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FIG. 8. Alliant FX-80 percentage of effort for each major subtask. 

on configurations from 1 to 11 processors, with the optimum 
time being obtained with 8 or 9 processors. Additional pro- 
cessors resulted in a reduction in performance, due to a 
combination of factors. As the data were divided among more 
processors, the ratio of processing time to task creation over- 
head decreased so that the latter came to dominate the time 
on some tasks. We also believe that some of the tasks reached 
the saturation point of the bus, since one run that was ob- 
served on a B-model cache system showed performance im- 
proving with more processors. The table shows the perfor- 
mance for a single processor running the sequential version, 
to provide a comparison baseline, and the performance on 
the optimum number of processors for each data set. 

Figure 11 compares the relative time for a single processor 
versus that for the optimum number of processors, for each 

data set. As with the Alliant, it can be seen that the fixed 
overhead cost grows in proportion as the total time decreases. 
The best performance increase was obtained for the Sobel 
and median filter portions, because they involve sufficient 
processing to keep all of the processors busy. Labeling con- 
nected components, on the other hand, is less computation- 
ally intensive, and thus the process creation overhead is a 
significant portion of the time. The Test and Test2 data sets 
also show less than the average performance increase, since 
the models are assigned to separate processors for the match- 
ing process and all but one of the models quickly drops out 
for those data sets. In the other sets, where matching can 
continue on multiple models in parallel, the improvement 
in performance is closer to the average. Result presentation 
suffers from the same problem as the overhead component: 

TABLE XIII 

Image Understanding Architecture Simulator Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 0.0844445 0.0455559 0.0455088 0.4180890 0.3978859 
Overhead 0.0139435 0.0139435 0.0 139435 0.0139435 0.0 139435 
Label connected components 0.0000596 0.0000596 0.0000596 0.0000596 0.0000596 
Rectangles from intensity 0.0161694 0.0125489 0.0 134704 0.0131378 0.0129635 
Median filter 0.0005625 0.0005625 0.0005625 0.0005625 0.0005625 
Sobel 0.00269 19 0.00269 19 0.00269 I9 0.00269 19 0.00269 19 
Initial graph match 0.0155662 0.0153462 0.0135538 0.2953212 0.23567 14 
Match extension 0.0300650 0.0017674 0.0024856 0.08992 14 0.1277396 
Match-strength probe (average) 0.0026500 0.0001146 0.0004095 0.0543250 0.007 I766 
Hough probe (average) 0.0068430 0.000325 1 0.0005092 0.008459 1 0.0109868 
Result presentation 0.0022826 0.0009452 0.00 11944 0.0029768 0.0029766 
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Statistics 

TABLE XIV 

Image Understanding Architecture Validation Output 

Sample Test Test2 Test3 Test4 

Connected components 
Right angles extracted 
Rectangles detected 
Depth pixels > threshold 
Elements on initial probe list 
Hough probes 
Initial match-strength probes 
Extension match-strength probes 
Models remaining 
Model selected 
Average match strength 
Translated to 
Rotated by (degrees) 

134 35 34 114 100 
163 106 100 262 250 
31 23 19 60 55 

23.185 13.598 14,065 19,730 19,753 

44 5 8 84 100 
24 20 15 81 80 
20 I 3 41 54 

3 I I 2 1 
10 I 5 7 8 

0.45 0.86 0.84 0.81 0.84 
151,240 256,256 257.255 257,255 257,255 

85 359 113 23 23 

being dependent on the sending of an image to an external 
device. 

Warp 

The CMU Warp is a systolic array consisting of 10 high- 
speed floating-point cells in a linear configuration [ 5 1. Pro- 
cessing in the Warp is directed by a host processor, such as 
the Sun-3 160 workstation used in executing the benchmark. 
The implementation was programmed by one person in 2 
weeks, using a combination of the original C implementation 
and subroutines written in Apply and W2. The objective was 
to obtain the best overall time, rather than the best time for 
each task. While it would seem that the latter guarantees the 

former, consider that the Warp and its host can work in 
parallel. Even though the Warp could perform in 1 s a step 
that requires 4 s on the host, it is better to let the host do 
the processing if it would otherwise sit idle while the Warp 
is computing. Thus the Warp implementation exploits both 
the tightly coupled parallelism of the Warp array and the 
loosely coupled task parallelism present in the benchmark. 

Table XVIII lists the major subtask times for the Warp. 
Note that sums of the times for the individual steps will not 
equal the total time because of the task parallelism. Table 
XIX presents the validation data supplied for the Warp im- 
plementation. 

Figure 12 shows the relative effort of the Warp on each 
major subtask, for each data set. Because task parallelism 
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TABLE XV 

ASP Simulator Times for Major Subtasks 

15 

Data set Sample Test Test2 Test3 Test4 

Total 0.130720 0.035960 0.0398 10 0. I 13070 0. I 18820 
Overhead 0.000820 0.000820 0.000800 0.000800 0.000800 
Label connected componen Its 0.039200 0.022800 0.022800 0.034800 0.03 1300 
Rectangles from intensity 0.0033 10 0.002920 0.002880 0.003 190 0.003350 
Median filter 0.000720 0.000720 0.0005 10 0.0006 IO 0.0005 10 
Sobel 0.000624 0.000624 0.000624 0.000680 0.000624 
Initial graph match 0.000009 0.000009 0.000009 0.000009 0.000008 
Match-strength probes 0.003300 0.000429 0.000388 0.005640 0.006430 
Hough probes 0.080274 0.005497 0.010545 0.063354 0.071726 
Result presentation 0.000850 0.000440 0.000470 0.000470 0.001030 

was used, the sum of the individual times exceeds 100% of 
the total wall-clock time. Thus, Fig. 12 shows percentages 
of the sum of the major subtask timings. The overhead for 
the Warp includes initialization and downloading of code 
for the Warp array and the overhead for the Sun-3 / 60 host, 
which performed I/O, extracted the strong cues, and con- 
trolled all of the top-down portions of the benchmark. It is 
clear that the least amount of time was required for the Sobel 
and median filter operations, which took advantage of Warp’s 
floating-point capabilities. The connected components la- 
beling operation was also performed by the array, as was the 
K-curvature portion of extracting the rectangles from the 
intensity image. The host performed all of the model match- 
ing, but called on the Warp to do the match-strength and 
Hough probes. 

Connection Machine 

cessors, a 32-bit floating-point coprocessor is provided. Con- 
nection Machines are available in configurations of 4096, 
8192, 16,384, 32,768, and 65,536 processors. Results were 
provided for execution on the three configurations in the 
middle of the range and extrapolated to the largest config- 
uration. The team at Thinking Machines spent about 3 pro- 
grammer months converting the low-level portion of the 
benchmark into 2600 lines of *LISP, a data-parallel extension 
to Common LISP. There was not enough time to implement 
the top-down portion of the benchmark before the workshop. 
However, the implementors also questioned whether the 
Connection Machine would be the best vehicle for this por- 
tion, which is more concerned with task parallelism and 
would greatly underutilize the machine’s potential parallel- 
ism. They suggested that if the data base included several 
thousand models, a method might be found to take advantage 
of the Connection Machine’s capabilities. 

The Thinking Machines Connection Machine model CM- Table XX summarizes the results for the Connection Ma- 
2 is a data-parallel array of bit-serial processors linked by a chine, with times rounded to two significant digits (as pro- 
hypercube router network [ 41. In addition, for every 32 pro- vided by Thinking Machines). A 32K-processor CM-2 with 

TABLE XVI 

Aspex ASP Validation Output 

Statistics Sample Test Test2 Test3 Test4 

Connected components 
Right angles extracted 
Rectangles detected 
Depth pixels > threshold 
Elements on initial probe list 
Hough probes 
Initial match-strength probes 
Extension match-strength probes 
Models remaining 
Model selected 
Average match strength 
Translated to 
Rotated by (degrees) 

133 34 33 113 99 
126 99 92 210 197 

25 21 16 42 39 
21,255 14,533 12,891 18,582 18,817 

55 3 5 97 93 
28 20 15 142 142 
60 3 5 110 97 

2 I 1 2 I 
10 1 5 7 8 

0.64 0.96 0.93 0.84 0.87 
151,240 256,256 257,255 257,255 257,255 

85 359 114 22 22 
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FIG. 10. ASP percentage of effort for each major subtask. 

a Data Vault disk system and a Sun-4 host processor was 
used to obtain the results. Results were supplied for only 
one data set and did not indicate which one was used. It is 
interesting to note that several tasks saw little speedup with 
the larger configurations of the Connection Machine. Those 
tasks involved a collection of contour values that are mapped 
into 16K virtual processors, which is enough to operate on 
all values in parallel, and so there was no advantage in using 
more physical processors. It was suggested that the Connec- 
tion Machine might thus be used to process contours for 
several images at once to make use of the larger number of 
processors. For those tasks that are pixel-oriented, 256K vir- 
tual processors were used and therefore a proportional 
speedup can be observed as the number of physical processors 
increases. 

Intel iPSC-2 

The Intel Scientific Computers’ iPSC-2 is a distributed 
memory multiprocessor that consists of up to 128 Intel 80386 
processors linked by a virtual cut-through routing network 
which simulates point-to-point communication. Each pro- 
cessor can have up to 8 Mbytes of local memory and an 
80387 math coprocessor. The implementation for the iPSC- 
2 was developed by the University of Illinois at Urbana- 
Champaign using C with a library that supports multipro- 
cessing. The group had only enough time to implement the 
median filter and Sobel steps. However, they did run those 
portions on five different machine configurations, with 1,2, 
4, 8, and 16 processors, and on four of the five data sets. 
Table XXI presents the results, which are divided into user 

TABLE XVII 

Sequent Symmetry 81 Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Processors: One Eight One Eight One Nine One Eight One Nine 

Total 889.66 251.33 300.34 73.88 282.7 I 77.87 562.15 114.96 578.14 139.72 
Overhead 5.84 6.00 5.57 5.93 5.62 5.87 5.75 5.86 5.65 5.90 
System time 3.60 9.40 2.00 5.40 2.10 6.40 2.80 7.60 2.90 8.80 
Label connected components 19.27 12.68 19.34 15.83 19.29 16.01 19.60 16.84 19.58 16.89 
Rectangles from intensity 4.18 1.45 2.62 0.92 2.74 1.92 3.42 1.42 3.38 1.89 
Median filter 239.24 31.00 114.12 15.25 85.81 11.08 85.83 11.45 85.79 11.1 I 
Sobel 110.89 15.00 113.21 15.46 110.80 14.83 110.84 15.20 110.81 14.73 
Initial graph match 18.52 3.08 18.53 3.76 19.90 4.35 52.53 7.2 1 51.63 7.17 
Match extension 470.90 161.34 16.16 5.97 24.08 9.38 271.07 103.99 288.21 69.10 
Result presentation 20.82 20.78 10.80 10.76 14.47 14.43 13.11 12.99 13.09 12.93 
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FIG. 11. Sequent symmetry 8 1 percentage of effort for each major subtask. 

time and system time (including data and program load time 
and output time). Note that no system overhead was counted 
in the single-processor configuration because uniprocessing 
is done on the cube server, so no time was required for 
downloading code and data to the cube processors. 

COMPARATIVE PERFORMANCE SUMMARY 

As mentioned above, a direct comparison of raw timings 
is not especially useful. We leave it to the reader to make 
informed and intelligent comparisons of the results in the 
context of his or her own applications. For example, a valid 
comparison of architectural features should take into account 
the technology, instruction rate, and scalability of the pro- 
cessors used to obtain the results. An example of such a 
comparison is given below. The authors hope to develop a 
reasonably broad set of scaling functions for future versions 
of the benchmark, so that it will be possible to directly com- 
pare architectures that are not too dissimilar. 

In the meantime, Figs. 13 through 17 compare the per- 
centage graphs for the different architectures, for the five 
data sets. Only the complete implementations are shown, 
since a total time is required to compute the charts. It should 
again be noted that the results for the IUA and the ASP are 
from simulations, and the other results are based on actual 
execution. 

The figures make it possible to compare the architectures 
on the basis of their individual strengths and weaknesses, 
with technology factored out. Some general observations can 
be made from these figures. First, some dramatic speed in- 
creases are possible in the bottom-up portions of the bench- 

17 

mark, where the communication and control requirements 
are simple enough to allow data-parallel processing. Second, 
the multiprocessors show a performance pattern similar to 
that of the uniprocessors, and in contrast, each of the data- 
parallel arrays manages to nearly eliminate the cost of one 
or more subtasks, so that the remaining subtasks are greatly 
emphasized. Lastly, fixed overhead costs, such as I / 0, grow 
to dominate the processing time, especially when the task 
itself is small. 

Issues in Comparing Performance 

The following discussion is intended to show how some 
pitfalls can be avoided and to point out others that should 
be kept in mind when comparisons are made. 

There are two types of comparisons that can be made: the 

TABLE XVIII 
Warp Times for Major Subtasks 

Data set Sample Test Test2 Test3 Test4 

Total 43.60 20.30 22.30 58.10 55.30 
Overhead 14.14 13.18 14.68 17.82 19.70 
Label connected components 3.98 4.04 4.60 4.54 4.56 
Rectangles from intensity 5.50 3.30 3.60 4.13 4.44 
Median filter 10.70 8.70 1.38 1.40 2.00 
Sobel 0.48 0.48 0.72 0.94 0.92 
Initial graph match 0.42 0.24 0.22 1.22 1.38 
Match-strength probes 9.10 2.64 2.86 13.60 13.50 
Hough probes 15.30 0.96 1.68 23.30 25.80 
Result presentation 2.60 2.26 2.52 2.24 2.26 
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TABLE XIX 

Warp Validation Output 

Statistics Sample Test Test2 Test3 Test4 

Total match-strength probes 9 1 23 20 241 239 
Hough probes 58 3 5 97 95 

implementation comparison and the architectural compar- 
ison. (Since we are concerned here with architectures, we 
ignore the third type of comparison, software support, even 
though software tools can have an effect on performance. It 
can be assumed that each implementation was built with 
the most efficient tools available, and that the difference is 
therefore small.) An implementation comparison considers 
only the raw timings for running a particular software im- 
plementation of a benchmark on a particular hardware im- 
plementation of an architecture. Such a comparison is useful 
if one is looking to buy a machine in today’s marketplace. 
However, it does not reveal which architecture is concep- 
tually a better choice. When an architecture is constrained 
to a hardware implementation, numerous design decisions 
that affect its performance are made. Any change in any of 
those constraints, such as improvements in technology, in- 
creases in budget, and different size, weight, and power re- 
strictions, will impact performance. Thus, one architecture 
may perform better than another simply because it has been 
committed to hardware at a later date, with more modern 
technology. Given equal technology, the other architecture 
might actually be superior. 

TABLE XX 

Results for the Connection Machine 
on the Low-Level Portion 

Configuration 8K 16K 32K 64K 

Total (low-level tasks only) I .26 0.91 0.71 0.63 
Overhead 0.255 0.255 0.255 0.255 
Label connected components 0.34 0.21 0.14 0.10 
Rectangles from intensity 0.52999 0.38437 0.3 1506 0.25336 
Median filter 0.082 0.04 1 0.025 0.015 
Sobel 0.052 0.026 0.014 0.008 

An architectural comparison seeks to adjust benchmark 
timings for differences in implementation constraints. How- 
ever, it is not fair to simply divide by the clock rate, list price, 
volume, shipping weight, and power consumption. When 
constraints change, there are many design choices that can 
be made. For example, moving to a denser integration tech- 
nology makes it possible to add more processors or to make 
the existing processors more powerful. Furthermore, perfor- 
mance does not always scale directly with changes. Consider 
that adding processors may increase performance only on 
tasks with the greatest parallelism, so that performance in- 
creases just in proportion to the processor utilization of an 
application. This is precisely why simulation results and ac- 
tual execution results should not be compared. An architec- 
ture that is still under simulation has yet to be fully con- 
strained. 

When a constraint is changed to be equal that of another 
system, the many possible outcomes cannot be captured by 
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TABLE XXI 

iPSC-2 Results for Median Filter and Sobel Steps 

1 2 4 8 16 

Configuration User System User System User System User System User System 

Median Filter 

Sample 116.41 0.00 87.93 11.52 43.46 11.23 22.21 3.10 11.14 3.82 

Test 75.45 0.00 31.12 10.88 18.99 10.84 9.66 3.15 4.84 3.87 

Test2 60.84 0.00 30.36 11.48 15.25 11.45 7.63 3.13 3.81 4.19 
Test3 60.83 0.00 30.36 11.12 15.25 11.23 1.63 3.49 3.82 4.03 

Sobel 

Sample 78.63 0.00 39.32 3.53 19.68 3.00 9.84 2.31 4.92 2.91 
Test 80.82 0.00 40.42 3.47 20.25 2.89 10.15 2.43 5.10 2.82 
Test2 80.82 0.00 40.42 1.46 20.25 1.99 10.15 1.87 5.10 2.50 
Test3 78.63 0.00 39.31 2.62 19.68 2.51 9.84 2.17 4.92 2.69 

a single formula. In making any such adjustment, one is benchmark on data set Sample (it is assumed that this is the 
assuming that the system designers would make a specific data set used to obtain the Connection Machine timings). 
design choice given a change in constraints. In some cases For the sake of this example, we also make the invalid as- 
the assumption is unjustified. Even if the assumption is jus- sumption that the simulated timings are as accurate as those 
tified, one must be careful in estimating the effects. The pro- for actual execution. These three architectures were chosen 
cess of adjusting a constraint and making an assumption because, for the low-level portions of the benchmark, they 
about the resulting effects on a real architecture essentially have enough architectural similarity to be compared without 
turns it into a new, hypothetical architecture.Thus, without too many distracting complications. 
detailed knowledge of the hardware, a simple formulaic ad- Table XXII compares the total times for the three archi- 
justment can reduce the validity of benchmark timings to tectures. The line labeled “Raw total” would be an imple- 
just slightly better than back-of-the-envelope estimates. mentation comparison. If all three machines actually existed, 

As an example, we consider an architectural comparison the Connection Machine would be the slowest. However, 
of the Connection Machine, ASP, and IUA running the each of these machines has a different clock rate. For the 
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Connection Machine, the rate is 4 MHz; for the ASP, 20 
MHz is assumed; and for the IUA, 10 MHz is assumed. The 
second line of the table shows the times normalized to a 1 O- 
MHz clock rate. This is perhaps the simplest adjustment 
that can be made to these data. It assumes only that, with 
improved technology, there is no reason that the Connection 
Machine clock cannot speed up by a factor of 2.5. The time 
shown for the Connection Machine is for 64K processors, 
while the other two machines have four times that number. 
We could simply multiply by four, but from Table XX, it 

is clear that the total time for the Connection Machine does 
not scale up linearly with the number of processors. The 
third line of Table XXII extrapolates the 256K-processor 
performance from the data in Table XX, again with a nor- 
malized clock. 

The last row of figures in the table may seem like a rea- 
sonable comparison, but consider that the Connection Ma- 
chine has 32-bit floating-point coprocessors, while the ASP 
and IUA do not. What would the performance of the ASP 
and IUA be if coprocessors were added to them? Also, the 
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ASP is to be built in custom wafer-scale integration, the IUA 
in custom VLSI, and the Connection Machine in gate array 
technology. What design changes would occur if their tech- 
nologies were made equivalent? 

Architectural comparisons cannot be taken very far, even 
for similar architectures, before the hypothetical questions 
begin to dominate the analysis. Consider the difficulty in 
comparing radically different architectures such as the Alliant 
FX-80 and the Connection Machine. However, the more 
data there are available, the further the analysis can be taken. 
For example, running the benchmark on a CM-2 without 
the floating-point option would answer one of the preceding 

questions. The example considers only the total time for the 
low-level processing, but a detailed examination of subtask 
times can reveal patterns that would be more informative. 
Thus, the greater the variety of processing in a benchmark, 
and the more extensive its instrumentation requirements, 
the farther the architectural comparisons can be taken. 

RECOMMENDATIONS FOR FUTURE 
BENCHMARKS 

At the conclusion of the Avon workshop, a panel session 
was held to discuss the benchmark, the ways it could be 
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TABLE XXII 
Example of an Architectural Comparison 

Architecture 
(Low-level tasks only) CM-2 ASP IUA 

Raw total 0.630 0.04489 0.03343 
Normalized clock 0.252 0.08977 0.03343 
Normalized clock and processor count 0.228 0.08977 0.03343 

Note. Based on invalid assumptions; not for actual comparison purposes. 

improved, and future efforts. The general conclusion of the 
participants was that the benchmark is a significant im- 
provement over past efforts, but there is still work to be done. 

One complaint concerned the size and complexity of the 
benchmark solution. The sample solutions help, but much 
work is still required to transport them to parallel architec- 
tures. Several people felt that a FORTRAN version should 
be made available so that the benchmark would be taken up 
by the traditional supercomputing community. Another 
comment was that most groups do not have the resources 
to implement such a complex benchmark, and it would be 
almost impossible to tune its performance as is done with 
smaller benchmarks. A counterargument that most vision 
applications are not highly tuned and that the benchmark 
might therefore give a more realistic indication of the per- 
formance that could be expected was voiced. Suggestions for 
reducing the size of the benchmark included removing either 
the match-strength or the Hough probe (although there was 
no consensus on which one to remove) and simplifying the 
graph-matching code through increased generality. 

Several people complained that the benchmark data sets 
were too small. The groups that had benchmarked data-par- 
allel systems all indicated that they would like to see data 
sets involving thousands of models so that they could exploit 
more data parallelism, rather than being forced into a task- 
parallel model. Of course, those who had benchmarked mul- 
titasking systems took the opposite view. It was suggested 
that the benchmark should provide a range of data sets with 
model bases ranging through several orders of magnitude. 
Such data sets would provide another dimension to the per- 
formance analysis and thus some insight into the range of 
applications for which an architecture is appropriate. Beyond 
simply increasing the size of the model base, several of the 
vision researchers expressed a desire to see a broader range 
of vision tasks in the benchmark. For example, motion anal- 
ysis over a succession of frames would test an architecture’s 
ability to deal with real-time image input and would help to 
identify those architectures with a special ability to pipeline 
the stages of an interpretation. However, there was an im- 
mediate outcry from the implementors that the benchmark 
is already too complex. It was then suggested that an optional 

second level of the benchmark that would be based on the 
basic task, but extended to include image sequences and mo- 
tion processing, could be specified. 

An important observation was that the complexity of the 
benchmark was not the issue; rather it was the cost of im- 
plementation. It was suggested that the benchmark might be 
more palatable if it was reorganized into a standard set of 
general-purpose vision subroutines. Even though a group 
might have to implement all of those routines, it would then 
have a library that could be used for other applications, over 
which it could amortize the cost. The benchmark specifi- 
cation would then be a framework for applying the library 
to solve a problem and could involve separate tests for eval- 
uating the performance and accuracy of the individual sub- 
routines. 

Part of the discussion focused on the fact that the bench- 
mark does not truly address high-level processing. However, 
as the benchmark designers were quick to point out, there 
is no consensus among the vision research community as to 
what constitutes high-level processing. Until agreement can 
be reached on what types of processing are essential at that 
level, it will be pointless to try to design a benchmark that 
includes it. The current benchmark has a well-defined task 
of model-directed processing as its high-level component. It 
was also noted that the current top-down direction of low- 
level processing by the benchmark has some of the flavor of 
the high-level control of intermediate- and low-level pro- 
cessing, which many researchers feel is necessary. It was de- 
cided that the community is not yet ready to define high- 
level processing to the degree necessary for a benchmark to 
be built around it. 

Another point was that a standard reporting form should 
be developed, and that the sequential solution should output 
its results to match that form. Although the benchmark 
specification included a section on reporting requirements, 
the sequential solution did not precisely conform to it (partly 
because the reporting requirements included aspects of the 
implementation beyond the timings and statistics that were 
to be output). In fact, most of the groups followed the ex- 
ample of the reporting format for the sequential solution, 
rather than what was requested in the specification. It was 
also noted that because the benchmark allows alternate 
methods to be used whenever dictated by architectural con- 
siderations, the reporting format cannot be completely rigid. 

The conclusion of the panel session was to let the bench- 
mark stand as specified for some period of time, to allow 
more groups to complete their implementations. Then a new 
version should be developed with the following features: It 
should be a reorganization of the current problem into a 
library of useful subroutines and an application framework. 
A set of individual problems should be developed to test 
each of the subroutines. A broader range of data sets should 
be provided, with the size of the model base scaling over 
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several orders of magnitude and perhaps a set of images of 
different sizes. The graph-matching code should be simplified 
and made more general purpose. A standard reporting format 
should be provided, with the sample solutions generating as 
much of the information as possible. Lastly a second level 
of the benchmark that extends the current problem to a se- 
quence of images with motion analysis might be specified. 
The second level would be an optional exercise that could 
be built on top of the current problem to demonstrate specific 
real-time capabilities of certain architectures. 

CONCLUSIONS 

The DARPA Integrated Image Understanding Benchmark 
is another step in the direction of providing a standard ex- 
ercise for testing and demonstrating the performance of par- 
allel architectures on a vision-like task. While not perfect, it 
is a significant improvement over previous efforts in that it 
tests performance on a wide variety of operations within the 
unifying framework of an overall task. The benchmark also 
helps to eliminate programmer knowledge and cleverness as 
a factor in the performance results, while providing sufficient 
flexibility to allow implementors to take advantage of special 
architectural features. 

Complete implementations have only been developed for 
a handful of architectures. In the meantime, it is possible to 
draw a few general conclusions from the data that have been 
gathered. Tremendous speedup is possible for the data-par- 
allel portions of the interpretation task. However, almost 
every architecture in this sample devoted the majority of its 
overall time to the model-matching portion of the benchmark 
on data sets involving complex models. One conclusion 
might be that this portion of the task simply does not permit 
the exploitation of much parallelism. However, when the 
model-matching step is viewed at an abstract level, it appears 
to be quite rich with potential parallelism, but in the form 
of task-parallel direction of limited data-parallel processing. 
While this style of processing can be sidestepped by increasing 
the size of the model base so that the entire task becomes 
data parallel in nature, the inclusion of more complex and 
realistic high-level processing brings us back to dealing with 
this processing model. Thus, one potential area for research 
that the benchmark points out is the development of archi- 
tectures, hardware, and programming models to support task 
parallelism which can direct data-parallel processing in a 
tightly coupled manner. 

A benchmark can be used to make either implementation 
or architectural comparisons. Implementation comparisons 
can be made for any benchmark data and are primarily useful 
for making purchasing decisions regarding contemporary 
machines. Architectural comparisons require that a bench- 

instrumentation. Even then, architectural comparisons must 
be made with great care and an understanding of the potential 
for misleading results. 
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