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A general formulation is given to the quantum theory of steady diffusion. In seeking for a
steady solution of Liouville’s equation, the boundary condition is taken into account by requiring that
the solution should lead to a given distribution of average density. The distribution is to be determin-
ed by macroscopic law of diffusion and macroscopic boundary condition.

The basic equation thus obtained has a form similar to Bloch’s kinetic equation and reduces to
the latter in the limit of a system of weakly interacting particles. This is shown by generalizing a
damping theoretical expansion of Kohn and Luttinger.

It is found that the Einstein relation is valid only for the symmetric part of diffusion- and electric
conductivity tensors, in agreement with Kasuya’s suggestion.

§ 1. Introduction

Recently Kubo and others”'® have succeeded in formulating quantum statistical ex-
pressions for transport coefficients such as electric and thermal conductivities. These
formulae are just as general and rigorous as, say, the familiar expression for the partition
function Z=Tr(exp{—H/kT}). In practice appropriate approximation should, of course,
be made in evaluating transport coefficients. The point is, however, that the conventional
Bloch equation is nothing else but the lowest order approximation in a damping theoretical
treatment of dynamical motion (see §6) and by no means the most general way of ap-
proaching the problem.

Now, in the case of mechanical disturbances such as an external electric field, deri-
vation of these formulae has been rather simple. The mechanical disturbance is expressed
as a definite perturbing Hamiltonian and the deviation from equilibrium caused by it can
be obtained by perturbation theory. On the other hand, thermal disturbances such as
density and temperature gradients cannot be expressed as a perturbing Hamiltonian in an
unambiguous way. Accordingly in the previous paper,” use had to be made of Onsager’s
assumption that the average regression of spontaneous fluctuation follows the macroscopic
laws. As a result, certain ambiguity has been left over, concerning  galvano-magnetic
effects caused by thermal disturbances.

In the present paper, a general formulation free from such an assumption will be
given to the theory of ‘thermal disturbances and, in order to show the basic idea, the case
of steady diffusion will be discussed in detail. In this case, the usual Bloch equation
takes the form in which the drift term due to the density gradient is balanced by the
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collision term. Our purpose is then to generalize the equation so as to include systems
of strongly interacting particles (electrons, phonons, impurities, etc.). In other words, we
shall seek for a steady solution of the quantum theoretical Liouville equation

Z[H: ;(’]:Oa (1-1)

where H is the Hamiltonian of our system and g the density matrix, taking 5=1. The
boundary condition should be such that a steady gradient of average density is established
by attaching suitable sources at the boundary. But for such a boundary condition, (1-1)
would lead to an equilibrium density matrix, microcanonical, canonical or grand canonical.
The microscopic detail of the interaction with sources at the boundary, however, should
not be essential to the law of diffusion as an intrinsic property of a large system. We
need only to suppose that the solution of (1-1) should lead to a given distribution of
average density. The distribution is in turn to be determined by the macroscopic law
of diffusion together with a given macroscopic boundary condition. The law of diffusion
itself is a consequence from our solution of (1-1), so that the method is self-consistent.

In this sense, the thermal disturbance is a constraint upon dynamical motion and in
fact appears as an effective potential in our basic equation (§4). The equation takes a
form similar to the Bloch equation and reduces to the latter in the limit of a system of
weakly interacting particles. This will be shown by applying a damping theoretical ex-
pansion due to Kohn and Luttinger” (§6).

An important consequence of the theory is that the well-known Einstein relation is
valid only for the symmetric part of diffusion- and electric conductivity tensors. In other
words, as regards the Hall effect, the gradient of chemical potential is not equivalent to
the electric field. The difference becomes appreciable at low temperatures and under
strong magnetic fields. Such a difference has first been suggested by Kasuya and is con-
firmed far beyond doubt by the present theory (§5).

From technical points of view, the present theory is similar to the so-called method
of pseudo-potential.” It may also be regarded as generalization of Enskog’s classical kinetic
theory.” Indeed, Matsubara” has once tried the theory of hydrodynamic properties from
the latter point of view. It seems, however, that neither physical nor mathematical details
has ever been examined by these previous authors.

§ 2. Lecal equilibrium

For definiteness, let us take a system of similar particles (say, electrons in a metal),
in which there exists a steady gradient of average density. The number density of
particles is represented by the operator

n(x)=2>10(x—x,) =0 }}( g e (2-1)
J g

where £ is the volume of the system and n,=>)exp{—ik-x,} should not be confused

with occupation numbers. The average density is then given by

Te (o (x)) = (n(x)). (2-2)



950 S. Nakajima

As mentioned in § 1, we suppose that the right-hand side of (2-2) is given as a solution
of the macroscopic diffusion equation, hence (2-2) is the condition for the solution of
(1-1) to satisfy.

Let us describe the system in equilibrium by the grand canonical distribution

pe=exp{{N—FH} /Tr(exp{{N—SH}), (2-3)

where ¢ is the chemical potential, 8 the temperature and N the operator representing the
total number of particles and commutable with the Hamiltonian H. We shall assume

that the system in equilibrium is homogeneous so that
<n(x) >e£Tr(1(’en(x)) =n (24)

is constant. Hence (2-3), though stationary, does not satisfy (2:2) when the density

gradient does exist.
A possibility of satisfying (2-2) is given by the so-called local equilibrium distribu-

tion

p,=exp{¢+EN—FH+ %é‘kn_k}. (2-5)

Here ¢ is a normalization constant to make
Te(o) =1 ‘ (2-6)

and the < (k25 0) represent the fluctuation of chemical potential in space. From (2-6)

it can be easily seen that
(n_py=—0¢/0%, &_p=—08/0(ny) (2-7)
where the entropy § is defined as
S=—Tr(p, logp,). (2-8)

Obviously, (2-2) is always satisfied by (2-5) with suitably chosen §,. But (2-5)
does not satisfy (1-1), [H, p,] 0.

We are thus led to assume the density matrix in the form
0=+ (2-9)

Actually, however, no approximation is introduced in so far as writing the density matrix
in this form. For any given o, we can always find (2-5) with parameters ¢, €, 3 and

&, so chosen that
Tr(p) =Tr(‘0,), Tr(pN) :Tr(AUZN)
Tr (‘()H) =Tr (Aol H) ’ Tr (A(mk) =Tr (AUZ nle) .

(2-10)

Then (2-9) can be regarded as the definition of p,, which should necessarily satisfy

Tr(p)) =0, Tr(p,N)=0,
Tr(p,H) =0, Tr(p n,)=0.

(2-11)
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There are an infinite number of density matrices which satisfy (2-10). Among
them, (2-5) is characterized by the maximum entropy and makes it possible to introduce
thermodynamical variables as shown by (2-7). This is the reason for our particular
choice (2-5), because the boundary condition of our problem is most simply expressed in
terms of thermodynamical variables by specifying chemical potentials of sources at the
boundary.

§ 3. Linear approximation

Now let us assume that the system is not far from equilibrium so that both &) and
o, are small quantities of first order. Then the well-known expansion formula of ordered

exponential leads to

. [ y
Aol:AOe(1+E/QIC&?”—’{-(—Z/‘)> (31)
0

where we have made use of (2-4), i.e.,
<nk>e=0,. k0 (3-2)

and m, (—i4) is obtained from Heisenberg’s operator ny () =exp (iHt) - ny,-exp(—iHt) by
replacing ¢ with —iA. ’
Under the linear approximation (3-1), the average density is given as

(me) =Tr(0im,) =9nn (3:3)

where
d’ ,
9= G (= iDm).. (3-4)

In particular, assuming ¢, is continuous at k=0, we can show that
lim gy =2 (8n/9%) (3-5)
k>0

where n is defined by (2-4). From (2:7), the entropy is expressed as

§=8—3>V 95" (mi) (n_g) (3-6)

with the equilibrium value §;. If the density fluctuation is gradual, i.e., only the &
with small k are excited, we may replace g, in (3-6) by (3-5), so that we obtain the
well-known expansion of entropy in thermodynamics.

Let us now turn to the flow density which is defined by

v(x) =3 3] (%0 (x—x,) +0 (x—x,) x,) =02~ S\p;, e, (3-7)

In cases of neutral particles and also of charged particles without magnetic fields, the
local equilibrium (3-1) makes no contribution to the average flow. In the case of charged
particles moving in a magnetic field, on the contrary, the flow does not vanish even in
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equilibrium, because there exists a diamagnetic current. This current, however, can be
described in terms of a magnetization and, in particular, never gives rise to a net current

flowing through a cross section of a conductor (except for superconductors) So we hete-
after disregard this part of flow.

There still remains the flow due to the second term of (3-1)

w

Q\"'“a
*@}i&.

(o), ~¢k (n_p(—id)vp)e. (3-8)
This vanishes if there is no magnetic field. Because then ny is invariant and v, changes
its sign under the transformation of time reversal. In the presence of a magnetic field,
however, the transformation of time reversal includes the reversal of the magnetic field,
too. So we can infer only that (3-8) is reversed together with the magnetic field. In
other words, the flow is antisymmetric with respect to the magnetic field. But it does
vanish in the classical limit and therefore in the high temperature limit, too. In fact,
in the classical limit, we can first perform the integration over particle velocities in taking
the expectation value in (3-8) and this vanishes because it is linear in velocities.
A more detailed discussion of (3-8) will be given in § 5.

§ 4. Basic equation and its solution

Now inserting (2-9) together with (3-1) into (1-1), we obtain our basic equation

I

v
n

- { di . "
i(H, pu]=—= 376 | g pens(—id) (4:1)

0

where, of course,

ne=i[H, n,)=—ik-vy,. (4-2)

A vparticular solution of the inhomogeneous equation (4-1) is given by

o

1= \ dt e=50 =1 [T \ (4-3)

where I” stands for the right-hand side of (4-1). In fact, (4-3) is the solution which
we are seeking for. This can be seen in the following way.

First, note that the macroscopic relaxation time, i.e., the relaxation time in which
the system recovers equilibrium, is of the order of [?/D. Here [ is the linear dimension
of the system and D the diffusion coefficient. Now suppose that the system was in
equilibrium at the remote past, t=— co, and that the difference of | chemical potentials
at two ends of the system has been increased very slowly from zero to the present value
(t=0). For instance, suppose that it is proportional to exp(Et), where 0<E<LD/I.
Then we may assume that a steady diffusion is established at each instant of time from

t=—0o0 to t=0. This is a sort of adiabatic change and may be represented by the
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solution proportional to exp(&f) of the following Liouville equation
o+ilH, p]=eT,
0 (— o) =0, E>+0.
At t=0, we have
Ep,+ilH, p|=1I" : (4-4)

whose solution is nothing but (4-3), as can be easily confirmed.

It still remains to be confirmed that (4-3) does satisfy our subsidiary conditions
(2-11). For any dynamical variable a, we have

s Cdi :
Tr (o, @) =— 374, ‘ dt e~ \ 5 (n_p(—id)a(®)).. (4-5)
. ¢ 0

If we take =1, the left-hand side is Tr(p,), and the right-hand side contains <n_k>e
This should vanish, because any flow in equilibrium is steady. The first condition in
(2-11) is thus satisfied. As for the second condition, we take a=N. Since N com-
mutes with the Hamiltonian, the right-hand side of (4-5) contains <1;_,,,.N Ye- This
should also vanish, because

N)= 38 Te(eV " n_p) =0.

Tr (¥ q_,

d

r
-
)

Thus the second condition is satisfied.  Similarly, it can be seen by taking a=H that
the third condition is also satisfied.
As for the final condition in (2-11), we have
., o d N
Tr(oymy) = —iks), - ) dt e~ \ 5 (o (—ik) mge (£) D, (4-6)
0 0
where we have made use of the continuity equation (4-2). In general, (4-6) does not
vanish. We should, therefore, restrict ourselves to the case where the density fluctuation
is so gradual that we may replace (---). in (4-6) by (VN).. Here V is the net flow,
i.e., v, with k=0. Since there is no net flow in equilibrium as mentioned before, we

‘have

Tr (e PTYN) = 0

~
)

Tr (V= YV) =0,

Thus, under our restriction, the fourth condition in (2-11) is satisfied.
The restriction can more precisely be expressed in the following way. In terms of
space coordinates, (4-6) is written as

~

Tr(on(x)) = — j dx' R (x—x') - (x) (4-7)

‘with
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. © 8 N
R(x—a) = ja’t e“”S% (o, —iTyn(x, ).

0

Except for such singular systems as superconductors and superfluids, the relaxation function.
R(x) will decay off within a finite distance. The gradient of chemical potential V/ 3
should be nearly constant over this distance. This is the precise formulation of our
restriction. If the condition is not satisfied, the simple themodynamical notion of diffu-
sion is not applicable in describing the phenomenon.

§ 5. Diffusion constant and Einstein’s relation

Now, we take a=wv;, in (4-5), then the flow arising from o, is given as
o 8

. 4, -
(vg),; =Tr(o,v,) = ——s‘,_,Sdt e~ S%(n_k(—il) v () e - (5-1)

Making use of the continuity equation (4:2), we see that in the limit of k>0 the
diffusion equation takes the form

<Ulc.pn>1 - ZD;SJ) X (’kv Ek) ’ (5 : 2)

M, V=X, vy, Z.

In terms of space coordinates, this is written as

CROMEES DRI (5-3)

Here the diffusion tensor D,, is given by

n__
DS =

Oy @

8.
@t | G-V, (5-4)
0
where ¥V is the net flow.
On the other hand, it has been found” that the electric conductivity tensor is given,

in general, by

® 8

T [ de e | 1L (=D J(0). (5-5)
0

0

where J=eV is the electric current and e the charge of the particle. Comparing (5-4)
with (5-5), we obtain the well-known Einstein relation

cw=peDY . (5-6)

It should be remembered, however, that in the presence of a magnetic field we have the
flow arising from the local equilibrium distribution, (3:8), which is antisymmetric and
thus makes contribution to the antisymmetric part of the diffusion tensor. Thus we



On Quantum Theory of Transport Phenomena 955

obtain the important conclusion that the Einstein relation is valid only for the symmetric

part of diffusion and electric conductivity tensors.
In order to see the situation in more detail, let us take a system of electrons in a

metal. For simplicity we shall neglect the interaction with phonons, taking account of
impurity scattering alone. The Hamiltonian then takes the form

H=3H'(x),

H'@)=_—(p—A®) ) +ow),

where A is the vector potential of the magnetic field and ¢ the scalar potential including
both periodic and impurity potentials. Hereafter an operator of one electron will be
primed as H’. Let us introduce the system of one electron eigenfunctions

H'u,=E, u,.
Then the Hamiltonian can be written as »
H:ZErdr*dry (5'7)
where a,, a.* are destruction and creation operators of electrons in the r-state. Similarly

ny, = E<"|”kllf> a*ag,

(5-8)
o= > (r|vy/|s) a,*a,,
where
nk/ — e’ik-w’ vk/ =212 (x' ez‘k-ac + er::kmc x:) ,
oézi[H’, x]. (5-9)
Remember that
e"md,.* a, e”“":ar* a, ei(ly‘,,-—lv:s)z

and also that _
(4% .0, 4y, =0,0 3,1 F(E,) (1—f(E,))
where f is the Fermi distribution function

f(E) =[exp(BE—¢) +1] . (5-10)
Then it is easily seen that (5-1) can be written as

P
i(E,—E,)

(V)= =1 > f(E.) —f(E,) (s|nlplry (rl oy } (5-11)

B(E.—E,)
where P indicates taking the principal value. The flow arising from this part is anti-
symmetric, whereas the flow arising from the J-function is symmetric.

Similarly, (3-8) can be written as '

9 {m?(Er—-ES) n

(or) =53] f‘%E(rg :fE(l§S) (s|nlglr) (rlog!|s). (5-12)
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For the sum of those terms in which E, 3 E_, we can make use of

(s\ngr) =i(E,—E,) (s|n’ 1 |r) (5-13)

so that the sum exactly cancels the antisymmetric part of (5-11). On the other hand,
the terms with E,=FE, in (5-12) can be transformed as

élfrvw}ﬁ C)fw(“@) <S[ ](1’1 Iv/f/+vl n ’)'S> ‘:‘ ‘J—/B_ afa(éh)

FALsInlg|r) <’|”1/|5>+<5\”k/\’> {r|n 1\f> (5-14)

[v,h-l

From (5-9) we see
3 (v +v;/ ”ik) =x

so that the first term of (5-14) vanishes. For the second term, we can again make

use of (5-13). Taking the limit of k>0 we find the antisymmetric part of the diffu-
sion tensor

Déﬁ)____g‘w 1 af(Ee) p

_1'157 3E ‘Wz'?vES—E,‘) X3 {{slxlr) (rlaals) — (sl Gl (5-15)
On the other hand, the antisymmetric pait of the electric conductlwty tensor is given as
1 - f(E, E, P . . . .
sl =S I GETIED BRI (i) — il (Rl

(5-16)

Now, characteristic frequencies of the electron velocity (s|x|r)exp{i(E,—E,)¢t} are
cyclotron frequency w,, collision frequency ©~', and also the average interval of interband
transitions JE. If all these frequencies satisfy

Bw,<1, frt<l, F4ELI (5-17)

then the difference quotient of f in (5-16) is practically the same as the differential
quotient in (5-15), and we have the Einstein relation for the antisymmetric part, too.
It is to be noted here that the second of (5-17) is the well-known criterion for ap-
plicability of Bloch’s kinetic equation, although actually this is too stringent.

§ 6. Damping theoretical expansion

Finally, we shall show that our basic equation (4:-1) reduces to the usual Bloch
equation in the limit of a system of weakly interacting particles. In fact (4-1) has
mathematically the same form as discussed by Kohn and Luttinger® in the case of a
steady electric field. They have dealt with a simple model in which an electron is
scattered by impurities. Actually their method can be applied to integration of the
Liouville equation in general, provided that the Hamiltonian satisfies certain conditions.

First let us introduce a symbolic method due to Kubo. Define the linear operator
£ which operates always from the left on any dynamical variable 7 as
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£-9=i[H, 7]. (6-1)

Incidentally, the operator of this sort has besn introduced in classical statistical mechanics

to prove the ergodic theorem.” The Liouville equation can be written as

(2+4)r®=o. (6:2)

Let us introduce the Laplace transform
p(s) = |deep (o) (6-3)
h

which converges for fts>0. Then (6-2) is transformed into

(s+2) 0 (s) =0, (6-4)

where 0, is the initial density matrix at t=0. Replacing p(s) by p,, p, by I, and
taking the limit s—>-+0, we obtain our basic equation (4-4). But we shall be concerned
with the general case (6-4) for the moment.

Now, assume that the Hamiltonian takes the form

H:H0+9HI (6'5)

where ¢ is a small numerical parameter indicating the order of perturbation H;. Cor-
respondingly the operator £ splits as

£:£o+g£1- (6'6)
Let us fix the basic state vectors |a) as

Hol“>:")u]a>'
In the case of the electron-phonon interaction, for instance, a stands for a set of occupa-

tion numbers of free electrons and phonons. We introduce linear operators & and N
which also operate from the left on any dynamical variable as

{a| Dyla’) =(aly|a) duu, |
{a| yla’) = (alyla’) (1—0d4y).

Without loss of generality we assume that HH;=0. Following Kohn and Luttinger, we
decompose the density matrix into diagonal and non-diagonal parts

AU (5) :l“d (5) +10ﬂ(5)a
(q= @p, O = ,%1)

Inserting (6-7) together with (6-6) into (6-4) and takmg diagonal and non-diagonal
parts of the equation respectively, we obtain

5“«1(5) +(/>®£I[On(s) "gﬂoa
(5+ £0+g% £1)1”n(5) - %‘(10—9£I‘()d(5) .

(6-7)

(6-8)
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Eliminating (¢, from these, we have a formal solution for the diagonal part

504(8) — PDL L10,0)=D(« 1 ). (6-9
‘ s £, +0%£1 109 =0 s+ Lo+ 9 N L ) (69

We can derive a power series expansion from (6-9), supposing that
0a(s) =0(97%) (6-10)

and making use of |
1 1

= g%£ ...... . 6-11
) P L (@1

In particular the lowest order approximation satisfies

0P (5) — P DL S+1 L1090 (s) = Dp,. (6-12)
0

Remember that

1 0
5+£0 jdtexp(—st) exp(—iH,t) -y exp(iH,t).

Then, taking the explicit matrix representation of (6-12), we find

sPo(5) —9*>) 2 alHlaY (R, (s) — Pu(s)) ={alo]a),
of § +(wu'—wul) (6.13)

P,(s) ={a|p? (s) |a).
In the limit of s— 40, we have

2s
S+ (wg— yr)?

Hence (6-13) is nothing else but the Laplace transform of the so-called master equation

~ 270 (wy— ®ur) -

B, (t) = 27 g?|{a| Hy| ') 20 (wa— wur) (Pu () — Pa()),
P.(t=0) =(al|py| ).

which van Hove® has obtained by means of rather a lengthy expansion.
Now replacing ¢ by p,, 0, by I, and taking the limit s—+0, we have

277922_‘, |{a|H,|a')|?0 (we— war) (Fur—F,) ={a|’|a) (6-15)

(6-14)

where F, is the diagonal element of g, in the lowest order approximation. The equation
(6-15) says that the drift term due to the gradient of chemical potential is balanced by
the collision term due to perturbation H;. More precisely, F, is still a many- “particle
disteibution function and we have further to reduce (6-15) to obtain the Bloch equation
of one particle distribution function.

Of course, certain conditions should be satisfied in order that the transport equation
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(6-12) be already a good approximation. Smallness of the parameter ¢ is by no means
:sufficient.  For instance, in the case of an electron scattered by impurities, the contribu-
tion of the second term in (6-11) relative to the first would not be simply proportional
to ¢, but to £, if impurities were on regular lattice points. In this case the transport
‘equation can never be a good approximation, because £ can be increased indefinitely by
increasing the volume £. In general, the size dependence of perturbation in a large
system plays an essential role here. We shall not enter into this problem, as the detailed
-analyses have been given by van Hove.”

§ 7. Conclusions

Quantum statistical mechanics of steady diffusion has been formulated. The theory
‘is the most natural generalization of the Bloch kinetic equation and in fact reduces to
‘the latter under certain conditions. An important conclusion is that the Einstein relation
is valid only for the antisymmetric part of diffusion- and electric conductivity tensors.

Obviously, the theory can be generalized so as to include heat conduction and viscosity,
‘which will be discussed in a subsequent paper.

The expressions for transport coefficients derived in this way are general and rigorous.
In statistical thermodynamics, we have the general expression for the partition function
-and introduce approximate methods in evaluating this; the virial expansion in the case
of imperfect gases, normal vibrations in the case of crystals, and so on. In just the same
‘way, we should introduce appropriate methods of approximation to evaluate transport
ccoefhicients, starting with our general expressions. Thus we may couclude that quantum
‘theory of transport coefficients now stands on the same level as statistical mechanics of
‘equilibrium properties, though admittedly we know few methods of approximation such as
Bloch’s kinetic equation which is nothing but the lowest order approximation in a damp-
dng theoretical expansion.
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