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Introduction

LUID power, control, and instrumentation systems
which employ gases as the working media are highly suited to the
increasingly severe environments of temperature and radiation
sggociated with many modern aerospace systems and military
weapons. In addition to the ability to tolerate extreme tempera-
tures and iutense radiation, pneumatic systems are often simpler,
more reliable, and capable of better performance than other
systems which might be considered for a given application. For
these reasons, pneumatic systems are beginning to find widespread
use in industrial and military application and, in many cases, are
replacing more conventional hydraulie systems.

An often difficult problem which arises frequently in the design
of pneumatic devices, particularly of pneumatic instruments and
sigual processing compouents, is that of providing damping to
flexibly supported mechauical elements. Examples of such ele-
ments are flapper-type valves, jet-pipe valves, gyroscope rotors,
or accelerometer masses. Couventional dampers which depend
ondirect viscous shear of a fluid are impractical because of the low
viscosity of gases, and piston-and-cylinder dashpots which de-
pend on forcing of fluid through a restricticn in the pistou or
cylinder are useful only at very low frequencies of motion hecause
of the gas compressibility. At high frequencies (very rapid rela-
tive velocity between piston and cylinder), the latter damper acts
almost entirely as a spring and hence does not perform its in-
tended damping function [1].%

If the maximum relative displacementsof the elements to be
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A Study of Fluid Squeeze-Film Damping

The fluid squeeze-film produced by relative axial or tilting motion of two closely spaced
plates provides viscous damping action over certain ranges of operation. When gas is
the working fluid, a damper can be realized whick is operable over a wide frequency
range in the presence of extreme temperatures and intense radiation.
analysis and approximate design equations, verified by a limited experimenial program,
are presented for several useful damper configurations.

A Iinearized

damped in a pneumatic system are small (of the order of several
thousandths of an inch or less), as they will often be in gaa-
operated instruments and miniature control devices, it is possible
to derive substantial damping forces even at very high frequencies
of motion by squeezing a thin film of gas from between two parallel
fiat plates. The damping forces thus produced will be similar to
those of a conventional viscous damnper (force proportional to
relative velocity) over certain ranges of operation, will be almost
unaffected by radiation, and will be increased with increasing
temperature level. This type of damper, termed a “‘squeeze-film
damper,”’ is discussed in this paper, and results are presented
which can be used to design three basic types of squeeze damper.
Limited experimental results which confirm the linearized equa-
tions derived are also presented.

Analysis

Fig. 1 shows two configurations of squeeze-filin dampers which
will be discussed initially; flat rectangular plates having width w
long compared with length L, and circular parallel plates of
radius R.

The following assumptions are made:

(a) The separation h of the platesis very small compared with
the linear dimensions of the plates.

(b) The gas flow between the plates is assumed to be laminar
and primarily viscous. This assumption implies low Reynolds
numbers and parabolic velocity distributions across the gas film.

(¢) The relationship between pressure and density at any point
in the gas film is assumed described by a polytropic process with
exponent n:
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Nomenclature

A,;, B, = Fourier coeflicients p = fluid pressure B, = fluid bull modulus

b = damping coefficient P, = ambient pressure 8( ) = perturbation

b, = angular damping coefficient P = dimensionless pressure function € = base of natural logarithms

¢ = initial squeeze-film thickness R = radius of circular pad N, = mth zero of Bessel function of

e = perturbation of film thickness R; = inner radius of annulus _ zero order-

e = amplitude of step change of ¢ R, = outer radius of annulus 0 = CLrCur.nfere.thlal angle

h = squeeze-film thickness s = Laplace transform variable '; = g;).ZVISCOSI ¥y

i = A/—1 = ti s =2

7= \/ ! . ¢ = tme £l p = fluid density

k = ratio of specific heats Wp = squeeze.— m force ¢ = squeeze number = 12uLia/

L = length of squeeze plate w = plate width netP

m = mteger z = axial coordinate ¢ = tilt angle

M = tilting moment «,, = characteristic numher w = angular frequency, rad/sec

n = polytropic coefficient 8 = R,/R; w, = cutoff frequency, rad/sec
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where p is the local pressure, p is the local density, and = is a con-
stant depending on the process. If the plates are of metal having
high thermal conductivity and if the relative velocities of the
plates are relatively low, the film will be nearly isothermal and
n =~ 1. If the plates are poor thermal conductors—for example,
ceramics—or if the relative velocities are very high, the process
will approach an adiabatic condition and n =~ k, the ratio of
specific heats.

(d) The variation of plate spacing is assumed to be small com-
pared with the mean spacing ¢:

h=c+e (2)

whete e K c.

The application of equation (1), the continuity relationships,
and the momentum equations to an element of fluidin the squeeze-
film yields the well-known differential equation for gas-film
Iubrication (2, 3]:

2 iy = g G ()
o (hp )—+12#(n+1>V P (3)
where u is the fluid viscosity, ¢ is time, and V? is the Laplacian
operator.

Equation (3) is a nonlinear partial differentia} equation which
can be solved only for special cases by numerical methods.
However, by virtue of assumption (d), the variations in p will
e small compared with the ambient pressure level P,,:

p=P,+ dp 4)

where 0p < P,,.
When equation (4) is substituted into equation (3) and second-
order terms are neglected, a linear equation for &p results:

Py ,(,§£> _1 2(51') _ 39 (i)
124 v P, n A \P,/] + ot \¢ 8
This equation can be solved for the pressure §p for any specified
displacement function e(¢), providing the plate geometry is speci-
fied. The pressure must then be integrated over the plate area
to determine the squeeze-film force. Solutions of equation (5)
for the two geometries shown in Fig. 1 will be discussed.
Squeeze-Film Force for Infinitely Wide Parallel Plates. In the case of
plates whose width w is long compared with their length L, as
illustrated in Fig. 1(a), the gas flow occurs primarily in one direc¢-
tion, the z-direction in Fig. 1(a). The geometry is then primarily
one-dimensional and equation (5) becomes

Py O (op\ 1.2 (dp)_ 0 (e
12uL a$=(P,) T n oo (P,,) =t (c) ©®

where
z
E=71 )
A product solution of equation (6) is assumed of the form
[
5. = PO ®)

where ¢ is the base of natural logarithms, and « is an undeter-
mined characteristic number. The displacement function e(t) is
now assumed to be a sudden or step change of magnitude ¢, which
occurs at ¢ = 0. From the results produced by this function, the
response to any ¢(t) may be deduced. For all ¢ > 0, equation (6)
then becomes

c*P, d*P o

igatr T A PO (9)

The solution of equation (9) is of thé form

P = A, 8in /ot + B;cos Vot (10)
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‘b) CIRCULAR PARALLEL PLATES

Fig. 1 Parallel-plate squeeze dampers

where 4, and B, are constant; and o, termed the squeeze number,
is defined as follows:

2
- = 12ulia an

nctP,

Equation (10) must satisfy the boundary conditions that P = 0
when £ = 1/; and OP/2t = 0 when £ = 0. This requires that
A, = 0in equation (10) and that

g=(2m — 17, m =1,2,3,.... (12)

Equation (10) is now substituted into equation (8). The B, must
be determined so that equation (8) satisfies the initial condition at
t = 0 of §p. For a step change in displacement, the gas film is
compressed or expanded without leakage flow according to the
equation of state, equation (1). Hence, for small &,

(Q> I (13)
P,/ c

In order that equation (8) equal equation (13) at ¢ = 0, By in
equation (10) must be the Fourier coefficients of a square wave.
Hence, using equations (8), (10), and (11),

Sp ne <& 4(—1)»1 —ant
= - —— -1 =~ (14
P . m2=1 Gm = Dr [cos (2m yr§le (14)
where
_ nc?P,(2m — 1)3r?
m 12uL? (15)

To obtain the force W p(t) acting on the squeeze plates, the pres-
sure is integrated over the plate surface:

E=1/2
Wit) = Zwa
E=0
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Equation (14) is substituted into equation (16) and the integra-
tion performed to determine W 5(f) for the specified step change in
e. ltis convenient then to take the Laplace transform of W (t)

WD(s)=f Wpitle—=dl (17)
1]

The transform of W due to any displacement function e(t) is then
obtained by dividing Wy(s) by the transform of the step function
and multiplying the result by the transform of the desired dis-
placement function &(s) [4]. The result of these operations is
{8

(18)

@s) I m‘é‘l @Qm — 1) (1 +i>

Although equation (18) is an infinite series, it converges very
mpidly. The second term, corresponding to m = 2, is 81 times
smaller than the first, and the third term is 2401 times less than
the first. For most practical purpoges a one-term approximation
to equation ( 18) is sufficiently accurate. Thus

w b

TN

o,

where

L3
b= 96: ‘cha (20)

TP,
= ourr eu

Any displacement function e(t) may be considered to be com-
posed of a series of sinusoids of various frequencies. For any
particular frequency w, s = jw in equation (19), and Wy and &
then are phasors representing the force and displacement si-
nusoids, respectively,

W () _ bjw 22)

&jw) (1 Iy g)
wt

If the frequency wis such that
w << w, (23)

the denominator term in equation (22) is approximately equal to
unity. If equation (23) holds for all frequencies of interest,
then equation (19) reduces to Wy(s) = bsé(s) or

el

Wt) =
D(>l>di

(24)

Thus the squeeze plates act as a viscous damper bhaving a damp-
ing constant b. The frequency range below which equation (24)
is substantially valid is thus determined by the “eutoff fre-
quency” w. In the case of a steady sinusoidal displacement,
equation (22) shows that, when w = w,, there is & phage lag of 45
deg between the force and the velocity sinusoids. At large fre-
quencies w > w,, force and displacement are in phase with each
other, and the squeeze plates act as a spring.

Equation (20) shows that the low-frequency damping constant
b is independent of ambient pressure. Also, if L/c is large as
assumed, it ig clear that relatively large values of damping are
possible. If, for example, L = 04 in., w = 2in, and ¢ = 1073
in., b = 0.32}b-sec/in. In addition, equation (21)shows that the
eutoff frequency may be very large. TFor these dimensions,
n = 1 or isothermal conditions, and P, = 1 atmosphere, w. =
4680 cycles/sec.

Squeeze-Film Foree for Thin Annulor Paralle! Plates. The preced-
ing result for infinitely wide rectangular plates may be applied to
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Fig. 2 Tilting-plate annular damper

find approximately the squeeze-film force for parallel annuli.
R, is the outer and R; the inner radius of the annulus, whei
R,/R; is near unity, equations (20) and (21) become

48R + B)1L —~ B)?

(b)nnnulus = "_W'l‘c"—’-‘ (25
where
8 = R/R,
and
winctP,

%~ 12urX1 - B =0

An exact analysis for circular annuli is given in reference [6].
Squeexe-Film Force for Paraflel Cireular Plotes. By a derivation

similar te that used in arriving at equation (18), the squeeze-film
force for the circular plates shown in Fig. 1() can be obtained {6]:

Wo(s)  48wuR* i s
os) o Pud(d + 8/Yn)

m=1

(27)

where R is the plate radius, 7, i8 the mth zero of the Beasel func-
tion of zero order, and

ne*P . *

- 28
Ym 124R? (28)

A good approximation to equation (27) is obtained by taking
only the first term of the geries. In that case, the film force has
the form of equation (19) with

4.45uR4
(beseaninr = ~— 2= (29)
c
nc*P
_ Py 30
Ye T S 0TuR? (30)

Squeexe-Film Torque for Thin Annuli in o Tilting Mede. Equation
(19) for long rectangular plates may be used to derive an ap-
proximate relation for the torque produced by the relative tilting
motion of two initially parallel annular plates. This configura-
tion, shown in Fig. 2, is very difficult to analyze in an exact
fashion.

The approximation is made that flow in the circumferential
direction is negligible in comparison to the flow in the radial
direction. The annulus can then be broken into a series of in-
finitesimal elements having the dimensions

L=R( -8 31)

w= R, (»‘*—7; B) 56 (32)

JUNE 1966 / 493



DOUBLE - SIDED
DAMPER
|
SINGLE- SIDED\

S DAMPER
|4 2 -
L ¢
©
x
5
2 /
o /
~ /
5} 7
L] \ N A s
o JRe
x 7’
o //
3 g
e -
p — - -
0
05 078 100 125 150

CLEARANCE RATIO C/C.
Fig. 3 Nonlinearity of squeeze-film dampers
By summing the moments of the forces given by equation (19)

due to each element about the diameter, the following expression
is obtained:

M by
_i), o UeS (33)
B(s) T (1 + s/w,)
where
M(s) = Laplace transform of moment M({t)
¢(s) = Laplace transform of angle ¢(¢)
and
12uR 81 — (B2)3
b~ __;LAH‘N (34)
micd
TncP,
W, = o (35)

12puRX1 — B)

Nonlinearity of Squeeze-Film Damper. Since the preceding solu-
tions assumed only small displacements compared with the mean
fluid film thickness, and since this condition rarely will be met in
practice, it is important to give some attention to the effect of
large displacements on the damper performance.

An exact solution for the squeeze-film forces is extremely dif-
ficult if the percentage changes of clearance e are large. However,
if the damper plate motions occur at frequencies considerably
lower than the cutoff frequencies w,, the behavior of the film can
be assumed quasi-static. At any instant, the film force can then
be obtained from equation (22) and the appropriate expression
for b [equations (20), (23), or (27)]. The variation of the in-
stantaneous damping coefficient with clearance ¢ is shown in
Fig. 3 for & single pair of plates and for two pair of plates ar-
ranged in push-pull so that the sum of their clearances is constant.
The single-sided configuration js seen to have a large variation in
damping constant with clearance while, in the double-sided ar-
rangement, the variation is much less. Moreover, the damping
coefficient always increases in the latter arrangement as the cen-
tral element moves away from its midposition between the
plates.

Experimental Resulis

A limited experimental program was conducted [6] to evaluate
the accuracy with which the preceding linearized equations pre-
dicted the average damping forces in the squeeze-film damping
process. The configurations studied were circular plates and
thin annuli in relative translation.

The experimental apparatus, shown in Figs. 4 and 5, consisted
of a rigid steel cantilever beam supported at one end by an elastic
fiexure and acted upon near the opposite end by steel squeeze-
film damping plates. The beam was deflected to one side and re-
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Fig. 4 Schematic diagrams of test apparatus~
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Fig. 5 Photograph of test apparatus

Fig. 6 Typical transient response of squeeze-film damped system

leased. The transient oscillation of the masg-spring-daniper
system coniposed of the beam mass, flexure spring, and squeeze-
film pads was observed by a linear differential transfornier pickoff
attached directly to the beam. Froin oscilloscope photographs,
of which a typical examnple is given in Fig. 6, the average damping
coefficient was computed. Tests were run for squeeze-film thick-
ness of 1073 to 10 X 1073 in. at ambient pressures between 0.15
and 1.0 atin. A circular pad of radius B = 0.039 in. and an
annulus of outer radius B, = 0.309 in. and inner radius R; =
0.191 in. were tested.

Figs. 7 and & show experimental and analytical results for the
circular and annular pads, respectively. The theoretical results
shown are the low and high-frequency asymptotes computed
from the single-term approximate equations, assuming an iso-
thermal condition, 1.e, n = L. Generally, if the squeeze plates
are of metal or other matena] of high thermal conductivity, iso-
thermal conditions are likely to prevail.

It was not possible with the apparatus used to approach the
cutoff frequency w, by reducing the ambient pressure. The pres-
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Fig. 8 Experimental results for annular squeeze pads compared with calculated asymp-

totic damping ratios

sure levels at which the cutoff frequency would be reached are the
points at which the curves of Figs. 7 and 8 change slope. In the
range covered, experiment showed the damping ratio to be inde-
pendent of ambient pressure, as predicted by theory.

For the smaller clearances, as shown in Figs. 7 and 8, the
agreement between theory and experiment was excellent. At
larger clearances, there was a systematic trend for the theory to
underestimate the measured damping ratio. In these cases, how-
ever, the damping ratio was extremely small, of the order of 103,
and other sources of damping in addition to the squeeze pads
were becoming significant. In addition, the length-to-clearance
ratios of the flow passages were also approaching magnitudes
where the agsumption of laminar viscous flow in the gas films is
questionable (the experimental data indicate that a length-to-
clearance ratio greater than 30 is necessary).

An indirect check of expression (34) for the damping con-
tributed by = tilting annulus, Fig. 2, was made in reference [5].
Although the measurements were approximate, the results tended
to confirm equation (34).

Journal of Basic Engineering

Conelusions and Discussion

The fluid squeeze film produced by the relative axial or tilting
motion of two closely spaced flat plates produces the action of
viscous damping (force proportional to relative velocity) over
certain ranges of operation. When the working fluid is a gas, the
squeeze film acts as a damper for frequencies of motion small com-
pared with the first cutoff frequency w,.. At high frequencies, the
gas film behaves as a spring (forece proportional to relative dis-
placement). The squeeze-film damping effect i8 nonlinear with
respect to displacement and, when two plates are used in push-
pull, the incremental damping increases with displacement away
from the centered position.

The gas squeeze-film damper can be used effectively in damp-
ing mechanical elements whose maximum displacements are of the
order of thousandths of an inch, such as pneumatic instrument:
components and valve elements. The gas damper is insensitive
to extreme temperatures and intense radiation flux.

Experimental results indicate that the single-term approxima-
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tion to the linearized squeeze-film damping equations adequately
predicts the low-frequency average damping forces. The damp-
ing forces were found to be independent of ambient pressure from
0.15to 1.0 atm.

The results prescnted in this paper for gas films may be applied
to liquid films (when no cavitation occurs) if np, is replaced by 3/,
the bulk modulus of the fluid, in all equations.
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