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A method to calculate the excitation spectra of the impurity Anderson mode! based on
the numerical renormalization group technique is reviewed. The single particle and the
magnetic excitation spectra are calculated for the cases of various magnitudes of the f-f
Coulomb interaction to compare them with experimentally observed broad PES-BIS spectra
in U-compounds. Excitation spectra in the Kondo limit are also examined in detail. The
Kondo effect due to the magnetic ions with complex multiplet structures, such as the Sm- and
the Tm-like ions, is studied. The excitation spectra of the two impurity Anderson model are
calculated and roles of the parity splitting are discussed.

§1. Introduction

In this paper we review our recent calculation for the excitation spectra of the
impurity Anderson model. The method of calculation is developed based on the
numerical renormalization group (NRG) technique which has been originally
introduced by Wilson to study the thermodynamic properties of the Kondo
problem."?

The purposes of the calculation are three folds. The first one is to study the
single particle excitation (SPE) spectra of the impurity Anderson model in wide
energy range.? We study roles of the atomic /-7 Coulomb interaction in the origin
of the broad PES-BIS spectra of U-compounds, in which the atomic interactions and
the c-f hybridization are expected to have comparable magnitude.

The second one is to study the dynamical excitation spectra of the Kondo
problem. Several approximation schemes have been developed to study the dynami-
cal properties of the problem, but exact excitation spectra at very low temperature
have not been obtained before our calculation.” We calculate the spectra of SPE,
magnetic and charge excitations in the low energy region of the order of the Kondo
temperature, T, carefully.”

The third one is to study the Kondo effect due to the magnetic system with
complex internal level structure, such as Sm and Tm ions,® or the two magnetic
impurity system.”® At present the numerical approach based on the NRG may be
one of the best way to study such complex systems because the application of the
analytic approach based on the Bethe Ansatz seems to be very difficult.

Method of calculation based on the NRG is explained in § 2, and each subject is
discussed in the following sections.
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§2. Method of calculation

In the NRG method,"? first the conduction band is discretized by the logarithmic
mesh to give good sampling to states near the Fermi energy. Next it is transformed
to an expression represented by the shell orbits. The orbits are arranged in an order
spreading in space from the most localized orbit which hybridizes directly with the
atomic f-orbit. They have hopping matrix between neighboring shell orbits.

Usually, the NRG method is applied to a model with constant hybridization
matrix not dependent on band energy. However, it can be applied to a model with
more general form of the hybridization matrix when one generates the shell orbits
numerically by successive use of the commutation relation with the conduction band
term.” The Hamiltonian for the single impurity problem is given in the following
form,

H:HI+§ V(fm+50m+h.c.)+ gj ;{tl(srmSH)m +hC)+ Els:.msnn} y (1)

where s:» denotes the annihilation operator of the electron in the /-th shell orbit with
symmetry #m, f= that of the atomic f-orbit. We assume that the f-orbit is classified
by one angular momentum ; neglecting the excited orbit of the spin-orbit interaction.
The index m runs over from —; to j and thus the degeneracy factor N is given by 2;
+1. The quantity V gives the strength of the c-f hybridization defined by the
following expression: V= dEAM(E))"?, where M(E)=34lvs(m)|*8(E —¢s) is the
hybridization matrix, v#(m) the hybridization matrix element for the m-component
and ex the band energy. The quantity, A4(~1), is the correction factor for the
discretization, which depends weakly on the discretization parameter A(>1) and is
defined in Ref. 2). We consider the case that M(E) does not depend on m. The
quantity ¢, is the hopping matrix between the shell orbits and &: the energy level of
the /-th shell orbit. When M(E) has electron-hole symmetry: M(E)=M(—E), &
becomes zero. It decreases as /' when ! increases, while the hopping matrix
usually tends to D(1+ A7) A~"%/2, which is the expression given by Krishna-murthy
et al.? for the constant hybridization with band ranges from — D to D.

The term H, gives atomic energy states of f-electron. Most general form which
has rotational symmetry is given hy the following expression,

Hy= 21 /"JMYE(f"T)f M), (2)

where .|f"JM> denotes the atomic state with electron number 7, the total angular
momentum J, and the magnetic quantum number M. The quantity, E(f"/) is the
energy of the state. If we consider the usual Anderson model with constant f-f
interaction, E(f"]) is given as ne+ Un(n—1)/2. Here, ¢ is the energy level of f-orbit
- and U the Coulomb interaction constant. We choose the energy of atomic state more
freely to study the effect of the multiplet splitting.

Following the method described in Refs. 2) and 3), we first diagonalize the H,
term. Next in the manifold of the product space of the eigenstates of H, and the
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{=0 shell states, the Hamiltonian including up to the /=0 shell orbit is diagonalized.
Similarly by adding shell orbit successively, the total Hamiltonian is diagonalized
step by step by the iterative method. Hereafter we denote by Hx the Hamiltonian
including up to the N-th shell orbit. The matrix elements needed in this procedure
are obtained in a compact form by using the 65 symbol.!” When we actually do
calculation, we discard high energy states and keep only a small number of low
energy states to next iteration step because of the computational capacity. It is
known that this truncation procedure does not cause serious effect on the low energy
states since the hopping matrix decreases with .

At a given step of this iteration process, N, the lower energy states are expected
to be good approximate states to the exact eigenstates of Hx which would be obtained
without the truncation process. When we proceed the iteration step to N +1, the very
low energy levels are affected by the interaction with the added shell states, but the
intermediately low energy levels do not show any essential change because the
interaction is small. Therefore, the latter states may be regarded as good approxi-
mate eigenstates of Hy+1, and thus of the Hamiltonian in the infinite N limit. We
calculate the excitation energies and the transition matrices by using these states.”
At this stage, however, the true ground state in the infinite N limit is not known. In
this paper we have used the lowest energy state in this iteration step as the initial state
of the transition. When we proceed the step, the energy region where the good
approximate states are obtained shifts to low energy side successively. In practice,
scaling of energy by the hopping matrix is convenient in numerical treatment.
Therefore the same.energy region in the scaled Hamiltonian is used to calculate the
excitation spectra. ‘

The calculated excitation spectra are given as the collection of the spikes because
we use the discretized model. They are smoothed by the Gaussian shape function in
the logarithmic energy scale,”

S()=F—7L - exof ~(1EE ) - /4) . 3)

Here e denotes the excited state, and E. and p. are the excitation energy and the
transition probability, respectively. The quantity 7 is a factor of the order 1 which
controls the width of the Gaussian. For a given step of iteration, N, we choose the
energy Ey at which the excitation spectra are calculated as follows, Enx={D
X(1+A™)AW¥-Y12/2 with a factor ¢ of the order 1.

Optimal choice of 7 and ¢ depends on the width of energy range where the energy
states are reliable. We should choose { as large as possible if we can get enough
reliable energy range. However, it is not necessary to take so much large value. In
Fig. 1 we show the calculated spectra for several cases of 7 and ¢ for N=3 model.”
The circles give the data points of the SPE spectrum of f-electron (ps), and the
triangles and diamonds are those of the imaginary part of the magnetic (xn) and the
charge (1) susceptibilities of f-electron, respectively. Smooth curves are obtained
when we join series of data points in only odd, or only even N steps. But they do not
agree with each other in general. Due to this fact, the data points deviate from the
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1.5 ananss Bl ananslt lansnss lines in the figure. The lines are
-2 ’ obtained by averaging the two curves
g o which are calculated using the spline
zo0s =R 1 I { 1 ® & 1 interpolation for each series of data.

0.0 ’ . _ As seen from Fig. 1, the averaged

PSP I T P 5] line does not depend on choice of 7 and
%‘ 1.0} it b 1 ¢ so seriously. In the present calcula-
8 tion, the lowest energy state in each step
g 05y 1t 1 1 is used as the initial state of transition.

This seems to be over simplification. If

0.0 . 1
-10%10%1072107710% 10%-10%102107%107? 10° 103 .. cqess
w/Ty @/Ty the transition probabilities are averaged

) . . . over several initial states, the scattering
Fig. 1. Spectral intensities calculated by typical . .
choice of » and ¢ parameters. The circles of data point of odd and even steps will
give data points of the spectrum of the SPE ~ be removed. Actual calculations by
(ndps(w)/N), the triangles give the magnetic ~ using this procedure are remained in
(T Nya(w)/mwi(j +1), and the diamonds the  fyture problems. Another averaging
charge (x(w)/ 2”‘f’N) excitations. The abscis-  1oth4dg of data have been proposed by
sa is the energy in the logarithmic scale, the . 11),12) .
negative energy side represents the hole excita- Brazilian group. Averaglng of
tion (PES part) and the positive side the elec- ~ CUI'VES obtained from the even and odd
tron excitation (BIS part). 7=045InA for A  steps seems to work as the averaging of
and B, and 0.52 InA for C and D and {=5.4 for  jnjtial states.
Aand C, and 54 A7 for B and D. _The lines The integrated intensity of the PES
are obtained by the procedure explained in the . . .
text. Parameters are N=3, D (half of the spectrum 1s normalized to give n/N’
band width)=1, e=—03, /=10 and M=0.02, where #» is the total occupation number
and the quantity 4 is the hybridization width, of f-electron. We get »=0.871 from A
7M. The number of states kept to next itera-  and 0.855, 0.858, 0.853, from B, C and D,
tion step, _{Yw“ is about 1600 and A=3. T«  regpectively, by the numerical integra-
=291x107" and Wilson's ratio is 1.5. tion. On the other hand we obtain =
=().881 from the expectation value in the
ground state. The density of states at the Fermi energy is also expected to be 0.635

from the rigorous Fermi liquid relation,'® while that is estimated as follows 0.595,

0.595, 0.583 and 0.582, from Figs. 1. Using the values — xm(E)/E(E —0) estimated
from the lines, we get the following values for the static susceptibility 2.35X%10? 2.36
X 10 2.36 X 10% and 2.33 X 10? by using Korringa-Shiba’s relation.!” On the other hand
we obtain 2.24 X 10%, 2.26 X102, 2.20x 10% and 2.18 X 10? based on the Kramers-Kronig
relation. The susceptibility is also estimated to be 2.29x10? from the effective
Hamiltonian approach near the low energy fixed point.? These results indicate that
the present calculation shows rather good consistency not so much depending on the
choice of 7 and ¢&. We use 7=0.52InA and ¢=5.4 hereafter for A=3 and 7=0.64In/
and ¢£=1.7 for A=2 because the curves of odd and even series do not so much deviate
from each other. We note, however, that the averaged line shows good consistency
rather in cases with large deviation of even and odd curves, for example Fig. 1A.

-
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§3. Excitation spectra for the cases of various magnitudes
of the f-f Coulomb interaction

In Fig. 2 we show excitation spectra for N =4 and constant f-f interaction model
for various cases of e and U.® Figures 2 (A, E, I, M) give spectra in the electron-hole
symmetric case. The main peak at the Fermi energy of the SPE becomes narrow as
U increases, and tends to the Kondo resonance. At the same time the tails of it grow

- gradually to broad shoulders of the Kondo resonance, and they split off as the peaks

corresponding to the /2~ f' and f?- f° excitation. The peak height is about 89% of
the value expected from the Fermi liquid relation, thus accuracy of the present
calculation will be enough for qualitative discussions.

_ Figures 2 (B, F, J, N) are the spectra when the atomic energy levels of f* and f*
are degenerate. The width of the peak at the Fermi energy does not decrease so
drastically compared with the symmetric case when U increases. Even in this case
the intensity of the charge fluctuation does not increase and its energy scale seems to
be of the order of the hybridization width. The SPE spectrum has tails with energy
scale of the charge fluctuation. The tail in the BIS side is larger because the
multiplicity factor is larger in the electron excitation.

When the occupation number of the f-electron has values a little larger than the
integer, we have a broad shoulder in BIS side of the main peak as seen from Figs. 2
(C, G, K, O). In the case that the occupation number has almost integral value, 1,
general features are similar to the cases (C, G, K, O). The broad shoulder in BIS
gradually splits off as the /'~ f* atomic excitation when U/ increases. Weak peak of
f'- f° excitation also appears in PES side. This type of spectrum corresponds to the
Ceion case.”® When the occupation number decreases further to smaller value than
1, the effect of the Coulomb interaction becomes less important as shown in Ref. 3).

The magnetic excitation has energy scale comparable to the width of the main
peak of the SPE spectrum at the Fermi energy. The width of the main peak is always
smaller than that of the non-interacting case as seen here and in Ref. 3). This may
indicate in some sense that the f-band width will be always narrowed by the f-f
Coulomb interaction.

The SPE spectrum of U-compounds has broad peak in the BIS side.!®~'® Its
width is larger than that of the band calculation,” while the low energy excitation,
such as the magnetic excitation, has smaller energy scale.!” One possibility to
interpret the experimental facts may be to assign the broad BIS structure to the broad
shoulder appearing in relatively large U cases. As discussed in Ref. 3), U should be
larger than 84 to cause the broad shoulder in the N=6 case corresponding to U ion,
where 4 is the hybridization width #M. In this interpretation the sharp peak should
exist at the Fermi energy. It has not been observed at present, though there is a
possibility that its sign has been observed in the high resolution PES experiment.?”

Usually, the hybridization in U-compounds is expected to be larger than Ce,* and

thus the width of the sharp peak will be much larger. It seems curious why the peak
has not been observed in experiments. One possible origin of this discrepancy is the
multiplet splitting of the atomic state.’ When the lowest energy configuration has
multiplet splitting, the width of the Kondo resonance of the SPE and the energy scale
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2. The quantity »

The solid line is o//N, the

1, New~600 and A

IN. D

4 model in various parameter cases.
“

dotted line 0.5 X xm/N and the dot-dashed line x,
is the occupation number of f-electron.

Fig. 2. Spectral intensities of the N
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model. The solid (dashed) line gives the SPE
spectrum for the component with smaller (lar-
ger) hybridization M.=0.02 (M,=0.03) and
lower (higher) energy level e.=—065 (e
=—0.55), e{0) gives the occupation number of
the e(o) channel, {=(eo—&e)/2. D=1 and U
=0.8. The dot-dashed line is the magnetic
excitation of the intra-channel excitation and
the dashed line the inter-channel excitation.
Newt~600 and A=2.
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Fig. 3. Spectral intensities of the two channel Fig. 4. Spectral intensities - alculated by restrict-

ing atomic states to ‘ow energy configurations
(7% f* and f*). The th> lines are calculated
by restricting states ana the bold lines are by
not restricting statex  The solid lines give o/,
the dashed lines y7 and the dot-dashed lines x<.
The bold and thin lines almost coincide in the
xm and ¥’ cases. The occupation number of
f-electron is A) 1.30(0.93), B) 1.16(0.96), C)
1.10(0.98) and D) 1.08(0.99), where numbers in
parentheses are for restricted cases.

D=1,
New~600 and A=2.

of the magnetic excitation drastically decrease because the effective hybridization is
reduced. Even in this case the effective hybridization for high energy processes is not
reduced. Broad shoulder structure appears, which is a complex of the inter- and the
intra- configurational excitations. To demonstrate excitation spectra in a similar
situation in Fig. 3 we used a two channel model: One channel has smaller hybridiza-
tion and lower atomic energy level than those of the other channel. The former gives
sharp Kondo resonance and the main intensity of the PES part, while the latter gives
main intensity of the BIS part. The integrated intensity of the Kondo resonance is
very small and its width is comparable to the magnetic excitation energy. The
structures at about 0.1 on both sides of the Fermi energy are mainly ascribed to the
excitation between two channels (intra-configuration). The broad shoulder above 0.3
in BIS part is mainly due to the f'— f2 excitation (inter-configuration).

Another possibility of the origin of the discrepancy hetween experiments and
calculated results may be the simplification to the single site model. However as seen
in the later section concerning to the two site model, we should, in principle, have in
the SPE spectrum a structure corresponding to the low energy excitation modes even
when they are not local. The intensity will be small if the q-dependence of the mode
is large. It may be important to check whether both of the high®"?* and the low*’
energy phenomena can be interpreted by the single impurity model, for example, by

dlloying or some other methods.

In Fig. 4, we show excitation spectra calculated by restricting the atomic states
to low energy configurations. The thin lines are obtained by dropping configurations
except the lowest (/') and other two.low energy ones (f° and f%). The bold lines are
obtained by correct calculation. The high energy configurations can be neglected
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when the effect of the Coulomb interaction becomes noticeable, U >44. It seems
desirable to apply various theoretical methods®™~*® developed for the 4f-systems
based on the fact, />4, also to the 5f-systems.

§4. Excitation spectra in low energy region

The exact solution based on the Bethe Ansatz,®® and the Fermi liquid approach®”
usually treat only the thermodynamic properties or the very low energy properties.
Several approximate methods have been developed to study the dynamical properties
of the Kondo problem.?” However exact calculation of the excitation spectra has
beqn left even for the s-d Hamiltonian. The NRG method was initially developed to
study the thermodynamic properties and gave full picture of the cross over from the
magnetic to the singlet state for the first time."” In this section we show recent results
for the calculation of excitation spectra in low energy region:® This has been done
more carefully for quantitative accuracy than the previous section.

In Fig. 5, we show the excitation spectra for N=2 model in various parameter
cases.” The solid line gives the SPE spectrum normalized by the hybridization
width: o,(E)/((n4)7"), the dashed line: x!(E)/E, and the dot-dashed line: xn(E)/E.
The Kondo temperature is defined through the relation xn( 7 =0)=7(; +1)/3Tx. The

2.0 — r r : , r r . v
£¢/D=-0.1 A £,/D=-0.1 B c,/D--O.l C
. UY/D=0.2 u/D-0.3 UY/Dm1.0x10?
> Ty/D=7.35%107" Tx/D=5.70x10"% Tx/D=4.08x10"%
§ { o [M=1-00 \\\ ] [ ny=0.87 [ ng=0.60 . ]
E NN
AR
e g .\\:\'-.
0.0 el " " PRl
2.0
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)
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2.0 . T y —— .
z'/D--0.5 H ¢,/D=-0.5 I
u¥p=1.2 uY/D=1.0x10"
Tx/D=1.70x1073 T,/D=8.25x107%
n,-0.98
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o
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0.0
- -4.0-2.0 0.0 2.0 4.0-4.0-2.0 0.0 2.0 4.0-4.0-2.0 0.0 2.0 4.0
w/Tg w/Tx w/Ty

Fig. 5. Spectral intensities of N=2 model in low energy region. The solid line gives xdp,/N, the
dot-dashed line 3 7« Nxn/mwi{j +1) and the dashed line x¢/27xwN. The dotted line is calculated by
the 2nd order perturbation theory for py, see the text. D=1, M =0.03, Nax~1000 and A=2. In
this figure ¢ and » are written as &, and »;.

S
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dotted line is an approximate SPE spectrum drawn by using the second order pertur-
bational expression for the self energy, where the hybridization width and the
Coulomb interaction constant are replaced by effective ones of the effective
Hamiltonian for the low energy fixed point.”

In the first row, A—C, the atomic excitation energy of f' - f°, ¢, is kept constant
and that of f'~ f%, e+ U, is increased. In the lower rows, |e| is chosen to be larger.
The columns A, D and G correspond to the electron-hole symmetric case, and the
. Coulomb interaction increases from A to G. The peak height of the SPE spectrum
should be unity from the Fermi liquid relation. When U is much larger than the
hybridization width 4, the SPE spectrum tends to a universal shape when the energy
is scaled by 7k as seen from D and G.

When the excitation energy of f'— f? increases, the peak position of the SPE
spectrum shifts to high energy side. At the same time it becomes gradually asym-
metric with larger intensity in the high energy side. In the peak region, the spectrum
calculated by the NRG is reproduced rather well by the dotted line given by the 2nd
order perturbational theory, but has larger intensity in the tail region. The dotted
line has almost Lorentzian shape with width about 1.3 7x(HWHM). The intensity of
the tail parts increases with U/ in smaller U region. But the line shape tends to a
certain form in the large U limit when the occupation number of f-electron is fixed
and energy is scaled by Tx.

The spectrum of the magnetic excitation seems to be scaled by 7x in the large U
case. It fulfills Korringa-Shiba’s relation.'’ The quantity xm(E)/E has almost
Lorentzian shape with width about 0.67 7x{HWHM) in the n~1 case. We note that
x=(E) is reproduced very well by the RPA-like expression in which the hybridization
and the Coulomb interaction are replaced by effective ones determined from the

2.0 . r . r
£ /D=-01 A £,/D=- B]
U/D 1.0x10! U/D=1. oxlo‘
Ty/D=6.30x10"% Ty/D=1.40x10"%
_.n,_o 56 n =0.76

A K

Intensitfy
()

0.0
2.0 Ll T L L)
/D c £,/D=-0.4 D
- U/D-l oxlo‘ U/D-l 0x10!
3 Ty/D=2.91x1073 /D=6 18x107*
“ 1.0 _n‘=0.88
3
= “
— \\(:\‘ ~§§
~ T
0.0 Fe=== o M
-4.0 zooo 2.0 4.0-4.0 2ooo 2.0 4.0
w/Ty w/Ty

Fig. 6. Spectral intensities of the N=3 model in low energy region. See the caption of Fig. 5. The
dotted line which shows similar behavior to xm/w is calculated by a RPA-like expression, see the
text. D=1, M=0.02, Neu.~1600 and A=3.
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analysis of the low energy fixed point, derr~1.3 Tx and Uen~4.0 Tx in the n~1 case.¥*?
The charge fluctuation is rapidly depressed as U increases. The quantity x<(E)/
E shows a peak structure at about 27 when the electron-hole asymmetry becomes
large. But the intensity is very small.
In Fig. 6, we show excitation spectra in the case N=3 model.® Present calcula-
tion gives about 949 of the value expected from the Fermi liquid relation for the

spectral intensity of SPE at the Fermi energy. At a first glance, it has a shape similar-

to that of the N=2 model if the averaged occupation number, #/N, is the same. But
in detail, the tail of BIS side is lager in N =23 case as seen from Figs. 5C and 6C. The
spectrum of ym(E)/E has larger width than that of the N=2 case. The peak position
of it changes from £ =0 point to finite £ when » decreases. Deviation of the dotted
line calculated from the RPA-like expression becomes noticeable in small # cases. In
the Cogblin-Schrieffer model case (%~1) of the N=3 model, the RPA-like expression
is not bad as seen from Fig. 6D.

§5. Kondo effect for ions with complex energy level structure

Kondo behavior is observed in some dilute alloys containing Sm impurity, for
instance La1-:Sm:Sns.3® The Sm ion fluctuates mainly between 4/%(Sm*®*) and 4/°
(Sm?*), and is primarily in the Sm®" configuration. The ground state of the Sm®
(°Hss2) ion has total angular momentum J=5/2. In Sm?* ion, the ground state is the
singlet ("Fo), but the first excited state ("F,) with /=1 is located very near the ground
state, at about 400 K above. Thus the fluctuation between the magnetic states occurs
in addition to the fluctuation between the magnetic and the singlet states. Kondo
effect due to the fluctuation between magnetic states is expected in Tm ion.3*

In this section we first study the Kondo effect for the model with a Sm-like
multiplet structure. We consider a model with j=3/2, smaller than the actual value

10 i 7=5/2 because of the computational
capacity. The energies of atomic states
E(f"]) are chosen to simulate the multi-
plet structure of Sm ion. We select the
magnetic state f'(J=3/2), the singlet
state f2(/=0) and the magnetic state
A(J=2), and exclude other states.
These may correspond to the f° (J=5/2),

4Ty /5
o
o

0. 010- ¥ 10-5 10-3 10! F(J=0) and f®(J=1) states of Sm ion,
respectively.
T/D In Fig. 7, we show the temperature

Fig. 7. Temperature dependence of the magnetic dependence of the magnetic susceptibili-
susceptibility in Sm-like systems, for 4E ty for various values of the multiplet
=10(O), 2(0), OS(A). 04(D), 02(+) and energy difference, AE:E(FZ)-E(}‘ZO)E)
0.04(*). The other parameters are D=1, M At very low temperature the ground
=0.015, E(f'3/2)=-0.3, E(f*0)=0 and 4E :
= () _ state becomes always singlet. The tem-
=E(f*2)— E(f%0), energy levels of other .
atomic states are chosen to be 10, No~1200,  P€rature at which Tyxn decreases to a

A=3. xm is written as 7. small value does not show monotonic
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Fig. 8. Spectral intensities of Sm-like systems.
The electron binding type (A, dE=2.0, Tx
=1.19x10"%) and the hole binding type (B, 4E
=02, Tx=7.25%X10"5%) are shown. The solid
line is zdps;/4, and the dot-dashed line
(16/5) Txxa/x. Parameters not indicated are
the same as Fig. 7.
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change as 4E changes.
decreases further from 0.6 to 0.04.
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Fig. 9. Kondo temperature vs 4E in Sm-like sys-
tems for the same parameters in Fig. 7. 7x is
defined as Tx=5/(4x(T=0)). For solid and
dashed lines, see the text. The filled circles
indicate that the ground state is the electron
binding type and the open circles the hole
binding type. Parameters not indicated are
the same as Fig. 7. A4E is written as 4 in this
figure.
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It falls when 4E decreases from 10 to 0.6, but rises when 4E
By analyzing the level structure in the fixed point

of low energy, we can see that an electron is bound in the same way as the Kondo state
in Yb impurity case when 4E is large. On the other hand a hole is bound in the same
way as that in Ce ion when 4E is small. This change of nature is also seen from the
SPE spectrum shown in Fig. 8. The peak of the Kondo resonance appears in the PES
side when 4E is large, while it appears in the BIS side in the same way as that in Ce
case when 4F is small.

In Fig. 9, we show the Kondo temperature estimated from the susceptibility as a
function of 4E.® It becomes lowest in the region where the system changes from the
electron to the hole binding type. The dashed line is the binding energy calculated by
a variational wave function of the type:

2.0 F20)=21'(3/2) +electron(;=3/2). It
decreases as 4E decreases because the

e effective excitation energy £*(3/2)- £%0)
5 1.0 increases due to the energy gain from the
hybridization f*(3/2)— f%2). The solid

line is calculated by using a singlet var-

0. 010-6 o0 iational function of the type: f£(3/2)

+hole (7=3/2)3 The binding energy
increases as 4E decreases because the
exchange coupling via the f%(2) state
becomes strong.* 4

We have estimated the Kondo tem-
perature of Sm ion based on the var-
iational wave functions by using the
actual atomic multiplet structure. Usu-

T/D

Fig. 10. Temperature dependence of the magnetic
susceptibility of Tm-]ike’systems for E(f%2)
=0.04(0), —0.04(C), 0.2(A), —0.2(CD), 0.4(+)
and —04(%), respectively. The energy level
E(£%3/2) is 0, and those of other atomic states
are chosen to be 10. M =0.015, Neu~1200 and
A=3. xmis written as yx.
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ally the hole binding type state has higher Tx. This may explain the experimental
result of a thermopower in La,—-Sm.Sn,, which shows positive sign similar to the Ce
impurity type.®®

Next we consider a case of fluctuation between the magnetic states f* (J=3/2) and
f2(J=2). These may simulate the /** (J=7/2) and /'* (J=6) states of Tm ion, respec-
tively.* In Fig. 10, we show Txm for various cases of energy difference between
£2(3/2) and f*(2) states® At very low temperature, the ground state is always
singlet. The Kondo temperature becomes highest when energies of the two states are
nearly degenerate. By analyzing the level structure of low energy fixed point, we can
see that the singlet state is constructed as /(3/2)+electron (=3/2) when the energy
of f%(3/2) state is lower, though the atomic state f* (/=0) has very high energy. The
situation is essentially the same as in the small 4E case of Smion. When the energy
of f%(2) is lower, the singlet state is constructed as f%(2) +electron® (J=2). In n=2.44
case, first the one electron bound state of the quartet type: f%(2)+electron (=3/2)
becomes the lowest state, and then the two electron bound state becomes the lowest
as the iteration step increases. However, this feature cannot be seen in Txm curve
because the quartet region is very small.

§6. Two impurity problem

The problem of two magnetic impurities in a metal is extensively restudied
recently as the starting point to understand interplay between the Kondo effect and
the inter-site interactions, such as the exchange coupling between the local spins.®®
Jones et al. have pointed out that the 7-coefficient of the specific heat, 7, and the
antiferromagnetic susceptibility of local spins diverge when the antiferromagnetic
coupling between the spin pair has a critical value which separates the Kondo singlet
like and the local-spin-singlet like states.’® Recently the authors have calculated
excitation spectra of the two impurity Anderson model and shown that the critical
transition is suppressed when the f-electron occupation number shows parity split-
ting.” The critical transition is an artifact in the strict sense because the parity
splitting is always induced from various sources, such as the f-f transfer or the parity
dependence of the c¢-f hybridization. However, there is a possibility that the heavy
fermion behavior has some relations to the critical transition, since it is usually
accompanied with the magnetic instability.’”

In Fig. 11,Y we show excitation spectra for the model in which the f-f transfer and
the parity dependence of the c-f hybridization are dropped in the same way as Jones
et al. did. The indirect RKKY interaction is not induced in this case. We introduce
exchange coupling between local spins as J6:0z, and use the hybridization matrix that
is constant from —1 to 1, and zero outside of it. The SPE spectrum of f-electron and
the imaginary part of the susceptibilities of the ferromagnetic moment (x”), the
antiferromagnetic moment () and the singlet non-uniform Superconductivity (x&)*
are plotted.

The J=0 case corresponds to the independent single impurity model, and thus
spectra of x” and x& coincide as seen from Fig. 11B. The Kondo temperature is
estimated to be 7.68 X 10~ from this calculation. The spectral intensity of the SPE at
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Fig. 11. Spectral intensities of the two impurity Fig. 12. Spectral intensities of the two impurity

model without parity splitting terms. Hybridi- model with f-f transfer term, ¢=0.01. The
zation matrix is constant in energy, (.03, com- solid (dashed) line gives the SPE spectrum of
mon to two channels, and D=1, e=—04 and U the even {odd) parity component. Parameters
=(0.8. The quantity e(o0) denates the occupa- not indicated are the same as Fig. 11.

tion number of f-electron with even (odd)

parity, component, ¢ the f-f transfer matrix.

The solid line is the SPE spectrum, the dot- .
dashed line r”, the two-dot-dashed line xa and .-
the three-dot-dashed line 5. One-fourth of x”

and xe, twice of xi are plotted. The abscissa

is the energy in logarithmic scale in units of D.

Neuwe~600 and A=3.

the Fermi energy is about 86% of the correct calculation for the single impurity
problem. :

Positive / means antiferromagnetic coupling between local spins. In the weak
antiferromagnetic case, the low energy edge of xa shifts to low energy side at first, and
peak of x” shifts to high energy slightly and its intensity decreases. The high energy
edge of xa coincides with the energy of the peak position of x”, thus corresponds to
the freeze out of the free spin state. The SPE spectrum shows double structures, each
corresponding to the low and high energy edges of xa.

When J approaches to the critical value J. which is estimated to be j.=4/./7Tx
~2.49 in the present calculation,® the low energy edge of x4 seems to shift unlimitedly
to zero. When J increases beyond J, the low energy edge begins to return to high
energy. The energy corresponding to the low energy edge decreases as (j —jc)* near
the critical point, where j=4J/Tx.¥ From the analysis of energy levels in the low
energy fixed point, we can see that y diverges as {7 —j.) %

The spectral intensity of the SPE at the Fermi energy remains constant when J
<J., and it suddenly changes to zero when J goes over J.. When J increases further
to larger value, the spectral intensity of ¥” becomes very small, and yxa shows a peak
at energy comparable to J.
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The height of the spectral intensity of x4 is almost constant in the energy range
between the low and high energy edges. This may relate to the origin of the diffusive
component of the magnetic fluctuation in experiments.*” The height almost does not
change when J is in the antiferromagnetic region. The static susceptibility of the
antiferromagnetic moment, xs diverges at jc as —Inlj—jo. The susceptibility of the
superconductivity shows similar behavior to that of y, but its intensity’is about 1/10
of the latter.

In Fig. 12, we show excitation spectra in the case that the f-f transfer, £, is chosen
to be comparable to the Kondo temperature for the single impurity problem.® When
J is small, the Kondo peak of the SPE shows small parity splitting. When J increases
near to J., the electron-hole asymmetry in each parity channel becomes noticeable.
The even (odd) component shows a larger peak below (above) the Fermi energy and
a smaller one above (below) the Fermi energy. The peaks have structures corre-
sponding to the low and high energy edges of xa. The spectral intensity at the Fermi
energy decreases gradually as J increases, and does not show the sudden change.

The softening of xs is bounded as seen from Fig. 12C. Effective exchange
interaction between local spins is modified because the f-f transfer term induces the
kinetic exchange coupling which is estimated to be ¢*/U in the lowest perturbation
theory. So we have swept some range of J near J., but cannot find sign of the
softening to zero energy.

Theé y-coefficient is given as y ~(Tx/t)? and xa~InTx/t at J=J.. More strictly,
the low energy scale of the two impurity problem, w,, is approx1mate1y given as w;
~ Tx{((j = je)/1.5)*+ (/23 Tx)?} near the critical point.?

When the f-f transfer matrix increases, the parity splitting of the SPE spectrum
increases. We have calculated the parity splitting of f-level in the effective Anderson
model which reproduces the energy level structures near the low energy fixed point.
The effective transfer matrix, fesr, is given as ferr=t/Z, when ¢ is very small (less than
57x) and the total effective exchange coupling between local spins (Jern=/+ t*/U) is
also very small. Here, the quantity Z is the enhancement factor of the specific heat
of the single impurity problem.®® In this parameter region, the physical properties
seem to be dominated by single impurity character. When ¢ increases beyond 57%,
the parity splitting increases and y decreases drastically. This destruction of the
Kondo state is mainly caused by the antiferromagnetic coupling induced by ¢. If we
choose Jeir=0, the effective parity splitting remains to be order of #/Z. This may
indicate that estimation of the reduction factor of f-band width by using the factor
Z7' is not so bad*™*" when the inter-site magnetic coupling is not large. But when
the magnetic fluctuation is strong, an approach treating explicitly the coupling with
the magnetic excitation seems to be necessary.??-#?

We have also examined the effect of the parity dependence of the c¢-f hybridiza-
tion. General features of the spectra are similar to those in the case where the parity
splitting is caused by the f-f transfer term.

§7. Summary

We reviewed a method to calculate the excitation spectra of the impurity
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Anderson model on the basis of the NRG technique.

It was applied to study the SPE spectrum of the Anderson model in wide energy
range for the cases of various magnitudes of the f-f Coulomb interaction. It was
shown that the main peak of the SPE is always narrowed by the f-f interaction and
tends gradually to the Kondo resonance. The width of the peak is always compa-
rable to the energy scale of the magnetic excitation. These facts indicate difficulty
to interpret the broad PES-BIS spectrum of U-compounds by the usual impurity
Anderson model with constant f-f Coulomb interaction. Multiplet splitting of
atomic states seems to be important. _

The dynamical excitation spectra of low energy region were studied. They tend
to a universal shape when U increases by fixing the occupation number of f-electron
and energy is scaled by Tx. Tails of the SPE spectrum have much larger intensity
than those given by the simple Lorentzian shape. The magnetic excitation is re-
produced rather well by the RPA-like expression in which the hybridization width and
the f-f interaction constant are replaced by effective ones.

The Kondo effect due to ions with Sm- and Tm- like multiplet structure was
studied. Cross over from the electron to the hole binding types appears when the
excitation energy of the magnetic multiplet, 4E, decreases in Sm**-like configuration.
In actual case of Sm ion, the hole binding type is expected in agreement with
experiment of thermopower when Sm®** configuration is primarily stable. The Kondo
singlet in Tm®* stable side is given as the two electron binding type.

The two impurity Anderson model was also studied. The low energy scale of the
system is given approximately as w.~ Tk{((j —jc)/1.5)*+(¢/23 Tx)?} near the region
where the cross over from the Kondo singlet like to the local-spin-singlet like states
occurs. The y-coefficient is given approximately as w; ', while the antiferromagnetic
susceptibility as —Inw:.. The cross over becomes singular when the f-f transfer, ¢, is
zero and thus the terms causing parity splitting are dropped.

Calculation of excitation spectra based on the NRG technique seems to be a useful
method to study the strongly correlated systems.
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