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Abstract-A simpler analysis is given of the diffusion problem related to the scanning electron microscope 
measurements of bulk diffusion lengths in semiconductors using scanning normal to a p-n junction or a Schottky 
barrier. The current profile due to a point source is obtained in form of the Fourier transform of an expression 
containing elementary functions only. It is shown that this form can be readily adapted to include the presence of a 
back ohmic contact and allows an easier discussion of the case of an extended generation. 

1. INTRODUCTION 

A widely used method for determining the minority 
carrier diffusion length in a semiconductor by means of 
the scanning electron microscope (SEM) relies on the 
configuration shown in Fig. 1 [l-5]. The sample contains 
a plane p-n or Schottky barrier junction perpendicular to 
the free surface and the electron beam of the SEM is 
scanned over this surface at right angle to the junction. 
By measuring the steady-state electron beam induced 
current (EBIC) as a function of the beam-junction dis- 
tance, current profiles are obtained from which the 
minority carrier diffusion length and possibly the surface 
recombination velocity[3-51 are deduced. 

Published papers on the theory of such 
measurements[5-91 generally refer back to the solution 
of the diffusion problem given by van Roosbroeck[lO] 
for a point source of minority carriers in a semi-infinite 
sample. In Ref.[lO] the boundary conditions are met by 
the introduction of virtual sources, a method known 
from the theory of heat conduction [ 111. This procedure 
leads to an expression for the induced current profile 
Q(x’, z’) due to a point source at a depth z’, which in 
principle can be used for studying the current profile 
with an arbitrary generation. However, this has been 
done exactly only for a source of negligible lateral 
extension[5,9]. More realistic generation schemes, like 
the uniform sphere or the spherically symmetric Gaus- 
sian, have been dealt with either approximately[7] or by 
numerical methods[l2], probably because of the com- 
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Fig. I. Schematic diagram of SEM measurements of diffusion 
lengths. 

plicated expression of Q(x’, 2’) in terms of integrals of a 
modified Bessel function. 

The present paper proposes an alternative integral 
representation for Q(x’, z’) which makes use of elemen- 
tary functions only. It is shown that this form is con- 
venient both for discussing the case of an extended 
generation and taking into account the finite sample 
thickness. The analysis given here has some similarity 
with that of von Roos[l3], since use is made of the 
Fourier transform method. However, recognition that 
only a two-dimensional study of the diffusion problem is 
necessary gives a considerable simplification of the dis- 
cussion. 

2. THE DIFFUSION PROBLEM 

We discuss in detail the case where the presence of the 
back surface of the diode can be neglected, i.e. the 
sample thickness can be considered infinite[7]. It will be 
shown shortly that the case of finite sample thickness 
requires only minor changes in the theory. 

The transport of beam-generated minority carriers in 
the neutral material (for instance, of n-type) is described 
by a steady-state diffusion equation 

DV’p(r) - + p(r) = -g(r), (1) 

where p(r) is the excess hole density at the point r = 

(x, y, z), D and r their diffusion coefficient and lifetime, 
respectively, and g(r) is the generation rate of electron- 
hole pairs per unit volume. Usually[5,7, 131 the solution 
of eqn (1) is sought, under suitable boundary conditions 
on the surface and at the junction plane. Once p(r) is 
known, the collected current is found by integrating the 
normal gradient of p over the yz plane. 

For the purpose of calculating the beam induced cur- 
rent, however, it is actually not necessary to solve the 
three-dimensional eqn (1). In fact, as observed in@, lo], 
the configuration of Fig. 1 has translational invariance 
along the y axis, in the sense that the contribution to the 
collected current of any source element does not depend 
on its y coordinate. Therefore the collected current does 
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not depend on the detailed distribution of g along y, but where the dependence of G and u on x’. 2’ has been 
only on the projected generation onto the xz plane omitted for simplicity. Inserting this expansion into eqn 

,-/I 
,, (8) and using the integral representation for the delta 

h(x, :) = g(x, !: z) dy. (2) 

Thus we only need to solve the two-dimensional problem 

DV’q(.x. Z) -1 q(x, 2) = -h(s. I), (3) 

function (Ref. [ 141. p. 763) 

where V’ is now the two-dimensional 
with the boundary conditions 

q = 0 at .r = 0 

Laplace operator, 

(4a) 

(4b) 

In eqn (4b). s = c.,/D, cs being the surface recombination 
velocity. Let G(.r, x’ , z. z’) be the Green’s function for 

eqn (3), satisfying the boundary conditions (4); the 
required solution is then given by 

’ h(x’. ?‘)G(.v, x’. Z, z’) di’. (5) 

The collected particle current is 

6(x -$) = 1 ~ (, sin (b) sin (k~‘) dk 
I 

(IO) 

we are led to the ordinary differential equation for n(X. Z) 

It is easily seen that the solution of eqn (1 I) which 
satisfies the boundary condition (4b) is given by 

I sin (kx’) 
dk.z)=rDp 

I-( 1 
exp [ -~ ~(2 ~ 2’81 

+Kexp[-p(:t:‘)] . 
1 

(12) 

where p = (k’+ A’)“‘. Substitution of this expression in 

eqn (9) yields the required Green’s function. From (7) 
and (9) we have 

Q= Dj-‘d:jj)’ ka(k.:)dk. (11) 

It is convenient to perform first the integration with 
respect to z, since 

where Q(x’, 2’ ) represents the fraction of injected 
minority carriers at (x’, z’) that flows into the junction. 
i.e. the carrier collection probability at that point, and is 
given by 

di, \ 0 
(7) 

For a given value of 2, the function Q(x’, z’) also gives 
the normalized induced current profile due to a point 
source at z = z’. This function is calculated explicitly in 
the next Section. The collected current (6) for an exten- 
ded generation is evaluated in Section 4. 

3. THE CARRIER COLLECTION PROBABILITY 

The Green’s function required for the calculation of 
the carrier collection probability (7) obeys the equation 

7 , 

t$+$-A% = -D’ a(s-x’) a(=_ -0 (8) 

and satisfies the boundary conditions (4). In eqn (8) 
A = l/L, L = (0~)“’ being the minority carrier diffusion 
length. and S is the Dirac delta function. A solution of 
eqn (8) which satisfies the boundary condition (4a) can be 
written in the form of a Fourier sine transform 

G(x, z) = I’ cl(k, 2) sin (kx) dk. (9 0 

(14) 

Hence 

=; ,) Wk. ?) sin (kx’) dk. 
I’ 

(IS) 

This is the required expression for the carrier coliection 
probability, which is seen to be the Fourier sine trans- 
form of a function Vr(k. -_‘) containing elementary func- 
tions only. The equivalence between eqn (15) and van 
Roosbroeck’s expression is demonstrated in the Ap- 
pendix. 

Equation (IS) may be put in a different form. using the 

identity (Ref.[lS], p, 1150) 

! 

I 

k 
; ,, m sin (k-r’) dk = exp (pA.r’). (16) 

Thus 

1 ’ 
Q(.u’. -_‘) = exp (-A-Y’) C s 

I 
k 

n 0 ,&X,, 

x exp(~-@) sin (kx’) dk. (17) 
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This expression shows clearly that for s = 0 the current generated in the neutral region of the semiconductor. In 
profile is a simple exponential with decay constant l/h = the case of an extended generation, this requires that the 
L for any value of the depth z’ of the point generation. generation volume should lie completely at x > 0, i.e. we 
The second term on the r.h.s. of eqn (17) represents the 
influence of the surface on the current collected by the 
junction; unfortunately, a closed form evaluation of this 
term was not found. 

We are now ready to show how the analysis described 
above can be adapted to the case of a sample with finite 
thickness. If d is the distance between the junction edge 
and the back surface contact, which is assumed to be 
ohmic, we have an additional boundary condition for eqn 
(3) and consequently for eqn (8) 

G=Oatx=d. (18) 

This condition can be satisfied by replacing the integral 
in eqn (9) with a sum over the discrete eigenfunctions of 
the x part of the Laplace operator which vanish both at 
x = 0 and x = d. This procedure is just the reverse of that 
leading to the Fourier integral starting from the Fourier 
series [14], and yields 

G(x, z) =: $ a(k,, z) sin (k,,x); k, = m/d. 
n I 

(19) 

Accordingly, the carrier collection probability (15) where 9 or the tilde denote the Fourier transform. The 
becomes representation (15) for Q(x, z) shows that 

Q(x’, 2’) = i g, j$ [ 1 -k exp (-p,,z?] sin (k,x’) 

(20) 

where F,, = (kz t A’)“2. It is not difficult to see that the 
series (20) represents a simpler expression of eqn (24) of 
Ref. [13], if the summation of sine functions indicated 
there is expressed in terms of a series of delta functions 
by use of the Poisson sum formula (Ref.[l4], p. 467). In 
eqn (20) the term corresponding to s = 0 can be cal- 
culated explicitly (Ref.[lS], p. 40) and separated out, as 
done for eqn (15); this gives 

G(r, z,) = sinh [h(d-x’)l 2 a 
-iPz sinh(Ad) ,, , 

X kn 
L& f s) 

exp (-pcL,z’) sin (k-x’). 

(21) 

This expression is expected to be useful for interpreting 
diffusion length measurements in samples where Z. is 
comparable to d, as in epitaxial layers or solar cells. 
Equation (21) appears to be a convenient alternative to 
the series containing modified Bessel functions, which is 
obtained in this case by the method of virtual 
sources [16, 171. 

4.THEEXTENDEDGENERATION 

The transport of beam-generated minority carriers can 
h(x-x,,z)=$-$exp - 

[ 

(x - X$ + (z - z”)z 
2a2 13 

be considered purely diffusive only if the carriers are 

must assume that x0 is greater than the lateral extension 
E of the generation volume. This is not a relevant limita- 
tion, since usually data for large values of x,, are used to 
evaluate L and s [l-5]. Observing that the form of the 
generation does not change with beam position, we can 
write the (projected) generation function as h(x - x0, z). 
By eqn (6), inverting the integration order and dropping 
the prime marks, we have 

I@,,) = 1’ dz I= Q(x, z) h(x - xc,, z) dx 
0 

(22) 

The integral over x can be extended to --m, since h will 
be negligibly small for x < 0, and can therefore be put in 
form of a convolution. The convolved functions are h(x) 
and the (odd) function of x obtained by allowing negative 
values of the first argument of Q. 

The convolution can be conveniently expressed 
through the Faltung theorem for Fourier transforms [14]; 
this yields 

KG) = [ d ~~-‘[(27r)“~ fj(k, z) h(k, z)], (23) 

1 
Q(k.z)=o”’ __ 

I 
+” Q(x, z)? dx = (2/r)“2i’l’(k, z). 

(24) 

Because of the cylindrical symmetry of the generation 
about the beam axis, h(x) and consequently h(k) are 
even functions for any z. Since Q(k) is odd, the product 
yl. 6 is an odd function of k and the inverse Fourier 
transform of eqn (23) will be a sine transform. Thus 

Z(x,,) = 2(2/~)“~ I= dz I= T(k, z)h(k, z) sin (kx,) dk 
0 

(25) 

or, reversing the integration order, 

Z(x,,) = 2(2/~r)“‘i~~ dk sin(kx,,) LX V(k, z)h(k, z) dz. 

(26) 

This expression gives the induced current profile for an 
arbitrary generation, provided that x0 > E. 

To illustrate the consequences of eqn (26) we need to 
specify the form of h(x, z). We consider here the case of 
silicon and use as an approximate generation function a 
three-dimensional Gaussian, as proposed by Fitting et 
a1.[18]. Following Ref.1181 we write 

(27) 
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where z,,, and (7 are related to the primary electron range 

R by the relations 

z,, = 0.3 R, (7 = R/\ (15). (28) 

The factor 1.14 in eqn (17) is a consequence of the 
normalization to unity of the truncated Gaussian used for 
representing the depth-dose function. The expression 
(27) is particularly convenient for the calculations: in fact 
we have (Ref.[lS], p, 1147) 

7 1 

k-cr- (-’ - z,J 
Ir(f.z)=+Jexp 7P---?- 

L ‘1 2tr- 
(2’)) 

Substituting this expression in eqn (26) and performing 
the integration with respect to z we are led to the final 
expression for 1(,X,,) 

Since the lateral extension of the generation (27) is 
e = 2a = R/2. eqn (30) represents the actual induced cur- 
rent profile for x,, > R/2 only. In the case of a sample 
with finite thickness d. the current profile is obtained 
from (30) by replacing the integral with a series accord- 
ing to the procedure described in the previous Section. 
The equivalence between the resulting expression and 
eqn (23) of Ref.[ 131 can be verified in the same way as 
for eqn (20). 

The influence of s and R on the behaviour of the 
function I(*,,) has been studied by performing the in- 
tegration (30) numerically, using the rational ap- 
proximation for the error function given in[l9]. For 
s = 0, 1(x,,) can be expressed in closed form in terms of 
error functions (see Ref.[lS], p. 497): this property is 
useful for checking the accuracy of the numerical 
evaluation. 

Some representative results are shown in Fig. 2, where 
the logarithm of the collected current has been plotted as 
a function of the normalized beam-junction distance 
X,)/L, for selected values of the ratio R/L and the 
dimensionless parameter S = sL. Figure 2 shows that the 
current profiles are influenced by the value of the surface 
recombination velocity, this influence being larger if the 
beam penetration depth R is small in comparison to the 
diffusion length L. A pure exponential current decrease 
(i.e. a straight line in the plot of Fig. 2) is obtained only 
for S = 0: in this case the profile is almost insensitive to 
the value of R, and the reciprocal slope gives the diffusion 
length independently of the beam energy. For S > 0 the 
curves can be considered approximately straight only for 
large values of x,,/L. but the related slope is dependent 
on S; this behaviour and the associated problem of 
extracting the true diffusion length from experimental 
scans are well known from previous analyses[7,8]. 

Figure 2 also shows that an increase of R produces an 
upward shift of the curves. which is larger for larger 

X,:x .‘L 

Fig. 2. Normalized collected current vs beam-junction distance 
for different surface recombination velocities and electron range,. 

:I\ calculated from eqn (30). 

values of S, but the slope of the (approximately) straight 
part is practically unaffected by the change of R: this 
behaviour is consistent with the experimental obser- 
vations and calculations of Refs.[S, 131. However. the 

value of the slope is still dependent on S. so that it 
appears that accurate values of L and S can only be 
obtained by fitting the experimental scans to the 

theory[S, 121. 

5. C0NCLUS10NS 

This paper gives an analytical description of the 
determination of semiconductor diffusion lengths by 
SEM operating in the configuration shown in Fig. I. 

An integral expression has been derived for the carrier 
collection probability, which is equivalent to that 
generally used but offers the following advantages: (a) it 
contains elementary functions only, (b) it can be easily 
adapted to the case of a sample with finite thickness and< 
(c) it is convenient for discussing the case of an extended 
generation. Using this expression, the induced current 
profile due to a three-dimensional Gaussian generation 
could be expressed through a one-dimensional Fourier 
transform. This transform has been evaluated numeric- 
ally for investigating the influence of the dimensions of 
the generation region on the induced current scans. for 
different values of the surface recombination velocity. 
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APPENDIX 
Proof of the equivalence between eqn (15) and van Roosbroeck’s 
expression 

Van Roosbroeck’s treatment[lO] for a point (or line) source at 
(x’, 2’) leads to the following expression for the carrier collection 
probability (see e.g. Ref. [7]) 

where A is the reciprocal of the diffusion length and K, is the 
modified Bessel function of the second kind of order one. 

Using the identity (Ref.[lS], p. 498) 

ksin(kx’)dk 

642) 

eqn (Al) becomes 

Q(x’,z’)=~[~‘d~_/~~e~~~sin(kx’)dk+e‘~ 

x ~z~dze~‘z \Ozkemw’ sin(kx’)dk]. (A3) 

where p = (k’ t A’)“‘. Inverting the integration order we obtain 

+ es; em”“” dz sin (kx’)dk. 
I 

(A4) 

’ K,[A(x” t z’)“‘] dz 
(x’? + z’)I/’ 

z 
t e” 

e (_ K,[A(x”+ r’)“‘] dz 
($2 + zz)l/z ’ CA’) 

The evaluation of the two integrals with respect to z is straight- 
forward and leads to eqn (15). 


