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We study the evolution equations of the distribution functions of hot electrons. We show that a 
convenient choice of the gauge describing the applied uniform electric and magnetic fields 
considerably simplifies the explicit calculations. The main advantage of our method lies in the 
possiblility of treating with the same simplicity free electrons (with or without a magnetic field) 
and Bloch electrons (without a magnetic field). We discuss the influence of the electric field on 
the collision term of the different transport equations we derive. 

1. Introduction 

The quantum theory of electrical transport phenomena really originated in 
1957 with Kohn and Luttinger’s famous paper’). Several approximations were 
there made which limited the theory to (i) linear phenomena with respect to 
the electric field and (ii) elastic electron-impurities collisions. This formalism 
was easily applicable to the realistic Bloch electron case. In 1960, P.N. 
Argyres’) extended this type of methods to the case of electrons in the 
presence of a magnetic field. 

From 1960 to 1970, numerous papers were devoted to the study of non- 
linear phenomena with respect to the electric field)); LB. Levinson’) seems to 
have been the first to recognize the influence of the electric field on the 
collision term of the transport equation for the electron distribution function 
(E.D.F.). J.R. Barker’) and Barker and Ferry6) have investigated since 1973 
this effect, which they named the intra-collisional-field-effect (I.C.F.E.); their 
studies concerned essentially the case of electrons in the absence both of a 
periodic potential and of a magnetic field. 

We propose here a very simple derivation of the intra-collisional-field- 
effect. Our method is particularly well suited since it can immediately be 
applied both to the Bloch electrons and to the electrons in the presence of a 
magnetic field parallel to the electric field. The simplicity of the calculations is 
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essentially due to a proper choice of the gauge describing the electric and 

magnetic fields. 

Our paper is organized as follows: in section 2, we briefly recall the basic 

concepts and the evolution equation of the density matrix. In section 3, we 

consider the simple case of free electrons submitted to an electric field E(t) 

and interacting with phonons. This section must in fact be considered as an 

introduction to the more realistic and interesting Bloch electron case. We 

choose a gauge in which the electric field E(t) is described by a vector- 

potential; this choice allows us to diagonalize very simply the Hamiltonian of 

the electron in the presence of E(t); the corresponding eigenstates are plane 

waves, quite distinct of the Airy functions obtained in the more usual scalar 

potential gauge. The evolution equation of the E.D.F. in these quantum states 

(plane waves) is then obtained and its basic features are discussed. One 

deduces from there a transport equation for the electron velocity distribution 

function, which we compare in detail, particularly in what concerns the 

I.C.F.E., with the evolution equation of the E.D.F. in the plane waves states. 

In section 4, which constitutes the main part of this work, we turn our 

attention to the Bloch electron case, for which our formalism can easily be 

generalized. In the same way than in the free electrons case of section 3, we 

obtain first the evolution equation of the E.D.F. in the eigenstates of the 

one-band Hamiltonian of the electron in the presence of the electric field, then 

the transport equation in the usual Bloch states. Section 5 is devoted to the 

study of electrons in the presence of a longitudinal magnetic field (Eli B) for 

which the I.C.F.E. can easily be investigated with the same methods. A 

comparison is made with the well-known results of the crossed-fields configura- 

tion’). 

2. Quantum background 

Let us consider an independent electron gas, which can interact with an 

electric field E(t) (possibly time dependent) and a static magnetic field B 

and which is submitted to the periodic potential V(r) of a crystal. These 

electrons also interact with a phonon gas which we suppose for the sake of 

simplicity to be in thermal equilibrium. The total electron Hamiltonian thus 

writes 

HT(~) = H(t)+ HP+ H,_p, (2.1) 

where H(t) is the electron Hamiltonian in the presence of the applied fields, 

Hp is the phonons Hamiltonian and H,_p denotes the electron-phonon inter- 

action Hamiltonian. 
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I.B. Levinson4) showed that, at the lowest order in the electron-phonon 
coupling, the one-electron density matrix f(t) obeys the following equation 

ih $ f(t) - [H(t), f(t)1 = CU(t)I, (2.2) 

where the collision term C{f(t)} comprises two parts: the first one, C,{f(t)}, is 
due to the emission of phonons 

C,{f(t)} = - { 7 IC(q)~(N,, + 1) 1 dt’ e-i0q(t-*‘) 
-_ 

(2.3) 

, I 

x [xq, exp(- $ _/ H(7) dT)r;f(r’) exp(i 1 H(r) dT)] + herm.adj. 

I’ I 

and the second part, &{f(t)}, is due to the absorption of phonons and can be 
deduced from the first by the replacements (N, + 1) + IV,, o1 + -w,,, q + -4. 
C(q) characterizes the nature and the strength of the electron-phonon coup- 
ling; N, is the thermal distribution of the phonons of energy ho, and 
xs = exp(iq - r-1. 

Eqs. (2.2) and (2.3) can be shown to be equivalent to Barker’s eq. (21) in ref. 5, 
if one neglects the “memory term” and if one retains only the lowest order 
terms with respect to the electron-phonon coupling strength. 

The collision term C{f(t)} contains evolution operators such as 
exp(? (ilfi) J: H(7) dT), where H(t), as already stated, is the electron Hamil- 
tonian in the presence of the applied (possibly time-dependent) fields. This 
dependence of the collision term with the applied fields has been denominated 
by Barker’) the intra-collisional-field-effect (I.C.F.E.). 

3. Evolution equation of the distribution function of free electrons in the 

presence of an electric field 

3.1. Choice of a convenient gauge 

Let us consider at first the most 
submitted to a spatially uniform, 

simple case, in which a free electron gas is 
but possibly time-dependent electric field 

E(t). The application of such a uniform electric field does not modify the 
translational invariance of the system. This symmetry property, however, 
does not appear in the electron Hamiltonian when a scalar potential gauge 
(gauge 2) is used to describe the electric field 

Gauge 9: 4(r, t) = - eE(t) - r; A(t) = 0 (e <O), (3. la) 
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since the electron Hamiltonian in this gauge writes: 

PZ Hf=z-eE.r. (3. lb) 

If instead the electric field is described by a vector-potential gauge (gauge a’) 

I 

Gauge ,a’: +(r, t) = 0; A(t) = - 1 E(r) dr, (3.2a) 

,I 

the translational invariance property is restored in the electron Hamiltonian 

itself, which then writes 

(3.2b) 

We shall now develop some very simple remarks which are basic for the 

following. The state vectors I$,) and 14’) in the gauges ,a and 2’ are related by a 

unitary transformation T. In the r-representation, we have 

(r 1 4’) = T(r 1 I)) = exp(i i r * A(t))(r ( +). (3.3) 

As it is well known, the solution of the Schrodinger equation in the gauge g 

ifi d$ = Ha($) 

is (in the r-representation) 

(3.4) 

(3.5) 

(3.6) 

This implies that the state vector in the gauge ,a is (in the r-representation) 

(r 1 $‘)=0-“‘exp 
’ ’ h*k(T)' 

ik(O).r-i 
I 

Fdr 

0 

and therefore the Schrodinger equation in the gauge 8’ 

(3.7) 

(3.8) 
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gives rise to the eigenvalue equation 

H,&,‘) = fi*@(O) - (eh)A(t))* ,+,> 
2m 

(3.9) 

In the following we shall denote the eigenstates of H,, by (K) and the 
associated eigenvalues by E(K - (e/h)A(t)). The state vector deduced from IK) 
by the unitary transformation Tt will from now on be denoted by Ik). These 
states possess the following property: they are eigenstates of the free electron 
Hamiltonian Ho (without the electric field) with the eigenvalues l (k(t)). 

It is then straightforward to deduce from eq. (2.2) the equation for the 
electron distribution function (E.D.F.) in the IK)-states, defined by 

f(K, t) = (KlfW(W. (3.10) 

Since the medium we consider is homogeneous, the electron density matrix 
must be translationally invariant; it commutes then with the impulsion opera- 
tor p and with H(t), so that the left-hand side (1.h.s.) of the equation for the 
E.D.F. reduces to @(K, t)/at. 

It’s however in the calculation of the collision term (2.3) that the vector- 
potential gauge choice proves to be the most efficient. Let us calculate in the 
{IK)} basis the diagonal matrix element of one of the terms of the com- 
mutators involved in expression (2.3), for instance 

AK = (Kjx4 exp - ci 
Pi I+ ri 1 H(T) d7 x4 f(V) exp h H(T) d7 IK). 

I’ 1’ 

Since 

(KlxJK’) = &r,~,+q 

one obtains straightforwardly 

(3.11) 

(3.12) 

- E K -; A(T))) d+(K, t’) (3.13) 

Each matrix element of the collision term can be expressed in a similar way, 
which yields the following equation for the E.D.F. over the lK’)-states 

-$(K, t) = j dt’? {P(K’, K; t, t’)f(K’, t’) - P(K, K’; t, t’)f(K, t’)} 
--05 

(3.14a) 
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with 

P(K, K’; t9 f’)=$ Re? ,=q+, I(KJx~~IK’)Z(C(P)/‘(N~ +i+:) 

Xexp{-ii d7. E ( ( K’-;A(~))--~(K-;A(~))+$w# 

1’ 

(3.14b) 

7 = + 1 (or - 1) corresponds to the phonon emission (or absorption) processes. 

Let us now comment about the evolution equation (3.14). Several remarks 

can be made: 

(i) There is no drift term in the 1.h.s. and the whole effect of the electric 

field is included in the collision term (r.h.s.); 

(ii) The collision term is non-Markoffian, since it involves retarded dis- 

tribution functions; 

(iii) Even in the case of a static electric field, one cannot rewrite the 

collision term under the form of a convolution product since the probabilities 

P(K, K’; t, t’) are not functions of the time difference (t - t’); this implies that 

one cannot find by the usual technics a Markoffian equation for f(K, t) in the 

asymptotic limit (t + x); 

(iv) The stationary state in a static electric field E(t) = E. does not cor- 

respond to the condition that one could expect af(K, t)/at = 0. 

In order to clarify this last statement, let us calculate the electric current 

density 

J = i Tr fir(t), (3.15) 

where G is the electron velocity operator 

;= P - eA(t) 
m . 

In the case of a static field, one gets 

J=$ hK + eEot 

K m 
f(K, t) = ; c z f(K, t) + + 

(3.16) 

(3.17) 

(n is the electron density). In a steady-state regime, f(K, t) cannot be time 

independent, (i.e. @(K, t)/at f O), since the gauge current (ne2Eot/m) must be 

counterbalanced by a term linear in t. This remark will be clarified in the next 

paragraph, in which we shall determine the velocity distribution C#J(V, t). 
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3.2. Velocity distribution in a uniform electric field 

The expectation value of the electron velocity in a state IK) is simply 

u = (KIijK) = (3. I 

This relation can be inverted, which defines K as a function of u and t, 

K(u,t)= 
mu + eA(t) 

h . 

The velocity distribution $(u, t) is then obtained by 
K-vector by its expression (3.19) as a function of u 

$(u, t) = f(K(v, t), t). 

One verifies easily that 

+ f(K, t) = & 4(u, t) + $ - V&J(U, t) 

and that 

f(K, r’)= + +;(A(I)-A(t’)), t’), 

(3.1 

substituting in f(K, t) t 

(3.: 

(3.2 

(3.2 

In the same way, the energy variation in the transition K+K’ can 
expressed as a function of the velocities u and u’ 

l (K’-PA)-E(K-PA)= km(u”- v*)+e(u’-u) -(A(t)-A(T)). 
(3.2 

One thus obtains for the electron velocity distribution the transport equ 

tion 

$4(u, t) + $ * V,ddu, t) = j-df’ ; [II(v’, u; t, W(u’+; (A(t)- A(f)), 
-a 

- Iz(u, u’; t, 1')4( u +; (A(t)- A(O), f)), (3.24 

with 

xexp(-$/d7(T(u”- u2)+ e(u’- u) - (A(t) - A(T)) + ghw,)}. 
I’ 

(3.24 



478 N. POTTIER AND D. CALECKI 

This result can be understood as follows: as we stated previously, states 1K) 

and Ik) are related by a unitary transformation T (see eq. (3.3)) which 

corresponds to the change of gauge j-9’. Therefore the operator T’f(t)T 

represents the density matrix f(t) when the scalar potential gauge ,$ is used. 

Thus 

(Klf(t)lK) = (klT+f(t)Tlk)= (kli(t)lkL (3.25) 

so that 

4(k, t) = (klf(t)(k). (3.26) 

4(k, t) is the electron distribution function in the IkEstates, which, as already 

stated, are the eigenstates of the free electron Hamiltonian Ho, and so, apart 

from a constant numerical factor, it is the velocity distribution function. 

The transport equation (3.24) for the electron velocity distribution function 

is identical to Barker’s result’); it deserves nevertheless some commentaries: 

(i) We recover the usual drift term in the 1.h.s. and the transition prob- 

abilities in the collision term do depend on the electric field: this dependence 

constitutes the intra-collisional-field-effect (I.C.F.E.); 

(ii) The collision term is non-Markoffian; moreover it involves distribution 

functions which depend on the modified velocities 

u*(‘) = u(” f; (A(t) - A(t’)). (3.27) 

The usual velocity dependence can only be restored by a coarse-graining of 

the distribution function in the velocity space, i.e. by the approximation 

+ ++(A(r)- A(t’)), t’) = ~(IJ, t’). (3.28) 

(iii) In the case of a static electric field, the collision term can be recast into 

a Markoffian form in the asymptotic limit (t -j 30) by the usual technics’); 

(iv) The velocity distribution 4,(u, t) can be used to calculate the electric 

current density as 

J = ; 
I 

d3u u+(u, t) (3.29) 

and, as expected, for a static electric field Eo, 4(u, t) is time independent in a 

steady-state regime. This proves in turn that, in this stationary case, the 

electron distribution function in IK>states, f(K, t), is time dependent, as it 

was noticed after eq. (3.17), since then 

f(K, t) = 4(u) 

is only a function of K+ eJU/fi. 

(3.30) 
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4. Bloch electrons case (zero magnetic field) 

We shall now treat the more realistic case of Bloch electrons submitted to a 
spatially uniform, but possibly time-dependent electric field. We shall assume 
for the sake of simplicity that we neglect interband transitions; thus the 
electrons always remain in the same band V. 

4.1. Gauge choice and basis states 

The importance of the preceding section does not lie in the final results, 
part of them having already been established by another way, but in the use 
of a convenient gauge for the electric field. Similarly, the vector-potential 
gauge will prove to be equally well suited to the derivation of a transport 
equation for the E.D.F. of Bloch electrons. 

We need to deal with the properties of three different Hamiltonians: 

HO = & + V(r), (4. la) 

I39 = & + V(r) - eE(t) * r, 
H2, = (P - e-4(0)’ + V(r) 

2m 
(4. lc) 

Ho describes simply a Bloch electron in the periodic lattice potential V(r); H9 
and H9, correspond both to the same Bloch electron submitted in addition to 
the uniform electric field E(t); H9 is written with the scalar potential gauge ,$ 
whereas we have used the vector-potential gauge 2’ for Hjf. 

Let us recall two properties satisfied by the different Hamiltonians: 
(i) The state vectors II/I) and I+!JI’) in the gauges 3 and 9’ obey the two 

SchCdinger equations (3.4) and (3.8) and they are related by a unitary 
transformation T defined by eq. (3.3); 

(ii) This same unitary operator T transforms HO into H9,. Effectively, one 

easily verifies that 

H9, = T&T+. (4.2) 

Accordingly, let us label Ik) and E(k) the eigenstates and the eigenvalues of HO 
(we omit the band index v for the moment). We know that 

(r 1 k) = O-“‘exp(ik - r)uk(r) (4.3) 

are the usual Bloch functions. If we denote by IK) and E(K) the eigenstates 
and the eigenvalues of H2,, we derive immediately from eqs. (3.3) and (4.2) 
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relations between the eigenstates /K) and lk) on the one hand, and between 

the eigenvalues E(K) and E(k) on the other hand: 

IK) = Tlk) (4.4a); E(K) = e(k). (4.4b) 

Then we arrive to the following expression for the eigenstates of H,,, deduced 

from eqs. (4.3) and (4.4a): 

(r 1 K) = fi-“’ exp(iK - r)wK(r), (4.5) 

with 

K=k+;A(Q (4.6) 

and 

Mr) = UKmCrihjACrJ(r). (4.7) 

So we proved that the eigenfunctions of H$, are also Bloch functions; this is 

quite evident on the expression of H,,, which possesses exactly the same 

translational invariance property as H,,. 

Here we can introduce, as in the preceding section on free electrons, the 

vector k(t), defined by eq. (3.6), with k(0) = K. Expressed in terms of k(t), the 

results useful for the following are finally (we insert the band index v omitted 

until now): 

Hp,(vK) = E,(k(t))(vK) (4.8) 
and 

(r 1 vK) = T Q “l exp(ik(r) .r)~,~(,)(r). (4.9) 

It is at present straightforward to deduce from eq. (2.2) the equation of 

evolution of the E.D.F. in the eigenstates IvK) of H,,, defined by 

f,(K, t) = (vK(f(t)lvK). (4.10) 

For the I.h.s., we simply get af,(K, t)/at. In the r.h.s. collision term, we have 

to evaluate expressions such as 

B.(K)=(vKl~,erp[-tlH(7)dii~:f(f.)exp~~iH(i)d~l,vK). (4.11) 

1’ 1’ 

Since we assumed that the electrons always remain within the same energy 

band u, we immediately get 

B,(K) = & & (~KIx~l~K’)(~K’lx:l~K”) 

x exp { -; 1 (E,(k)(T)) - l ,(k(T))) dT}f,(K”, t’). (4.12) 
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In the appendix, we show that the product (~KIx~IvK’)(YK’Ix:IYK”) differs 
from zero only if K” = K and takes the value 

~K.K”I(vKIx~I~UI* = ~K,K”C aK’-K+q,g ; 
I I 

2 

dr”‘tK(rb’v,K-g(r) , (4.13) 
g E 

where g is a reciprocal lattice vector and c is the volume of an elementary cell 
of the crystal. The expression of B,(K) is quite similar to the corresponding 
term A(K) calculated in section 3. Each term of the r.h.s. of eq. (2.2) can be 
calculated in a similar fashion. Finally the evolution equation of fY(K, t) looks 
identical to eq. (3.14); the only differences lie in the meaning of IvK) and 
l Jk(t)) which here are the eigenstates and eigenvalues of the Bloch electrons 
in the presence of the electric field described by a vector-potential gauge. 

All the comments we made about (3.14) are still appropriate; nevertheless, 
the contribution of the electrons in band v 
expression 

Jv=gGk VKE, (K -4 A(O)f,(K, t). 

to the electric current has now the 

(4.14) 

4.2. Transport equation in the usual Bloch states 

We have just derived the evolution equation for the E.D.F. in the [UK) 

eigenstates of the Hamiltonian H9,. We want now to deduce the transport 
equation for the E.D.F. in the usual Bloch states, which are the eigenstates of 
the Hamiltonian Ho in the absence of the electric field. This is quite easy; 
starting from eqs. (4.10) and (4.4a), we obtain 

fY(K, t) = (vKlf(t)lVK) = (vkJT+f(t)TJvk). (4.15) 

Since f(t) and T+f(t)T represent exactly the same physical properties expres- 
sed in the two different gauges $J’ and 8, the matrix element (vklT+f(t)Tlvk>, 
which we shall label &(k, t), is the E.D.F. in the usual Bloch states jvk). 

The steps of the derivation of the transport equation for &(k, t) are quite 
analogous to those described by eqs. (3.21) to (3.23) for the free electrons 
case, and we obtain 

& Mk, t) + $ - V&(k, t) = j- dt’q {n,(k’, k; t, t’) 

x &(k’+;(A(t) -A(t’)), t.)-n.(k,k.: t, V)&(k +;(A@)-A(t’)), t’)}, 

(4.16a) 
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with 

II,(k, k’; t, t’) = $ Re 7 .,=T, +, I(vk I~~sluk’i121C(q)(2(N~ + ; + I?‘) 

- E,, (k +; (A(t) - A(T))) + ,n,,)}. (4.16h) 

This transport equation is valid at the lowest order in the electron-phonon 

coupling, whatever the details of the band structure. Exactly as in the free 

electrons case, the 1.h.s. of the transport equation contains a drift term, and 

the transition probabilities II,(k, k’; t, t’) depend explicitly on the electric field 

through the vector-potential. This dependence constitutes the intra-collisional- 

field-effect in the Bloch electrons case. All the comments on the non- 

Markoffian character of the collision term for the free electrons velocity 

distribution function 4(u, t) can be repeated again for $,(k, t). The con- 

tribution of the electrons in band v to the electric current density is given by 

(4.17) 

From eq. (4.17) and from the definition of +,,(k, t), we verify easily that, for a 

static electric field EO, the stationary distribution function f,.(K, t) remains 

time dependent since it is only a function of K + (eE&h). 

5. Free electrons in the presence of uniform electric and magnetic fields 

5.1. Parallel fields case 

The strong analogy which exists between this problem and the problem 

treated in section 3 allows us to be rather succinct in the derivations. The most 

convenient gauge to describe the two uniform fields E and B assumed to be 

parallel to the z-axis is 
f 

Gauge $L: +(r, t) = 0; A = (A, = 0, A, = Bx, A, = - _/ E(7) d7). (5. I) 

The magnetic field B is always static: on the contrary the electric field E(t) 

can vary with time. The electron Hamiltonian is in this gauge 

ZYI,~ = & [p’x + (p, - eBx)‘+ (p; - eA,(t))2]. (5.2) 
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It can easily be checked that, exactly as plane waves were eigenstates of the 
Hamiltonian (3.2b), the Landau states 

+i(r) = (r ( A) = On-“’ exp i(K,y + KJM, (x’+ $$) (5.3) 

are eigenstates of the Hamiltonian Hj,. A is an index which summarizes the 
three usual quantum numbers n, K, and K,; wc = lelB/m. We have 

H&IA> = %(OlA>, (5.4a) 

where 

l Jt)=+;A,(t))= (n+~)fio,+(hK,2~Az(t))*. (5.4b) 

The E.D.F. in the eigenstates IA) of I-I,, is defined by 

fn(K,, K,, t) = (A If(t)lA>. (5.5) 

In the presence of a magnetic field, there is no gauge in which the electron 
Hamiltonian is translationally invariant. But, if the fields E and B are uniform, 
the physical properties of the electron gas must also be uniform; therefore the 
E.D.F. fn(Ky, K,, t) should not depend on K,, since the quantity hK,/m 
represents the mean abscissa of an electron in the state IA); so we shall 
simply write the E.D.F. as f”(K,, t). 

As before, an evolution equation for the E.D.F. can be derived from eq. 
(2.2). In the calculation of the diagonal matrix elements of the collision 
operator we encounter expressions such as 

C,, = (A Ix4 exp --h [ i _/! HOT xpf(t’) exp h ] ’ [i / H(r)dT]jA), (5.lla) 
I’ I’ 

or 
C.4 = c c (AIxplA’,(A’lx:lA”>(A”lf(t’>(A) 

A! Aft f 

x exp(-il d7(E.(K:-~A1(7))-G(KI-~A1(7)))}. (5*llb) 

P.N. Argyres’) has proved that, owing to the summation over q in Cn, the only 
terms different from zero in Cn correspond to A” = A. We find finally that the 
E.D.F. f,,(Kr, t) obeys the equation 

I 

-$f.(Kz, t) = I dt’ x WdK:, K,; 4 t')fnWb t’) 
dK; 

-z 

(5.12a) - W,,(K,, K:; t, t’)fnK t)} 
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En (K, - ; A,(d)+ 4%)) (5.12b) 

and where 

(J&qX, qr)(2 = ( ~~!XX) exp(iq,x)& (x + %) dx 12. 
r 

Again we can repeat all the comments following eq. (3.14), except for the 

electric current density, which now expresses as 

(5.13) 

We can transform the equation satisfied by f,(K,, t) in order to get a 

transport equation for the velocity distribution function of the electrons. 

Since the expectation value in a state iA) of the electron velocity (directed 

along the fields) is 

hK, - eA,(t) 
v, = 

m ’ 
(5.14) 

the velocity distribution function is defined by 

$n(vz, r) = fn(Kz(vz, r), t) (5.15) 

and it obeys the transport equation 

$4.(u,, t) +g& +n(vz, t) = &,(v;. v,; t, t’) 
--r 

x &(v:+; (A,(t) - AAt’)), f) - Gn,(uV,, u:; t, t’) 

x~,(v,+~(A,(I)-A~(I’)), f’)}, (5.17a: 
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with 

xexp{-$jd7(+( fi 
mv: + e(A,(t) - A,(T)) 

) 
1’ 

_ E mu2 + @k(t) - AZ(~)) 
n ( h ) + sfiw,)]. (5.17b) 

We underline that this equation is valid for a free electron gas submitted to 
uniform and parallel electric and magnetic fields, when only the electric field 
is possibly time dependent. The electric current density can be calculated 
according to the formula 

(5.18) 

5.2. Crossed fields configuration 

We turn our attention to the static case when the electric field is parallel to 
the x-axis and the magnetic field is along the z-axis. This problem has been 
explored many times’) by using the most convenient gauge which is 

Gauge 2;~: +(r, t) = - eEx; A = (0, Bx, 0). (5.19) 

In this gauge, the electron Hamiltonian is simply 

H=&pf+(p,-eBx)2+p:)-eEx. (5.20) 

Its eigenstates 1~) and its eigenvalues E, are well known and the E.D.F. 

f,(r) = (CL IKr)lcl) (5.21) 

obeys the equation 

$Jt) = j- dt’ x W’p,O - OfJt’) - W,,.d - t’)f,(W, 
P’ -a 

where 

(5.22a) 

W,,,O - r’) = $Re c c p q=-1,+1 
I~~lx~~I~~~l~l~~~~l~(~~ +i+T) 

x exp (-$(t;- l P + $io,)(t - 1’)). (5.22b) 
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The effect of the electric field on the collisions is entirely included in the 

expression of the eigenenergies E+, in a way which is the simplest of all the 

cases studied here. Due to this relative simplicity, we have been able to solve 

under particular conditions the integral equation (5.22) (see for instance ref. 

8). We can also notice that the stationary state corresponds here to the 

condition af,(t)/at = 0, although there is no drift term in the 1.h.s. of the 

transport equation (5.22). 

6. Conclusion 

We derived the evolution equation for the distribution function of electrons 

interacting with a phonon bath in three different physical situations: 

(i) free electrons in the presence of a spatially uniform, but possibly 

time-dependent electric field, 

(ii) Bloch electrons interacting with an electric field of the same type and 

finally 

(iii) free electrons submitted to an electric field of the type described above 

and equally to a uniform and static magnetic field, parallel to the 

electric field. 

The electron-phonon interaction was taken into account only at the lowest 

order, but there was no restriction on the intensity of the applied fields. The 

calculations were made simple owing to the choice of a vector-potential gauge 

to describe the electric field. For the Bloch electrons for instance, we 

introduced two distribution functions, firstly the distribution f,(K, t) in the 

eigenstates of the electron Hamiltonian in the presence both of a periodic 

potential and of the electric field, and then the distribution function +,(k, t) in 

the usual Bloch states, which deduces from f,(K, t) by a gauge trans- 

formation. 

The equation for f,(K, t) is apparently much simpler than the transport 

equation for &(k, t). There is no drift term in the left-hand side and the 

K-dependence of the collision term is very simple. However this equation 

must be handled with some care since for instance the stationary regime 

induced by a static electric tield does not correspond to the condition 

C?f”(K, t)/at = 0. 

On the other hand, the transport equation for $,(k, t) contains a drift term 

in the left-hand side, and the collision integral involves distribution functions 

which, strictly speaking, depend on modified k-vectors and have to be 

coarse-grained in k-space in order to recover the usual k-dependence. The 

stationary regime corresponds here to the standard condition @,(k, t)/at = 0. 

In both formulations, the transition probabilities in the collision term do 
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depend on the electric field: this dependence constitutes the intra-collisional- 
field-effect (I.C.F.E.). The existence of this effect has thus been established 
very simply in the three different physical situations quoted at the beginning 
of this section: free electrons, Bloch electrons and free electrons in the 
presence of a magnetic field. 
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Appendix 

Calculation of the product P = (vKIx~IvK’)(vK’Ix:I~K”) 

Let us omit for the moment the band index V. We obtain, from eq. (4.9, 

p=fl-2 
(1 

drwgr) exp(-iK - r) exp(iq - r)wKf(r) exp(iK' * r) 
) 

X 
u 

drw&(r) exp(-iK’* r) exp(-iq - r)w,&f) exp(iK” * r) . 
) (A. 1) 

Since the functions wK(r) are periodic we get, if c is the volume of the unit 
cell 

P = C C 8K’+q-K,g,~K’.~q-K,,gZ f 1 drwiHr)w-,+,,(r) exp(k, - r) 
g1 g2 

c 

X b 1 dr’w$-q+g,(r’)wK+g,+gZ(r’) ew(ig2 * r’), (A.21 

where gl and g2 are reciprocal lattice vectors and K, K’ and K” belong to the 
first Brillouin zone. The two delta symbols impose 

K”-K=g,+g2. (A.31 

Since K and K” belong both to the first Brillouin zone, this is only possible if 

gl+ gz = 0, i.e. K”-- K = 0. (A.41 

We get finally, after restablishing the band index Y: 

P = &c.K”I(vKIx~~uK’)~* = &LK’.~ &-K+~.,, ; I I drwikK(r)wv,K-.,(r) *. (AS) 
g1 C 
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(We used the property 

N. POTTIER AND D. CALECKI 

wK+p(r) exp(ig - r) = WK(r).) (A.61 
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