallel Computers*

CHARLES WEEMS, EDWARD RISEMAN, AND ALLEN HANSON

Computer and Information Science Department, University of Massachusetts at Amherst, Amherst, Massachusetts 01003

AND

AZRIEL ROSENFELD

Center for Automation Research, University of Maryland at College Park, College Park, Maryland 20742

This paper describes a new effort to evaluate parallel archi-
tectures applied to knowledge-based machine vision. Previous
vision benchmarks have considered only execution times for iso-
lated vision-related tasks, or a very simple image processing sce-
nario. However, the performance of an image interpretation sys-
tem depends upon a wide range of operations on different levels
of representations, from processing arrays of pixels, through
manipulation of extracted image events, to symbolic processing
of stored models. Vision is also characterized by both bottom-
up (image-based) and top-down (model-directed) processing.
Thus, the costs of interactions between tasks, input and output,
and system overhead must be taken into consideration. There-
fore, this new benchmark addresses the issue of system perfor-
mance on an integrated set of tasks. The Integrated Image Un-
derstanding Benchmark consists of a model-based object rec-
ognition problem, given two sources of sensory input, intensity
and range data, and a database of candidate models. The models
consist of configurations of rectangular surfaces, floating in
space, viewed under orthographic projection, with the presence
of both noise and spurious nonmodel surfaces. A partially or-
dered sequence of operations that solves the problem is specified
along with a recommended algorithmic method for each step.
In addition to reporting the total time and the final solution,
timings are requested for each component operation, and inter-
mediate results are output as a check on accuracy. Other factors
such as programming time, language, code size, and machine
configurations are reported. As a result, the benchmark can be
used to gain insight into processor strengths and weaknesses
and may thus help to guide the development of the next gen-
eration of parallel vision architectures. In addition to discussing
the development and specification of the new benchmark, this
paper presents the results from running the benchmark on the
Connection Machine, Warp, Image Understanding Architecture,
Associative String Processor, Alliant FX-80, and Sequent Sym-
metry. The results are discussed and compared through a mea-
surement of relative effort, which factors out the effects of dif-
fering technologies. © 1991 Academic Press, Inc.

INTRODUCTION

Knowledge-based image understanding presents an im-
mense computational challenge that has yet to be satisfied
by any parallel architecture. The challenge is not merely to
provide a greater quantity of operations per second, but also
to supply the necessary forms of computation, communi-
cation, and control. Consider that a sequence of images at
medium resolution (512 X 512 pixels) and standard frame
rate (30 frames per second) in color (24 bits per pixel) rep-
resents a data input rate of about 23.6 million bytes per
second and, in a typical interpretation scenario, many thou-
sands of operations may be applied to each input pixel in
order to enhance and segment an image and to extract var-
ious features from it. But in addition, a vision system must
organize extracted image features via perceptual grouping
mechanisms, locate relevant models in a potentially vast store
of knowledge and compare them to partial models derived
from the input data, generate hypotheses concerning the en-
vironment of the sensor, resolve conflicting hypotheses to
arrive at a consistent interpretation of the environment,
manage and update stored knowledge, etc.

While traditional supercomputing benchmarks may be
useful in estimating the performance of an architecture on
some types of image processing tasks, as noted by Duff [3],
they have little relevance to the majority of the processing
that takes place in a vision system. Nor has there been much
effort to define a vision benchmark for supercomputers, since
those machines in their traditional form have usually been
viewed as inappropriate vehicles for knowledge-based vision
research. However, now that parallel processors are becoming
readily available, and because they are viewed as being better
suited to vision processing, researchers in both machine vi-

* This work was supported in part by the Defense Advanced Research
Projects Agency under Contract DACA76-86-C-0015, monitored by the U.S.
Army Engineer Topographic Laboratories.

0743-7315/91 $3.00
Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 WEEMS ET AL.

sion and parallel architecture are taking an interest in per-
formance issues with respect to vision. The next section
summarizes the other prominent work that has been done
in the area of vision benchmarks to date.

REVIEW OF PREVIOUS VISION
BENCHMARK EFFORTS

One of the first parallel processor benchmarks to address
vision-related processing was the Abingdon Cross bench-
mark, defined at the 1982 Multicomputer Workshop in
Abingdon, England. In that benchmark, an input image
consists of a dark background with a pair of brighter rectan-
gular bars, equal in size, that cross at their midpoints and
are centered in the image. Gaussian noise is added to the
entire image. The goal of the exercise is to determine and
draw the medial axis of the cross formed by the two bars.
The results obtained from solving the benchmark problem
on various machines were presented by Preston [7, 8] at the
1984 Multicomputer Workshop in Tanque Verde, Arizona,
and many of the participants spent a fairly lengthy session
discussing problems with the benchmark and designing a
new benchmark that, it was hoped, would solve those prob-
lems.

One concern of the Tanque Verde group was that the
Abingdon Cross lacks breadth, requiring a reasonably small
repertoire of image processing operations to construct a so-
lution. The second concern was that the specification did
not constrain the a priori information that could be used to
solve the problem. In theory, a valid solution is to simply
draw the medial lines since their true positions are known.
Although this was never done, there was argument over
whether it was acceptable for a solution to make use of the
fact that the bars were oriented horizontally and vertically
in the image. A final concern was that no method was pre-
scribed for solving the problem, with the result that every
solution was based on a different method. When a bench-
mark can be solved in different ways, the performance mea-
surements are difficult to compare because they include an
element of programmer cleverness. Also, the use of a con-
sistent method would permit some comparison of the basic
operations that make up a complete solution.

The Tanque Verde group specified a new benchmark,
called the Tanque Verde Suite, that consisted of a large col-
lection of individual vision-related problems (Table I). Each
of the problems was to be further defined by a member of
the group, who would also generate test data for his or her
assigned problem. Unfortunately, only a few of the problems
were ever developed, and none of them were widely tested
on different architectures. Thus, while the simplicity of the
Abingdon Cross may have been criticized, it was the re-
spondent complexity of the Tanque Verde Suite that inhib-
ited the latter’s use.

In 1986, a new benchmark was developed at the re-
quest of the Defense Advanced Research Projects Agency
(DARPA). Like the Tanque Verde Suite, it was a collection
of vision-related problems, but was much smaller and easier
to implement (Table 1I). A workshop was held in Washing-
ton, D.C., in November of 1986 to present the results of
testing the benchmark on several machines, with those results
summarized by Rosenfeld in [9]. The consensus of partic-
ipants was that the results cannot be compared directly for
several reasons. First, as with the Abingdon Cross, no method
was specified for solving any of the problems. Thus, in many
cases, the timings were more indicative of the knowledge or
cleverness of the programmer than of a machine’s true ca-
pabilities. Second, no input data were provided and the spec-
ifications allowed a wide range of possible inputs. Thus, some
participants chose to test a worst-case input, while others
chose “average™ input values that varied considerably in dif-
fculty.

The workshop participants pointed out other shortcomings
of the benchmark. Chief among these was that it consisted
of 1solated tasks and therefore did not measure performance
related to the interactions between the components of a vision
system. For example, there might be a particularly fast so-
lution to a problem on a given architecture if the input data
is arranged in a special manner. However, this apparent ad-
vantage might be inconsequential if a vision system does not
normally use the data in such an arrangement and the cost
of rearranging the data is high. Another shortcoming was
that the problems had not been solved before they were dis-
tributed. Thus, there was no canonical solution on which
the participants could rely for a definition of correctness,
and there was even one problem (graph isomorphism) for
which it turned out that there was no practical solution.

Having a known correct solution is essential, since it is
difficult to compare the performance of architectures that
produce different results. For example, suppose architecture

TABLE I
Tanque Verge Benchmark Suite

Standard utilities High-level tasks

Edge finding

Line finding

Corner finding

Noise removal

Generalized Abingdon Cross

3 X 3 Separable convolution

3 X 3 General convolution

15 X 15 Separable convolution
15 X 15 General convolution
Affine transform

Discrete Fourier transform Segmentation
3 X 3 median filter Line parameter extraction
256 Bin histogram Deblurring

Classification

Printed circuit inspection
Stereo image matching
Camera motion estimation
Shape identification

Subtract two images
Arctangent (image|/image2)
Hough transform

Euclidean distance transform

THE DARPA IMAGE UNDERSTANDING BENCHMARK 3

TABLE I

Tasks from the First DARPA Image Understanding
Benchmark

11 X 11 Gaussian convolution of a 512 X 512 eight-bit image
Detection of zero crossings in a difference of Gaussians image
Construct and output border pixel list

Label connected components in a binary image

Hough transform of a binary image

Convex hull of 1000 points in 2D real space

Voronoi diagram of 1000 points in 2D real space

Minimal spanning tree across 1000 points in 2D real space
Visibility of vertices for 1000 triangles in 3D real space
Minimum cost path through a weighted graph of 1000 nodes of order 100
Find all isomorphisms of a 100-node graph in a 1000-node graph

A performs a task in half the time of B, but A uses integer
arithmetic while B uses floating point, and they obtain dif-
ferent results. Is A really twice as powerful as B? Since prob-
lems in vision are often ill-defined, it is possible to argue for
the correctness of many different solutions. In a benchmark,
however, the goal is not to solve a vision problem but rather
to test the performance of different machines doing com-
parable work.

The conclusion from this first DARPA exercise was that
a new benchmark should be developed. Specifically, the new
benchmark should test system performance on a task that
approximates an integrated solution to a machine vision
problem. A complete solution with test data sets should be
constructed and distributed with the benchmark specifica-
tion. And, the benchmark should be specified to minimize
opportunities for taking shortcuts in solving the probiem.
The task of constructing the new benchmark was assigned
to the vision research groups at the University of Massachu-
setts at Amherst and the University of Maryland.

A preliminary specification was drawn up and circulated
among the DARPA image understanding community for
comment. The specification was revised and a solution pro-
grammed on a standard sequential machine. In creating the
solution, several problems that required corrections to the
specification were discovered. The solution was programmed
by the University of Massachusetts group, and the University
of Maryland group then verified its validity, portability, and
quality. Maryland also reviewed the solution for generality
and neutrality with respect to underlying architectural as-
sumptions. The Massachusetts group developed five test data
sets and a sample parallel solution for a commercial multi-
processor (the Sequent Symmetry 81).

In March of 1988, the benchmark was made available
from Maryland via network access, or on tape from Mas-
sachusetts. The benchmark release consisted of the sequential
and parallel solutions, the five data sets, and software for
generating additional test data. The benchmark specification
was presented by Weems at the DARPA Image Understand-

ing Workshop, the International Supercomputing Confer-
ence, and the Computer Vision and Pattern Recognition
Conference [11-13]. Over 25 academic and industrial groups
(Table I11) obtained copies of the benchmark release. Nine
of those groups developed either complete or partial versions
of the solution for an architecture. A workshop was held in
October of 1988, in Avon Old Farms, Connecticut, to present
these results to members of the DARPA research commu-
nity. As in the previous workshops, the participants spent a
session developing a critique of the benchmark and making
recommendations for the design of the next version.

The remainder of this paper begins with a brief review of
the benchmark task and the rationale behind its design; then
it summarizes results that were based on hardware execution
or on instruction-level simulation of the benchmark. Myung
Sunwoo [10] from the University of Texas at Austin and
Alok Choudhary [2] from the University of Ilinois also pre-
sented estimated results for proposed architectures, which
are not included here. Also not included are timings from
Active Memory Technology on its DAP array processor that
are for a set of independent image processing tasks only
somewhat related to the benchmark problem. Finally, the
paper presents the criticisms raised at the workshop, along
with recommendations for addressing them.

BENCHMARK TASK OVERVIEW

The overall task that is to be performed by this benchmark
is the recognition of an approximately specified 24-dimen-
sional “mobile” sculpture in a cluttered environment, given
images from intensity and range sensors. The intention of
the benchmark designers is that neither of the input images,
by itself, should be sufficient to complete the task.

The sculpture to be recognized is a collection of 2-dimen-
sional rectangles of various sizes, brightnesses, 2-dimensional

TABLE III
Distribution List for the Second DARPA Benchmark

International Parallel Machines Hughes AI Center

Mercury Computer Systems
Stellar Computer

Myrias Computer

Active Memory Technology
Thinking Machines®

Aspex Ltd.?

Texas Instruments

IBM

Carnegie-Mellon University*
Intel Scientific Computers®
Cray Research

Sequent Computer Systems*

University of Wisconsin
George Washington University
University of Massachusetts®
SAIC

Eastman-Kodak

University College London
Encore Computer

MIT

University of Rochester
University of Illinois*
University of Texas at Austin®
Alliant Computer*

¢ Results presented at the Avon Workshop.

4 WEEMS

orientations, and depths. Each rectangle is oriented normal
to the Z axis (the viewing axis), with constant depth across
its surface, and the images are constructed under ortho-
graphic projection. Thus an individual rectangle has no in-
trinsic depth component, but depth is a factor in the spatial
relationships between rectangles—hence the notion that the
sculpture is 24-dimensional.

The clutter in the scene consists of additional rectangles,
with sizes, brightnesses, 2-dimensional orientations, and
depths that are similar to those of the sculpture. Rectangles
may partially or completely occlude other rectangles. It is
also possible for a rectangle to disappear when another of
the same brightness or slightly greater depth (such that the
difference in depth is less than the noise threshold) is located
directly behind it.

A set of models representing a collection of similar sculp-
tures is provided, and the task is to identify which model
best matches the scene. The models are only approximate
representations in that they permit variations in the sizes,
orientations, depths, and spatial relationships between the
component rectangles. A model is a tree structure, where
the links represent the invisible links in the sculpture. Each
node of the tree contains depth, size, orientation, and inten-
sity information for a single rectangle. The child links of a
node describe the spatial relationships between it and nodes
below.

The scenario that was imagined in constructing the prob-
lem was a semirigid mobile, with invisible links, viewed from
above, with portions of other mobiles blowing through the
scene. The initial state is that previous processing has nar-
rowed the range of potential matches to a few similar sculp-
tures and has oriented them to match a previous image.
However, the objects have since moved, and new images
have been taken prior to this final step. The system must

ET AL.

choose the best match and update the corresponding model
with the positional information extracted.

The intensity and depth sensors are precisely registered
with each other and both have a resolution of 512 X 512
pixels. There is no averaging or aliasing in either of the sen-
sors. A pixel in the intensity image is an 8-bit integer grey
value. In the depth image a pixel is a 32-bit floating-point
range value. The intensity image is noise free, while the depth
image has added Gaussian noise. The reason that only one
of the images is noisy is that adding noise to the other image
simply requires more of the same sorts of processing to be
performed, and one goal of the benchmark designers was to
maximize the variety of processing while minimizing pro-
grammer effort.

A pair of artificial test images is created by first selecting
one model. The model is then rotated and translated as a
whole, and its individual elements are perturbed slightly.
Next, a collection of spurious rectangles with properties sim-
ilar to those in the chosen model is created. All of the rect-
angles (both model and spurious) are then ordered by depth
and drawn in the two image arrays. Lastly, an array of Gaus-
sian-distributed noise is added to the depth image.

Figure | shows an intensity image of a mobile alone, and
Figure 2 shows the mobile with added clutter. Depth images
are not shown, because their floating-point representation
makes them difficult to display accurately.

Processing begins with low-level operations on the inten-
sity and depth images, followed by grouping operations on
the intensity data to extract candidate rectangles. The can-
didates are used to form partial matches with the stored
models. For each model, it is possible that multiple hypo-
thetical poses will be established. For each model pose, stored
information is used to probe the depth and intensity images
in a top-down manner. Each probe tests a hypothesis for the

FIG. 1. Intensity image of Sample model alone.

FIG. 2.

Image of Sample model with clutter.

THE DARPA IMAGE UNDERSTANDING BENCHMARK 5

existence of a rectangle in a given location in the images.
Rejection of a hypothesis, which only occurs when there is
strong evidence that a rectangle is actually absent, results in
the elimination of the corresponding model pose. Confir-
mation of the hypothesis results in the computation of a
match strength for the rectangle and an update of its rep-
resentation in the model pose with new size, orientation,
and position information. The match strength is zero when
there is no supporting evidence for the match and no evi-
dence that the rectangle is absent, as in the case of a rectangle
that is entirely occluded by another. After a probe has been
performed for every unmatched rectangle in the list of model
poses, an average match strength is computed for each pose
that has not been eliminated. The model pose with the highest
average is selected as the best match, and an image that high-
lights the model in the intensity image is generated. Table
IV lists the steps that make up the complete benchmark task.

The benchmark specification requires these steps to be
applied in implementing a solution. Furthermore, a rec-
ommended method for each step is described and should be
followed if possible. However, in recognition that some
methods do not work, or are extremely inefficient for a given
parallel architecture, implementors are permitted to substi-
tute other methods for individual steps. When it is necessary
to differ from the specification, the implementor should sup-
ply a justification for the change. It is also urged that, if
possible, a version of the implementation be written and
tested with the recommended method so that the difference
in performance can be determined.

Benchmark Philosophy and Rationale

In writing an integrated image understanding benchmark,
the goal is to create a scenario that is an approximation of
an actual image interpretation task. One must remember,
however, that the benchmark problem is not an end in itself,
but rather a framework for testing machine performance on
a wide variety of common vision operations and algorithms,
both individually and in an integrated form that requires
communication and control across algorithms and repre-
sentations. This benchmark is not intended to be a chal-
lenging vision research exercise, and the designers feel that
it should not be. Instead, it should be a balance between
simplicity for the sake of implementation by participants

TABLE 1V

Steps that Compose the Integrated Image
Understanding Benchmark

Low-level, bottom-up processing

Intensity image

Label connected components
Compute K-curvature
Extract corners

Depth image

3 X 3 Median filter®

3 X 3 Sobel and gradient magnitude®
Threshold®

TABLE IV—Continued

Intermediate-level processing

Select components with three or more corners

Convex hull of corners for each component

Compute angles between successive corners on convex hulls

Select corners with K-curvature and computed angles indicating a right
angle

Label components with three contiguous right angles as candidate
rectangles

Compute size, orientation, position, and intensity of each candidate
rectangle

Model-based, top-down processing

Determine all single-node isomorphisms of candidate rectangles in stored
models

Create a list of all potential model poses

Perform a match-strength probe for all single-node isomorphisms (see
below)”

Link together all single-node isomorphisms

Create a list of all probes required to extend each partial match

Order the probe list according to the match strength of the partial match
being extended

Perform a probe of the depth data for each probe on the list (see below)

Perform a match-strength probe for each confirming depth probe (see
below)?

Update rectangle parameters in the stored model for each confirming
probe?

Propagate the veto from a rejecting depth probe throughout the
corresponding partial match

When no probes remain, compute the average match strength for each
remaining model pose

Select the model with the highest average match strength as the best
match

Create the output intensity image, showing the matching modet

Depth probe

Select an X-Y-oriented window in the depth data that will contain the
rectangle

Perform a Hough transform within the window

Search the Hough array for strong edges with the approximate expected
orientations

If fewer than three edges are found, return the original model data with a
no-match flag

If three edges are found, infer the fourth from the model data

Compute new size, position, and orientation values for the rectangle

Match-strength probe

Select an oriented window in the depth data that is slightly larger than the
rectangle

Classify depth pixels as too close, too far, or in range’

If the number of too far pixels exceeds a threshold, return a veto

Otherwise, select a corresponding window in the intensity image

Select intensity pixels with the correct value

Compute a match strength on the basis of the number of correct vs
incorrect pixels in the images

4 Subtasks involving floating-point operations.

6 WEEMS

and the complexity that is representative of actual vision
processing. At the same time, it must test machine perfor-
mance in as many ways as possible. A further constraint on
the design was the requirement that it reuse tasks from the
first DARPA benchmark where possible, in order to take
advantage of the previous programming effort. The great
variety of architectures to be tested is itself a complicating
factor in the design of a benchmark. It was recognized that
each architecture may have its own most efficient method
for computing a given function.

The job of the designers was thus to balance these con-
flicting goals and constraints in developing the benchmark.
One result is that the solution is neither the most direct nor
the most efficient method. However, a direct solution would
eliminate several algorithms that are important in testing
certain aspects of machine performance. On the other hand,
increasing the complexity of the problem to necessitate the
use of those algorithms would require significant additional
processing that is redundant in terms of performance eval-
uation. Thus, while the benchmark solution is not a good
example of how to build an efficient vision system, it is an
effective test of machine performance both on a wide variety
of individual operations and on an integrated task. Partici-
pants were encouraged to develop timings for more optimal
solutions, in addition to the standard solution, if they so
desired.

The designers also recognize the tendency for any bench-
mark to turn into a horse race. However, that is not the goal
of this exercise, which is to increase the scientific insight of
architects and vision researchers into the architectural re-
quirements for knowledge-based image interpretation. To
this end, the benchmark requires an extensive set of instru-
mentation. Participants are required to report execution
times for individual tasks, for the entire task, for system
overhead, for input and output, for system initialization and
loading any precomputed data, and for different processor
configurations if possible. Implementation factors to be re-
ported include an estimate of time spent implementing the
benchmark, the number of lines of source code, the pro-
gramming language, and the size of the object code. Machine
configuration and technology factors that are requested in-
clude the number of processors, memory capacity, data path
widths, integration technology, clock and instruction rates,
power consumption, physical size and weight, cost, and any
limits to scaling up the architecture. Lastly, participants are
asked to comment on any changes to the architecture that
they feel would contribute to an improvement in perfor-
mance on the benchmark.

RESULTS AND ANALYSIS

Due to limitations of time and resources, only a few of
the original participants were able to complete the entire
benchmark exercise and test it on all five of the data sets. In

ET AL.

almost every case, there was some disclaimer to the effect
that a particular architecture could have shown better per-
formance given more implementation time or resources. It
was common for participants to underestimate the effort re-
quired to implement the benchmark, and several who had
said they would provide timings were unable to complete
even a portion of the task prior to the workshop.

Caution in Comparing Results

Care must be taken in comparing these results. For ex-
ample, no direct comparison should be made between results
obtained from actual execution and those derived from sim-
ulation, as noted by Carpenter [1]. No matter how carefully
a simulation is carried out, it is never as accurate as direct
execution. Likewise, no comparison should be made between
results from partial and complete implementations. A com-
plete implementation includes overhead for the interactions
between subtasks and for the fact that the program is sig-
nificantly larger than a partial implementation. Consider that
individual subtasks might be faster than a complete imple-
mentation simply because less paging is required. It is also
unwise to directly compare raw timings, even for similar
architectures, without considering the differences in tech-
nology between systems. For example, a system that executes
the benchmark faster than another is not necessarily archi-
tecturally superior if it also has a faster clock rate or more
processors.

In addition to technical problems in making direct com-
parisons, there are other considerations to keep in mind. For
example, what is impressive in many cases i not the raw
speed obtained, but rather the speed with respect to the effort
required to obtain it. While this has more to do with the
software tools available for an architecture, it is still important
in evaluating the overall usefulness of a system. Another
consideration is the ratio of cost to performance. In addition,
the size, weight, or power consumption may be of greater
importance than all-out speed in some applications. Finally,
each vision application has a different mix of bottom-up and
top-down processing, which is unlikely to match the mix
used in the benchmark. Thus, readers should not focus on
the total time, but may find it more useful to combine timings
for the subtasks to approximate the processing mix in some
familiar application. One of the purposes of this exercise is
merely to assemble as much data as possible so that the per-
formance results can be evaluated with respect to the re-
quirements of each potential application.

The Data Sets

Five data sets were distributed with the benchmark, having
the unimaginative names of Sample, Test, Test2, Test3, and
Test4. The Sample data set required the greatest processing
time on the sequential processors and was in some ways the
most complex. It had the greatest density of model elements
(both large and numerous) and enough similarity between

THE DARPA IMAGE UNDERSTANDING BENCHMARK 7

models to require a significant amount of top-down pro-
cessing to determine the best match. Sample also required
that a 5 X 5 median filter be used, rather than the 3 X 3 that
was specified for the other data sets (this was intended to
necessitate a certain level of generality in the median filter
routine and also to see if an architecture had special hardware
for 3 X 3 window operators that might not extend to larger
window sizes).

While Sample was intended to represent a processing bal-
ance between the bottom-up and top-down portions, the re-
maining data sets were somewhat biased toward one or the
other of those portions. The Test and Test2 data sets de-
emphasized the top-down processing by having only one
model that fit the images. It was possible to quickly reject
all of the other models and simply use the top-down probes
to determine the new positional information for the one re-
maining model. The Test3 and Test4 data sets emphasized
the top-down portion by presenting several models that were
nearly identical and which had considerable symmetry so
that numerous poses would be hypothesized. Thus, there
were several models that could not be eliminated, and a far
greater number of top-down probes were required to deter-
mine the best match.

Figures 1 and 2 show the intensity images for the Sample
model and input image data. Figures 3 and 4 show the model
and intensity images for the Test data set {which is similar
to Test2), and Figs. 5 and 6 show the Test3 data set (which
is similar to Test4).

Reporting Conventions

To set the context for the results, we first describe each of
the implementations. Results based on theoretical estima-
tions are not included here. Because of the variation in the
actual timings and the implementation information that was

FIG. 3.

Intensity image of model Test.

supplied, the data have been rearranged in a standard format,
which specifies the timings only for the major subtasks. All
timings have been scaled to seconds, even though for some
of the processors they would be more readable if presented
in milliseconds or minutes. A detailed presentation of all of
the data for the minor subtasks can be found in [15]. The
details of the architectures can be found in the appropriate
references. Physical and cost data for the commercial systems
are subject to change and should be obtained directly from
the manufacturers.

In addition to the timings, the specification requested that
a set of intermediate results be output to help verify that the
subtasks were performing comparable operations. For ex-
ample, the number of connected components in the intensity
image and the number of probes performed were among the
requested validation results. It was not possible for every
system to generate all of these data, but whatever validation
results were provided are included here.

From an architectural point of view, one useful measure
is the percentage of time devoted to each subtask, which
indicates the subtask’s relative difficulty for a particular ar-
chitecture. It also factors out all of the technological issues
and provides one of the few measures that’can be directly
compared across architectures. For each implementation,
we present a bar chart, showing the percentage of time spent
on the major subtasks, for each data set. In several cases,
where data were available for different machine configura-
tions, the configurations are also compared. The different
architectures are compared in a later section.

Sequential Solution

The sequential implementation was developed in C on a
Sun-3/160 workstation and contains roughly 4600 lines of

FIG. 4.

Image of model Test with clutter.

8 WEEMS ET AL.

FIG. 5. Intensity image of model Test3.

code, including comments. It was designed for portability
and has been recompiled on several different systems. The
only system-dependent portion is the result presentation step,
which uses the workstation’s graphics display. The imple-
mentation differs from the recommended method on the
Connected Component Labelling step in that it uses a stan-
dard sequential method for this well-defined function. The
sequential method minimizes array accesses and the corre-
sponding index calculations, which incur an avoidable time
penalty on a sequential machine.

Timings have been produced for all five data sets and on
three different machine configurations: a Sun-3/160 (a 16-
MHz 68020 processor) with 8 Mbytes of RAM, a Sun-3/
260 (a 25-MHz 68020) with 16 Mbytes of RAM, and a Sun-
4/260 (a 16-MHz SPARC processor) with 16 Mbytes of
RAM. The extra RAM on the latter two machines did not
affect performance, since the benchmark runs in 8 Mbytes
without paging. The 3/260 was equipped with a Weitek
floating-point coprocessor, while the 3/ 160 and 4 /260 used
only their standard coprocessors. Tables V, VI, and VIII show
the execution times for the Sun-3/160, Sun-3/260, and Sun-
4 /260, respectively. Tables VII and IX show the validation
data that were output by the Sun-3 and the Sun-4 systems,
respectively. Note the slight variation in the validation data,
due to minor differences in the floating-point results. These
variations are within the tolerances of the benchmark, and
the final result is the same. The timings were obtained with
the system clock utility, which has a resolution of 20 ms on
the Sun-3 systems and 10 ms on the Sun-4.

Figure 7 compares the three configurations on each of the
data sets with regard to the percentage of time spent on each
major subtask. The key identifies the pattern associated with
each major subtask. Note that the bottom-up portions are

FIG. 6.

Image of model Test3 with clutter.

represented by shading, while the top-down portions are
shown by cross-hatch patterns. The figure shows that Test
and Test2 require far less top-down processing than the other
three data sets. Closer examination reveals several interesting
points. For example, despite the faster Weitek coprocessor,
the Sun-3/260 spends proportionately more time than the
Sun-3/160 in the median filter, which involves floating-point
data. It is also interesting to note that the Sun-4 spends a
larger percentage of time on the top-down tasks (especially
the Hough probes) and overhead. Since the overhead de-
pends mostly on disk access time, time spent on it should
be expected to increase in percentage as the total time de-
creases.

Alliant FX-80 Solution

The Alliant FX-80 consists of up to 8 computational ele-
ments and 12 1/0 processors that share a physical memory

TABLE V
Sun-3/160 Times for Major Subtasks

Data set Sample Test Test2 Testd Test4
Total 797.88 338.06 329.24 551.82 553.16
Overhead 5.08 4.94 5.64 5.64 5.52
Label connected components 27.78 27.82 2840 2822 28.24
Rectangles from intensity 6.50 4.14 4.38 5.44 5.34
Median filter 246.66 118.88 92.86 90.92 90.90
Sobel 135.48 133.30 136.10 13528 13542
Initial graph match 2446 2500 2604 6844 67.62
Match-strength probes 72.98 3.28 586 47.88 42.06
Hough probes 253.70 8.28 1296 15398 162.34
Result presentation 2480 12.32 1666 1478 14.76

THE DARPA IMAGE UNDERSTANDING BENCHMARK 9

TABLE VI
Sun-3/260 Times for Major Subtasks

Data set Sample Test Test2 Test3 Test4
Total 299.38 132.54 119.52 19476 195.58
Overhead 2.92 3.04 3.44 3.44 3.44
Label connected components 1452 1446 1446 1458 14.66
Rectangles from intensity 3.74 2.38 2.48 3.16 2.98
Median filter 113.70 60.28 43.10 4298 43.26
Sobel 41.00 38.50 38.34 38.76 38.56
Initial graph match 6.16 6.08 6.58 1732 1694
Match-strength probes 17.56 0.78 1.40 1166 10.30
Hough probes 92.70 3.12 4.82 5796 60.44
Result presentation 6.68 3.64 4.72 4.50 4.30

through a sophisticated combination of caches, buses, and
an interconnection network. The computational elements
communicate with the shared memory via the interconnec-
tion network, which links them to a pair of special-purpose
caches that in turn access the memory over a bus that is
shared with the I/0 processor caches.

Alliant was able to implement the benchmark on the FX-
80 in roughly 1 programmer week. The programmer had no
experience in vision and, in many cases, did not bother to
learn how the benchmark code works. The implementation
was done by rewriting the system-dependent section to use
the available graphics hardware, compiling the code with
Alliant’s vectorizing and globally optimizing C compiler, us-
ing a profiling tool to determine the portions of the code
that used the greatest percentage of CPU time, inserting
compiler directives in the form of comments to break implicit
dependencies in four sections of the benchmark, and recom-
piling. Alliant provided results for five configurations of the
FX-80, with one, two, four, six, and eight computational
elements. To save space, only two of the configurations are
presented here. Table X shows the results for a single FX-

80 computational element, and Table XI shows an FX-80
with eight elements. Table XII shows the validation output
from the Alliant, which was identical for all configurations.
The validation output shows a small variation from that of
the Sun-3, but this is due to differences in the floating-point
calculations that are within acceptable limits and produce
the same final result. Alliant pointed out that the C compiler
was a new product at that time and did not yet provide as
much optimization as the FORTRAN compiler (a difference
of up to 50% in some cases).

Figure 8 compares relative times for the two FX-80 con-
figurations. The parallel configuration achieves the greatest
improvement on the floating-point operations (median filter
and Sobel), the Hough probes, and the labeling of the con-
nected components. These are the four subtasks that received
special attention in optimizing the implementation. The
proportional effort thus grew for overhead and the other
tasks.

Image Understanding Architecture

The Image Understanding Architecture (IUA) is being
built by the University of Massachusetts and Hughes Re-
search Laboratories specifically to address the problem of
supporting real-time, knowledge-based vision. The architec-
ture consists of three different parallel processors, arranged
in a hierarchy that is tightly coupled by layers of dual-ported
memory between the processors. The low-level processor is
a bit-serial, processor-per-pixel, SIMD, associative array. The
intermediate-level processor is an SIMD/MIMD array of
4096 16-bit digital signal processors that communicate via
an interconnection network. Each intermediate-level pro-
cessor shares a dual-ported memory segment with 64 low-
level processors. The high level is a mulitprocessor intended
to support Al processing and a blackboard model of com-
munication through a global shared memory, which is dual

TABLE VII
Sun-3/160 and 3/260 Validation Output (Identical Results for Both Configurations)

Data set Sample Test Test2 Test3 Testd
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21,256 14,542 12,898 18,584 18,825
Elements on initial probe list 381 19 27 400 249
Hough probes 55 3 5 97 93
Initial match-strength probes 28 20 15 142 142
Extension match-strength probes 60 3 5 110 97
Models remaining 2 1 1 2 |
Model selected 10 1 S 7 8
Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

10 WEEMS

TABLE VIII
Sun-4/260 Times for Major Subtasks

Data set Sample Test Test2 Test3 Testd
Total 121.01 4264 4094 81.05 82.84
Overhead 434 392 379 408 4.1
Label connected components 474 456 454 462 46!
Rectangles from intensity 1.10 068 0.71 096 091
Median filter 30.53 14.64 11.30 11.30 11.34
Sobel 12.16 1143 11.27 1141 1145
Initial graph match 342 346 354 1010 994
Match-strength probes 9.91 045 0.79 6.65 6.08
Hough probes 51.20 1.73 264 2952 31.99
Result presentation 3.38 1.67 224 207 202

ported with a segment of the intermediate-level processor’s
memory. A detailed description of the architecture can be
found in [14].

Because the architecture is under construction, an in-
struction-level simulator was used to develop the benchmark
implementation. The simulator is programmed in a com-
bination of Forth and an assembly language which has a
syntax similar to that of Ada assignment statements. The
benchmark was developed over a period of about 6 months,
but much of that time was spent in building basic library
routines and additional tools that were generally required
for any large programming task. A gth-scale version of the
simulator (4096 low-level, 64 intermediate-level, and 1 high-
level processor) runs on a Sun workstation and was used to
develop the initial implementation. The implementation was
then transported to a full-scale IUA simulator running on a
Sequent Symmetry multiprocessor.

Table XIII presents the TUA results with a resolution of
one instruction time (0.1 ms). There are several points to
note. Because the processing of different steps can be over-
lapped in the different levels, the sum of the individual step

ET AL.

timings does not equal the total time. Some of the individual
timings are averages, since intermediate-level processing
takes place asynchronously and individual processes vary in
their execution times. For example, the time for all of the
match-strength probes is difficult to estimate since probes
are created asynchronously and their processing is overlapped
with each other and with other steps. However, the time for
match extension includes the time to complete all of the
subsidiary match-strength probes. Thus, where the table
would usually break the match extension step into separate
times for match-strength and Hough probes, it shows the
total time for match extension and the average time for an
individual probe.

Table XIV shows the validation output for the [UA. The
number of elements on the initial probe list is not given
because parallel tasks were used, and thus there is no single
initial probe list. The number of probes varies from the se-
quential version because a somewhat more robust variation
of the probe algorithm, which vetoed poses at different points
in the matching process was used. Also, the separate processes
shared their probe results so that a few duplicate probes were
eliminated. The added robustness in the probe algorithm
also lead to a slightly lower average match strength.

Lastly, it should be mentioned that the intermediate-level
processor was greatly underutilized by the benchmark (only
0.2% of its processors were activated), and the high-level
processor was not used at all. The low-level processor was
also idle roughly 50% of the time while awaiting requests for
top-down probes from the intermediate level.

Figure 9 shows the relative time spent by the IUA on each
major subtask, for each data set. The graph-matching and
match extension processes are clearly a dominant factor. Be-
cause task parallelism was used to match each model sepa-
rately, the maximum obtainable parallelism was a factor of
10, versus a factor of over 200,000 for the bottom-up sub-
tasks, which were done with data parallelism. In practice,

TABLE IX
Sun-4/260 Validation Output

Data set Sample Test Test2 Test3 Testd
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21,254 14,531 12,892 18,579 18,822
Elements on initial probe list 381 19 27 389 248
Hough probes 55 3 5 93 92
Initial match-strength probes 28 20 15 142 142
Extension match-strength probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Model selected 10 1 5 7 8
Average match strength 0.64 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

THE DARPA IMAGE UNDERSTANDING BENCHMARK

I

Testd4 4/260 [] FILITL. NN S e =
3/260 [] V. AN S H]
3/160 B VITTLL. NN V0000000000000

Test3 4/260 77777 ASSS R
3/260] 777 AN
3/160 [/ 7777 ANSSNIOOOOOOOCOOOAL]

Test2 4/260 1
3/260 |
3/160 |

Test 4/260 T
3/260 [
3/160 |
Sample 4/260 1
3/260 |

3/160 ; |

4] 10 20 30 40 50 60 70 80 i 90 190
(0 Result B Houghprobes E1 Match strength F4 Initial graph B sobel

presentation

1
| 1 Median filter

probes

1 Rectangles from
intensity

match

B9 Label connected [] Overhead
components

FIG. 7. Sun workstation percentage of effort for each major subtask.

the improvement due to task parallelism only equaled the
number of models not vetoed during the matching process.
However, the low utilization of the intermediate-level pro-
cessors permits the task-parallel solution to operate on a set
of several thousand models with about the same perfor-
mance. The overhead for the IUA includes generating tables
that are used in multiple places in the processing. Note that
the time for labeling connected components is so small that
it is invisible. For Test3 and Test4, the median filter is also
too small to be visible.

Aspex ASP

The Associative String Processor {(ASP) is being built by
R. M. Lea at the University of Brunel and Aspex Ltd. in
England [6]. It is designed as a general-purpose processing
array for implementation in wafer-scale technology. The
processor consists of 262,144 processors arranged as 512
strings of 512 processors each. Each processor contains a 96-
bit data register and a 5-bit activity register. A string consists
of 512 processors linked by a communication network that
is also tied to a data exchanger and a vector data buffer. The
vector data buffers of the strings are linked through another
data exchanger and data buffer to another communication
network. One of the advantages of this arrangement is a high
degree of fault tolerance. The system can be built with 1024
VLSI devices, 128 ULSI devices, or 32 WSI devices. Esti-
mated power consumption is 650 W. The processor clock
and instruction rate is projected to be 20 MHz. Architectural
changes that would improve the benchmark performance
include increasing the number of processors (improves per-
formance on K-curvature, median filter, and Sobel), in-

creasing the speed of the processors and communication links
(linear speedup on all tasks), and adding a separate controller
to each ASP substring, resulting in an approximately 18%
increase overall.

Because the system is under construction, a software sim-
ulator implementation was used. The benchmark was pro-
grammed in an extended version of Modula-2 over a period
of 3 months by two programmers, following a 3-month pe-
riod of initial study of the requirements and development
of a solution strategy. A Jarvis’ March algorithm was sub-
stituted for the recommended Graham Scan method on the
convex hull. Table XV lists the major subtask times for the
ASP. Timings were not provided for several of the minor
steps in the model-matching portion of the benchmark, be-
cause a different method was used. The time under overhead
accounts for the input and output of several intermediate
images. The time under the section that extracts rectangles

TABLE X
Alliant FX-80 Single-Processor Times for Major Subtasks

Data set Sample Test Test2 Test3 Test4
Total 207.890 104.561 95.139 139.808 142.i162
Overhead 8.744 8.702 8.672 8.664 8.658
Label connected components 17.185 17.088 17.053 17.195 17.189
Rectangles from intensity 3.350 2.058 2.126 2993 2.929
Median filter 77.464 43.812 32.049 32.073 32.046
Sobel 26.148 26.080 26.064 26.129 26.130
Initial graph match 2.546 2.460 2.624 7.485 7.384
Match-strength probes 7.235 0.316 0.576 4.768 4.371
Hough probes 60.956 1.901 3.312 37.631 40.632
Result presentation 3.271 1.862 2.390 2.179 2.176

12 WEEMS

TABLE XI
Alliant FX-80 Eight-Processor Times for Major Subtasks

Data set Sample Test Test2 Test3 Testd
Total 60.112 33.138 32915 53.952 53.620
Overhead 8.787 8.728 8710 8711 8.721
Label connected components 7.225 7.136 7.119 7.252 7.264
Rectangles from intensity 3462 2113 2177 3.114 3.060
Median filter 10.113 5857 4.323 4324 4318
Sobel 3.799 3790 3.788 3.796 3.796
Initial graph match 2578 2493 2655 7.615 17473
Match-strength probes 7.232 0317 0576 4.804 4.404
Hough probes 13.090 0.554 0.898 11.374 11.716
Result presentation 3267 1.861 2384 2180 2.175

from the intensity image accounts for the output and sub-
sequent input of data records for corners and rectangles. The
output and input of intermediate data were done to take
advantage of the vector data buffers in the ASP, which allow
strings to be quickly transferred out and then to be rebroad-
cast to the array. The implementors were thus able to cleverly
recast the task-parallel orientation of the model-matching
process into a data-parallel form by creating all of the dif-
ferent matching combinations, so that only a simple com-
parison was required to determine a match. However, for
large sets of models, this technique is likely to result in an
excessive number of combinations. The use of a data-parallel
technique also makes it harder to compare the ASP with
other systems which could have benefited from that method.
Table X VI shows the validation output, which is similar to
the sequential output except for some variation in the float-
ing-point results and the absence of data for the number of
elements on the initial probe list.

Figure 10 shows the percentage of time spent by the ASP

ET AL.

on each major subtask. The time is dominated by labeling
connected components and performing Hough probes, which
require significant amounts of communication between
strings, which must pass through the local data exchangers
and then through the data exchanger that connects the ends
of the strings together. Because of the data-parallel method
that was used, the time for the initial graph match step is
invisible in the figure.

Sequent Symmetry 81

The Sequent Computer Systems Symmetry §1 multipro-
cessor consists of Intel 80386 processors, running at 16.5
MHz, connected via a shared bus to a shared memory. The
configuration used to obtain these results included 12 pro-
cessors (one of which 1s reserved by the system), each with
an 80387 math coprocessor and 96 Mbytes of shared mem-
ory. The system also contained the older A-model caches,
which induce more traffic on the bus than the newer caches.
The timings in Table X VII were obtained by the benchmark
developers as part of the effort to ensure the portability of
the benchmark.

About a month was spent developing the parallel imple-
mentation for the Sequent. The programmer was familiar
with the benchmark, but had no previous experience with
the Sequent system. Part of the development period was spent
modifying the sequential version to enhance its portability.
The low-level tasks were directly converted by dividing the
data among the processors in a manner that avoided write
contention. About half of the development time was spent
adding data-locking mechanisms to the model-matching
portion of the benchmark and resolving problems with tim-
ing and race conditions. It was only possible to obtain timings
for the major steps in the benchmark, because the Sequent
operating system does not provide facilities for accurately
timing individual child processes. The benchmark was run

TABLE XII
Alliant FX-80 Validation Output

Statistics Sample Test Test2 Test3 Test4
Connected components 134 35 34 114 100
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21,266 14,542 12,888 18,572 18,813
Elements on initial probe list 374 19 27 389 248
Hough probes 55 3 5 93 92
Initial match-strength probes 28 20 15 142 142
Extension match-strength probes 60 3 5 105 97
Models remaining 2 1 1 2 1
Model selected 10 ! 5 7 8
Average match strength 0.65 0.96 0.94 0.84 0.88
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22

