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The collective electronic excitations in quasi-one-dimensional cylindrical quantum-well wires are studied 
theoretically. Using a two-subband model the dispersion curves of the intra- and intersubband plasmons 
in the random-phase approximation for the cases of one and two occupied subbands are calculated. 
The influence of the image forces on the intra- and intersubband plasmon is studied in detail. New 
explicit analytical expressions for the dispersion relations, valid in a wide range of the wave vector are 
derived. It is shown that the additional intrasubband plasmon, arising if two subbands are occupied, 
has for small wave vectors a linear dispersion and is independent of the dielectric screening of the 
quantum-well wire. The intersubband plasmon is split in two branches, one with a positive and one 
with a negative dispersion. The electric dipole moment of the collective excitations is calculated and 
the selection rules for the coupling of light with the plasmons are derived. 

1. Introduction 

The development of molecular-beam epitaxy as a technique for the growth of in atomic-scale 
precise layered semiconductors has given a new dimension to the study of the properties 
of narrow-channel semiconductor microstructures. Advances in high-resolution submicro- 
meter lithography and etching techniques make it possible to fabricate semiconductor 
nanostructures in which the electron motion is confined in two or three spatial directions. 
The study of these low-dimensional or quantum-confined systems has gained a great deal 
of attention in the past few years. GaAs and InSb are the first semiconductors in which 
the artificial realization of electron systems in all four dimensions, from three dimensions 
(3D) to quasi-zero-dimension (QOD), is possible. 

In quasi-two-dimensional (Q2D) systems, i.e. heterojunctions and quantum wells (QW), 
the electron motion is quasi-free parallel to the heterointerfaces, but quantum-confined 
within a very narrow channel perpendicular to the heterointerfaces (growth direction). 
Hence, Q2D systems are typified by an energy spectrum consisting of quantum-confined 
levels (size-quantization) in growth direction, the discrete electric subhands, with typical 
energy separation A€ = 20 to 200 meV, and a free motion dispersion within the perpen- 
dicular plane. 

Additional lateral confinement leads to Q1D systems, i.e. quantum-well wires (QWW) 
for which the electron motion is only free in one spatial direction, but confined in growth 
direction of the structure and in the lateral direction. Quantum-confinement in all three 
spatial directions results in QOD systems with totally discrete energy spectrum. Quantum- 
confined energy levels in lateral direction are obtained by imposing an additional potential, 
acting on a very short scale, on a Q2D system containing a high mobility quasi-two- 
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dimensional electron gas (Q2DEG). In principle two different types of samples should be 
distinguished: (i) deep-mesa etched structures and (ii) nanostructured field-effect devices. 
Now it is also possible to fabricate Q1D and QOD systems directly by molecular-beam 
epitaxy, using macrosteps on semiconductor surfaces. This method should be capable of 
growing samples with smaller lateral widths than the lithographic technique. 

Besides of the great deal of interest from the technological point of view, these 
low-dimensional semiconductor nanostructures offer an excellent opportunity to exper- 
imentally study some of the new fundamental concepts of condensed matter theory. This 
is possible because the most important physical parameters of these systems can be changed 
in a wide range. If for instance the phase-coherence length is always larger than the 
characteristic length of the sample and changing the characteristic length of the sample 
from larger than the elastic mean free path of the electrons to smaller, the transport properties 
change from the diffusive regime with the typical universal conductance fluctuations to the 
ballistic regime. In this regime the transport through a nanostructure shows quantized 
conductance steps [ l ,  21. 

Apart from the very interesting transport properties of low-dimensional semiconductor 
nanostructures, their collective excitation spectrum is one of the most fundamental 
properties. This spectrum depends characteristically on the dimensionality of the system. 
The most prominent collective excitation of modulation-doped semiconductor nanostructures 
is the plasmon and if a magnetic field is applied the magnetoplasmon. The interest in the 
experimental study of plasmons arises also from the, possibility that with the charge density 
of the electron gas many related physical properties, e.g. Fermi energy, Fermi wave vector, 
etc., can be varied. This allows a detailed investigation of different mechanisms that determine 
the plasmon resonance itself and the interaction of plasmons with different types of collective 
excitations. Plasmons and magnetoplasmons have been explored experimentally [3 to 111 
and theoretically without [12 to  351 and with magnetic field [36 to 401 in isolated QWWs 
and lateral multiwire superlattices. The theoretical works on Q1D plasmons predict, 
according to the size-quantization, two different types of excitations, intrasubband plasmons 
which are connected with electron motion within one subband, and intersubband plasmons 
which are connected with electron motion between two different subbands. It was first shown 
by Chaplik and Krasheninnikov [51] that the intrasubband plasmon shows a logarithmic 
dispersion o cc 141 a[ -In (141 a)]’’’ for small one-dimensional wave vectors q. The constant 
a depends on the wire size and is equal to the width of the rectangular potential [12], to 
the radius of the cylindrical potential [24], or to the characteristic width of a harmonic 
potential [25]. It is noticeable that the characteristic size of the wire enters the lowest-order 
term of an expansion in powers of q of the intrasubband plasmon dispersion in difference 
to the corresponding plasmon of the Q2DEG (see for instance [41]). Most of the theoretical 
works were done using the random-phase approximation (RPA) to calculate the linear 
response to an external charge [12 to 34,36,38 to 401. Mendoza and Schaich [35] investigated 
the intrasubband plasmons using a hydrodynamic model including the case of many occupied 
subbands. For the case that more than one subband is occupied Li and Das Sarma 115, 
271, Que [28], and Wendler et al. [29 to 321 calculated the intrasubband plasmons using the 
quantum-mechanical linear response theory in the RPA. In [29] it was shown that the 
intrasubband plasmons of the higher occupied subbands exist in gaps between the 
single-particle intrasubband continua and are free of Landau damping. It is noticeable that 
for a Q2DEG such gaps in the single-particle continua do not exist. Using an approximate 
sum rule, Que [28] concluded that for a lateral multiwire system with A4 populated subbands, 
one should observe experimentally only one intrasubband plasmon mode. 
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The first quantum theory of intersubband plasmons was presented by Que and Kirczenow 
[13]. It was shown for the case of a parabolic confinement potential in a lateral multiwire 
superlattice that one intersubband plasmon with frequency well beyond the subband 
separation frequency exists and there are other intersubband plasmons with frequencies 
close to the subband separation frequency. In this paper the authors predict that only that 
intersubband plasmon with a large depolarization shift creates a large electric dipole moment 
which should be observable in optical experiments. Intersubband plasmons in QWWs are 
investigated in detail by Li and Das Sarma [15, 271, Hu and O’Connell [33], and Wendler 
et al. [29 to 321. It is shown [16, 27, 291 that the coupling between intra- and intersubband 
plasmons in QWWs is more pronounced than in case of Q2D systems. Exploring 
intersubband plasmons in QWWs for the case that more than one subband is occupied, it 
was shown firstly by Wendler et al. [29] and Mendoza and Schaich [34] that in the additional 
regions, which are between the single-particle intersubband continua and free of Landau 
damping, new additional branches of intersubband plasmons exist. 

Wendler et al. [29 to 321 investigated in detail the depolarization sh f t  of intersubband 
plasmons. The depolarization shift is the energy difference between a collective intersubband 
transition, the intersubband plasmon, and the corresponding single-particle intersubband 
transition, caused by resonance screening. For an initial parabolic confinement potential 
(bare potential) it was shown [32] by self-consistent calculation of the ground state and 
response properties of a QlDEG that the lowest intersubband plasmon has for nearly 
vanishing wave vector a frequency nearly identical with the bare harmonic oscillator 
frequency, independent of the density of the QlDEG. This is a result of the generalized 
Kohn theorem [42]. Hu and OConnell [25] investigated intersubband plasmons in a QWW 
with a parabolic confinement potential within the RPA. They show, that if one increases 
the magnitude of the gate voltage (such as in experiments of Hansen et al. [3] and Brinkop 
et al. [4]), which would effectively increase the subband separation and decrease the Fermi 
energy, the largest frequency of the intersubband plasmon modes displays a quantum- 
oscillation behaviour but with an overall increasing trend. 

Firstly, retardation effects on intra- and intersubband plasmons in QWWs were in- 
vestigated by Wendler et al. [43]. 

The first far-infrared (FIR) transmission experiment was carried out by Hansen et al. [3] 
on magnetoplasmons in a Q1D system. In this paper collective intersubband resonances 
and intersubband magnetoplasmons were investigated propagating in the direction perpen- 
dicular to the wire axis in a lateral multiwire superlattice. It was found that the resonance 
frequency has a large depolarization shift and increases with decreasing density of the 
QlDEG. Brinkop et al. [4] and Demel et al. [5] observed in FIR transmission that the 
collective intersubband resonance has a very large depolarization shift, up to four times 
larger than the subband separation. The first experiment on plasmons and magneto- 
plasmons propagating along the wire axis was performed by Demel et al. [7]. In a recent 
FIR transmission experiment Drexler et al. [8] showed that the principal collective 
intersubband resonance is split in three modes above and below the frequency w = fi o, 
(o, = eB/rn, is the cyclotron frequency) at higher gate bias. Plasmons [9], magneto- 
plasmons [lo], and spin-density waves [ l l ]  of the QlDEG in GaAs-Ga,-,Al,As QWWs 
have been firstly determined in resonant inelastic light scattering. It was found [9] 
that the intrasubband plasmon shows a linear dispersion, and in contrast, intersubband 
plasmons appear as dispersionless and have a negligible shift from the single-particle 
energy. 
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In this paper we give a detailed investigation of plasmons in cylindrical quantum-well 
wires (CQWWs). The model of a cylindrical confining potential has the advantage to 
consider the finite width of the QWW in both spatial directions. Hence, this model is a 
good approximation for experimentally used QWWs in which the width of the confinement 
potential is nearly the same for both spatial directions. Further, the model of a CQWW 
allows in many cases to derive analytical expressions. The up to now obtained results on 
Q1D plasmons in CQWWs [22, 241 are restricted to the case that only the lowest subband 
is occupied, neglecting the effects of the image forces on the plasmons. Because of these 
restrictions the obtained results cannot explain the experiments in which mostly QWWs 
with many occupied subbands were used. The aim of this paper is to give a detailed 
investigation of Q1D plasmons in CQWWs in the case of one and two occupied subbands 
including the effect of the image potential. Experimental observations of Merkt [6] indicate 
the importance of the image contributions on the depolarization shift of the intersubband 
plasmons. 

2. Ground State 

We consider a CQWW in which the carriers are confined via a built-in local change in the 
crystal potential of the structure. I t  consists of a semiconductor material 1 embedded in a 
semiconductor of material 2, usually GaAs-Gal - .Al,As or metal-oxide-semiconductor 
(MOS) structures on InSb with S i 0 2  as the oxide. To describe the electrons in the conduction 
band of the host semiconductor, we use the effective-mass approximation. 

In the model we use in this paper, we assume that the electrons are totally confined by 
the effective potential to move in a CQWW of radius R and are free to move along the 
axis of the wire of the length L, which we assume to be the z-axis. Because translational 
symmetry in z-direction is assumed (Born-von Karman boundary condition), the single- 
particle wave functions and the corresponding eigenvalues are 

where we use cylindrical coordinates ( r ,  cp, z), suppose spin degeneracy, but omit the spin 
eigenvalue and coordinate. In the above equations me is the effective electron mass, k ,  is 
the wave vector component in z-direction, and 4mr(r ,  cp) and QmI are obtained from the 
two-dimensional Schrodinger equation 

For the infinite cylindrical potential well, the wave function is given by 

with 
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and the corresponding energy is 

Hence, the levels are twofold degenerated if m =k 0. Here, J lml (x )  is the Bessel function of 
the order [ml, m = 0, +_ 1, 2, . _. is the angular quantum number, 1 = 1,2,3, . .. is the radial 
quantum number (1 is equally the number of the zeros of the radial wave function xml(r )  in 
the interval [O, R]) and k l m l i  is related to the l-th root of the Bessel function of order Iml, 
i.e. J lml(k lml lR)  = 0 resulting from the radial boundary condition vmik, ( r  = R, cp, z )  = 0. 
Thus theresultingsubbandladderis c,, < c l l  < c 2 ,  < cOZ < c3, < c I 2  < c4,  < to3 < ... . 
The Fermi energy is obtained from the condition 

with nlDEG being the 1D electron number density (number of electrons per unit length) 
and O(x) is the Heaviside unit step function (O(x) = 1 for x > 0 and O(x)  = 0 for 

The goal of this paper is to calculate the density-response of a Q l D E G  including the 
effect of the image potential on the collective excitations. Hence, to get a deeper insight we 
are interested to derive analytical results. As shown by Gold and Ghazali [24], the use of 
the following expressions of the normalized single-particle wave functions for the two lowest 
subbands: 

x < 0). 

results in good agreement with the exact result (3, if one calculates the bare electron-electron 
interaction potential. Here we will use these wave functions. 

3. Density Response of a QlDEG 

In this chapter we calculate the response of a QlDEG to an external potential on a 
quantum-mechanical level within the RPA, also known as the time-dependent Hurtree 
method. Here we use the self-consistent field (SCF) method of Ehrenreich and Cohen [44]. 

The single-particle Hamiltonian of the electrons of the Q l D E G  in the presence of the 
perturbation is written as H = H o  + H , ,  where H ,  is the unperturbed Hamiltonian of a 
single electron in the CQWW which satisfies the Schrodinger equation H ,  Im, I ,  k , )  
= &,,(k,) Im, 1, k , )  and H ,  = Vsc(x ,  t )  is the self-consistentpotential. The single-particle von 
Neumann equation for the statistical operator eG describing the response of the system to 
the self-consistent potential, can be linearized with ec = &) + &’, where &’ is the 
statistical operator of the unperturbed system, and &) is the correction to the statistical 
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operator to the first order in the perturbation. Retaining only the linear terms in the 
single-particle von Neumann equation, we obtain 

a 
at 

ifi - &) = [Ho, @"'I + [HI, @$'I. (10) 

The external potential is adiabatically switched on at t = - 00 giving Vext(x ,  t )  
= Vex'@, w )  exp [ - i(w + id) t ]  with 6 + 0'. This time dependence is assumed for all the 
potentials and the steady-state properties of the system are evaluated at t = 0. Using a 
general state Iv) of the unperturbed system, where (v} stands for { n z , l , k z } ,  we find by 
evaluating (10) between states Iv) and Iv') 

where &') Iv) = nF(&,) Iv) is used with nF(€,)  = 8(EF - &,)the Fermi distribution function 
at T =  OK. 

In the next step of the SCF method we have to calculate the electron number density 
nind of the QlDEG, induced by the external potential Vex'. The total electron number 
density n = no + nind of the QlDEG, with no the ground-state electron number density, is 
given by n(x, w )  = Tr {eG 6(x - x,)). The induced electron number density, nind(x, w )  
= Tr {&) 6(x - x,)}, is calculated to be 

nind(x, w )  = d3x' P"'(x, x' I 0) Vsc(x' ,  w )  , (12) 

where P c l ) ( x ,  x' I w )  is the irreducible RPA polarization function of the QlDEG 

The self-consistent potential Vsc(x ,  w )  is composed of the external potential Vext (x ,  w )  and 
the inducedpotential Vind(x ,  w), which arises from the change in the carrier density induced 
by the external potential. According to the spatial symmetry of the problem we introduce 
one-dimensional Fourier series 

Vsc(xx , ;  4, I w )  = dz epiqZz Vsc(x ,  w )  (15) 

with xI = xe, + yey = re,. 
In the next step we have to calculate the self-consistent potential induced by the 

redistributed charges using electrodynamics. In the RPA and neglecting retardation effects 
the induced potential is related to the induced density by Poisson's equation, which reads 
for a QWW 

(16) ind 
[VXl%(Xx,) vx, - %(Xl) 4 3  4 i n d ( x l ;  q z  I 4 = -- e (x1; 4, I 4 . 

E O  

Herein, @nd is the induced scalar potential and Vind = -e4 ind  is valid for an electron in 
the presence of 4ind, eind = -enind is the induced electron charge density and eS(xl) is the 
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static dielectric function of the semiconductor background arising from the high-energy 
electronic excitations across the band gap and the optical phonons. This is true because the 
frequencies of the optical phonons are usually larger than those of the plasmons of the 
QlDEG [29]. Hence, the &,-approximation for the screening of the background gives excellent 
results and is used throughout this paper. E,(x,) is a constant in each semiconductor: 
E,(xJ = cS1 for r 5 R, and E , ( x ~ )  = E , ~  for r > R. It is convenient to solve Poisson's equation 
with the help of the Green's function D(x,  x'). This Green's function describes the electrostatic 
problem for the non-magnetic background semiconductor characterized by the dielectric 
function c,(xI), without the QlDEG. It satisfies the boundary conditions at r = R and 
r = co and is calculated in Appendix A. For inhomogeneous systems in which the materials 
have different but constant polarizabilities, the Green's function of the Poisson equation 
contains two parts, the direct Coulomb part, Ddir, and the image part, .Dim. The formal 
solution for the induced scalar potential is 

f$i"d(X,; q, I w) = - d2x; D(x,,  -4; 4,) Qind(4; 4, I 0) . (17) 
E O  ' S  

Using (12) in the formal 
potential 

solution of Poisson's equation (17), we obtain the self-consistent 

Vext(xl; q, I w )  + - d2x; d2x'; D(x, ,  x;; q,) e 2 S  80 s 
From this equation one obtains the condition for the existence of the collective excitations 
of the QlDEG under the assumption that a finite self-consistent potential exists, Vsc =I= 0, 
with no applied external potential, Vex' = 0. This existence condition reads 

(19) 

Now we use the wave functions (1) and subband energies (2) of noninteracting electrons 
in the CQWW. We obtain for the RPA polarization function 
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+ 'n 

and 

G+'" + q2/2 + (m,/hq,) w - Q m + n m  1, (25)  

1 [ I f '  
462 - (m,/hqz) w - Q m + n  m 

k m f n l  - 

Im Pc',.(q,, o) = -Im PEjm(qZ, -w) ,  
r I' I' I 

and PEk,(qz, o) = 0 if both Gml > EF and bm.I. > E, are valid. Using (21) to (24) for the 
I 1' 

polarization function and 

1 "  
2n n ' = - m  

D(x , ,  x;; q,) = D(r ,  r'; cp - 9'; q,) = - 1 ein'(a-a') D d ( r ,  r'; 4,) 

in the existence condition (19) we obtain after performing matrix elements 

? f [ a m m 1 - n ~ 1 1 1 ~ 1 , 1 .  - G I  m l - n m m + n ( q z )  P E i n m ( q m  
nt=-Ou l , l ' = l  f, 12 I' I 1 1' 

x v : + n  m ( q z ,  0) = 0 .  
1 I '  
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Herein Vki rn2 rn3 rn4(qz) is the matrix element of the Coulomb potential 
f i  12 13 f 4  

where f:, m2rn3  rn4(qz) is the form factor. The conditions m2 = m ,  - n and m4 = m3 + n 

follow from the axial symmetry of the cylindrical potential. The matrix element signifies 
the scattering of an  electron from the subband (m212) to (m,E,) by another electron which 
becomes scattered from (m414) to (m313). Further, we have defined 

1 1  12 13 f 4  

where Vr(r,  q, I o) is the Fourier transform of the screened potential Vsc(r, 9) analogous 
to (21). The axial symmetry of the cylindrical wire results in n = rn, - m,. The system of 
equations (27) is identical n 2 0 and n 5 0. In the following we therefore restrict to the 
case n 2 0 without loss of generality. 

According to the symmetry of the Green’s function, Dn(r,  r‘; q,) = Dn(r’, r; q,), and the 
reality of the radial wave functions we have: f : ,  ,,,2 m3 rn3 rn4 = fi,, m 2  rn4 rn3 = 

I t  12 f 3  14 12 f 1  1s 14 11 f 2  f 4  f 3  

- - f:3 m4 ml rn2 andfzi  rn2 = fz2 rnl .  Using these symmetries and the symmetries of the matrix 
13 f 4  f i  12 I1  12 12 1 1  

polarization function in (27), we obtain for the existence condition of collective excitations 
the following equation: 

with 

In (30) and (31) [n/2] signifies the integral part of n/2. The matrix polarization function 
xE’,,(q,, o) contains two physically different contributions: 

I I ’  

(i) the intrasubband contribution for m = m‘ and 1 = 1’ arising from electron excitations 
above the Fermi surface within one occupied subband and 

(ii) the intersubband contribution for m + m’ and I + l’, or m # m‘ and 1 = 1‘, or rn = m’ 
and I + 1’ arising from electron excitations above the Fermi surface between different 
subbands. 
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The dispersion relation of the collective excitations of the QlDEG in the CQWW, the 
intra- and intersubband plasmons, follows from (30) under the condition that this system 
of algebraic equations has nontrivial solutions m. Then the dispersion relation reads 

1 I '  

m + n m  
determining the eigenfrequencies of the Q1D plasmons. We denote each branch with wp I 1' .  

The symmetry of the CQWW causes that Q1D plasmon branches oPi 1' which are 

connected with the collective electron transition between subbands with equal difference 
between the two angular quantum numbers (m --f m + n) are coupled modes but are 
decoupled from such branches which have a different difference Am of the two angular 
quantum numbers. That means that the plasmons form groups of coupled modes: 
n = 0: w:', mi1, o:~, ...; n = 1: a;', mi1, w i 2 ,  ...; n = 2: a:', w i ' ,  w:', ...; . . . with coupl- 
ing between the branches of one certain group but without coupling between the branches 
of the different groups concerning different n. 

m + n m  

4. Coulomb Potential 

In this section we discuss the Coulomb potential which is a sum of the direct Coulomb 
potential and the image potential 

(34) 
1 1  f z  I3 14 e 2 /  E O  1 I , I 2  13 14 

dir 
v m l  m2 ms m , ( q z )  = - dr r dr' r ' ~ : ~  m 2 ( r )  W r ( r ,  r'; 4,) v : ~  m4(r') 

0 

and 

(35) 

Dtir(r, r'; q,) and Dim((,, r'; q,) are given in Appendix A. Unfortunately, it is impossible to 
get analytical results for V i l  mz m3 nt4(qz) if one uses the wave functions given in (4) and 

(5). In order to get analytical results for the Coulomb potential, we use the approximate 
wave functions of (8) and (9). The explicit results for V$:m2 n,s m4(qz) and Vky m2 ~3 m4(qz) are 

given in Appendix B. Because within this two-subband model the subband indices l , ,  l , ,  
I,, l4 remain always fixed at "1" we omit these in the following. 

Most experiments on QWWs are done for the system GaAs-Ga,-,Al,As and the 
InSb-MOS system. The material constants for GaAs in which the Q l D E G  is synthesized 
are: E,, = 12.87 and me = 0.06624m0 and for AIAs: eS2 = 10.22. For InSb is valid: 
E,' = 17.88 and me = 0.0139 m, and for SiO,: E,, = 3.8. 

of the Coulomb potential is plotted. The different curves correspond to different values of 
the parameter 4 = 1 - E,,/E,~. We notice that the curve with 5 = 0.21 corresponds to the 

11 12 13 14 .'t C O  1 1 1 1 2  l a  14 

im v m ,  mz m3 m , ( q z )  = - dr r dr' T ' V : ~  m z ( r )  DL"'(r3 r'; 4,) v : ~  m4(r') . 
0 

11 22 13 14 

11 12 1s 14 11 12 l a  14 

In Fig. 1 the ratio V$~m2m3m4/(Vm1m2m3rn4 dir + V$m2m3m4) for the different matrix elements 
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p c = 0 . 9  I 
I I I I 

\ Y=-9 
I I I 1 

21 

[ = - 9  k 
i‘ 

0 I 2 3 4 5 0  7 2 3 4 5 
lqz I R- 

Fig. 1. The ratio V ~ ~ m 2 m 3 m 4 / ( V m , m 2 m 3 m 4  dir + V ~ m 2 m j m 4 )  of the different matrix elements of the Coulomb 
potential for a CQWW as a function of lqzl R for different values of 5 = 1 - E , ~ / E , ,  

GaAs-A1As QWW and that with 5 = 0.79 to the InSb-MOS QWW. It is shown that the 
image effects increase with decreasing 1q,1 R and increasing 151. Image effects become 
important for the electron-electron interaction if 1q,1 R 5 1. In this region the contribution 
of the image effects to the Coulomb interaction is more than 10%. For very small values 
of 1q,1 R the matrix element V”,,,, is less influenced by image effects than the other one. 

5. Collective Excitations 

To solve the complicated algebraic equation which determines the dispersion relation of 
the collective excitations it is necessary to restrict the discussion to a finite number of 
subbands. Because throughout this paper we are interest in analytical results, we use the 
two-subband model (rn = 0, 1 ; 1 = 1). In two recent papers [29,30] we calculated numerically 
the dispersion relation of the collective excitation for a multi-subband model. The reader 
who is interested in effects caused by many subbands is directed to these references. Further 
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we use the matrix elements of the Coulomb potential (Bl) to (B8), calculated with the 
approximated wave functions of (8) and (9). The spatial symmetry of the CQWW guarantees 
that the dispersion relation of our model splits into two separate ones. One describes the 
modes for n = 0 and follows from (32) 

The second equation follows for n = 1 from (32) 

If only one subband is occupied, x'ili(qz, w) = 0 and (36) describes the pure intrasubband 
plasmon of the lower subband. If two subbands are occupied, the intrasubband plasmons 
of the two occupied subbands are coupled modes. For the two-subband model the modes 
with n = 1 are pure intersubband plasmons. 

5.1 One subband is occupied 

5.1 . I  Intrasubband plasmons 

In the two-subband model assuming at first that only one subband is occupied, i.e. in the 
electric quantum limit (EQL), the dispersion relation of the intrasubband plasmons reads 

1 - ~ ; o O o ( q J  Xbb'(y.,> w )  = 0. (38) 

Because the investigation of the Coulomb potential in the last section shows that the effect 
of the image potential for the GaAs-AlAs QWW is much weaker than for the InSb-MOS. 
QWW we restrict the discussion on the last system. 

In Fig. 2 the full RPA dispersion curves of the intrasubband plasmons are plotted including 
the image potential (solid line) and neglecting the image potential (dashed line). The shaded 
area in the w - q, plane is the region where the single-particle intrasubband excitations 

~ , D E G  = 1 x Won- '  

-7 

s4 3 
Fig. 2. Dispersion relation of the intrasubband 
plasmon of an InSb-MOS CQWW where one 
subband is occupied. The dispersion curve 
calculated including image effects is given by the 
solid line and without image effects by the 
dashed line. The shaded area corresponds to 
the single-particle intrasubband continuum 
(Im x#(q,, o) + 0) with the boundaries: cuyo 
= (hk;'/m,) yz + (h/2m,) y,Z, w:O = I ~ (hk;'/m,) 

2 

x q z  + (h/2me) 4f l  
0 I 2 3  4 5 

9= (fo5cm-3--- 
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exist. In this region Im x#d(q,, w )  $. 0 and the collective excitations are Landau damped. 
The dispersion curves of the intrasubband plasmons start at q, = 0 and w = 0 and approach 
for large wave vectors the boundary coyo of the single-particle intrasubband continuum. 
We note that according to the logarithmic divergency of xb"(q,, w )  at the boundary wyo 
the dispersion curves do not cross this boundary. It is shown that the image contribution 
to the Coulomb interaction results in an enhancement of the frequency of the intrasubband 
plasmon. For the chosen CQWWs with R = 10 nm and n1DE-j  = 1 x lo6 cm-', the shift 
of the dispersion curves caused by image effects is for q, = 1 x lo4 cm-' 50.5%, for 
q, = 1 x lo5 cm-' 33%, and for q, = 5 x lo5 cm-' 8%. 

In the limit of small wave vectors, if hk;' lqzl, hq,2/2 < m,w is valid, it follows for the 
matrix polarization function 

with nlDEG = 2kg1/71 for one occupied subband. Using (39) in the dispersion relation (38), 
we obtain for the dispersion relation of the intrasubband plasmon 

with 

IZ1DEGe2 
0,' = ( 

and the Fermi velocity 0:' = hk$'/rn,. In the lowest order of 1q,1 R of (B9) and (B10) the 
dispersion relation of the intrasubband plasmon reads 

w;* = u s 2  lqzl R I-ln (IqA R)1"2 2 (42) 

where now 

Hence, the plasmon is screened by the surrounding medium. This is true because for small 
wave vectors the image field is well extended in radial direction. This implies that the 
Coulomb interaction is mainly screened by the surrounding medium. For a small radius 
of the CQWW nearly all field lines of the Coulomb interaction are within the surrounding 
medium. Neglecting image effects one obtains in the long-wavelength limit the uncorrect 
result that the Coulomb interaction is screened by the background dielectric constant E,' 

of the host material and hence, the uncorrect result 0:' = wS1 1q,1 R [-ln (1qJ R)]'" for the 
intrasubband plasmon is obtained. 

In the next order of 1qJ R, and using the first-order term of (39), the dispersion relation reads 

mio  = wSz 1q,1 R [ -In (j ~ '"; ") + 0.6083 E]'" (44) 

10 physica (b) 181/1 
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Unfortunately, the condition 0:' (g,( 4 o for the validity of the expansion of xf&g,, w), in 
(39), is mostly not fulfilled in the experimentally realized QWWs. For instance, for the here 
chosen values of R = 10 nm and nlDEG = 1 x lo6 cm-', this condition is not fulfilled for 
q, 2 0.1 cm-'. Further, it would be valid in the typical experimental range ofq, z lo5 cm- 
only for nlDEG 5 1 x lo4 cm-', which is unrealistically small. Hence, in general only for 
very low densities n, DEG this condition is realized. In the following, we have to look for an 
expansion of x~~(o)(q,, w)  in a power series valid for larger electron densities and wave vectors. 
For wave vectors 1qz1/2 4 kg' - m,o/h IqJ < kg' + m,w/h 1q,I we obtain 

me kg ' [(ki')2 + 3(mew/hqJ21 42 
Pb"(q,, 0) = ~ 

n2h2 [(m,w/hq,)' - (kg1)2] 

Using (45) in (38) we obtain for dispersion relations of the intrasubband plasmons in the 
lowest order of 1q,1 R 

This long-wavelength approximation is valid for larger nIDEG, q,, and R as (40) and (41). 
By nlDEG, q,, R + 0 (46) turns into (42). It is noticeable that the above long-wavelength 
expression of the RPA dispersion relation is exactly the same as the dispersion relation of the 
elementary excitation of the Tomonaga-Luttinger model [45,46] which is an exact solution of 
this model. 

In the next order of 1q,1 R (46) reads 

woo - - h,/ R {(g)' + w& [-In (y) + 0.6083 E]}"' 

20 - 

15- 

10- 

a5 - 

I 2 3 4 5 0  I 4 5 35 -7 qz (70 cm I--- 

(47) 

Fig. 3. Dispersion relation of the intrasubband plasmon of a) InSb-MOS and b) GaAs-AlAs C Q W W s  
for different approximations for the case where one subband is occupied: ~ full RPA, 
. . . . . . . (42), (40), 

(44), --- (46), (47) 
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In Fig. 3 the dispersion curves of the intrasubband plasmons are plotted for the different 
approximations derived above. It is seen that the new long-wavelength approximation given 
in (46) gives very good results over a wide range of the wave vector q, 2 kgl in comparison 
to the full RPA dispersion curve. For instance, for the InSb-MOS CQWW the deviation 
from the RPA is for q, = 5 x lo5 cm-' 11% for (46) and only 0.01% for (47). However, 
the errors resulting if one uses (40), (42), and (44) are 23%, 46%, and 43%, respectively. 
The corresponding values for the GaAs-A1As system are l6%, 2%, and 8.2%, 42% and 
26%, respectively. Hence, (46) and (47) are very suitable and simple approximations for 
the dispersion curve of the intrasubband plasmon. 

5.1.2 Intersubbund plasmons 

The dispersion relation of the intersubband plasmons of the two-subband model assuming 
the EQL is given by (37). In Fig.4 the full RPA dispersion curves of the intersubband 
plasmon are plotted including the image potential (solid line) and neglecting the image 
contribution (dashed line). The shaded area in the o-q, plane is the region where the 
single-particle intersubband excitations exist. The dispersion curves of the intersubband 
plasmons start at qz = 0 at a frequency above the subband separation frequency. This shift 
is caused by many-particle effects. The depolarization shift resulting from resonance screening 
is obtained within the RPA. There is still a further contribution, caused by exchange and 
correlation effects which is beyond the RPA. But for usual carrier densities this contribution 
is very small in comparison to the depolarization shift. From Fig.4 it is seen that the 
depolarization shift increases with increasing image effects. This image force contribution 
to the depolarization shift is different from zero also for q, = 0 and in a wide range of the 
wave vector. If one compares the depolarization shift of the intersubband plasmon in 
CQWWs with that in rectangular QWWs [29] one finds that the depolarization shift 
is approximately 1.4 times smaller in CQWWs. In the small wave-vector limit, i.e. 

n l D E C  = 1 x 106cm-' 
R = lOnm 

Y 
3.5 Ill 
0 0.2 0.4 0.6 08 10 

qz 

Fig. 4. Dispersion relation of the intersubband 
plasmon of a InSb-MOS CQWW where one 
subband is occupied. The dispersion curve 
calculated in RPA including image effects is 
given by a solid line and without image effects 
by a dashed line. The dispersion relation in 
the long-wavelength approximation of (49) is 
given by the dotted line. The shaded area 
corresponds to the single-particle intersub- 
band continuum (Im xl1&qz, w )  -+ 0) with the 
boundaries: 0:' = (hkg'/m,) q. + (h/2m,) qf 
+ Qlo, 4' = I - (hkF/m,) qz + (h/2m,) qf 
+ Q l O I  

10' 
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ugl lqzl, hq,2/2rne < o - Qlo it follows for the matrix polarization function 

Using (48) in the dispersion relation (37), we obtain for the dispersion relation of the 
intersubband plasmon 

The zero-order term of (49) reads 

w;o z (1 + ~ , o ) 1 ' 2  Q l O  2 

with 

This extra term in (51) is due to the depolarization effect. Hence, the explicit results, (50) 
and (51), show that for cS1 > E , ~  which is usually valid, the image forces increase the 
depolarization shift and the energy of a collective intersubband transition, as measured in  
FIR transmission experiments [6], also increases. From (50) and (51) it is explicitly seen 
that the image contribution is different from zero also for vanishing wave vectors. This is 
different from the case of intersubband plasmons in quasi-two-dimensional quantum wells 
where the image effects on the dispersion curves vanish for vanishing wave vector [46 to 
481, The contribution of the image effect to the depolarization shift is 22% for InSb-MOS 
and 4.8% for the GaAs-A1As system. 

We note that for the expansion of x\y(q,, o) given in (48) analogous problems, as for 
(39) in the case of the intrasubband plasmons, do not exist because the collective intersubband 
excitation has at q, = 0 a finite depolarization shift. 

It is interesting to compare our theoretical results with the experimental work of Merkt 
[6]. In these experiments the intersubband resonances in InSb-MOS and GaAs-Gal _,Al,As 
QWWs were investigated. It was found that the depolarization shift (4 ,  = 0) for a 
InSb-MOS QWW with a wire width of 75 nm and nlDEG = 1.5 x lo6 cm-I is 8.4 meV and 
for a wire width of 85 nm and nlDEG = 2.9 x lo6 cm-' the depolarization shift is 11.5 meV. 
Using (51) of our theoretical model we obtain for the depolarization shift of the corresponding 
samples 8.77 and 10.8 meV, respectively. We note that this is an surprisingly good agreement 
(error only 4.4% and 6.1%). Hence, the experimental results could be explained by the 
image contribution. 

Further in Fig. 4 the dispersion curve of the intersubband plasmon is plotted in the 
long-wavelength approximation of (49). The region for which the long-wavelengt h approxima- 
tion describes well the full RPA dispersion curve is small because of the close boundary of 
the single-particle intersubband continuum. 
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Fig. 5. Dispersion relation of the intrasubband 
plasmons of a InSb-MOS CQWW where two 
subbands are occupied. The dispersion curves 
calculated including image effects are given by 
the solid lines and without image effects by the 

0, dashed lines. The shaded areas correspond 
to the single-particle intrasubband continua 
(Im x V k ,  w) + 0, Im A ' k ,  w )  + 0)  with the 

0.8 boundaries uyo, u:' and w: '  = (hkk'/m,)q, 
+ (h/2me) 41, mi1 = I - (fikk'im,) q, + (h/2m,) 
x 4,21 

RlDEG = 4.5 x 106cm-1 
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5.2 Two subbands are occupied 

5.2.1 Intrusubband plusmons 

In the two-subband model assuming that two subbands are occupied, the matrix polarization 
function x\'](qZ, w)  is different from zero and hence, the dispersion relation describing the 
intrasubband modes with n = 0 is given by (36). In Fig. 5 the full RPA dispersion curves 
of the two-subband model with two populated subbands are plotted. In this case we have 
two intrasubband plasmon branches, w:' and wb' which are coupled modes. Hence, there 
exist also the two corresponding single-particle intrasubband continua. The small gap region 
between the boundaries 0:' and is free of Landau damping. Inside this region the 
intrasubband plasmon branch wk' exists. We note that the additional intrasubband plasmon 
branch mi' only occurs if more than one subband is occupied. To get deeper insight in the 
physical properties of both modes we derive analytical expressions. The use of the expansion 
for PblJ(q,, o) in (39) and a similar one for P\'i(qz, w )  results in two dispersion curves. 
However, unfortunately the lower mode in lowest order of (q,( R has a frequency equal to 
zero and hence, the expansion in (39) for this mode is uncorrect. Following, we have to use for 
P#(q,, o) the expansion of (45) and for P\'](qz, w )  we use the expansion of (45) too, but 
replace kgl by k;'. Using these both expressions in the dispersion relation (36), we obtain 
in the lowest order of (qz( R two solutions, 
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For q,R -+ 0, (52) reads 

and 

- 
p - ws2 14zl (IqA R)1"2 (53) 

with v k l  = hkk'Jm,. The second branch, coil, has in lowest order of 1q,1 R a linear dispersion, 
depending only on the carrier density and not on the dielectric screening of the host 
and surrounding medium of the CQWW. However, we note that wpOo and coil are always 
coupled modes, even in the lowest order of 1q,1 R, because w;' depends on the electron 
concentration in both subbands and coil depends on the Fermi velocity of the lowest 
subband. As shown in [50] the upper mode, w:', behaves like an optical plasmon because 
the electron densities, induced in the upper and lower subbands oscillate in phase. For the 
lower mode, a;', the electron densities, induced in both subbands oscillate in anti- 
phase and hence, the mode coil is an acoustic plasmon. 
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In Fig. 5 the full RPA dispersion curves 
of the intrasubband plasmons including 
the image potential (solid lines) and 
neglecting the image contribution (dash- 
ed lines) are plotted. In this figure we 
denote the two roots of the full RPA 
dispersion curves as cogo and coil. It is 
seen that the image effects influence the 
(0-0) branch at small wave vectors more 
than the (1-1) branch. For small wave 
vectors the image effects vanish for the 
(1 - 1) branch, explicitly seen from the 
analytical result of (54). 

In Fig. 6 the dispersion curves of the 
intrasubband plasmons are plotted for 
the different approximations derived 
above. It is seen that the long-wavelength 
approximation given in (52)  gives very 
good results in the whole plotted range 

Fig. 6. Dispersion relation of the intra- 
subband plasmons of a) InSb-MOS and b) 
GaAs-AlAs CQWW for the case where two 
subbands are occupied. The dispersion curves 
calculated including image effects within the 
RPA are given by solid lines and of the 
long-wavelength approximations are given by 
_ - _  (52), ' ' .  . . ' '  (53), (54) 
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Fig. 7. Dispersion relation of the intersubband 
plasmons of a InSb-MOS CQWW where two 
subbands are occupied. The dispersion curves 
calculated including image effects within the 
RPA are given by the solid lines and without 
image effects by the dashed lines. The shaded 
area corresponds to the single-particle inter- 
subband continuum (Im w )  + 0) with the 
boundaries mio, w i o  and 0:' = I(tikk'/m,)q, 
- (ti /2me) 4: + Q I O I ,  do = I--(fG1/me) 4. 
- ( h / W  d + QIOI 

0 012 04 0.6 018 f0 
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of the wave vector in comparison to the full RPA dispersion curves. For instance, 
for the InSb-MOS CQWW the deviation from the RPA is 2% for the upper branch and 
7% for the lower branch at q, = 5 x lo5 cm-'. For the GaAs-A1As system the deviation 
from the RPA for the upper mode, wpOo, is 11% and 5% for the lower mode a:'. Whereas 
(54) is a good approximation of the mode ah1, (53) is only a good approximation of the 
mode coEo for very small wave vectors and electron densities. 

5.2.2 Intersubband plusmons 

The dispersion relation of the intersubband plasmons of the two-subband model assuming 
that two subbands are occupied is given by (37). In Fig. 7 the full RPA dispersion curves 
of the intersubband plasmons are plotted including the image potential (solid lines) and 
neglecting the image contribution (dashed lines). The shaded area in the o-q, plane is the 
single-particle intersubband continuum. If two subbands are occupied, a gap region, the 
area between the curves w i o  and wi0,  arises, for which Im x\y(qz, w )  = 0. Within this region 
an additional intersubband plasmon mode, oio-, exists. Firstly, this additional branch of 
intersubband plasmons was predicted by Wendler et al. [29] and Mendoza and Schaich 
[34]. It is seen from Fig. 7 that the fundamental mode, coho+, has a finite depolarization shift 
and a positive dispersion, the additional mode, w i o - ,  has a vanishing depolarization shift 
(4, = 0) and a negative dispersion. In a recent resonant inelastic light scattering experiment, 
Goiii et al. [9] used a QWW with two occupied subbands. In the gap region of the 
single-particle intersubband continuum they observed an intersubband excitation which we 
identify with the here obtained mode coio- .  If one compares Fig. 4 and 7 it is evident that 
the depolarization shift of w i o +  decreases if the electron density increases in the case that 
the second subband is just occupied. This effect is physically well understood [30]. For vanishing 
wave vector the intersubband resonance frequency of the fundamental mode is given by 
(50) = (1 + E , , + ) " ~  O,,, where a l O +  is given by (51) if one replaces nlDEG by 
(nyb,, - nib,,). The densities nykEG of each subband are given by (7) in the form 
n ,  DEG = nybEG. Further, it can be seen that the influence of the image forces is smaller 

m I  
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in the case of two occupied subbands (Fig. 7) than in the case of one occupied subband 
(Fig. 4). To get a deeper insight in the physical properties of the additional mode we want to 
derive an analytical expression in the long-wavelength approximation. Assuming a dispersion 
relation of the form 

from (25) follows 

and 

Using (56) and (57) in (37) we obtain 

Because of v i l  > 
explicit analytical expression of mio -, (55) ,  shows negative dispersion. 

it follows that for all electron densities 5 > 0 is valid. Hence, the 

6. Electric Dipole Moment of the Collective Excitations 

In previous sections, we have calculated the collective excitation frequencies of a CQW W. 
The calculated dispersion curves correspond to the positions of minima in FIR trans- 
mission experiments if the applied light couples with the modes. In this chapter we 
calculate the electric dipole moment of the modes. If this is different from zero the 
corresponding plasmon can be excited in FIR experiments if a grating-coupler is used to 
match the wave vectors of the incident light and plasmons. The induced electric dipole 
moment is defined by 

pind(w) = --e d3x x nind(x, 0). (59) 

Because of the neutrality of the sample the total induced electron number density is zero 
and hence, the electric dipole moment is independent of the choice of the coordinate system. 
The induced electron number density is given by (12). This equation can be expressed in 
the form 

00 

njnd(x ,  w )  = T n$!d(X; 4,  10) 
n = - w  q r =  - 0 0  

with 
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Here V g + ,  m(q,, w)  is given by (30). According to the cylindrical symmetry of the problem 

the dipole moments for different quantum numbers n are decoupled. Hence, the induced 
electric dipole moment of the plasmon modes with equal n = Am, p!$(qz, w )  is given by 

1 I'  

Now it is possible to calculate p!n,)d(qz, w )  using the RPA expression of n:",(x; q, I o) for 
the general case of N subbands from which M are occupied. Further, we perform the 
integrals using the correct wave functions of (5).  In the case of the intrasubband modes 
(n  = 0) we obtain for the components ofpl:L(q,, w )  = (p$) (qz ,  w), pF)(q, ,  a), p t ) ( q , ,  w)), that 
pio)(q,, w )  = pio)(qz ,  w )  = 0 and pio)(q,, w )  + 0. Hence, intrasubband plasmon can be excited 
in FIR transmission if the light is polarized along the wire axis. 

For the intersubband plasmons (n + 0) we obtain for n + k 1 a vanishing induced electric 
dipole moment: p$)(q,, w )  = p r ) ( q , ,  w )  = p c ) ( q , ,  w )  = 0. Hence, all intersubband plasmon 

branches wp " with n + k 1 have vanishing electric dipole moments and therefore cannot 
be excited in a FIR experiment. The induced electric dipole moments also vanish in the case 
n = f 1 if q,  + 0. In the case n = f 1 but if q, = 0 we obtain: p t ) ( q z ,  w )  + 0, pF)(q, ,  o) + 0, 
and p r ) ( q , ,  w )  = 0. Hence, in the CQWW it is impossible to excite intersubband plasmons 
with finite wave vector (q ,  + 0) using FIR transmission spectroscopy. One only can obtain 
collective intersubband resonances (4, = 0) for n = 1. The obtained dipole selection rules 
are independent of 1 and l'. Hence, if a transition is dipole-allowed according to n(Am) this is 
possible for all Al. 

m + n m  

7. Conclusion 

In this paper we have studied in great detail the collective excitations of cylindrical 
quantum-well wires. For a two-subband model we have calculated the full RPA dispersion 
curves of the intra- and intersubband plasmons for one and two occupied subbands including 
image effects. We have derived analytical expressions for the Coulomb interaction potential. 
We have shown the importance of the inclusion of the image effects on the Coulomb 
interaction potential in a relatively wide range of the wave vector (1qJ R 5 1). In general, the 
image potential increases the frequencies of the intra- and intersubband plasmons for 
GaAs-A1As and InSb-MOS systems. The influence of the image forces is stronger for the 
intrasubband plasmons than for the intersubband plasmons. For the GaAs-A1As QWW 
the image forces have only a very small influence on the dispersion curves of the Q1D 
plasmons. Further, we have derived new analytic expressions for the dispersion curves of 
the intra- and intersubband plasmons, valid in a wide range wave vectors, up to q, 5 k:' 
for intrasubband plasmons and up to q, z lo5 cm-l for intersubband plasmons. These 
expressions are suitable to explain some of the obtained experimental results on intra- and 
intersubband plasmons. Using the analytical expression for the intersubband plasmons we 
can show that the experimental data of Merkt [6] are very well explained by image effects. 
In the case of two occupied subbands there exist two intrasubband and two intersubband 
plasmon branches. The higher frequency intrasubband branch behaves like an optical 
plasmon and the other three branches like a acoustic plasmons [50]. Also in this case we 
have derived suitable long-wavelength approximations of the dispersion relation. The lower 
intrasubband plasmon mode, connected with the second occupied subband is independent 
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of the dielectric screening and shows for small wave vectors a linear dispersion in difference 
to the upper mode which shows a logarithmic dispersion. The upper intersubband plasmon 
branch has a finite depolarization shift and a positive dispersion, but the additional lower 
intersubband plasmon branch has a zero depolarization shift and a negative dispersion. 

We have shown that intrasubband plasmons can interact with light polarized along the 
wire axis and only intersubband resonances (q, = 0) for n = f 1 can be observed in FIR 
experiments, if the light is polarized perpendicular to the wire axis. 
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Appendix A 

Green's function 

In this Appendix we evaluate the electrostatic Green's function of Poisson's equation for 
the CQWW. This function is defined by 

V . (&,(XI) VD(X, x')) = - 6 ( ~  - x') , ('41) 
where according to symmetry 

where Dn(r,  r'; q,) is the radial Green's function. To solve (A3) we need a special solution 
D:ir(r, r'; qz) of the inhomogeneous and a general solution DLm(r, r'; 4,) of the homogeneous 
equation. The sum of both must fulfil the boundary conditions. We require continuity of 
Dn(r, r'; q,) and of E,, ajar (D,(r, r'; 4,)) at the cylinder interface at r = R and vanishing 
D,,(r, r'; 4,) at r = co. The special solution of (A3) is 

wheri I,(x) and K,(x) are modified Bessel functions and E , ( T )  = cS1 for r 5 R and E, (Y)  = E , ~  

for r > R .  Further r ,  = min ( r ,  r') and r ,  = max (r,  r') is valid. For a general solution of 
(A3), D,(r, r';,qz) = Dzi'(r, r'; q2) + Dim(r, r'; qz) we make the ansatz 

Using the boundary conditions for the radial Green's functions (A 5) we obtain 
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and 

(A 7) 
( ~ s 1  - E ~ Z )  I n ( l q z l  r‘) K n ( l q z l  R) K n ( l q z l  R )  

E,1[Es21n(lqzl R )  K m l  R) - E s l I X l q z l  R )  K,(lq,l R)1 ’ 
B, = 

with I:(x) and Kn(x) the derivatives of I,(x) and K,(x) at x, respectively. 

potential by 
We notice that the radial Green’s function is related to the radial part of the Coulomb 

The first term represents the direct Coulomb potential whereas the second term represents 
the image potential. The form factors are defined by 

Appendix B 

Matrix elements of the Coulomb potential 

In this Appendix we calculate the matrix elements of the direct Coulomb potential and the 
image potential defined in (33) to (35) using the wave functions of (8), (9) and the Green’s 
function calculated in Appendix A (A5) to (A7). Because for the two lowest subbands 

= 1, = I ,  = 1, = 1 is valid, we omit these quantum numbers in the following. The 
calculation is straightforward with the following results: 
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64(Es, - E d )  131qzl R) K,(Iq,l R) K; (14,l R) 

Here I,(x) and K,(x) are modified Bessel functions and IL(x) and KL(x) their deriv- 
atives. 

Because the matrix elements always contain the product 1q.J R, the limit of a large (small) 
wave vector is the same as a large (small) radius of the CQWW. Using the well-known 
asymptotic expressions for the modified Bessel functions, we obtain for 1q,1 R 6 1 

V ~ ~ o o ( q z )  = ~ ~ { l n  e2 (7) - 0.6083 
EOES 1 

+ (q,R)' 1; In (y) - 0.1450]}, 
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0.1715]}, 
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Hence, in this limit image effects become unimportant. For a large radius of the CQWW 
the field lines are mostly inside of the wire with E , ~  and, hence, the surrounding 
medium has nearly no influence on the Coulomb interaction. 
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