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Abstract-The history of studies of the family of Fermi-Dirac integrals is briefly reviewed, and the relevance of 
these integrals to transport properties via the Boltzmann transport equation is noted. The role of the integral 
(2/v n)F,r2(q$3,iz(q)=u in relating reduced Fermi energy 7 to electron density in a “parabolic” band makes it 
especially important that this member of the family be capable of expression in approximate forms of reasonable 
accuracy. High precision series forms, and published tabulations, for the various members of the family are noted, 
and the remainder of the paper deals with approximations that have been proposed for u(q) and for q(u). The 
former permits deduction of carrier density from Fermi energy, and the latter permits the inverse. Successful 
expressions for each purpose are described, with graphs of the error so incurred. 
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NOTATION 

electron diffusion coefficient 
electron energy 
bottom of conduction band 
Fermi energy 
exponential integral 
width of intrinsic gap 
Fermi-Dirac occupancy factor 
Sommerfeld notation for Fermi-Dirac integral, 

order j, argument 17 
Dingle notation for Fermi-Dirac integral, order j, 

argument 7 
density of band states with respect to energy 
Planck’s constant 
order of Fermi-Dirac integral 
Boltzmann’s constant 
electron wave vector 
wave vector at base of conduction band 
density-of-states effective mass 
band edge effective mass in non-parabolic band 
effective density of conduction states 
equilibrium electron density 
absolute (Kelvin scale) temperature 
shorthand symbol for $Jv) 
non-parabolicity parameter for conduction band 
gamma function of order p 
dimensionless electron energy (in units of kT) 
dimensionless Fermi energy (in units of kT) 
electron mobility 
Riemann zeta function of order p 

1. INTRODUCTION 

The family of functions known as “Fermi-Dirac” integrals 
(hereafter referred to as F-D integrals) acquired that 
name in the 1920’s, when Pauli[l] and Sommerfeld[2] 
used them in describing the degenerate electron gas of a 
metal. Sommerfeld developed asymptotic expansions for 
various orders of the F-D family, appropriate for the 
(& - E, ) % kT limit that is well satisfied by a normal 
metal with n,, > 10” cm ‘. 

tThe trivial case j = 0 has the simple solution F,(q) = 
In(1 te"). 

A dimensionless energy scale is convenient for des- 
cription of F-D integrals. Both n-type and p-type semi- 
conductor situations can use the integrals, but the n-type 
terminology of the present paper shows the full scope of 
what needs to and can be done. With respect to the 
conduction band edge, E-[(E - E, )/kT] is a suitable 
dimensionless energy variable, while 9 = [(I$ - E,.)/kT] 
is the reduced Fermi energy. Then f(e) = 
[ 1 t exp (E - v)] ’ is the F-D occupancy probability for 
reduced energy E. In terms of 6 and 7, Sommerfeld’s 
definition for the F-D integral of order “j” was 

m)=~)‘, E’dE + exp (E - rl) 
(I) 

Members of the F;(v) family have been used widely in 
modeling the properties of semiconductors and metals, 
from the classical Boltzmann limit (n,, small, 77 6 0) to 
the Fermi-Dirac degenerate extreme (n,, very large, q B 
0). This has been accomplished despite the irksome fact 
that there are not analytic closed form expressions for 
any of the interesting j#O members of the eqn (1) 
family.’ 

Rather than dealing with the venerable F,(q) them- 
selves, this reviewer plans to follow a practice he has 
exercised elsewhere [3] in focussing attention instead on 
the related family of integrals 

(2) 

Dingle[4] commented on several advantages of the func- 
tions 4(q), in comparison with the F;(v) family of eqn 
(I), as follows:- 

(i) Unlike the F,, the functions 9, exist for negative 
integer orders. Indeed, the function $ !(q) is just (1 + 
e “) ‘. 
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(ii) Interpolation between orders j. a4 well 215 between 

arguments r), is simplified when dealing with X, rather 

than F,. The relation between a function and its derivative 

i\ al\o simplified. For. 

,‘,.(n)=4,(,,= .i;, ,(r)) 
dr) 

13) 

(iii) In the non-degenerate n d 0 limit, trll members of 

the :F,(n) family reduce to .%( n)+e”. regardless of the 

order j. 

The last of these three is ;I significant advantage for 

semiconductor work, where the non-degenerate limit i$ 

applicable for $0 many lightly doped situations. Accord- 

ingly. the ,3,(n) are discussed in what follows. Special 

emphasis is placed upon approximations for the function 

X::(n). since this is so valuable for relating Fermi 

energy E, to total electron density n,, in “normal 

parabolic” bands. 

I. I Fermi-Dirtrc intrgrds cud electron trwsporf 
Several F-D integrals in addition to ,t-,,I(n) can 

become involved in describing electronic transport 

phenomena, from the Boltzmann transport equation ap- 

proach. That approach was pioneered by Lorentz[S] for 

a Maxwell-Boltzmann “classical” electron gas, and by 

Sommerfeld[2] for the F-D limit. A transport integral 

I 
?(i)f/&) de results in an F-D integral of order (/!J I). 

Thus, Putley[6] showed that electrical conductivity in- 

volves an F-D integral of order (m t i) if the relaxation 

time varies as E”‘. For that situation, the Hall effect 

involves .9,,,. .F,,, ,,,, >). and ,Pz,,, .,,lJ1. 

Involvement of F-D integrals in transport expressions 

has been discussed extensively elsewhere, and various 

family members cataloged as to their involvement for 

electrical and thermal conductivities. thermoelectric 

effects. magnetotransport, etc. Comprehensive accounts 

for semiconductors include Putley[6]. Madelung[7,8], 

and Beer[9]. Seitz[ IO] and Wilson[ I I] emphasized 

metallic strong degeneracy. The reader who needs F-D 

integrals for modeling or analysis of transport effects is 

probably acquainted with some of the above [6-II]. or 

with other accounts [e.g. 12-15) that draw upon the same 

information. 

I .2 Relation between electron density trnd Fermi Energy 
Any reader of this paper almost certainly already 

know9 that .7,:,(n) = (2/t’~)F,,~(n) is the F-D family 

member used to relate electron density n,, and Fermi 

energy Ep for a puraholic conduction band. That is to 

say, a band for which (E- E,) x ]k-k, 1’ for every 
direction in h-space away from a band minimum; without 

deviation from that square law behavior up to an energy 

at least several kT above E,. The band mcl:; be aniso- 

tropic (i.e. the proportionality constant may depend on 

direction). but that, by itself. does not preclude a 

definition of a directionally-averaged density-of-states 

effective mass fi,. The coexistence of several band 

minima at energy E,, at symmetry-related Brillouin zone 

locations. can also be incorporated into the numerical 

value\ of tfi,. 
In term\ of tit,. the density of conduction state\ (per 

unit volume) with respect to energy is 

g(t) = hr(?,,/h’)“(E ~ E, )’ ‘. 14, 

Such states are filled to an extent that depend\ on their 

relation to E,. through f(E). 4nd jo, the total electronic 

occupancy of such a band in thermal equilibrium i\ 

f(E),dE)dE = N,,F,,2(rj), 10 

Here the quantity 

N, = 2(2irm,kT’/h-‘)’ ’ Ihi 

is usually called [3] the effective density of conduction 

band state5 for temperature T. N, \ervec well in that 

capacity for a non-degenerate semiconductor (n,, small. 

n ,‘< 0): for then .P,,,(q)+e”. and u,, is the tame ,I\ 

though the band were replaced by N, states ;~j :I delt;r- 

function distribution at energy E,. That N, varie\ a\ T‘ ~ 
is an inconvenience, which those who work with electron 

statistic\ learn to remember and accept. 

It happens that .F,!$TJ) = I when E,. is just slightly 

above E, (for TJ = t 0.35). .4nd 90 any situation for 

which 11,, is clearly much smaller than N, will autom;i- 

tically be a non-degenerate one ( TJ 60). The {trong 

degeneracy approximations for n + 0 are correspond- 

ingly suitable whenever it is apparent that II,, .’ N,. 

Problems have been most apparent when n,, and N, ;ire 

comparable, and this has stimulated a variety of sug- 

gestions [3, 161 for approximate forms. 

When the band is non-parabolic in the rise of energy 

with wave vector, then .j,12(n) rmd one or more ad- 

ditional orders in the F-D integral family are needed to 

relate n,, to E,. For example. both .7,,,(n) and ix >(T)) 

are needed to deal with 11,, for the conduction band 

minimum at the center of the zone for a III-V compound 

5uch a\ InSb or GaA\. Vrehen[l’i] showed that the 

simple k. p model of Kane[l8] for this imperfectly 

parabolic band minimum leads to an approximation valid 

near the bottom of the band of 

E-E, -(h’/?/!m,,,)[l ~~(tu/E,)(h~~‘/?m,,,)]. 

(E-E,)<* E,. (‘1 

Here m, ,, is the effective mass of the band-edge cur- 

vature, the slight anisotropy of the band is neglected, 

and CY is a numerical parameter determined by the ratio 

of spin-orbit splitting to bandgap E,. (As one example, 

(I ~0.83 for GaAs.) With that same limitation of energy 

to the lowest portion of the band. 

~(E)1=4~(2m,,./h~)“‘(E -- E, )“‘[I r(5tu/‘E,)(E E, ,I 
(8) 

a3 the density of states with respect to energy. The 

integration procedure of eqn (5). to express II,, for ;I 
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given E,+ then yields 

n,, = N<,,]S,,,(-rl) + 

where N,,, denotes 2(27rm ~,,,kT/h’)“‘, in terms of m,,, 
and T. It will be seen that the influence of the term 
involving &(n) increases with temperature, to an 
extent that depends on whether the reduced Fermi 
energy n is negative or positive. 

Fog a given temperature, the 5,,Ju) term contributes 
a larger fraction of the total on the right of eqn (9) if the 
situation is degenerate (n,, % N,<,, r~ + 0), since then 
&(v) is several times larger than BliZ(r)). However, the 
effect of the &(n) term at any finite temperature does 
not go away no matter how small the electron density is. 

Thus in the non-degenerate limit of n,, 6 NC,,, r) & 0, 
we have that F,,2(n) = 3,&n) =e”. Then n, exceeds 
N,.,, e” that a parabolic band would have accommodated, 
by a factor [I t (15&T/4&)]. This factor is about 1.057 
for GaAs at room temperature; a matter to be taken into 
account in weakly n-type, and semi-insulating or near- 
intrinsic, gallium arsenide [ 191. 

Since both $,,^112(r7) and &(n) are needed for n-type 
III-V semiconductors (especially when n,, is large, and 
degeneracy is encountered), the recent description in this 
journal by Aymerich-Humet et al.[20] of analytical ap- 
proximations for both of these F-D integrals has been 
interesting and welcome. While most of the ensuing 
sections of this review do concentrate on 41iZ(r)); on the 
grounds that this is needed most often for “well- 
behaved” situations, and in view of the preponderance of 
expressions developed for that member, the work of 
Aymerich-Humet et al. is reviewed in Section 4.3. 

2.MOTlVATIONSFORPUBLISHEDWORKONF-DINTEGRALS 

The past 50 yr have seen numerous published studies, 
and several tabulations, for various F,(n) or P,(n), with 
a variety of motivations. A common factor has been the 
lack of exact analytic expressions.’ Those varied 
motivations are classified in this section. 

2.1 Modeling of electron transport and other measurable 
properties 

The relevance of F-D integrals to solutions of the 
Boltzmann transport equation was noted in Section I.2 
and some literature using these integrals for that purpose 
noted [6-151. Early work of Nordheim[Zl] and Stoner[22] 
was directed towards treatment of the electronic specific 
heat for a degenerate metal. 

A number of studies [23-261 have been inspired by the 
added complexity in the Einstein relation between 
diffusion coefficient and mobility for a degenerate elec- 
tron gas.* That complexity must be invoked whenever 
drift and diffusion components of current density must 

tExceptfor &(n) = %&q)= In(l te”),and 4 ,(v) = (I te"m'. 
$The Einstein relation is just eD, = kTF. for non-degenerate 

conditions, and becomes (eD,,/kTp”) = ~,,2(~)/~_li2(q)] when 
degeneracy enforces a difference between S,,,(T) and S~,,Jq). 
See Spenke[l4], for example. 

be compared in a device structure that includes strongly 
doped regions. 

2,2 Mathematical considerations 
Several investigations have been made into the 

mathematical properties of 4(n) and/or si(n), and of 
their relationships to other mathematical functions. 
Sommerfeld[2] examined the F(r)) for strongly 
degenerate conditions and was concerned with asymp- 
totic mathematical forms that would be suitable for the 
electron gas of a normal metal. That emphasis continued 
in the work of Nordheim[21], Stoner[22] and 
Gilham[27]. 

These contributed to the basis for a massive 1938 
paper containing an analysis (and tabulation) of 
Fm,,z(n), F&n) and F?&), by McDougall and 
Stoner[28]. The McDougall and Stoner work tackled the 
much more difficult region between non-degenerate and 
strongly degenerate conditions. Their tabulation in noted 
again in Section 2.4. 

Among other things, McDougall and Stoner]281 
produced and displayed the differentiation condition be- 
tween F; and F, ,. This has been reproduced here, as 
eqn (3) in the rather simpler relation between $1 and 
5, ,. The inverse of that relation, 

I 

‘I 
$(?J) = 4(O) t 4 d$)dv’ (IO) 

0 

has been used in several subsequent studies, as in the 
work of Rhodes[29] concerning the relation between 
F,(n) and 4(-q), when j is an integer. 

Dingle[4,30] made extensive studies of the various 
mathematical properties of the s(n) family. His in- 
vestigations included the relation between g;(n) and 
4(-~7) when j is not an integer: this involves the 
generalized Riemann zeta function. Dingle also explored 
the relationships of the s,(n) to the % and Ei integerals 
[3l, 321, and the representations of the 3,,(n) possible 
through Mellin transform inversion. 

The mathematical foundation laid by Sommerfeld[2], 
McDougall and Stoner [28], Rhodes [29] and 
Dingle [4,30], has underlain various subsequent treat- 
ments of expressing the F,(n) or $i(~) to an appropriate 
number of significant figures. Work with a focus on 
numerical precision is noted next. 

2.3 High precision series expansions 
Any F-D integral can-in principle-be expressed to 

any desired degree of precision: regardless of the order j 
and (more importantly), regardless of where the 
argument n lies on the range from -m to t=. The 
necessary proviso in that statement is that mathematical 
complexity, and the number of terms retained in a pos- 
sibly cumbersome series expansion, be not considered an 
impediment. 

Thus, Sommerfeld[2] asserted that F,(n) for the 
domain n > 0 could be represented by a leading term 
varying as #+I, with a remainder series in increasing 
powers of n-‘. Deficiencies of this were demonstrated 
by Rhodes for integer values of j and the more com- 



plicated form of that deficiency when j is not an integer 

was brought out by Dingle[4]. Despite that, for any 

positive value of TJ, a combination of any .F,(q) and its 

corresponding ,?,(-a) can be expressed as nominally 

converging infinite series for non-integer j and ;I poly- 

nomial for integer j. As discussed elsewhere 131. 

(II) 

Here, each of the coefficients (Y, i\ itself an infinite 

series. 

u, =p-l)““p I’ (II) 

and all (Y, for r ‘> 4 are numerically very close to 2. This 

is by no means a panacea, because of problems that arise 

with the summation of eqn (I I) when j is not an integer, 

and q is not large enough to neglect terms of r ’ Cj t A). 
However, there are ways around these problems [3.4]. 

Similarly, it has been known and used since the work 

of McDougall and Stoner[28] that any F-D integral can 

be expressed in a series form for r) < 0. 

I 

9,,(q) = C (- 1)“’ exp(rT)r ’ ‘, 7) SO. (13) 
r I 

As one would expect. very few terms of that summation 

suffice to give any desired numerical accuracy when 

7 d 0. It is the situations of q sm~// and negative that 

make eqn (13) arduous in terms of the number of terms 

necessary. At least for the limit of applicability for eqn 

(13). at q = 0. the series does join forces with another 

well-known mathematical function: 

3i(0)=~(-l)"'r' ‘=[I-2 ‘]J(j+l) (14) 
r I 

where [(j t I) is the ordinary Riemann zeta function. The 

property demonstrated by eqn (14) has proved useful in 

connection with use of Eqn (IO)--e.g. in the work of 

Rhodes[?Y]. 

The series of eqns (I I) and (13) have encouraged 

several polynomial forms for F-D integrals. Some have 

resulted in tables (Section 2.4) and others in itemized 

recommended formats and coefficients for use with a 

computer. Among the latter. Werner and Raymann(331 

suggested a fifth degree polynomial. for representation of 

F,,2(v) - + 0.05%. Arpigny[34] gave coefficients for poly- 

nomials describing F,,,, F,,? and F;,, to an accuracy of 

IO “. Similar accuracy was claimed by Battocletti[35] 

iNote that values of Zj. not of j itself, are listed in the last 
column of Table I. This was done to avoid having to write 
fractions for the various half-integer j value\ that have been 
tabulated. 

$Dingle[4] also provided tables for 3 ,(q) and 3,,(q). Since 
these particular functions can be expressed analytically. their 
tabulation wac unnecessary. 

with an eighth degree polynomial for .!, $q) over the 

range I ” 7’ t I?. Jone\[36] estimated deviations of 

IO ‘I or less with his polynomials for j = 0. (I/?-). I. I J/21 
and 2: these used Pade approximantj in power\ of s”. 

based on eqn (13). which saGtied the Chebq\hrl cri- 

terion [37] for deviation minimization. Rational Chrby- 

she\, approximations for j (~ IL?). (l/2) and (7121 \+crc’ 

also proposed by Cody and Thacher[78]. with :rccur.rck 

expected to IO ” or better. 

The last paragraph’s proposals were all attuned to the 

availability of substantial computation,d facilitie\. Iruc 

now as never before. Cody and Thacher used a CDC 3600. 

with 25 decimal floating point arithmetic-a far cry from 

the “Brunsviga calculating machine” used ?X ir c;1rliel- 

by McDougall and Stoner[ZX] to generate their t;~hlc\ 

(Section 2.4). to an accuracy between 5 and 7 significanr 

figures. Many useri, of F-D integral information ian 

easily have various sets of coefficients stored to generate 

any .7,(q) at will. to any imaginable numerical precision. 

Many other research workers need F-D integral data 

of respectable accuracy. but do not have-or do not 

choose to uhe--a large computer capability for that pur- 

pose. For these workers. tabulations of F,(v) and r;,( 71) 

have been published ;rt various times. aj itemized in 

Section 1.4. with interpolation recommended between 

published values. Numerous analytic approximations 

have also been proposed. with varying degrees of pre- 

ciaion and varying ranges of applicability. The latter give 

this paper its main purpose. and they are examined in 

Sections 4 and 5. 

The work of Joyce and Dixon[3Y, 401. referred to again 

in Section 5.1. has the word\ “analytic approximation\” 

in the titles; though is in practice ;I polynomial appro,lch. 

In contrast to the polynomial forms noted above. Joyce 

and Dixon expressed 7 by means of ;I polynomial in 

powers of .i, II, as a contribution to the interesting I Y7Os 

literature on expressing E, as a function of n,,. rather than 

the other way about. 

McDougall and Stoner[lX] undertook the hl-st rn;~lor 

tabulation of F,(v). for j = f l/Zr and (3/Z) to xix-tigurr 

accuracy; and with lesser precision (by succe\\ivc 

differentiations) for j = ( l/2) and ( 3/Z). Their t;thuL- 

tion i\ the first entry in Table I. followed by tabulation\ 

and compilations of later year\. 

Of theae. short tables by Wright1 I?] and b! Johnson 

and Shipley[l3]. each with a large interval 1r) : I. wrre 

included in Madelung’s tabulation (X] for a large number 

of j values.’ The smaller-interval (AT = 0.1) tabulation b) 

Rhodes[ZYJ for integer j values and T).I 0 ( to six figure 

accuracy) was complemented by Dingle’s table [-I] for 

r) ‘z 0 with those same j valuea.’ 

Tabulations by Beer rt 11/.(41] included reprinting the 

McDougall and Stoner entries for .I I/Z. I/? ;md 3,‘: 

and then extension of the tabulation order for half- 

integer values as far dj j 1 I l/2. using .in Euler- 

Maclaurin numerical integration. Tablej of F,(r)) pro- 

vided elsewhere by the present writer[3] were based on 

McDougall and Stoner[ZX] ,md Beer rt ~1.[41] for h;df- 
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Table 1. Published tabulations of Fermi-Dirac integrals 

Author(s) Reference Functions Range of n,and Values for 2j in 

and Date Citation Tabulated Interval An This Tabulation+ 

McDougall and [331 Fj -4 (0.1) +20 -1, 1, 3 

stoner (1938) 

Rhodes (1950) I291 3j -4 (0.1) 0 2, 4, 6, g 

Wright (1951) [121 Fj -4 ( 1) +20 2, 4 

Johnson and [131 Fj -4 (1) +20 4, 6, 7, 9 

Shipley (1953) 

Beer, Chase h [411 Fj -4 (0.1) +20 -1.1, 3.5, 7,9,11 

Choquard (1955) 

Madelung (1957) IS1 Fj -4 ( 1) +20 -2, -1, 0, 1, 2, 3, 4, 5, 

6,7,8,9,10,11,12,14 

Dingle (1957) [41 'j -4 (0.1) +10 -2, 0 

and 0 (0.1) +10 2, 4, 6, g 

Blakemore L3l 3j -4 (0.1) +4 -3,-2,-1,0,1,2, 

(1962, 1982) +4 (0.2) +10 

1 

3, 4, 5, 6, 7, g 

t 
Note that the column at the right of this table lists values for 2j, not 

for j itself. This is done to avoid printing a fraction for every half- 

integer value of the order j. 

1071 

integer j values, and on Rhodes[29] and Dingle[4] for 
integer j values. 

The existence of these tables has not curbed attempts 
at providing analytic approximations of usable accuracy, 
especially for Fliz(q) or J,,?(n). Since that function is 
used so often in connection with the II,,= E, relation for 
a “standard parabolic” band, attempts at modeling that 
relation take up most of Sections 4 and 5. 

2.5 Analytic upproximution of S,,z(s)zu, and its inverse 

A shorthand terminology for $,12(n) is useful when 
this function is to be quoted many times. In what fol- 
lows, the terminology Y,,2(n)=u suggested by 

Nilsson[26] is followed. 
Literature from 1928 to 1970 for this function was 

always concerned with description of u as a function of 
n; the thrust from a knowledge of EF towards a des- 
cription of (n,,/N,) for a parabolic band. Some more 
recent work [20,42] has continued towards analytic 
representation of u(n), and Section 4 reviews the 
essence of what is available on the subject. The various 
analytic approximations for u(n) provide accuracies of 
from +2% to ?0.2%, commensurate with the precision of 
typical experimental data for dopant and carrier densities 
in semiconductor bulk material and device structures. 
For the minority of real-life situations which mandate 
precision to many significant figures, a computer-based 
polynomial approach [35-381 is advisable. 

It is common for carrier density n,, to be known, with 

a desire then to evaluate EF. That is best done with an 

expression for n(u) rather than of u(n), and 
Nilsson[26,43] and Joyce and Dixon[39,40] have both 
described simulation of n(u). This is reviewed in Section 

5. 

3. THEMEANINGOFACCURACYINAPPROXIMATIONSFOR 

v(Wand U(s) 

The implications of “accuracy” depend on whether E, 

is being used to describe n,, through u(n), or the other 
way about. For as n changes from negative to positive 
values with increasing n,,, the form of u changes from e” 
to 7)“: behavior. That alters the balance between the 
sensitivity of u to an error An, and of n to a fractional 
error (Au/u), as illustrated by Fig. I. 

The abscissa scales of Fig. I cover a range from 
tolerably non-degenerate conditions at the left (n = -2, 
u = 0.13) to fairly degenerate conditions at the right 
(n = + IO, u = 24). Now an error Ane(n,.,,, - n), and the 
corresponding fractional error (Au/u) are numerically the 
same for a non-degenerate situation. That results from 
the 4(n)-e” asymptotic behavior for n < 0, and the 
description 

e = Lim (I + l/n)” 
,, -= 

(15) 

for the base of Naperian logarithms. 
The relative error sensitivity is quite different for 
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degenerate situations. Just as far as the right edge of Fig. 

I, Sa can be seen to be seven times larger than (IN/IO. 

For strong degeneracy, when any :S,,(q) is given by the 

first term on the right of eqn (I I). 70 that inversion 
provides 77 + (3t’(a)u/4)“‘, then 

That makes it easier to construct an expression mode- 

ling u(a) for strong degeneracy, ;13 needed to progress 

from E, data towards carrier density. By the same 

token, it is especially difficult to hold down the errors in 

devising an expression to model q(u) for strong 

degeneracy, as needed to evaluate E, corresponding to a 

known (large) n,,. That difficult task motivated Nilsson in 

proposing four analytical expression5 [?6.43], and aI\o 

led Joyce and Dixon[39,40] to evaluate series ap- 

proximations-as reported in Section 5. 

4. USEFUL APPROXIMATIONS FOR u 3 r,,z(q) 

4. I St~rrlin~ from Ihr dqynrrclfe u*trrmr 

Equation (I I) has often been used ;15 a starting point in 

attempts to model N(T) when 7) is positive but not 

necessarily very large. An obliging feature of the half- 

integer values of j i\ that the term in X,(- 7) ha\ ;I 

coefficient cos (jr) = 0. Equation (1 I) for j = I/? thu5 

comes down to 

/I = (4/31 n)q”‘[l t (77-‘/X7+ (7Trllh40q’)i 1. 
(17) 

1 I 1 I 1 
-2 0 2 4 6 8 IO 

REDUCED FERMI ENERGY, 17 

Fig. I. Variation of error sensitivity in computing reduced Fermi 
energy q as compared with computing 3,~,(~) = u. a\ one pro- 
gresses from non-degeneracy into the degenerate domain. For 
q < 0, the quantities 1~ = (q,,,,. ~ 7) and (Au/u) are the came: 

whereas .Iq = f?~Au/?u) for 7 +- 0. 

Some crude approximations have been tried of the type 

with .-I = Ti/X ;~j the starting point. ,An alternative. of 

1( = (413L n)(T+ + R)’ -I II’)) 

ha\ al\o been proposed [Ih], with B = 1;‘/6. but thi\ i\ 

unable to do very much about increasing the range of 71 

downward{ at an acceptable accuracy. Attempts at ad- 

ding further terms to eqns (IX or (19) have been un- 

rewarding. Expresjionj that .stc~ correctly from the 

non-degenerate end provide ;I better basis for describing 

II(~) when 7 = 0. and the\e are noted next. 

4.2 Sl~wTitfg from the non-tleg:rtrertrtr twil 

Equation (13) gave .7,(q) in rerie$ form for 71 X 0. The 

term\ of the series for j ~ ! are 

1l = e” (e”‘/L 8) t le"'i\ 27) ~~ (e”‘/X) - I’(l) 

This converges rapidly when q d 0. but much le\\ 

efficiently as 4 approaches zero. Proposals were made 

[16.44-46) in the 1950s to simulate ~(7) up to modest 

degeneracy by a form 

with ( a constant parameter. Thus one can hold the 

fractional error IL/u1 <I 0.03 for the range 1 c v c 

A I.! (i.e. II 2) by use of the value l- 0.27 [ 161. In 

conjunction with eqn (19) using R = ir’lh. it iy thus 

possihlc to cover the entire range with modest accuracy. 

Fortunately, work reported in recent years has made this 

procedure, with a switch in equations about 17 = + I. quite 

unnecessary. 

For two groups of investigator9 have recently de+ 

cribed analytical formulae that cover U(V) continuously 
for r -: 7i s + 3~ with a single (necessarily rather com- 

plicated) expression. These two formulae are now der- 

cribed in Section 4.3. Each ij an outgrowth of eqn (II). 

hut with { made a function of ‘I. 

Suppose. a\ indicated in the la\t sentence. that eqn (!I) 

be elaborated to 

What attributes must ((7) have. in order to cover the 

complete range from non-degeneracy to total 

degeneracy? Three needed attributes are: (i) For non- 

degenerate conditions (1) ~9 0). one needs l( 9) de ‘I_ (ii) 

When r) is negative but small, t(q) must increuje. to 

retard the growth rate of u(_rl). [That wa\ the reasoning 

behind proposals of a finite .$ in eqn (2l).] (iii) The term 

e ” soon ceases to be a controlling influence when 11 

become9 positive. ((7) mu\t then assume complete con- 

trol. It must thus be asymptotic to (31 n/47”‘) for 
7 “0. in order to provide the leading term of eqn (17). 



Bednarczyk and Bednarczyk[42] proposed the use of 
eqn (22) with 
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For order j= l/2 (i.e. for the function u), the recom- 
mended values for the parameters a, b and c, were:- 

5 = 3V(Tr)/4vJ’H. (23) 

Here, V( 7) signifies the function 

V(V) = q4+50 t 33.6 ~{l -0.68exp [-0.17(~ t I)‘]}. 
(24) 

This may look a little ungainly, but it does work. Equa- 
tions (23) and (24) are constructed so that f( 77) is trivially 
small for ‘7 4 0, rises to a maximum tmnX ~0.34 for 
TJ = - 1.5, and then decreases again when 7) becomes 
positive, decreasing in a fashion which is asymptotically 
correct to endow u(q) with the properties of eqn (17) for 
strong degeneracy. 

Figure 2 shows the fractional error (Au/u) associated 
with the use of eqns (22)-(24). The abscissa of the figure 
covers the range -10~ 7 s t 25, a range in which u 
increases from -10 4 to nearly 100. It can be seen that 
IAu/ul < 0.004 throughout that range. This is accurate 
enough for the vast majority of applications involving 
carrier density in a semiconductor sample, or through the 
various parts of a device structure. 

One might well have thought that the accuracy pro- 
vided by the single procedure of eqns (22)-(24) would 
have tended to discourage further attempts at modeling 
u(q), at least for a time. However, a different approach 
at modeling ((7) of eqn (22) was proposed only 3 yr after 
the work of Bednarczyk and Bednarczyk, in a paper in 
this journal, by Aymerich-Humet et a/.[20]. These wor- 
kers had two objectives in mind: (i) A less complicated 
formulation for l(q), without excessive sacrifice of ac- 
curacy; and with, naturally, retention of proper asymp- 
totic behavior. (ii) A means of describing a common 
algebraic form for c,(q) to serve for both j = l/2 and 
j = 3/2, with-of course-the opportunity to make some 
of the numerical parameters specific to the order. Three 
such parameters were individually set. 

Thus Aymerich-Humet et al. used a fit of the form 

a = 9.60 
b = 2.13 

1 

for j = t l/2 (27) 
c = 2.40 

so that 

.$,Z(V) = 3q(7~/2)[(~ +2.13)t (17 -2.13(‘.4+9.6)c”Z] “‘. 

(28) 

The curve in Fig. 3 labelled j = + l/2 indicates the frac- 
tional error (Au/u) associated with the use of eqns (25) 
and (28) in modeling the behavior of u = 6,,?( 7). 

Aymerich-Humet et al. recommended, for j= +3/2, 
parameter values 

a = 14.9 
b = 2.64 (29) 
c = 2.25 I 

for j = + 3/2 

so that 

&,2(r)) = 15V’(~/2)[(~ + 2.64) 
t (1s - 2.641”’ t 14.9)““] “‘. (30) 

The fractional error (AF/$) associated with the use of 
eqn (30) in eqn (25) is shown as the j = t 3/2 error curve 
in Fig. 3. 

$j(II)= [e ’ +5,(7)1 ’ 

where 

For both of the orders represented by Fig. 3, the error 
oscillates in sign several times. As Aymerich-Humet et 
al. had pointed out [20], the maximum error excursions 
for S,,?(v) slightly exceed ?0.5%. Thus the function is 
not constrained within limits quite as close as is possible 
using eqns (22)-(24). The difference in error limits is 
probably not the major factor in a decision as to whether 
one or other of these approaches is a good one for one’s 
specific needs. Either one is easy to program for even a 
microcomputer. However eqn (28) is simpler for a 
pocket-type calculator. One gratifying feature of the 
j = + l/2 curve in Fig. 3 is that this does show a decisive 
approach to the strongly degenerate asymptotic 
requirements. 

h(9)=?J”r(j+2)[(rl+b)+(Jrl-b(’ ta)"'l ’ ‘. 
(26) 
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Fig. 2. The fractional error (Au/u) involved in the representation 
of u(t)) by eqns (22) through (24), as proposed by Bednarczyk and 

Bednarczyk[42]. 

Fig. 3. The fractional errors involved in representation of .9,(q) 
for the two values j = t I/2 and j = t 3/2 in the manner proposed 
by Aymerich-Humet et u/.[20]. Equation (28) describes the 
function .&(~) to be used in eqn (25) for order j = + l/2; while 

.&(T) from eqn (30) is used m the case of j = t 3/2. 



In that last regard, the parameters of eqn (29) for 

j = + 312. do not appear to work quite so well. There is 

lesi precision when n - 0, while an error near -0.4% 

seems to continue persistently as strong degeneracy is 

attained. Nevertheless, it is decidedly useful to have this 

expression available for ,T$;?(q). It can be expected that 

this will be of assistance both in connection with elec- 

tronic transport in moderately degenerate semiconductor 

situations and for description of the relation between 

total electron density and Fermi energy for non-parabolic 

bands-as happens in GaAs [I91 and other semiconduc- 

tors. For that purpose, characterization of Y&n) within 

+I% limits is amply good enough in normal circum- 

stances. 

5. APPROXIMATIONS FOR REDUCED FERMI ENERGY AS FUNCTION 

Expressions such as those of eqns (!I) and (22) are 

intended for obtaining I( (and hence n,,) from data 

concerning n (i.e. a known Efi ). What if the free carrier 

density is known, and the Fermi energy is to be found-a 

very common circumstance. Suitable expression\ were 

not proposed until comparatively recently, in the work of 

Nilsson[26.43], and of Joyce and Dixon [39.40]. 

Now as a first and over-simplified procedure, eqn (2 I ) 
can be inverted to be written 

n = In[(l/u)- <] (!I) 

This can provide ;I modest improvement over r) = In(rc). 

valid only for completely non-degenerate conditions. 

With a constant v*alue for 6 in eqn (31) [such as the value 

[= 0.27 noted in connection with eqn (21)]. one may 

hope to progress as far as E, = (E, 4 kT), but not much 

further. There is thus ample room for improvement, and 

\uch improvements have materialized. 

That limitation on the utility of eqn (31) with a fixed 

value for 5 led Joyce and Dixon[39] to examine series 

solutions for 7, with In(N) 21s the first term:- 

r7=In(10+.~,rr+.41u~iAirc’~A,lr”* (32) 

They arrived at appropriate values for the coefficients 

A,. A:, etc.. from the inversion properties of eqn (13). 

That procedure yielded :I set of numbers of which the 

first four are 

A, = t 3.5355 x IO ’ = \ I/X 
A, = -4.9501 x IO 3 = [(3/16 L l/27] I 

.A,=+l.4839XlO ‘= 

(33) 

When eqn (32) is used with the four coefficients from eqn 

(33). the resulting error An=(nL,,,L - *I,,,,,) in rendering n 

from information about electron density is shown as 

curve (A) in Fig. 4. 

Curve (A) shows that the error An increases mono- 

tonically. in the negative direction. It reaches An = 

- 0.01 by the time r) = + 5.5, corresponding to u = IO. A\ 

can be verified from the curve in Fig. I. an imperfection 

in one’5 knowledge of carrier density of some 0.25% 

would &o produce an error /AnI = 0.01. for a situation 

of ll=t.S. 

Since the coefficients of eqn (33) make the magnitude 

of -In rise monotonically. one could envisage a slightly 

modified set of coefficients that might do a little better. It 

might be preferable to let .In alternate in sign. while IInl 

stayed within desired bounds up to a larger u,,,,,,. 

Getting further than u,,,,,, = IO was not the primary 

concern of Joyce and Dixon[39]. Their main interest W;I~ 

deduction of Er for the doping strengths used in diode 

lasers. Joyce[40] subsequently looked at shorter poly- 

nomia. for when the range of n requiring coverage does 

not go far above zero. Thus one may verify that, with .A, 

and A, slightly modified, and all A,,, set at zero for 

tn ‘. 7. then the simple expression 

n = In((c) t 0.360 ~ 0.005~ (3-I) 

is ;I viable possibility. This provides an error ATJ which is 

at first positive, and changes to negative as the 

degeneracy increases, but with IAni x:0.03 up to the 

condition TJ = t 5. u = 9. 

In 1973. Nilsson [26] proposed two expressions for n(u). 

Each was designed to model V(M) for the entire range, 

from the non-degenerate conditions of N *‘< I. n 4 0. to 

strong degeneracy situations of u P I. n + 0. It was thus 

essential that each of these expressions be constructed 

so a\ to become asymptotically correct for both 

extreme\. Nilsson’s proposals for fulfilling those 

requirements are described in Section 5.3, 

Oot03 
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Fig. 4. I‘he error A7 incurred in three different representation\ of 
v(u), all intended to work from complete non-degeneracy into the 
degenerate region-but none designed to work when u-x. (A) 
The approach of Joyce and Dixon[39]. using eqn (32) with the 
coefficients of eqn (33). (B) Equation (30, a, proposed by 
NiIs<on[43]. (C) The more complicated expression of eqn (36) 

that Nils5on proposed. 
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It is useful first to examine two rather simpler expres- 
sions that Nilsson proposed some 5 yr later 1431. These 
are asymptotically correct for u < 1, but not for the 
opposite extreme. From comments made by Nilsson in 
this later paper, it would appear that his renewed activity 
was prompted by the work of Joyce and Dixon. 

A constraint adopted by Nilsson in his 1978 equations 
was that successive square root operations be employed, 
since that capability is to be found on almost any pocket 
calculator. Nilsson could well have been more demand- 
ing, since advances in solid-state electronics provide 
more complicated keystroke ~apabi~ities for calculators 
with each passing year. At any rate, one of the two 1978 
proposals of Nilsson[43] was 

7f = In(@) + ~(64 + 3.6~)~“~. (35) 

Curve (B) of Fig. 4 shows the error Aq resulting from 
the use of eqn (35). Note that the error is opposite in sign 
from curve (A) [which had used eqn (32), with the eqn 
(33) coefficient set]. For either curve (A) or (B), it can be 
seen that qmilx= +5.5, u,,, = 10, if it is desired that 
/h~)j s 0.01. 

A second, and more complicated, expression proposed 
by Nilsson in that 1978 paper was 

77 = In(u) + uf64 + 0.05524uf64 + \iu)]-I“‘. (36) 

As with eqn (35) and as with eqn (32) of Joyce and 
Dixon’s work, this has an unadorned In(u) for its first 
term. The error ho resulting from use of eqn (36) is 
shown as curve (C) of Fig. 4. Quite clearly apparent 
from Fig. 4 is that eqn (36) does a great deal better than 
either of the other expressions represented in that figure, 
up to a very large electron density. 

Equation (36) does in fact generate an error Aq with 
several alternations of sign in the range O< q < 12, but 
with peak excursions lA~mZ,xl < 1O-4 that are impercep- 
tible on the scale of Fig. 4. For 17 > 12, the error does rise 
monotonically, but has reached only A17 = 0.01 for q = 
+20 (u =67) as the figure shows. Even for 77 = 
+25 (u =95), the error still has the very modest value 
A7 = 0.03. 

From a pedantic point of view, one may note that 
neither of eqs (35) or (36) could be asymptotically cor- 
rect for u-x. For to be asymptotically proper for 
maximum degeneracy, it is required that 7 vary as u”‘, 
in view of eqn (11). In contrast, the strong degeneracy 
limit for the right side of eqn (35) is u”~, while that of 
eqn (36) is u”‘. 

The restriction noted in the last paragraph is certainly 
significant from a mathematical standpoint. The practical 
consequences are unlikely to be severe, however, for 
discussing the relation between n,, and EF in a doped 
semiconductor, except for a situation of a non-zero but 

:Equation (36) is obviously inappropriate for a metal, where 
the quantized free electron model gives EFU = (h2/8m,,)(3n,,ls)” 
as the low temperature form. With m, substituted from m,, that is 
also proper when weak impurity banding keeps n,, finite down to 
the lowest temperatures. 

modest n, as T*O.’ That assertion is made since very 
heaving doping, as necessary to make n, exceed (say) 
5ON, for a more “ordinary” temperature (from the liquid 
ni~ogen range upwards) will usually cause enough im- 
purity banding and band tailing to modify g(E) 
sig~~cantIy from its “pure semiconductor” form. Thus 
even if eqn (4) is valid in the weakly doped forms of the 
semiconductor, eqns (4) and (5) become invalid with 
heavy doping, to an extent that depends specifically on 
the semiconductor host and on the impurity species 
147,481, as well as upon &,. 

What about using a form of T&U) that is to be valid up 
to u * 1 in order to describe the quasi Fermi levels for a 
highly excited non-equilibrium condition? These are of 
considerable significance in various kinds of active 
device. One should not, however, pretend excessive ac- 
curacy for many of these situations in which the large 
carrier population is imperfectly thermaiized over the 
band states. 

Thus situations of large n,,, or of large non-thermal n 
and p, need to be handled with appropriate caution. Even 
so, it is useful that expressions for q(u) were suggested 
in 1973 by Nilsson[Z6] that did track the entire range of u 
and 7). 

5.3 Nilsson’s fuff range proposuls for q(u) 

Each of the two expressions proposed by Nilsson[26] 
for q(u) was asymptotic to In(u) for u < I, and to 
(3d($u/4)“’ for u@ 1. Of the two, one required more 
fitting parameters than the other, and accordingly 
enjoyed smaller excursions of A?. The simpler of these 
two can be written 

v = E + (32/(n)u/4)“1 + 3(48$$u)2. (37) 

It can readily be seen that the first term on the right 
controls 77 for small u, and the second for very large u. 
The final term is empirically constructed to perform the 
“bridging” function. Curve (A) of Fig. 5 shows the error 
Aq = (T,,,~ - a,,,) that results from the use of eqn (37). 

When eqn (37)‘is employed, the error, oscillatory in 

sign, has IA71 > 0.01 for t) = t 2, and again for 7) = - 1. 
The latter of these is equivalent to about a 1% error in 
(Au/u). The further lobe of error with a maximum for 
17 = - 5 is slightly smaller in terms of Aqmaxr and in terms 
of its connotation for an equivalent (Au/u). Thus if one is 
able to deduce the electron or hole density in a semi- 
conductor to a 1% accuracy (a quite typical situation), 
eqn (37) is quite good enough for deduction of the 
corresponding EF behavior. 

The second, and more elaborate, expression that 
Nilsson[26] suggested for full range coverage can be 
written 

Mu) (3V(n)ui4)2” 
’ = 1- + 1 t [0.24 t 1.08(3d( P)u/~)*“]- 2’ (38) 

The error curve of Aq resulting from use of eqn (38) is 
shown as curve (B) in Fig. 5. The numbers 0.24 and 1.08 
in eqn (38) were chosen empirically to minimize the error 
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