
JOURNAL OF PARALLEL AND DlSTRlBUTED COMPUTING 11, l-24 ( 1991) 

INVITED PAPER 

The DARPA Image Understanding Benchmark for Parallel Computers* 

CHARLES~EEMS, EDWARDRISEMAN,ANDALLENHANSON 

Computer and Information Science Department, University of Massachusetts at Amherst, Amherst, Massachusetts 01003 

AND 

AZRIEL ROSENFELD 

Center for Automation Research, University ofMaryland at College Park, College Park, Maryland 20742 

This paper describes a new effort to evaluate parallel archi- 
tectures applied to knowledge-based machine vision. Previous 
vision benchmarks have considered only execution times for iso- 
lated vision-related tasks, or a very simple image processing sce- 
nario. However, the performance of an image interpretation sys- 
tem depends upon a wide range of operations on different levels 
of representations, from processing arrays of pixels, through 
manipulation of extracted image events, to symbolic processing 
of stored models. Vision is also characterized by both bottom- 
up (image-based) and top-down (model-directed) processing. 
Thus, the costs of interactions between tasks, input and output, 
and system overhead must be taken into consideration. There- 
fore, this new benchmark addresses the issue of system perfor- 
mance on an integrated set of tasks. The Integrated Image Un- 
derstanding Benchmark consists of a model-based object rec- 
ognition problem, given two sources of sensory input, intensity 
and range data, and a database of candidate models. The models 
consist of configurations of rectangular surfaces, floating in 
space, viewed under orthographic projection, with the presence 
of both noise and spurious nonmodel surfaces. A partially or- 
dered sequence of operations that solves the problem is specified 
along with a recommended algorithmic method for each step. 
In addition to reporting the total time and the final solution, 
timings are requested for each component operation, and inter- 
mediate results are output as a check on accuracy. Other factors 
such as programming time, language, code size, and machine 
configurations are reported. As a result, the benchmark can be 
used to gain insight into processor strengths and weaknesses 
and may thus help to guide the development of the next gen- 
eration of parallel vision architectures. In addition to discussing 
the development and specification of the new benchmark, this 
paper presents the results from running the benchmark on the 
Connection Machine, Warp, Image Understanding Architecture, 
Associative String Processor, Alliant FX-80, and Sequent Sym- 
metry. The results are discussed and compared through a mea- 
surement of relative effort, which factors out the effects of dif- 
fering technologies. 0 1991 Academic PESS, IIIC. 

INTRODUCTION 

Knowledge-based image understanding presents an im- 
mense computational challenge that has yet to be satisfied 
by any parallel architecture. The challenge is not merely to 
provide a greater quantity of operations per second, but also 
to supply the necessary forms of computation, communi- 
cation, and control. Consider that a sequence of images at 
medium resolution (5 12 X 5 12 pixels) and standard frame 
rate ( 30 frames per second) in color (24 bits per pixel) rep- 
resents a data input rate of about 23.6 million bytes per 
second and, in a typical interpretation scenario, many thou- 
sands of operations may be applied to each input pixel in 
order to enhance and segment an image and to extract var- 
ious features from it. But in addition, a vision system must 
organize extracted image features via perceptual grouping 
mechanisms, locate relevant models in a potentially vast store 
of knowledge and compare them to partial’ models derived 
from the input data, generate hypotheses concerning the en- 
vironment of the sensor, resolve conflicting hypotheses to 
arrive at a consistent interpretation of the environment, 
manage and update stored knowledge, etc. 

While traditional supercomputing benchmarks may be 
useful in estimating the performance of an architecture on 
some types of image processing tasks, as noted by Duff [ 31, 
they have little relevance to the majority of the processing 
that takes place in a vision system. Nor has there been much 
effort to define a vision benchmark for supercomputers, since 
those machines in their traditional form have usually been 
viewed as inappropriate vehicles for knowledge-based vision 
research. However, now that parallel processors are becoming 
readily available, and because they are viewed as being better 
suited to vision processing, researchers in both machine vi- 
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sion and parallel architecture are taking an interest in per- 
formance issues with respect to vision. The next section 
summarizes the other prominent work that has been done 
in the area of vision benchmarks to date. 

REVIEW OF PREVIOUS VISION 
BENCHMARK EFFORTS 

One of the first parallel processor benchmarks to address 
vision-related processing was the Abingdon Cross bench- 
mark, defined at the 1982 Multicomputer Workshop in 
Abingdon, England. In that benchmark, an input image 
consists of a dark background with a pair of brighter rectan- 
gular bars, equal in size, that cross at their midpoints and 
are centered in the image. Gaussian noise is added to the 
entire image. The goal of the exercise is to determine and 
draw the medial axis of the cross formed by the two bars. 
The results obtained from solving the benchmark problem 
on various machines were presented by Preston [ 7, 81 at the 
1984 Multicomputer Workshop in Tanque Verde, Arizona, 
and many of the participants spent a fairly lengthy session 
discussing problems with the benchmark and designing a 
new benchmark that, it was hoped, would solve those prob- 
lems. 

One concern of the Tanque Verde group was that the 
Abingdon Cross lacks breadth, requiring a reasonably small 
repertoire of image processing operations to construct a so- 
lution. The second concern was that the specification did 
not constrain the a priori information that could be used to 
solve the problem. In theory, a valid solution is to simply 
draw the medial lines since their true positions are known. 
Although this was never done, there was argument over 
whether it was acceptable for a solution to make use of the 
fact that the bars were oriented horizontally and vertically 
in the image. A final concern was that no method was pre- 
scribed for solving the problem, with the result that every 
solution was based on a different method. When a bench- 
mark can be solved in different ways, the performance mea- 
surements are difficult to compare because they include an 
element of programmer cleverness. Also, the use of a con- 
sistent method would permit some comparison of the basic 
operations that make up a complete solution. 

The Tanque Verde group specified a new benchmark, 
called the Tanque Verde Suite, that consisted of a large col- 
lection of individual vision-related problems (Table I). Each 
of the problems was to be further defined by a member of 
the group, who would also generate test data for his or her 
assigned problem. Unfortunately, only a few of the problems 
were ever developed, and none of them were widely tested 
on different architectures. Thus, while the simplicity of the 
Abingdon Cross may have been criticized, it was the re- 
spondent complexity of the Tanque Verde Suite that inhib- 
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In 1986, a new benchmark was developed at the re- 
quest of the Defense Advanced Research Projects Agency 
(DARPA). Like the Tanque Verde Suite, it was a collection 
of vision-related problems, but was much smaller and easier 
to implement (Table II). A workshop was held in Washing- 
ton, D.C., in November of 1986 to present the results of 
testing the benchmark on several machines, with those results 
summarized by Rosenfeld in [ 91. The consensus of partic- 
ipants was that the results cannot be compared directly for 
several reasons. First, as with the Abingdon Cross, no method 
was specified for solving any of the problems. Thus, in many 
cases, the timings were more indicative of the knowledge or 
cleverness of the programmer than of a machine’s true ca- 
pabilities. Second, no input data were provided and the spec- 
ifications allowed a wide range of possible inputs. Thus, some 
participants chose to test a worst-case input, while others 
chose “average” input values that varied considerably in dif- 
ficulty. 

The workshop participants pointed out other shortcomings 
of the benchmark. Chief among these was that it consisted 
of isolated tasks and therefore did not measure performance 
related to the interactions between the components of a vision 
system. For example, there might be a particularly fast so- 
lution to a problem on a given architecture if the input data 
is arranged in a special manner. However, this apparent ad- 
vantage might be inconsequential if a vision system does not 
normally use the data in such an arrangement and the cost 
of rearranging the data is high. Another shortcoming was 
that the problems had not been solved before they were dis- 
tributed. Thus, there was no canonical solution on which 
the participants could rely for a definition of correctness, 
and there was even one problem (graph isomorphism ) for 
which it turned out that there was no practical solution. 

Having a known correct solution is essential, since it is 
difficult to compare the performance of architectures that 
produce different results. For example, suppose architecture 

TABLE I 

Tanque Verge Benchmark Suite 

Standard utilities High-level tasks 

ited the latter’s use. 

3 x 3 Separable convolution 
3 X 3 General convolution 
15 X 15 Separable convolution 
15 X I5 General convolution 

Affine transform 
Discrete Fourier transform 
3 X 3 median filter 
256 Bin histogram 
Subtract two images 
Arctangent (image I /image2) 
Hough transform 
Euclidean distance transform 

Edge finding 
Line finding 
Corner finding 
Noise removal 
Generalized Abingdon Cross 
Segmentation 
Line parameter extraction 
Deblurring 
Classification 
Printed circuit inspection 
Stereo image matching 
Camera motion estimation 
Shape identification 
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TABLE II 

Tasks from the First DARPA Image Understanding 
Benchmark 

1 I X 11 Gaussian convolution of a 5 12 X 5 12 eight-bit image 
Detection of zero crossings in a difference of Gaussians image 
Construct and output border pixel list 
Label connected components in a binary image 
Hough transform of a binary image 
Convex hull of 1000 points in 2D real space 
Voronoi diagram of 1000 points in 2D real space 
Minimal spanning tree across 1000 points in 2D real space 
Visibility of vertices for 1000 triangles in 3D real space 
Minimum cost path through a weighted graph of 1000 nodes of order 100 
Find all isomorphisms of a loo-node graph in a lOOO-node graph 

A performs a task in half the time of B, but A uses integer 
arithmetic while B uses floating point, and they obtain dif- 
ferent results. Is A really twice as powerful as B? Since prob- 
lems in vision are often ill-defined, it is possible to argue for 
the correctness of many different solutions. In a benchmark, 
however, the goal is not to solve a vision problem but rather 
to test the performance of different machines doing com- 
parable work. 

The conclusion from this first DARPA exercise was that 
a new benchmark should be developed. Specifically, the new 
benchmark should test system performance on a task that 
approximates an integrated solution to a machine vision 
problem. A complete solution with test data sets should be 
constructed and distributed with the benchmark specifica- 
tion. And, the benchmark should be specified to minimize 
opportunities for taking shortcuts in solving the problem. 
The task of constructing the new benchmark was assigned 
to the vision research groups at the University of Massachu- 
setts at Amherst and the University of Maryland. 

A preliminary specification was drawn up and circulated 
among the DARPA image understanding community for 
comment. The specification was revised and a solution pro- 
grammed on a standard sequential machine. In creating the 
solution, several problems that required corrections to the 
specification were discovered. The solution was programmed 
by the University of Massachusetts group, and the University 
of Maryland group then verified its validity, portability, and 
quality. Maryland also reviewed the solution for generality 
and neutrality with respect to underlying architectural as- 
sumptions. The Massachusetts group developed five test data 
sets and a sample parallel solution for a commercial multi- 
processor (the Sequent Symmetry 8 I ) . 

In March of 1988, the benchmark was made available 
from Maryland via network access, or on tape from Mas- 
sachusetts. The benchmark release consisted of the sequential 
and parallel solutions, the five data sets, and software for 
generating additional test data. The benchmark specification 
was presented by Weems at the DARPA Image Understand- 

ing Workshop, the International Supercomputing Confer- 
ence, and the Computer Vision and Pattern Recognition 
Conference [ 1 1 - 13 1. Over 25 academic and industrial groups 

(Table III) obtained copies of the benchmark release. Nine 
of those groups developed either complete or partial versions 
of the solution for an architecture. A workshop was held in 
October of 1988, in Avon Old Farms, Connecticut, to present 
these results to members of the DARPA research commu- 
nity. As in the previous workshops, the participants spent a 
session developing a critique of the benchmark and making 
recommendations for the design of the next version. 

The remainder of this paper begins with a brief review of 
the benchmark task and the rationale behind its design; then 
it summarizes results that were based on hardware execution 
or on instruction-level simulation of the benchmark. Myung 
Sunwoo [lo] from the University of Texas at Austin and 
Alok Choudhary [ 21 from the University of Illinois also pre- 
sented estimated results for proposed architectures, which 
are not included here. Also not included are timings from 
Active Memory Technology on its DAP array processor that 
are for a set of independent image processing tasks only 
somewhat related to the benchmark problem. Finally, the 
paper presents the criticisms raised at the workshop, along 
with recommendations for addressing them. 

BENCHMARK TASK OVERVIEW 

The overall task that is to be performed by this benchmark 
is the recognition of an approximately specified 2{-dimen- 
sional “mobile” sculpture in a cluttered environment, given 
images from intensity and range sensors. The intention of 
the benchmark designers is that neither of the input images, 
by itself, should be sufficient to complete the task. 

The sculpture to be recognized is a collection of 2-dimen- 
sional rectangles of various sizes, brightnesses, 2-dimensional 

TABLE III 

Distribution List for the Second DARPA Benchmark 

International Parallel Machines Hughes AI Center 
Mercury Computer Systems University of Wisconsin 
Stellar Computer George Washington University 
Myrias Computer University of Massachusetts” 
Active Memory Technology SAIC 
Thinking Machines” Eastman-Kodak 
Aspex Ltd. University College London 
Texas Instruments Encore Computer 
IBM MIT 
Carnegie-Mellon University” University of Rochester 
Intel Scientific Computers’ University of Illinois” 
Cray Research University of Texas at Austin” 
Sequent Computer Systems” Alliant Computer” 

a Results presented at the Avon Workshop. 
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orientations, and depths. Each rectangle is oriented normal 
to the Z axis (the viewing axis), with constant depth across 
its surface, and the images are constructed under ortho- 
graphic projection. Thus an individual rectangle has no in- 
trinsic depth component, but depth is a factor in the spatial 
relationships between rectangles-hence the notion that the 
sculpture is 2 i-dimensional. 

The clutter in the scene consists of additional rectangles, 
with sizes, brightnesses, 2-dimensional orientations, and 
depths that are similar to those of the sculpture. Rectangles 
may partially or completely occlude other rectangles. It is 
also possible for a rectangle to disappear when another of 
the same brightness or slightly greater depth (such that the 
difference in depth is less than the noise threshold) is located 
directly behind it. 

A set of models representing a collection of similar sculp- 
tures is provided, and the task is to identify which model 
best matches the scene. The models are only approximate 
representations in that they permit variations in the sizes, 
orientations, depths, and spatial relationships between the 
component rectangles. A model is a tree structure, where 
the links represent the invisible links in the sculpture. Each 
node of the tree contains depth, size, orientation, and inten- 
sity information for a single rectangle. The child links of a 
node describe the spatial relationships between it and nodes 
below. 

The scenario that was imagined in constructing the prob- 
lem was a semirigid mobile, with invisible links, viewed from 
above. with portions of other mobiles blowing through the 
scene. The initial state is that previous processing has nar- 
rowed the range of potential matches to a few similar sculp- 
tures and has oriented them to match a previous image. 
However, the objects have since moved, and new images 
have been taken prior to this final step. The system must 

choose the best match and update the corresponding model 
with the positional information extracted. 

The intensity and depth sensors are precisely registered 
with each other and both have a resolution of 5 12 X 5 12 
pixels. There is no averaging or aliasing in either of the sen- 
sors. A pixel in the intensity image is an &bit integer grey 
value. In the depth image a pixel is a 32-bit floating-point 
range value. The intensity image is noise free, while the depth 
image has added Gaussian noise. The reason that only one 
of the images is noisy is that adding noise to the other image 
simply requires more of the same sorts of processing to be 
performed, and one goal of the benchmark designers was to 
maximize the variety of processing while minimizing pro- 
grammer effort. 

A pair of artificial test images is created by first selecting 
one model. The model is then rotated and translated as a 
whole, and its individual elements are perturbed slightly. 
Next, a collection of spurious rectangles with properties sim- 
ilar to those in the chosen model is created. All of the rect- 
angles (both model and spurious) are then ordered by depth 
and drawn in the two image arrays. Lastly, an array of Gaus- 
sian-distributed noise is added to the depth image. 

Figure 1 shows an intensity image of a mobile alone, and 
Figure 2 shows the mobile with added clutter. Depth images 
are not shown, because their floating-point representation 
makes them difficult to display accurately. 

Processing begins with low-level operations on the inten- 
sity and depth images, followed by grouping operations on 
the intensity data to extract candidate rectangles. The can- 
didates are used to form partial matches with the stored 
models. For each model, it is possible that multiple hypo- 
thetical poses will be established. For each model pose, stored 
information is used to probe the depth and intensity images 
in a top-down manner. Each probe tests a hypothesis for the 

FIG. 1. Intensity image of Sample model alone. FIG. 2. Image of Sample model with clutter. 
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existence of a rectangle in a given location in the images. 
Rejection of a hypothesis, which only occurs when there is 
strong evidence that a rectangle is actually absent, results in 
the elimination of the corresponding model pose. Confir- 
mation of the hypothesis results in the computation of a 
match strength for the rectangle and an update of its rep- 
resentation in the model pose with new size, orientation, 
and position information. The match strength is zero when 
there is no supporting evidence for the match and no evi- 
dence that the rectangle is absent, as in the case of a rectangle 
that is entirely occluded by another. After a probe has been 
performed for every unmatched rectangle in the list of model 
poses, an average match strength is computed for each pose 
that has not been eliminated. The model pose with the highest 
average is selected as the best match, and an image that high- 
lights the model in the intensity image is generated. Table 
IV lists the steps that make up the complete benchmark task. 

The benchmark specification requires these steps to be 
applied in implementing a solution. Furthermore, a rec- 
ommended method for each step is described and should be 
followed if possible. However, in recognition that some 
methods do not work, or are extremely inefficient for a given 
parallel architecture, implementors are permitted to substi- 
tute other methods for individual steps. When it is necessary 
to differ from the specification, the implementor should sup- 
ply a justification for the change. It is also urged that, if 
possible, a version of the implementation be written and 
tested with the recommended method so that the difference 
in performance can be determined. 

Benchmark Philosophy and Rationale 

In writing an integrated image understanding benchmark, 
the goal is to create a scenario that is an approximation of 
an actual image interpretation task. One must remember, 
however, that the benchmark problem is not an end in itself, 
but rather a framework for testing machine performance on 
a wide variety of common vision operations and algorithms, 
both individually and in an integrated form that requires 
communication and control across algorithms and repre- 
sentations. This benchmark is not intended to be a chal- 
lenging vision research exercise, and the designers feel that 
it should not be. Instead, it should be a balance between 
simplicity for the sake of implementation by participants 

TABLE IV 

Steps that Compose the Integrated Image 
Understanding Benchmark 

Low-level, bottom-up processing 

Intensity image Depth image 
Label connected components 3 X 3 Median filter” 
Compute K-curvature 3 X 3 Sobel and gradient magnitude” 
Extract comers Threshold“ 

TABLE IV-Continued 

Intermediate-level processing 

Select components with three or more corners 
Convex hull of corners for each component 
Compute angles between successive corners on convex hulls 
Select corners with K-curvature and computed angles indicating a right 

angle 
Label components with three contiguous right angles as candidate 

rectangles 
Compute size, orientation, position, and intensity of each candidate 

rectangle 

Model-based, top-down processing 

Determine all single-node isomorphisms of candidate rectangles in stored 
models 

Create a list of all potential model poses 
Perform a match-strength probe for all single-node isomorphisms (see 

below) 
Link together all single-node isomorphisms 
Create a list of all probes required to extend each partial match 
Order the probe list according to the match strength of the partial match 

being extended 
Perform a probe of the depth data for each probe on the list (see below) 
Perform a match-strength probe for each confirming depth probe (see 

below) 
Update rectangle parameters in the stored model for each confirming 

probe’ 
Propagate the veto from a rejecting depth probe throughout the 

corresponding partial match 
When no probes remain, compute the average match strength for each 

remaining model pose 
Select the model with the highest average match strength as the best 

match 
Create the output intensity image, showing the matching model 

Depth probe 

Select an X-Y-oriented window in the depth data that will contain the 
rectangle 

Perform a Hough transform within the window 
Search the Hough array for strong edges with the approximate expected 

orientations 
If fewer than three edges are found, return the original model data with a 

no-match flag 
If three edges are found, infer the fourth from the model data 
Compute new size, position, and orientation values for the rectangle 

Match-strength probe 

Select an oriented window in the depth data that is slightly larger than the 
rectangle 

Classify depth pixels as too close, too far, or in range” 
If the number of too far pixels exceeds a threshold, return a veto 
Otherwise, select a corresponding window in the intensity image 
Select intensity pixels with the correct value 
Compute a match strength on the basis of the number of correct vs 

incorrect pixels in the images 

’ Subtasks involving floating-point operations. 
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and the complexity that is representative of actual vision 
processing. At the same time, it must test machine perfor- 
mance in as many ways as possible. A further constraint on 
the design was the requirement that it reuse tasks from the 
first DARPA benchmark where possible, in order to take 
advantage of the previous programming effort. The great 
variety of architectures to be tested is itself a complicating 
factor in the design of a benchmark. It was recognized that 
each architecture may have its own most efficient method 
for computing a given function. 

The job of the designers was thus to balance these con- 
flicting goals and constraints in developing the benchmark. 
One result is that the solution is neither the most direct nor 
the most efficient method. However, a direct solution would 
eliminate several algorithms that are important in testing 
certain aspects of machine performance. On the other hand, 
increasing the complexity of the problem to necessitate the 
use of those algorithms would require significant additional 
processing that is redundant in terms of performance eval- 
uation. Thus, while the benchmark solution is not a good 
example of how to build an efficient vision system, it is an 
effective test of machine performance both on a wide variety 
of individual operations and on an integrated task. Partici- 
pants were encouraged to develop timings for more optimal 
solutions, in addition to the standard solution, if they so 
desired. 

The designers also recognize the tendency for any bench- 
mark to turn into a horse race. However, that is not the goal 
of this exercise, which is to increase the scientific insight of 
architects and vision researchers into the architectural re- 
quirements for knowledge-based image interpretation. To 
this end, the benchmark requires an extensive set of instru- 
mentation. Participants are required to report execution 
times for individual tasks, for the entire task, for system 
overhead, for input and output, for system initialization and 
loading any precomputed data, and for different processor 
configurations if possible. Implementation factors to be re- 
ported include an estimate of time spent implementing the 
benchmark, the number of lines of source code, the pro- 
gramming language, and the size of the object code. Machine 
configuration and technology factors that are requested in- 
clude the number of processors, memory capacity, data path 
widths, integration technology, clock and instruction rates, 
power consumption, physical size and weight, cost, and any 
limits to scaling up the architecture. Lastly, participants are 
asked to comment on any changes to the architecture that 
they feel would contribute to an improvement in perfor- 
mance on the benchmark. 

RESULTS AND ANALYSIS 

Due to limitations of time and resources, only a few of 
the original participants were able to complete the entire 
benchmark exercise and test it on all five of the data sets. In 

almost every case, there was some disclaimer to the effect 
that a particular architecture could have shown better per- 
formance given more implementation time or resources. It 
was common for participants to underestimate the effort re- 
quired to implement the benchmark, and several who had 
said they would provide timings were unable to complete 
even a portion of the task prior to the workshop. 

Caution in Comparing Results 

Care must be taken in comparing these results. For ex- 
ample, no direct comparison should be made between results 
obtained from actual execution and those derived from sim- 
ulation, as noted by Carpenter [ 11. No matter how carefully 
a simulation is carried out, it is never as accurate as direct 
execution. Likewise, no comparison should be made between 
results from partial and complete implementations. A com- 
plete implementation includes overhead for the interactions 
between subtasks and for the fact that the program is sig- 
nificantly larger than a partial implementation. Consider that 
individual subtasks might be faster than a complete imple- 
mentation simply because less paging is required. It is also 
unwise to directly compare raw timings, even for similar 
architectures, without considering the differences in tech- 
nology between systems. For example, a system that executes 
the benchmark faster than another is not necessarily archi- 
tecturally superior if it also has a faster clock rate or more 
processors. 

In addition to technical problems in making direct com- 
parisons, there are other considerations to keep in mind. For 
example, what is impressive in many cases is not the raw 
speed obtained, but rather the speed with respect to the effort 
required to obtain it. While this has more to do with the 
software tools available for an architecture, it is still important 
in evaluating the overall usefulness of a system. Another 
consideration is the ratio of cost to performance. In addition, 
the size, weight, or power consumption may be of greater 
importance than all-out speed in some applications. Finally, 
each vision application has a different mix of bottom-up and 
top-down processing, which is unlikely to match the mix 
used in the benchmark. Thus, readers should not focus on 
the total time, but may find it more useful to combine timings 
for the subtasks to approximate the processing mix in some 
familiar application. One of the purposes of this exercise is 
merely to assemble as much data as possible so that the per- 
formance results can be evaluated with respect to the re- 
quirements of each potential application. 

The Data Sets 
Five data sets were distributed with the benchmark, having 

the unimaginative names of Sample, Test, Test2, Test3, and 
Test4. The Sample data set required the greatest processing 
time on the sequential processors and was in some ways the 
most complex. It had the greatest density of model elements 
(both large and numerous) and enough similarity between 
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models to require a significant amount of top-down pro- 
cessing to determine the best match. Sample also required 
that a 5 X 5 median filter be used, rather than the 3 X 3 that 
was specified for the other data sets (this was intended to 
necessitate a certain level of generality in the median filter 
routine and also to see if an architecture had special hardware 
for 3 X 3 window operators that might not extend to larger 
window sizes). 

While Sample was intended to represent a processing bal- 
ance between the bottom-up and top-down portions, the re- 
maining data sets were somewhat biased toward one or the 
other of those portions. The Test and Test2 data sets de- 
emphasized the top-down processing by having only one 
model that fit the images. It was possible to quickly reject 
all of the other models and simply use the top-down probes 
to determine the new positional information for the one re- 
maining model. The Test3 and Test4 data sets emphasized 
the top-down portion by presenting several models that were 
nearly identical and which had considerable symmetry so 
that numerous poses would be hypothesized. Thus, there 
were several models that could not be eliminated, and a far 
greater number of top-down probes were required to deter- 
mine the best match. 

Figures 1 and 2 show the intensity images for the Sample 
model and input image data. Figures 3 and 4 show the model 
and intensity images for the Test data set (which is similar 
to Test2), and Figs. 5 and 6 show the Test3 data set (which 
is similar to Test4). 

Reporting Conventions 
To set the context for the results, we first describe each of 

the implementations. Results based on theoretical estima- 
tions are not included here. Because of the variation in the 
actual timings and the implementation information that was 

supplied, the data have been rearranged in a standard format, 
which specifies the timings only for the major subtasks. All 
timings have been scaled to seconds, even though for some 
of the processors they would be more readable if presented 
in milliseconds or minutes. A detailed presentation of all of 
the data for the minor subtasks can be found in [ 151. The 
details of the architectures can be found in the appropriate 
references. Physical and cost data for the commercial systems 
are subject to change and should be obtained directly from 
the manufacturers. 

In addition to the timings, the specification requested that 
a set of intermediate results be output to help verify that the 
subtasks were performing comparable operations. For ex- 
ample, the number of connected components in the intensity 
image and the number of probes performed were among the 
requested validation results. It was not possible for every 
system to generate all of these data, but whatever validation 
results were provided are included here. 

From an architectural point of view, one useful measure 
is the percentage of time devoted to each subtask, which 
indicates the subtask’s relative difficulty for a particular ar- 
chitecture. It also factors out all of the technological issues 
and provides one of the few measures that’can be directly 
compared across architectures. For each implementation, 
we present a bar chart, showing the percentage of time spent 
on the major subtasks, for each data set. In several cases, 
where data were available for different machine configura- 
tions, the configurations are also compared. The different 
architectures are compared in a later section. 

Sequential Solution 

The sequential implementation was developed in C on a 
Sun-31 160 workstation and contains roughly 4600 lines of 

FIG. 3. Intensity image of model Test. FIG. 4. Image of model Test with clutter. 



FIG. 5. Intensity image of model Test3. FIG. 6. Image of model Test3 with clutter. 

code, including comments. It was designed for portability 
and has been recompiled on several different systems. The 
only system-dependent portion is the result presentation step, 
which uses the workstation’s graphics display. The imple- 
mentation differs from the recommended method on the 
Connected Component Labelling step in that it uses a stan- 
dard sequential method for this well-defined function. The 
sequential method minimizes array accesses and the corre- 
sponding index calculations, which incur an avoidable time 
penalty on a sequential machine. 

Timings have been produced for all five data sets and on 
three different machine configurations: a Sun-31 160 (a 16- 
MHz 68020 processor) with 8 Mbytes of RAM, a Sun-31 
260 (a 25-MHz 68020) with 16 Mbytes of RAM, and a Sun- 
4/260 (a 16-MHz SPARC processor) with 16 Mbytes of 
RAM. The extra RAM on the latter two machines did not 
affect performance, since the benchmark runs in 8 Mbytes 
without paging. The 3 f 260 was equipped with a Weitek 
floating-point coprocessor, while the 3 / 160 and 4/ 260 used 
only their standard coprocessors. Tables V, VI, and VIII show 
the execution times for the Sun-31 160, Sun-31260, and Sun- 
4/260, respectively. Tables VII and IX show the validation 
data that were output by the Sun-3 and the Sun-4 systems, 
respectively. Note the slight variation in the validation data, 
due to minor differences in the floating-point results. These 
variations are within the tolerances of the benchmark, and 
the final result is the same. The timings were obtained with 
the system clock utility, which has a resolution of 20 ms on 
the Sun-3 systems and 10 ms on the Sun-4. 

Figure 7 compares the three configurations on each of the 
data sets with regard to the percentage of time spent on each 
major subtask. The key identifies the pattern associated with 
each major subtask. Note that the bottom-up portions are 
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represented by shading, while the top-down portions are 
shown by cross-hatch patterns. The figure shows that Test 
and Test2 require far less top-down processing than the other 
three data sets. Closer examination reveals several interesting 
points. For example, despite the faster Weitek coprocessor, 
the Sun-3/260 spends proportionately more time than the 
Sun-3 / 160 in the median filter, which involves floating-point 
data. It is also interesting to note that the Sun-4 spends a 
larger percentage of time on the top-down tasks (especially 
the Hough probes) and overhead. Since the overhead de- 
pends mostly on disk access time, time spent on it should 
be expected to increase in percentage as the total time de- 
creases. 

Alliant FX-80 Solution 

The Alliant FX-80 consists of up to 8 computational ele- 
ments and 12 I/O processors that share a physical memory 

TABLE V 
Sun-31160 Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 
Overhead 
Label connected components 
Rectangles from intensity 
Median filter 
SObd 

Initial graph match 
Match-strength probes 
Hough probes 
Result presentation 

797.88 338.06 329.24 55 1.82 553.16 
5.08 4.94 5.64 5.64 5.52 

27.78 27.82 28.40 28.22 28.24 
6.50 4.14 4.38 5.44 5.34 

246.66 118.88 92.86 90.92 90.90 
135.48 133.30 136.10 135.28 135.42 
24.46 25.00 26.04 68.44 67.62 
72.98 3.28 5.86 47.88 42.06 

253.70 8.28 12.96 153.98 162.34 
24.80 12.32 16.66 14.78 14.76 
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TABLE VI 

Sun-31260 Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 299.38 132.54 119.52 194.76 195.58 
Overhead 2.92 3.04 3.44 3.44 3.44 
Label connected components 14.52 14.46 14.46 14.58 14.66 
Rectangles from intensity 3.74 2.38 2.48 3.16 2.98 
Median filter 113.70 60.28 43.10 42.98 43.26 
Sobel 41.00 38.50 38.34 38.76 38.56 
Initial graph match 6.16 6.08 6.58 17.32 16.94 
Match-strength probes 17.56 0.78 1.40 I 1.66 10.30 
Hough probes 92.70 3.12 4.82 57.96 60.44 
Result presentation 6.68 3.64 4.72 4.50 4.30 

80 computational element, and Table XI shows an FX-80 
with eight elements. Table XII shows the validation output 
from the Alliant, which was identical for all configurations. 
The validation output shows a small variation from that of 
the Sun-3, but this is due to differences in the floating-point 
calculations that are within acceptable limits and produce 
the same final result. Alliant pointed out that the C compiler 
was a new product at that time and did not yet provide as 
much optimization as the FORTRAN compiler (a difference 
of up to 50% in some cases). 

through a sophisticated combination of caches, buses, and 
an interconnection network. The computational elements 
communicate with the shared memory via the interconnec- 
tion network, which links them to a pair of special-purpose 
caches that in turn access the memory over a bus that is 
shared with the I/O processor caches. 

Figure 8 compares relative times for the two FX-80 con- 
figurations. The parallel configuration achieves the greatest 
improvement on the floating-point operations (median filter 
and Sobel), the Hough probes, and the labeling of the con- 
nected components. These are the four subtasks that received 
special attention in optimizing the implementation. The 
proportional effort thus grew for overhead and the other 
tasks. 

Image Understanding Architecture 

Alliant was able to implement the benchmark on the FX- The Image Understanding Architecture (IUA) is being 
80 in roughly 1 programmer week. The programmer had no built by the University of Massachusetts and Hughes Re- 
experience in vision and, in many cases, did not bother to search Laboratories specifically to address the problem of 
learn how the benchmark code works. The implementation supporting real-time, knowledge-based vision. The architec- 
was done by rewriting the system-dependent section to use ture consists of three different parallel processors, arranged 
the available graphics hardware, compiling the code with in a hierarchy that is tightly coupled by layers of dual-ported 
Alliant’s vectorizing and globally optimizing C compiler, us- memory between the processors. The low-level processor is 
ing a profiling tool to determine the portions of the code a bit-serial, processor-per-pixel, SIMD, associative array. The 
that used the greatest percentage of CPU time, inserting intermediate-level processor is an SIMD/MIMD array of 
compiler directives in the form of comments to break implicit 4096 16-bit digital signal processors that communicate via 
dependencies in four sections of the benchmark, and recom- an interconnection network. Each intermediate-level pro- 
piling. Alliant provided results for five configurations of the cessor shares a dual-ported memory segment with 64 low- 
FX-80, with one, two, four, six, and eight computational level processors. The high level is a mulitprocessor intended 
elements. To save space, only two of the configurations are to support AI processing and a blackboard model of com- 
presented here. Table X shows the results for a single FX- munication through a global shared memory, which is dual 

TABLE VII 

Sun-3/160 and 3/260 Validation Output (Identical Results for Both Configurations) 

Data set Sample Test Test2 Test3 Test4 

Connected components 134 
Right angles extracted 126 
Rectangles detected 25 
Depth pixels > threshold 21,256 
Elements on initial probe list 381 
Hough probes 55 
Initial match-strength probes 28 
Extension match-strength probes 60 
Models remaining 2 
Model selected 10 
Average match strength 0.64 
Translated to 151,240 
Rotated by (degrees) 85 

35 34 
99 92 
21 16 

14,542 12.898 
19 27 

3 5 
20 15 

3 5 

0.96 
256,256 

359 

5 
0.94 

257,255 2 
114 

114 100 
210 197 

42 39 
18,584 18,825 

400 249 
97 93 

142 142 
110 97 

2 I 
7 8 

0.84 0.88 
!57,255 257,255 

22 22 
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TABLE VIII 

Sun-4/260 Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 121.01 42.64 40.94 81.05 82.84 
Overhead 4.34 3.92 3.79 4.08 4.11 
Label connected components 4.74 4.56 4.54 4.62 4.6 1 
Rectangles from intensity 1.10 0.68 0.71 0.96 0.91 
Median filter 30.53 14.64 11.30 11.30 11.34 
Sobel 12.16 11.43 11.27 11.41 11.45 
Initial graph match 3.42 3.46 3.54 10.10 9.94 
Match-strength probes 9.91 0.45 0.79 6.65 6.08 
Hough probes 5 1.20 1.73 2.64 29.52 31.99 
Result presentation 3.38 1.67 2.24 2.07 2.02 

timings does not equal the total time. Some of the individual 
timings are averages, since intermediate-level processing 
takes place asynchronously and individual processes vary in 
their execution times. For example, the time for all of the 
match-strength probes is difficult to estimate since probes 
are created asynchronously and their processing is overlapped 
with each other and with other steps. However, the time for 
match extension includes the time to complete all of the 
subsidiary match-strength probes. Thus, where the table 
would usually break the match extension step into separate 
times for match-strength and Hough probes, it shows the 
total time for match extension and the average time for an 
individual probe. 

ported with a segment of the intermediate-level processor’s 
memory. A detailed description of the architecture can be 
found in [ 141. 

Because the architecture is under construction, an in- 
struction-level simulator was used to develop the benchmark 
implementation. The simulator is programmed in a com- 
bination of Forth and an assembly language which has a 
syntax similar to that of Ada assignment statements. The 
benchmark was developed over a period of about 6 months, 
but much of that time was spent in building basic library 
routines and additional tools that were generally required 
for any large programming task. A &h-scale version of the 
simulator (4096 low-level, 64 intermediate-level, and 1 high- 
level processor) runs on a Sun workstation and was used to 
develop the initial implementation. The implementation was 
then transported to a full-scale IUA simulator running on a 
Sequent Symmetry multiprocessor. 

Table XIV shows the validation output for the IUA. The 
number of elements on the initial probe list is not given 
because parallel tasks were used, and thus there is no single 
initial probe list. The number of probes varies from the se- 
quential version because a somewhat more robust variation 
of the probe algorithm, which vetoed poses at different points 
in the matching process was used. Also, the separate processes 
shared their probe results so that a few duplicate probes were 
eliminated. The added robustness in the probe algorithm 
also lead to a slightly lower average match strength. 

Lastly, it should be mentioned that the intermediate-level 
processor was greatly underutilized by the benchmark (only 
0.2% of its processors were activated), and the high-level 
processor was not used at all. The low-level processor was 
also idle roughly 50% of the time while awaiting requests for 
top-down probes from the intermediate level. 

Table XIII presents the IUA results with a resolution of 
one instruction time (0.1 ms). There are several points to 
note. Because the processing of different steps can be over- 
lapped in the different levels, the sum of the individual step 

Figure 9 shows the relative time spent by the IUA on each 
major subtask, for each data set. The graph-matching and 
match extension processes are clearly a dominant factor. Be- 
cause task parallelism was used to match each model sepa- 
rately, the maximum obtainable parallelism was a factor of 
10, versus a factor of over 200,000 for the bottom-up sub- 
tasks, which were done with data parallelism. In practice, 

TABLE IX 

Sun-41260 Validation Output 

Data set Sample Test Test2 Test3 Test4 

Connected components 134 35 34 114 100 
Right angles extracted 126 99 92 210 197 
Rectangles detected 25 21 16 42 39 
Depth pixels > threshold 21,254 14,53 1 12,892 18,579 18,822 
Elements on initial probe list 381 19 27 389 248 
Hough probes 55 3 5 93 92 
Initial match-strength probes 28 20 15 142 142 
Extension match-strength probes 60 3 5 105 97 
Models remaining 2 1 1 2 1 
Model selected 10 1 5 7 8 
Average match strength 0.64 0.96 0.94 0.84 0.88 
Translated to 151,240 256,256 251,255 251,255 251,255 
Rotated by (degrees) 85 359 114 22 22 
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FIG. 7. Sun workstation percentage of effort for each major subtask. 

the improvement due to task parallelism only equaled the 
number of models not vetoed during the matching process. 
However, the low utilization of the intermediate-level pro- 
cessors permits the task-parallel solution to operate on a set 
of several thousand models with about the same perfor- 
mance. The overhead for the IUA includes generating tables 
that are used in multiple places in the processing. Note that 
the time for labeling connected components is so small that 
it is invisible. For Test3 and Test4, the median filter is also 
too small to be visible. 

Aspex ASP 

The Associative String Processor (ASP) is being built by 
R. M. Lea at the University of Brunel and Aspex Ltd. in 
England [ 61. It is designed as a general-purpose processing 
array for implementation in wafer-scale technology. The 
processor consists of 262,144 processors arranged as 5 12 
strings of 5 12 processors each. Each processor contains a 96- 
bit data register and a 5-bit activity register. A string consists 
of 5 12 processors linked by a communication network that 
is also tied to a data exchanger and a vector data buffer. The 
vector data buffers of the strings are linked through another 
data exchanger and data buffer to another communication 
network. One of the advantages of this arrangement is a high 
degree of fault tolerance. The system can be built with 1024 
VLSI devices, 128 ULSI devices, or 32 WSI devices. Esti- 
mated power consumption is 650 W. The processor clock 
and instruction rate is projected to be 20 MHz. Architectural 
changes that would improve the benchmark performance 
include increasing the number of processors (improves per- 
formance on K-curvature, median filter, and Sobel), in- 
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creasing the speed of the processors and communication links 
(linear speedup on all tasks), and adding a separate controller 
to each ASP substring, resulting in an approximately 18% 
increase overall. 

Because the system is under construction, a software sim- 
ulator implementation was used. The benchmark was pro- 
grammed in an extended version of Modula-2 over a period 
of 3 months by two programmers, following a 3-month pe- 
riod of initial study of the requirements and development 
of a solution strategy. A Jarvis’ March algorithm was sub- 
stituted for the recommended Graham Scan method on the 
convex hull. Table XV lists the major subtask times for the 
ASP. Timings were not provided for several of the minor 
steps in the model-matching portion of the benchmark, be- 
cause a different method was used. The time under overhead 
accounts for the input and output of several intermediate 
images. The time under the section that extracts rectangles 

TABLE X 
Alliant FX-80 Single-Processor Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 207.890 104.561 95. I39 139.808 142.162 
Overhead 8.744 8.702 8.672 8.664 8.658 
Label connected components 17.185 17.088 17.053 17.195 17.189 
Rectangles from intensity 3.350 2.058 2.126 2.993 2.929 
Median filter 77.464 43.812 32.049 32.073 32.046 
Sohel 26.148 26.080 26.064 26.129 26. I30 
Initial graph match 2.546 2.460 2.624 7.485 7.384 
Match-strength probes 7.235 0.316 0.576 4.768 4.371 
Ho& probes 60.956 1.901 3.312 37.631 40.632 
Result presentation 3.27 I 1.862 2.390 2.179 2.176 
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TABLE XI 

Alliant FX-80 Eight-Processor Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 60.112 33.138 32.915 53.952 53.620 
Overhead 8.787 8.728 8.7 10 8.711 8.721 
Label connected components 7.225 7.136 7.119 7.252 7.264 
Rectangles from intensity 3.462 2.113 2.177 3.114 3.060 
Median filter 10.113 5.857 4.323 4.324 4.318 
Sobel 3.799 3.790 3.788 3.796 3.796 
Initial graph match 2.578 2.493 2.655 7.615 7.473 
Match-strength probes 7.232 0.317 0.576 4.804 4.404 
Hough probes 13.090 0.554 0.898 11.374 Il.716 
Result presentation 3.261 1.861 2.384 2.180 2.175 

from the intensity image accounts for the output and sub- 
sequent input of data records for corners and rectangles. The 
output and input of intermediate data were done to take 
advantage of the vector data buffers in the ASP, which allow 
strings to be quickly transferred out and then to be rebroad- 
cast to the array. The implementors were thus able to cleverly 
recast the task-parallel orientation of the model-matching 
process into a data-parallel form by creating all of the dif- 
ferent matching combinations, so that only a simple com- 
parison was required to determine a match. However, for 
large sets of models, this technique is likely to result in an 
excessive number of combinations. The use of a data-parallel 
technique also makes it harder to compare the ASP with 
other systems which could have benefited from that method. 
Table XVI shows the validation output, which is similar to 
the sequential output except for some variation in the float- 
ing-point results and the absence of data for the number of 
elements on the initial probe list. 

Figure 10 shows the percentage of time spent by the ASP 

on each major subtask. The time is dominated by labeling 
connected components and performing Hough probes, which 
require significant amounts of communication between 
strings, which must pass through the local data exchangers 
and then through the data exchanger that connects the ends 
of the strings together. Because of the data-parallel method 
that was used, the time for the initial graph match step is 
invisible in the figure. 

Sequent Symmetry 81 

The Sequent Computer Systems Symmetry 8 1 multipro- 
cessor consists of Intel 80386 processors, running at 16.5 
MHz, connected via a shared bus to a shared memory. The 
configuration used to obtain these results included 12 pro- 
cessors (one of which is reserved by the system), each with 
an 80387 math coprocessor and 96 Mbytes of shared mem- 
ory. The system also contained the older A-model caches, 
which induce more traffic on the bus than the newer caches. 
The timings in Table XVII were obtained by the benchmark 
developers as part of the effort to ensure the portability of 
the benchmark. 

About a month was spent developing the parallel imple- 
mentation for the Sequent. The programmer was familiar 
with the benchmark, but had no previous experience with 
the Sequent system. Part of the development period was spent 
modifying the sequential version to enhance its portability. 
The low-level tasks were directly converted by dividing the 
data among the processors in a manner that avoided write 
contention. About half of the development time was spent 
adding data-locking mechanisms to the model-matching 
portion of the benchmark and resolving problems with tim- 
ing and race conditions. It was only possible to obtain timings 
for the major steps in the benchmark, because the Sequent 
operating system does not provide facilities for accurately 
timing individual child processes. The benchmark was run 

TABLE XII 

Alliant FX-80 Validation Output 

Statistics Sample Test Test2 Test3 Test4 

Connected components 134 
Right angles extracted 126 
Rectangles detected 25 
Depth pixels > threshold 21,266 
Elements on initial probe list 374 
Hough probes 55 
Initial match-strength probes 28 
Extension match-strength probes 60 
Models remaining 2 
Model selected 10 
Average match strength 0.65 
Translated to 151,240 
Rotated by (degrees) 85 

35 34 
99 92 
21 16 

14,542 12,888 
19 27 

3 5 
20 15 

3 5 

0.96 
256,256 

359 

5 
0.94 

257,255 
114 

114 
210 

42 
18,572 

389 
93 

142 
105 

2 
7 

0.84 
257,255 

22 

100 
197 

39 
18,813 

248 
92 

142 
97 

8 
0.88 

257,255 
22 


