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FIG. 8. Alliant FX-80 percentage of effort for each major subtask.

on configurations from 1 to 11 processors, with the optimum
time being obtained with 8 or 9 processors. Additional pro-
cessors resulted in a reduction in performance, due to a
combination of factors. As the data were divided among more
processors, the ratio of processing time to task creation over-
head decreased so that the latter came to dominate the time
on some tasks. We also believe that some of the tasks reached
the saturation point of the bus, since one run that was ob-
served on a B-model cache system showed performance im-
proving with more processors. The table shows the perfor-
mance for a single processor running the sequential version,
to provide a comparison baseline, and the performance on
the optimum number of processors for each data set.
Figure 11 compares the relative time for a single processor
versus that for the optimum number of processors, for each

data set. As with the Alliant, it can be seen that the fixed
overhead cost grows in proportion as the total time decreases.
The best performance increase was obtained for the Sobel
and median filter portions, because they involve sufficient
processing to keep all of the processors busy. Labeling con-
nected components, on the other hand, is less computation-
ally intensive, and thus the process creation overhead is a
significant portion of the time. The Test and Test2 data sets
also show less than the average performance increase, since
the models are assigned to separate processors for the match-
ing process and all but one of the models quickly drops out
for those data sets. In the other sets, where matching can
continue on multiple models in parallel, the improvement
in performance is closer to the average. Result presentation
suffers from the same problem as the overhead component:

TABLE XIII

Image Understanding Architecture Simulator Times for Major Subtasks

Data set Sample Test Test2 Test3 Test4
Total 0.0844445 0.0455559 0.0455088 0.4180890 0.3978859
Overhead 0.0139435 0.0139435 0.0139435 0.0139435 0.0139435
Label connected components 0.0000596 0.0000596 0.0000596 0.0000596 0.0000596
Rectangles from intensity 0.0161694 0.0125489 0.0134704 0.0131378 0.0129635
Median filter 0.0005625 0.0005625 0.0005625 0.0005625 0.0005625
Sobel 0.0026919 0.0026919 0.0026919 0.0026919 0.0026919
Initial graph match 0.0155662 0.0153462 0.0135538 0.2953212 0.2356714
Match extension 0.0300650 0.0017674 0.0024856 0.0899214 0.1277396
Match-strength probe (average) 0.0026500 0.0001146 0.0004095 0.0543250 0.0071766
Hough probe (average) 0.0068430 0.0003251 0.0005092 0.0084591 0.0109868
Result presentation 0.0022826 0.0009452 0.0011944 0.0029768 0.0029766
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TABLE XIV
Image Understanding Architecture Validation Qutput

Statistics Sample Test Test2 Test3 Test4

Connected components 134 35 34 114 100
Right angles extracted 163 106 100 262 250
Rectangles detected 31 23 19 60 55
Depth pixels > threshold 23,185 13,598 14,065 19,730 19,753
Elements on initial probe list

Hough probes 44 S 8 84 100
Initial match-strength probes 24 20 15 81 80
Extension match-strength probes 20 1 3 41 54
Models remaining 3 1 1 2 1
Model selected 10 1 5 7 8
Average match strength 0.45 0.86 0.84 0.81 0.84
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 113 23 23

being dependent on the sending of an image to an external
device.

Warp

The CMU Warp is a systolic array consisting of 10 high-
speed floating-point cells in a linear configuration [5]. Pro-
cessing in the Warp is directed by a host processor, such as
the Sun-3/60 workstation used in executing the benchmark.
The implementation was programmed by one person in 2
weeks, using a combination of the original C implementation
and subroutines written in Apply and W2. The objective was
to obtain the best overall time, rather than the best time for
each task. While it would seem that the latter guarantees the

former, consider that the Warp and its host can work in
parallel. Even though the Warp could perform in 1 s a step
that requires 4 s on the host, it is better to let the host do
the processing if it would otherwise sit idle while the Warp
is computing. Thus the Warp implementation exploits both
the tightly coupled parallelism of the Warp array and the
loosely coupled task parallelism present in the benchmark.

Table XVIII lists the major subtask times for the Warp.
Note that sums of the times for the individual steps will not
equal the total time because of the task parallelism. Table
XIX presents the validation data supplied for the Warp im-
plementation.

Figure 12 shows the relative effort of the Warp on each
major subtask, for each data set. Because task parallelism
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TABLE XV
ASP Simulator Times for Major Subtasks

Data set Sample Test Test2 Test3 Test4
Total 0.130720 0.035960 0.039810 0.113070 0.118820
Overhead 0.000820 0.000820 0.000800 0.000800 0.000800
Label connected components 0.039200 0.022800 0.022800 0.034800 0.031300
Rectangles from intensity 0.003310 0.002920 0.002880 0.003190 0.003350
Median filter 0.000720 0.000720 0.000510 0.000610 0.000510
Sobel 0.000624 0.000624 0.000624 0.000680 0.000624
Initial graph match 0.000009 0.000009 0.000009 0.000009 0.000008
Match-strength probes 0.003300 0.000429 0.000388 0.005640 0.006430
Hough probes 0.080274 0.005497 0.010545 0.063354 0.071726
Result presentation 0.000850 0.000440 0.000470 0.000470 0.001030

was used, the sum of the individual times exceeds 100% of
the total wall-clock time. Thus, Fig. 12 shows percentages
of the sum of the major subtask timings. The overhead for
the Warp includes initialization and downloading of code
for the Warp array and the overhead for the Sun-3/60 host,
which performed 1/0, extracted the strong cues, and con-
trolled all of the top-down portions of the benchmark. It is
clear that the least amount of time was required for the Sobel
and median filter operations, which took advantage of Warp’s
floating-point capabilities. The connected components la-
beling operation was also performed by the array, as was the
K-curvature portion of extracting the rectangles from the
intensity image. The host performed all of the model match-
ing, but called on the Warp to do the match-strength and
Hough probes.

Connection Machine

The Thinking Machines Connection Machine model CM-
2 is a data-parallel array of bit-serial processors linked by a
hypercube router network [4]. In addition, for every 32 pro-

cessors, a 32-bit floating-point coprocessor is provided. Con-
nection Machines are available in configurations of 4096,
8192, 16,384, 32,768, and 65,536 processors. Results were
provided for execution on the three configurations in the
middle of the range and extrapolated to the largest config-
uration. The team at Thinking Machines spent about 3 pro-
grammer months converting the low-level portion of the
benchmark into 2600 lines of *LISP, a data-parallel extension
to Common LISP. There was not enough time to implement
the top-down portion of the benchmark before the workshop.
However, the implementors also questioned whether the
Connection Machine would be the best vehicle for this por-
tion, which is more concerned with task parallelism and
would greatly underutilize the machine’s potential parallel-
ism. They suggested that if the data base included several
thousand models, a method might be found to take advantage
of the Connection Machine’s capabilities.

Table XX summarizes the results for the Connection Ma-
chine, with times rounded to two significant digits (as pro-
vided by Thinking Machines). A 32K-processor CM-2 with

TABLE XVI
Aspex ASP Validation Qutput

Statistics Sample Test Test2 Test3 Test4

Connected components 133 34 33 113 99
Right angles extracted 126 99 92 210 197
Rectangles detected 25 21 16 42 39
Depth pixels > threshold 21,255 14,533 12,891 18,582 18,817
Elements on initial probe list

Hough probes 55 3 5 97 93
Initial match-strength probes 28 20 15 142 142
Extension match-strength probes 60 3 5 110 97
Models remaining 2 1 1 2 1
Model selected 10 1 5 7 8
Average match strength 0.64 0.96 0.93 0.84 0.87
Translated to 151,240 256,256 257,255 257,255 257,255
Rotated by (degrees) 85 359 114 22 22
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FIG. 10. ASP percentage of effort for each major subtask.

a Data Vault disk system and a Sun-4 host processor was
used to obtain the results. Results were supplied for only
one data set and did not indicate which one was used. It is
interesting to note that several tasks saw little speedup with
the larger configurations of the Connection Machine. Those
tasks involved a collection of contour values that are mapped
into 16K virtual processors, which is enough to operate on
all values in parallel, and so there was no advantage in using
more physical processors. It was suggested that the Connec-
tion Machine might thus be used to process contours for
several images at once to make use of the larger number of
processors. For those tasks that are pixel-oriented, 256K vir-
tual processors were used and therefore a proportional
speedup can be observed as the number of physical processors
increases.

Intel iPSC-2

The Intel Scientific Computers’ iPSC-2 is a distributed
memory multiprocessor that consists of up to 128 Intel 80386
processors linked by a virtual cut-through routing network
which simulates point-to-point communication. Each pro-
cessor can have up to 8 Mbytes of local memory and an
80387 math coprocessor. The implementation for the iPSC-
2 was developed by the University of Hlinois at Urbana-
Champaign using C with a library that supports multipro-
cessing. The group had only enough time to implement the
median filter and Sobel steps. However, they did run those
portions on five different machine configurations, with 1, 2,
4, 8, and 16 processors, and on four of the five data sets.
Table XXI presents the results, which are divided into user

TABLE XVII
Sequent Symmetry 81 Times for Major Subtasks

Data set Sample Test Test2 Test3 Test4
Processors: One Eight One Eight One Nine One Eight One Nine
Total 889.66 251.33 300.34 73.88 282.71 77.87 562.15 174.96 578.14 139.72
Overhead 5.84 6.00 5.57 5.93 5.62 5.87 5.75 5.86 5.65 5.90
System time 3.60 9.40 2.00 5.40 2.10 6.40 2.80 7.60 2.90 8.80
Label connected components 19.27 12.68 19.34 15.83 19.29 16.01 19.60 16.84 19.58 16.89
Rectangles from intensity 4.18 1.45 2.62 0.92 2.74 1.92 342 1.42 3.38 1.89
Median filter 239.24 31.00 114.12 15.25 85.81 11.08 85.83 11.45 85.79 11.11
Sobel 110.89 15.00 113.21 15.46 110.80 14.83 110.84 15.20 110.81 14.73
Initial graph match 18.52 3.08 18.53 3.76 19.90 4.35 52.53 7.21 51.63 7.17
Match extension 470.90 161.34 16.16 5.97 24.08 9.38 271.07 103.99 288.21 69.10
Result presentation 20.82 20.78 10.80 10.76 14.47 14.43 13.11 12.99 13.09 12.93
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time and system time (including data and program load time
and output time ). Note that no system overhead was counted
in the single-processor configuration because uniprocessing
is done on the cube server, so no time was required for
downloading code and data to the cube processors.

COMPARATIVE PERFORMANCE SUMMARY

As mentioned above, a direct comparison of raw timings
is not especially useful. We leave it to the reader to make
informed and intelligent comparisons of the results in the
context of his or her own applications. For example, a valid
comparison of architectural features should take into account
the technology, instruction rate, and scalability of the pro-
cessors used to obtain the results. An example of such a
comparison is given below. The authors hope to develop a
reasonably broad set of scaling functions for future versions
of the benchmark, so that it will be possible to directly com-
pare architectures that are not too dissimilar.

In the meantime, Figs. 13 through 17 compare the per-
centage graphs for the different architectures, for the five
data sets. Only the complete implementations are shown,
since a total time is required to compute the charts. It should
again be noted that the results for the [UA and the ASP are
from simulations, and the other results are based on actual
execution.

The figures make it possible to compare the architectures
on the basis of their individual strengths and weaknesses,
with technology factored out. Some general observations can
be made from these figures. First, some dramatic speed in-
creases are possible in the bottom-up portions of the bench-

Sequent symmetry 81 percentage of effort for each major subtask.

mark, where the communication and control requirements
are simple enough to allow data-paraliel processing. Second,
the multiprocessors show a performance pattern similar to
that of the uniprocessors, and in contrast, each of the data-
parallel arrays manages to nearly eliminate the cost of one
or more subtasks, so that the remaining subtasks are greatly
emphasized. Lastly, fixed overhead costs, such as I/O, grow
to dominate the processing time, especially when the task
itself is small.

Issues in Comparing Performance

The following discussion is intended to show how some
pitfalls can be avoided and to point out others that should
be kept in mind when comparisons are made.

There are two types of comparisons that can be made; the

TABLE XVIII
Warp Times for Major Subtasks

Data set Sample Test Test2 Test3 Test4
Total 4360 2030 2230 58.10 55.30
Overhead 14.14 1318 1468 17.82 19.70
Label connected components 3.98 404 460 454 456
Rectangles from intensity 5.50 330 3.60 413 444
Median filter 10.70 8.70 1.38 1.40 200
Sobel 0.48 048 072 094 092
Initial graph match 0.42 024 022 1.22 1.38
Match-strength probes 9.10 264 286 13.60 13.50
Hough probes 15.30 0.96 1.68 2330 25.80
Result presentation 2.60 226 252 224 226
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TABLE XIX
Warp Validation Output

Statistics Sample Test Test2 Test3 Testd
Total match-strength probes 91 23 20 247 239
Hough probes 58 3 5 97 95

implementation comparison and the architectural compar-
ison. (Since we are concerned here with architectures, we
ignore the third type of comparison, software support, even
though software tools can have an effect on performance. It
can be assumed that each implementation was built with
the most efficient tools available, and that the difference is
therefore small.) An implementation comparison considers
only the raw timings for running a particular software im-
plementation of a benchmark on a particular hardware im-
plementation of an architecture. Such a comparison is useful
if one is looking to buy a machine in today’s marketplace.
However, it does not reveal which architecture is concep-
tually a better choice. When an architecture is constrained
to a hardware implementation, numerous design decisions
that affect its performance are made. Any change in any of
those constraints, such as improvements in technology, in-
creases in budget, and different size, weight, and power re-
strictions, will impact performance. Thus, one architecture
may perform better than another simply because it has been
committed to hardware at a later date, with more modern
technology. Given equal technology, the other architecture
might actually be superior.

TABLE XX

Results for the Connection Machine
on the Low-Level Portion

Configuration 8K 16K 32K 64K
Total (low-level tasks only) 1.26 091 0.71 0.63
Overhead 0.255 0.255 0.255 0.255
Label connected components 0.34 0.21 0.14 0.10
Rectangles from intensity 0.52999 0.38437 0.31506 0.25336
Median filter 0.082 0.041 0.025 0.015
Sobel 0.052 0.026 0.014 0.008

An architectural comparison seeks to adjust benchmark
timings for differences in implementation constraints. How-
ever, it is not fair to simply divide by the clock rate, list price,
volume, shipping weight, and power consumption. When
constraints change, there are many design choices that can
be made. For example, moving to a denser integration tech-
nology makes it possible to add more processors or to make
the existing processors more powerful. Furthermore, perfor-
mance does not always scale directly with changes. Consider
that adding processors may increase performance only on
tasks with the greatest parallelism, so that performance in-
creases just in proportion to the processor utilization of an
application. This is precisely why simulation results and ac-
tual execution results should not be compared. An architec-
ture that is still under simulation has vet to be fully con-
strained.

When a constraint is changed to be equal that of another
system, the many possible outcomes cannot be captured by
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TABLE XXI
iPSC-2 Results for Median Filter and Sobel Steps

1 2 4 8 16
Configuration User System User System User System User System User System
Median Filter
Sample 176.47 0.00 87.93 11.52 43.46 11.23 22.27 3.10 11.14 3.82
Test 75.45 0.00 37.72 10.88 18.99 10.84 9.66 3.15 4.84 3.87
Test2 60.84 0.00 30.36 11.48 15.25 11.45 7.63 373 3.81 4.19
Test3 60.83 0.00 30.36 11.12 15.25 11.23 7.63 3.49 3.82 4.03
Sobel
Sample 78.63 0.00 39.32 3.53 19.68 3.00 9.84 2.37 4.92 291
Test 80.82 0.00 40.42 347 20.25 2.89 10.15 2.43 5.10 2.82
Test2 80.82 0.00 40.42 1.46 20.25 1.99 10.15 1.87 5.10 2.50
Test3 78.63 0.00 39.31 2.62 19.68 2.51 9.84 2.17 492 2.69

a single formula. In making any such adjustment, one is
assuming that the system designers would make a specific
design choice given a change in constraints. In some cases
the assumption is unjustified. Even if the assumption is jus-
tified, one must be careful in estimating the effects. The pro-
cess of adjusting a constraint and making an assumption
about the resulting effects on a real architecture essentially
turns it into a new, hypothetical architecture. Thus, without
detailed knowledge of the hardware, a simple formulaic ad-
justment can reduce the validity of benchmark timings to
just slightly better than back-of-the-envelope estimates.

As an example, we consider an architectural comparison
of the Connection Machine, ASP, and IUA running the

Warp |
Sequentx 8
Sequent x 1

Alliant x 8
Alliant x 1

Sun-4/260

Sun3/260

Sun3/160

benchmark on data set Sample (it is assumed that this is the
data set used to obtain the Connection Machine timings).
For the sake of this example, we also make the invalid as-
sumption that the simulated timings are as accurate as those
for actual execution. These three architectures were chosen
because, for the low-level portions of the benchmark, they
have enough architectural similarity to be compared without
too many distracting complications.

Table XXII compares the total times for the three archi-
tectures. The line labeled “Raw total” would be an imple-
mentation comparison. If all three machines actually existed,
the Connection Machine would be the slowest. However,
each of these machines has a different clock rate. For the
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Connection Machine, the rate is 4 MHz; for the ASP, 20
MHz is assumed; and for the IUA, 10 MHz is assumed. The
second line of the table shows the times normalized to a 10-
MHz clock rate. This is perhaps the simplest adjustment
that can be made to these data. It assumes only that, with
improved technology, there is no reason that the Connection
Machine clock cannot speed up by a factor of 2.5. The time
shown for the Connection Machine is for 64K processors,
while the other two machines have four times that number.
We could simply multiply by four, but from Table XX, it
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is clear that the total time for the Connection Machine does
not scale up linearly with the number of processors. The
third line of Table XXII extrapolates the 256K-processor
performance from the data in Table XX, again with a nor-
malized clock.

The last row of figures in the table may seem like a rea-
sonable comparison, but consider that the Connection Ma-
chine has 32-bit floating-point coprocessors, while the ASP
and IUA do not. What would the performance of the ASP
and IUA be if coprocessors were added to them? Also, the
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ASP is to be built in custom wafer-scale integration, the IUA
in custom VLSI, and the Connection Machine in gate array
technology. What design changes would occur if their tech-
nologies were made equivalent?

Architectural comparisons cannot be taken very far, even
for similar architectures, before the hypothetical questions
begin to dominate the analysis. Consider the difficulty in
comparing radically different architectures such as the Alliant
FX-80 and the Connection Machine. However, the more
data there are available, the further the analysis can be taken.
For example, running the benchmark on a CM-2 without
the floating-point option would answer one of the preceding
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questions. The example considers only the total time for the
low-level processing, but a detailed examination of subtask
times can reveal patterns that would be more informative.
Thus, the greater the variety of processing in a benchmark,
and the more extensive its instrumentation requirements,
the farther the architectural comparisons can be taken.

RECOMMENDATIONS FOR FUTURE
BENCHMARKS

At the conclusion of the Avon workshop, a panel session
was held to discuss the benchmark, the ways it could be
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TABLE XXI1I

Example of an Architectural Comparison

Architecture

(Low-level tasks only) CM-2 ASP 1UA
Raw total 0.630 0.04489 0.03343
Normalized clock 0.252 0.08977 0.03343
Normalized clock and processor count 0.228 0.08977 0.03343

Note. Based on invalid assumptions; not for actual comparison purposes.

improved, and future efforts. The general conclusion of the
participants was that the benchmark is a significant im-
provement over past efforts, but there is still work to be done.

One complaint concerned the size and complexity of the
benchmark solution. The sample solutions help, but much
work is still required to transport them to parallel architec-
tures. Several people felt that a FORTRAN version should
be made available so that the benchmark would be taken up
by the traditional supercomputing community. Another
comment was that most groups do not have the resources
to implement such a complex benchmark, and it would be
almost impossible to tune its performance as is done with
smaller benchmarks. A counterargument that most vision
applications are not highly tuned and that the benchmark
might therefore give a more realistic indication of the per-
formance that could be expected was voiced. Suggestions for
reducing the size of the benchmark included removing either
the match-strength or the Hough probe (although there was
no consensus on which one to remove) and simplifying the
graph-matching code through increased generality.

Several people complained that the benchmark data sets
were too small. The groups that had benchmarked data-par-
allel systems all indicated that they would like to see data
sets involving thousands of models so that they could exploit
more data parallelism, rather than being forced into a task-
parallel model. Of course, those who had benchmarked mul-
titasking systems took the opposite view. It was suggested
that the benchmark should provide a range of data sets with
model bases ranging through several orders of magnitude.
Such data sets would provide another dimension to the per-
formance analysis and thus some insight into the range of
applications for which an architecture is appropriate. Beyond
simply increasing the size of the model base, several of the
vision researchers expressed a desire to see a broader range
of vision tasks in the benchmark. For example, motion anal-
ysis over a succession of frames would test an architecture’s
ability to deal with real-time image input and would help to
identify those architectures with a special ability to pipeline
the stages of an interpretation. However, there was an im-
mediate outcry from the implementors that the benchmark
is already too complex. It was then suggested that an optional

second level of the benchmark that would be based on the
basic task, but extended 1o include image sequences and mo-
tion processing, could be specified.

An important observation was that the complexity of the
benchmark was not the issue; rather it was the cost of im-
plementation. It was suggested that the benchmark might be
more palatable if it was reorganized into a standard set of
general-purpose vision subroutines. Even though a group
might have to implement all of those routines, it would then
have a library that could be used for other applications, over
which it could amortize the cost. The benchmark specifi-
cation would then be a framework for applying the library
to solve a problem and could involve separate tests for eval-
uating the performance and accuracy of the individual sub-
routines.

Part of the discussion focused on the fact that the bench-
mark does not truly address high-level processing. However,
as the benchmark designers were quick to point out, there
is no consensus among the vision research community as to
what constitutes high-level processing. Until agreement can
be reached on what types of processing are essential at that
level, it will be pointless to try to design a benchmark that
includes it. The current benchmark has a well-defined task
of model-directed processing as its high-level component. It
was also noted that the current top-down direction of low-
level processing by the benchmark has some of the flavor of
the high-level control of intermediate- and low-level pro-
cessing, which many researchers feel is necessary. It was de-
cided that the community is not yet ready to define high-
level processing to the degree necessary for a benchmark to
be built around it.

Another point was that a standard reporting form should
be developed, and that the sequential solution should output
its results to match that form. Although the benchmark
specification included a section on reporting requirements,
the sequential solution did not precisely conform to it (partly
because the reporting requirements included aspects of the
implementation beyond the timings and statistics that were
to be output). In fact, most of the groups followed the ex-
ample of the reporting format for the sequential solution,
rather than what was requested in the specification. It was
also noted that because the benchmark allows alternate
methods to be used whenever dictated by architectural con-
siderations, the reporting format cannot be completely rigid.

The conclusion of the panel session was to let the bench-
mark stand as specified for some period of time, to allow
more groups to complete their implementations. Then a new
version should be developed with the following features: It
should be a reorganization of the current problem into a
library of useful subroutines and an application framework.
A set of individual problems should be developed to test
each of the subroutines. A broader range of data sets should
be provided, with the size of the model base scaling over
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several orders of magnitude and perhaps a set of images of
different sizes. The graph-matching code should be simplified
and made more general purpose. A standard reporting format
should be provided, with the sample solutions generating as
much of the information as possible. Lastly a second level
of the benchmark that extends the current problem to a se-
quence of images with motion analysis might be specified.
The second level would be an optional exercise that could
be built on top of the current problem to demonstrate specific
real-time capabilities of certain architectures.

CONCLUSIONS

The DARPA Integrated Image Understanding Benchmark
is another step in the direction of providing a standard ex-
ercise for testing and demonstrating the performance of par-
allel architectures on a vision-like task. While not perfect, it
is a significant improvement over previous efforts in that it
tests performance on a wide variety of operations within the
unifying framework of an overall task. The benchmark also
helps to eliminate programmer knowledge and cleverness as
a factor in the performance results, while providing sufficient
flexibility to allow implementors to take advantage of special
architectural features.

Complete implementations have only been developed for
a handful of architectures. In the meantime, it is possible to
draw a few general conclusions from the data that have been
gathered. Tremendous speedup is possible for the data-par-
allel portions of the interpretation task. However, almost
every architecture in this sample devoted the majority of its
overall time to the model-matching portion of the benchmark
on data sets involving complex models. One conclusion
might be that this portion of the task simply does not permit
the exploitation of much parallelism. However, when the
model-matching step is viewed at an abstract level, it appears
to be quite rich with potential parallelism, but in the form
of task-parallel direction of limited data-parallel processing.
While this style of processing can be sidestepped by increasing
the size of the model base so that the entire task becomes
data parallel in nature, the inclusion of more complex and
realistic high-level processing brings us back to dealing with
this processing model. Thus, one potential area for research
that the benchmark points out is the development of archi-
tectures, hardware, and programming models to support task
parallelism which can direct data-parallel processing in a
tightly coupled manner.

A benchmark can be used to make either implementation
or architectural comparisons. Implementation comparisons
can be made for any benchmark data and are primarily useful
for making purchasing decisions regarding contemporary
machines. Architectural comparisons require that a bench-
mark include a wide variety of processing and a rich set of

instrumentation. Even then, architectural comparisons must
be made with great care and an understanding of the potential
for misleading results.
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