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Abstract—A simpler analysis is given of the diffusion problem related to the scanning electron microscope
measurements of bulk diffusion lengths in semiconductors using scanning normal to a p-n junction or a Schottky
barrier. The current profile due to a point source is obtained in form of the Fourier transform of an expression
containing elementary functions only. It is shown that this form can be readily adapted to include the presence of a
back ohmic contact and allows an easier discussion of the case of an extended generation.

1. INTRODUCTION

A widely used method for determining the minority
carrier diffusion length in a semiconductor by means of
the scanning electron microscope (SEM) relies on the
configuration shown in Fig. 1{1-3]. The sample contains
a plane p-n or Schottky barrier junction perpendicular to
the free surface and the electron beam of the SEM is
scanned over this surface at right angle to the junction.
By measuring the steady-state electron beam induced
current (EBIC) as a function of the beam-junction dis-
tance, current profiles are obtained from which the
minority carrier diffusion length and possibly the surface
recombination velocity [3-5] are deduced.

Published papers on the theory of such
measurements[5-9] generally refer back to the solution
of the diffusion problem given by van Roosbroeck[10]
for a point source of minority carriers in a semi-infinite
sample. In Ref.[10] the boundary conditions are met by
the introduction of virtual sources, a method known
from the theory of heat conduction[11]. This procedure
leads to an expression for the induced current profile
Q(x', 7') due to a point source at a depth z', which in
principle can be used for studying the current profile
with an arbitrary generation. However, this has been
done exactly only for a source of negligible lateral
extension[5,9]. More realistic generation schemes, like
the uniform sphere or the spherically symmetric Gaus-
sian, have been dealt with either approximately[7] or by
numerical methods[12], probably because of the com-
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Fig. 1. Schematic diagram of SEM measurements of diffusion
lengths.
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plicated expression of Q(x',z’) in terms of integrals of a
modified Bessel function.

The present paper proposes an alternative integral
representation for Q(x’, z') which makes use of elemen-
tary functions only. It is shown that this form is con-
venient both for discussing the case of an extended
generation and taking into account the finite sample
thickness. The analysis given here has some similarity
with that of von Roos[13], since use is made of the
Fourier transform method. However, recognition that
only a two-dimensional study of the diffusion problem is
necessary gives a considerable simplification of the dis-
cussion.

2. THE DIFFUSION PROBLEM

We discuss in detail the case where the presence of the
back surface of the diode can be neglected, i.e. the
sample thickness can be considered infinite[7]. It will be
shown shortly that the case of finite sample thickness
requires only minor changes in the theory.

The transport of beam-generated minority carriers in
the neutral material (for instance, of n-type) is described
by a steady-state diffusion equation

D*p(r) - p(r) = (o). M

where p(r) is the excess hole density at the point r =
(x, v, 2), D and 7 their diffusion coefficient and lifetime,
respectively, and g(r) is the generation rate of electron-
hole pairs per unit volume. Usually[5,7, 13] the solution
of eqn (1) is sought, under suitable boundary conditions
on the surface and at the junction plane. Once p(r) is
known, the collected current is found by integrating the
normal gradient of p over the yz plane.

For the purpose of calculating the beam induced cur-
rent, however, it is actually not necessary to solve the
three-dimensional eqn (1). In fact, as observed in[8, 10},
the configuration of Fig. 1 has translational invariance
along the y axis, in the sense that the contribution to the
collected current of any source element does not depend
on its y coordinate. Therefore the collected current does
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not depend on the detailed distribution of g along y, but
only on the projected generation onto the xz plane

hix, 2) :f - glxy, z)dy. (2)

Thus we only need to solve the two-dimensional problem
, i

DV glx. 2)—=q(x, 2) = —h{x. 2). (3)

where V7 is now the two-dimensional Laplace operator,
with the boundary conditions

g=0 atx =1 (4a)
aq
S. = at - =10. (4b)

In eqn (4b), s = v/ D, v being the surface recombination
velocity. Let G(x, x', z, z') be the Green's function for
eqn (3), satisfying the boundary conditions (4); the
required solution is then given by

qlx, z):f dx’f (X', 2VG(x, x', 2, 2 dZ'. (5)
0 0

The collected particle current is

" ag

I=D L ix

z= f iy f A, ) QU ) A2 (6)
[ n

x 0

where Q(x', z') represents the fraction of injected
minority carriers at (x', z'} that flows into the junction.
i.e. the carrier collection probability at that point, and is

given by
" 4G
DJ:, ax

For a given value of z', the function Q(x’, z') also gives
the normalized induced current profile due to a point
source at z = z'. This function is calculated explicitly in
the next Section. The collected current (6) for an exten-
ded generation is evaluated in Section 4.

dz.

v 0

(7)

3. THE CARRIER COLLECTION PROBABILITY

The Green’s function required for the calculation of
the carrier collection probability (7) obeys the equation
PG 4G

, 1
T +5 -G = ——
ax- A4z AG D

Sx—x)d(z-1z" (8)

and satisfies the boundary conditions (4). In eqn (8)
A=1/L, L=(Dr)'"” being the minority carrier diffusion
length, and & is the Dirac delta function. A solution of
eqn (8) which satisfies the boundary condition (4a) can be
written in the form of a Fourier sine transform

Gix,2)= f a(k, z) sin (kx) dk,

C. DoNoLat

where the dependence of G and ¢ on x'.z' has been
omitted for simplicity. Inserting this expansion into eqn
(8) and using the integral representation for the delta
function (Ref.[14], p. 763)

5

8(x—x’):iﬁf sin (kx) sin (kx') dk (10)
0

we are led to the ordinary differential equation for a(k, )

ada

e
az

2 e
(k*+ A )a:—ﬁsm(k,\)é(~ 2.

(1
It is easily seen that the solution of eqn (11) which
satisfies the boundary condition (4b) is given by

1 sin{kx")

alk, z) = D

{exp[“u{f:’f]

ER

p—s L 5
T exp| u(~+h)]}, (12
where w = (k*+ A%, Substitution of this expression in
eqn (9) vields the required Green's function. From (7)
and (9) we have

Q:Df d:j ka(k, z) dk. (13)
0 O

It is convenient to perform first the integration with
respect to z, since

L v a. L 2osin(kxX)F s o
L u(l‘.g)dL—ﬂ_D—#g [l ,u+sexp( 1% )}.
(14)
Hence
Qx' ,'),lf' k llf Y exp(— ")}sin(kr’)dk
R R wts Pimp=I e ’

-
== Wk ) sin(kx)dk

T Jo

(15)

This is the required expression for the carrier coliection
probability, which is seen to be the Fourier sine trans-
form of a function W(k, z') containing elementary func-
tions only. The equivalence between eqn (15) and van
Roosbroeck’s expression is demonstrated in the Ap-
pendix.

Equation (15) may be put in a different form, using the
identity (Ref.[15], p. 1150)

4

—k—;sin (16)

) Ea (kx')dk = exp (—Ax').

Thus

oy - Ay —;‘ "' k I
Q' ) =exp (- Ax) ﬁ“J:, wilp+s)

x exp(—uz') sin (kx') dk. (17
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This expression shows clearly that for s =0 the current
profile is a simple exponential with decay constant 1/A =
L for any value of the depth z' of the point generation.
The second term on the r.h.s. of eqn (17) represents the
influence of the surface on the current collected by the
junction; unfortunately, a closed form evaluation of this
term was not found.

We are now ready to show how the analysis described
above can be adapted to the case of a sample with finite
thickness. If d is the distance between the junction edge
and the back surface contact, which is assumed to be
ohmic, we have an additional boundary condition for eqn
(3) and consequently for eqn (8)

G=0atx=d (18)
This condition can be satisfied by replacing the integral
in eqn (9) with a sum over the discrete eigenfunctions of
the x part of the Laplace operator which vanish both at
x=0and x = d. This procedure is just the reverse of that
leading to the Fourier integral starting from the Fourier
series [14], and yields

G(x, 2) =§ i a(k,, 2) sin (k.x); k, = nrld.
(19)

Accordingly, the carrier collection probability (15)
becomes

Q(X',Z')=% Zj, E’%[l— .

ew (—unz')] sin (kyx)

(20)

where p, = (ki+A%)'”. It is not difficult to see that the
series (20) represents a simpler expression of eqn (24) of
Ref.[13], if the summation of sine functions indicated
there is expressed in terms of a series of delta functions
by use of the Poisson sum formula (Ref.[14], p. 467). In
eqn (20) the term corresponding to s =0 can be cal-
culated explicitly (Ref.[15], p. 40) and separated out, as
done for eqn (15); this gives

, oy sinh[AMd—x)] 2 <
Q. ) =g nd it

exp (—u,2') sin (k.x').
21

X—g—t—
Wi + 8)

This expression is expected to be useful for interpreting
diffusion length measurements in samples where L is
comparable to d, as in epitaxial layers or solar cells.
Equation (21) appears to be a convenient alternative to
the series containing modified Bessel functions, which is
obtained in this case by the method of virtual
sources[16, 17].

4. THE EXTENDED GENERATION

The transport of beam-generated minority carriers can
be considered purely diffusive only if the carriers are
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generated in the neutral region of the semiconductor. In
the case of an extended generation, this requires that the
generation volume should lie completely at x >0, i.e. we
must assume that x, is greater than the lateral extension
€ of the generation volume. This is not a relevant limita-
tion, since usually data for large values of x, are used to
evaluate L and s[1-5]. Observing that the form of the
generation does not change with beam position, we can
write the (projected) generation function as h(x — xo, z).
By eqn (6), inverting the integration order and dropping
the prime marks, we have

I(xg) = J: dz J::c Q(x, z) h(x — x4, 2) dx. (22)

The integral over x can be extended to —, since h will
be negligibly small for x <0, and can therefore be put in
form of a convolution. The convolved functions are h(x)
and the (odd) function of x obtained by allowing negative
values of the first argument of Q.

The convolution can be conveniently expressed
through the Faltung theorem for Fourier transforms[14];
this yields

I(xo) = fo . dz F'[Qm)'"? Qk, 2} Ak, 2)],  (23)

where % or the tilde denote the Fourier transform. The
representation (15) for Q(x, z) shows that

Ok, 2) = (—zwl—)lﬁjj Qlx, 2)e™ dx = 2/ m)"?i¥(k, 2).

24

Because of the cylindrical symmetry of the generation
about the beam axis, h(x) and consequently A(k) are
even functions for any z. Since ¥(k) is odd, the product
V. h is an odd function of k and the inverse Fourier
transform of eqn (23) will be a sine transform. Thus

I(xo) = 2(2/71')"2]% dz Jm Yk, 2)h(k, z) sin (kxo) dk
(25)

or, reversing the integration order,

I(xy) =2Q2/m'"? f ’ dk sin (kx,) J; ’ Wk, 2)h(k, z)dz.
(26)

This expression gives the induced current profile for an
arbitrary generation, provided that x,> e

To illustrate the consequences of eqn (26) we need to
specify the form of h(x, z). We consider here the case of
silicon and use as an approximate generation function a
three-dimensional Gaussian, as proposed by Fitting et
al.[18]. Following Ref.[18] we write

4
T exp [

_(_x_—x_)zjﬁ—_z)_}
20_2 )

an
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where z,,, and o are related to the primary electron range
R by the relations

2= 03 R, o = RI\/(15). (28)
The factor 1.14 in eqn (17) is a consequence of the
normalization to unity of the truncated Gaussian used for
representing the depth-dose function. The expression

(27) is particularly convenient for the calculations; in fact
we have (Ref.[15], p. 1147)

itk 2) = .14 exp [k‘(r‘ (2= Zu)‘J.

2 20°

(29)

Substituting this expression in eqn (26) and performing
the integration with respect to z we are led to the final
expression for 1(x,)

- Mzn)

(30)

2 (" k Ko o
I(.\’(\):;L #z{exp (——5—)-0,57exp( 5

o

$ 2o . .
s "’f"[ﬁ(#« —;)] } sin (kxq) dk.

Since the lateral extension of the generation (27) is
e =20 = R/2, eqn (30) represents the actual induced cur-
rent profile for x,> R/2 only. In the case of a sample
with finite thickness d, the current profile is obtained
from (30) by replacing the integral with a series accord-
ing to the procedure described in the previous Section.
The equivalence between the resulting expression and
eqn (23) of Ref.[13] can be verified in the same way as
for eqn (20).

The influence of s and R on the behaviour of the
function I(x,) has been studied by performing the in-
tegration (30) numerically, using the rational ap-
proximation for the error function given in[19]). For
s =0, I(x,) can be expressed in closed form in terms of
error functions (see Ref.[15], p. 497); this property is
useful for checking the accuracy of the numerical
evaluation.

Some representative results are shown in Fig. 2, where
the logarithm of the collected current has been plotted as
a function of the normalized beam-junction distance
xol L, for selected values of the ratio R/L and the
dimensionless parameter S = sL. Figure 2 shows that the
current profiles are influenced by the value of the surface
recombination velocity, this influence being larger if the
beam penetration depth R is small in comparison to the
diffusion length L. A pure exponential current decrease
(i.e. a straight line in the plot of Fig. 2) is obtained only
for S =0: in this case the profile is almost insensitive to
the value of R, and the reciprocal slope gives the diffusion
length independently of the beam energy. For §> 0 the
curves can be considered approximately straight only for
large values of x,/L, but the related slope is dependent
on S: this behaviour and the associated problem of
extracting the true diffusion length from experimental
scans are well known from previous analyses|[7, 8].

Figure 2 also shows that an increase of R produces an
upward shift of the curves, which is larger for larger

N
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Fig. 2. Normalized collected current vs beam-junction distance
for different surface recombination velocities and electron ranges.
as calculated from eqn (30).

values of S, but the slope of the (approximately) straight
part is practically unaffected by the change of R: this
behaviour is consistent with the experimental obser-
vations and calculations of Refs.[5.12]. However. the
value of the slope is still dependent on S, so that it
appears that accurate values of L and S can only be
obtained by fitting the experimental scans to the
theory|S§, 12].

5. CONCLUSIONS

This paper gives an analytical description of the
determination of semiconductor diffusion lengths by
SEM operating in the configuration shown in Fig. 1.

An integral expression has been derived for the carrier
collection probability, which is equivalent to that
generally used but offers the following advantages: (a) it
contains elementary functions only, (b) it can be easily
adapted to the case of a sample with finite thickness and-
(c) it is convenient for discussing the case of an extended
generation. Using this expression, the induced current
profile due to a three-dimensional Gaussian generation
could be expressed through a one-dimensional Fourier
transform. This transform has been evaluated numeric-
ally for investigating the influence of the dimensions of
the generation region on the induced current scans, for
different values of the surface recombination velocity.
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APPENDIX
Proof of the equivalence between eqn (15) and van Roosbroeck’s
expression
Van Roosbroeck’s treatment[10] for a point (or line) source at
(x', z') leads to the following expression for the carrier collection
probability (see e.g. Ref. [7])

L _2 , z K’[A(XVZ+ZZ)I/2]
Q(x,z)—ﬂ_/\x [L TS dz .
o {7 KA+ 297

+e f e - T "

dz}, (AD)
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where A is the reciprocal of the diffusion length and K, is the
modified Bessel function of the sccond kind of order one.
Using the identity (Ref.[15], p. 498)

Ax’ 2. 2 = expl—z(k? + A
Ty Kl + )] = L RGOS

(—,—2+— k sin (kx') dk
¥4z

(A2)

eqn (A1) becomes

27 (F *k . .
5y = d N o ur k’dk+e‘*
Q(x,2") 77“; zJ:)Me sin (kx')

xf dze ™ [xl‘-e"“ sin(kx’)dk],
& 0o K

(A3)

where p = (k*+ A%)'2, Inverting the integration order we obtain

o, z)=2[ % [ fe a

TJo M

+C‘:’f eflur\'): dzJ Sin (kx')dk (A4)

The evaluation of the two integrals with respect to z is straight-
forward and leads to eqn (15).



