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We study the evolution equations of the distribution functions of hot electrons. We show that a
convenient choice of the gauge describing the applied uniform electric and magnetic fields
considerably simplifies the explicit calculations. The main advantage of our method lies in the
possiblility of treating with the same simplicity free electrons (with or without a magnetic field)
and Bloch electrons (without a magnetic field). We discuss the influence of the electric field on
the collision term of the different transport equations we derive.

1. Introduction

The quantum theory of electrical transport phenomena really originated in
1957 with Kohn and Luttinger’s famous paper'). Several approximations were
there made which limited the theory to (i) linear phenomena with respect to
the electric field and (ii) elastic electron—-impurities collisions. This formalism
was easily applicable to the realistic Bloch electron case. In 1960, P.N.
Argyres®) extended this type of methods to the case of electrons in the
presence of a magnetic field.

From 1960 to 1970, numerous papers were devoted to the study of non-
linear phenomena with respect to the electric field*); L.B. Levinson*) seems to
have been the first to recognize the influence of the electric field on the
collision term of the transport equation for the electron distribution function
(E.D.F.). I.R. Barker®’) and Barker and Ferry®) have investigated since 1973
this effect, which they named the intra-collisional-field-effect (I.C.F.E.); their
studies concerned essentiaily the case of electrons in the absence both of a
periodic potential and of a magnetic field.

We propose here a very simple derivation of the intra-collisional-field-
effect. Our method is particularly well suited since it can immediately be
applied both to the Bloch electrons and to the electrons in the presence of a
magnetic field parallel to the electric field. The simplicity of the calculations is

*Laboratoire associé au C.N.R.S.
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essentially due to a proper choice of the gauge describing the electric and
magnetic fields.

Our paper is organized as follows: in section 2, we briefly recall the basic
concepts and the evolution equation of the density matrix. In section 3, we
consider the simple case of free electrons submitted to an electric field E(t)
and interacting with phonons. This section must in fact be considered as an
introduction to the more realistic and interesting Bloch electron case. We
choose a gauge in which the electric field E(t) is described by a vector-
potential; this choice allows us to diagonalize very simply the Hamiltonian of
the electron in the presence of E(t); the corresponding eigenstates are plane
waves, quite distinct of the Airy functions obtained in the more usual scalar
potential gauge. The evolution equation of the E.D.F. in these quantum states
(plane waves) is then obtained and its basic features are discussed. One
deduces from there a transport equation for the electron velocity distribution
function, which we compare in detail, particularly in what concerns the
I.C.F.E., with the evolution equation of the E.D.F. in the plane waves states.
In section 4, which constitutes the main part of this work, we turn our
attention to the Bloch electron case, for which our formalism can easily be
generalized. In the same way than in the free electrons case of section 3, we
obtain first the evolution equation of the E.D.F. in the eigenstates of the
one-band Hamiltonian of the electron in the presence of the electric field, then
the transport equation in the usual Bloch states. Section 5 is devoted to the
study of electrons in the presence of a longitudinal magnetic field (E|B) for
which the I.C.F.E. can easily be investigated with the same methods. A
comparison is made with the well-known results of the crossed-fields configura-
tion’).

2. Quantum background

Let us consider an independent electron gas, which can interact with an
electric field E(t) (possibly time dependent) and a static magnetic field B
and which is submitted to the periodic potential V(r) of a crystal. These
electrons also interact with a phonon gas which we suppose for the sake of
simplicity to be in thermal equilibrium. The total electron Hamiltonian thus
writes

H(t)= H(t)+ Hp+ He_p, 2.1

where H(t) is the electron Hamiltonian in the presence of the applied fields,
Hp is the phonons Hamiltonian and H.p denotes the electron-phonon inter-
action Hamiltonian.
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I.B. Levinson®) showed that, at the lowest order in the electron—phonon
coupling, the one-electron density matrix f(t) obeys the following equation

it % £(1) — [H(t), ()] = CH(D)), 2.2)

where the collision term C{f(t)} comprises two parts: the first one, C{f(t)}, is
due to the emission of phonons

Ct() = - 3 IC@PN,+ 1) [ drreine® @.3)
q

x [Xq, exp(— %f H(r) dT)X;f(t') exp(% f H(r) d‘r)] + herm.adj.

and the second part, C;{f(t)}, is due to the absorption of phonons and can be
deduced from the first by the replacements (N, +1)> N, v,—>~w,, ¢§—>—4¢.
C(q) characterizes the nature and the strength of the electron-phonon coup-
ling; N, is the thermal distribution of the phonons of energy hw, and
Xq = expliq - r).

Eqgs. (2.2) and (2.3) can be shown to be equivalent to Barker’s eq. (21) inref. 5,
if one neglects the “memory term” and if one retains only the lowest order
terms with respect to the electron-phonon coupling strength.

The collision term C{f(t)} contains evolution operators such as
exp(= (i/h) [/ H(r) d7), where H(t), as already stated, is the electron Hamil-
tonian in the presence of the applied (possibly time-dependent) fields. This
dependence of the collision term with the applied fields has been denominated
by Barker®) the intra-collisional-field-effect (I.C.F.E.).

3. Evolution equation of the distribution function of free electrons in the
presence of an electric field

3.1. Choice of a convenient gauge

Let us consider at first the most simple case, in which a free electron gas is
submitted to a spatially uniform, but possibly time-dependent electric field
E(t). The application of such a uniform electric field does not modify the
translational invariance of the system. This symmetry property, however,
does not appear in the electron Hamiltonian when a scalar potential gauge
(gauge #) is used to describe the electric field

Gauge #: ¢(r,t)=—¢eE(t)-r; A(t)=0 (e<0), (3.1a)
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since the electron Hamiltonian in this gauge writes:

2

Hy = 2”m —¢E-r. (3.1b)

If instead the electric field is described by a vector-potential gauge (gauge ')

Gauge §': ¢(r.1)=0; A(t) =~ f E(r) dr, (3.22)

0

the translational invariance property is restored in the electron Hamiltonian
itself, which then writes

H, =P eA(1))*

m (3.2b)

We shall now develop some very simple remarks which are basic for the

following. The state vectors |¢) and |¢') in the gauges # and §' are related by a
unitary transformation T. In the r-representation, we have

r )= Tr [w) =exp(ifr- A0 Jir [ ). (3.3)
As it is well known, the solution of the Schrodinger equation in the gauge ¢
if %“’t—) = H,|w) (3.4)

is (in the r-representation)
—_ - . i [(RkG)
(r [ (e) = 0" explik() - r ;,J L) (3.5)
1}

(2 is the volume of the sample) with
k(t) = k(O)—%A(t), (3.6)

This implies that the state vector in the gauge #’ is (in the r-representation)

: ! 2 2
rlun=0" exp(ik(O) r —H h ;‘r(n” d7> (3.7)
0

and therefore the Schrodinger equation in the gauge ¢

ih 9%1;2 = Hyly") (3.8)
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gives rise to the eigenvalue equation

h(k(0) — (e/WHA(D))’
2m

Hyly') = ). (3.9)
In the following we shall denote the eigenstates of H, by |K) and the
associated eigenvalues by (K — (e/h)A(t)). The state vector deduced from |[K)
by the unitary transformation T will from now on be denoted by |k). These
states possess the following property: they are eigenstates of the free electron
Hamiltonian H, (without the electric field) with the eigenvalues e(k(t)).

It is then straightforward to deduce from eq. (2.2) the equation for the
electron distribution function (E.D.F.) in the |K)-states, defined by

f(K, t) = (KI|f()|K). (3.10)

Since the medium we consider is homogeneous, the electron density matrix
must be translationally invariant; it commutes then with the impulsion opera-
tor p and with H(t), so that the left-hand side (1.h.s.) of the equation for the
E.D.F. reduces to Jf(K, t)/at.

It’s however in the calculation of the collision term (2.3) that the vector-
potential gauge choice proves to be the most efficient. Let us calculate in the
{|K)} basis the diagonal matrix element of one of the terms of the com-
mutators involved in expression (2.3), for instance

Ax = (Kxq exp[—%f H(r) d*r])(:',f(t’) exp[%f H(T)dT]IK). G.11)
Since
(K{xg|K") = 8k K+q (3.12)

one obtains straightforwardly

t

Ax=3 (KlxalKF exof -~ [ (k- a)

e (K -* A(T))) df} (K, 1) (.13)

Each matrix element of the collision term can be expressed in a similar way,
which yields the following equation for the E.D.F. over the |K')-states

S1w 0= [ a3 {PE'K; 1 OO, 1)~ PO K'; £, 1K, 1)

(3.14a)
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with

2

PKKL1)=33ReS 3 (Kl KIFC@P(N,+5+7)
q

h

n=-1,+

x exp{—%j dT(G(K'—%A(T)>‘E(K‘%A(T))‘Fnﬁwq)}.
(3.14b)

n = +1 (or —1) corresponds to the phonon emission (or absorption) processes.

Let us now comment about the evolution equation (3.14). Several remarks
can be made:

(i) There is no drift term in the Lh.s. and the whole effect of the electric
field is included in the collision term (r.h.s.);

(ii) The collision term is non-Markoffian, since it involves retarded dis-
tribution functions;

(iii) Even in the case of a static electric field, one cannot rewrite the
collision term under the form of a convolution product since the probabilities
P(K,K’; t, t") are not functions of the time difference (t — t'); this implies that
one cannot find by the usual technics a Markoffian equation for f(K, t) in the
asymptotic limit (¢ — x);

(iv) The stationary state in a static electric field E(t) = E, does not cor-
respond to the condition that one could expect If (K, t)/at =

In order to clarify this last statement, let us calculate the electric current
density

_ s
J =S Trike), (3.15)

where ¢ is the electron velocity operator

6= "———emi(‘—). (3.16)

In the case of a static field, one gets

&3 B eBol 1y - £ 3 B paag DL Kot 3.17)

(n is the electron density). In a steady-state regime, f(K, t) cannot be time
independent, (i.e. 3f(K, t)/3t# 0), since the gauge current (ne’Eyt/m) must be
counterbalanced by a term linear in t. This remark will be clarified in the next
paragraph, in which we shall determine the velocity distribution ¢ (v, t).
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3.2. Velocity distribution in a uniform electric field

The expectation value of the electron velocity in a state |[K) is simply

v= (KlfJIK) = "K—_e_A@ (= M)

m m (3.1

This relation can be inverted, which defines K as a function of » and ¢,

mov + eA(t)

K(v, t)= n

(3.1

The velocity distribution ¢ (v, t) is then obtained by substituting in f(K, t) t
K-vector by its expression (3.19) as a function of v

¢(v, 1) = f(K(v, 1), 1). (3.2

One verifies easily that

9 _9 eE .

LK D=5 60,0+ 55 Vg (0, 1) (.2
and that

f(K, 1) = ¢<v +2 (A - AWY), t’). (.2

In the same way, the energy variation in the transition K— K’ can
expressed as a function of the velocities v and v’

e(K'—7 A(M) ~ (K ~ ¢ A1) = % m(v?— )+ e(v’ — v) - (A(t) - A(7)).
(3.2

One thus obtains for the electron velocity distribution the transport equ
tion

2 o0+ Vo= [ar {160 t08(o+ 5 (A0 A@)),

— (v, v'; 1, t’)d><v +£ (A - A, t)} (3.24
with

’ ’ 2 1
(v, v 1, ¢ )= P Re E 2 8»,u’+(nﬁq/m)|C(Q)12(Nq + 5 + —g—)
g n=-1+1

X exp{—hi f d‘T(% (v?—v)+e(v' —v) - (A1) — A(T)) + nhw,)}.

I

3.24
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This result can be understood as follows: as we stated previously, states |K)
and |k) are related by a unitary transformation T (see eq. (3.3)) which
corresponds to the change of gauge ¢ — §'. Therefore the operator T'f(t)T
represents the density matrix f(t) when the scalar potential gauge ¢ is used.
Thus

(KIf()|K) = (k| T#t) T k)= (klf(D)lk), (3.25)
so that
bk, t) = (k|f()|k). (3.26)

¢(k, t) is the electron distribution function in the |k)-states, which, as already
stated, are the eigenstates of the free electron Hamiltonian H,, and so, apart
from a constant numerical factor, it is the velocity distribution function.

The transport equation (3.24) for the electron velocity distribution function
is identical to Barker’s result’): it deserves nevertheless some commentaries:

(i) We recover the usual drift term in the Lh.s. and the transition prob-
abilities in the collision term do depend on the electric field: this dependence
constitutes the intra-collisional-field-effect (1.C.F.E.);

(i1) The collision term is non-Markoffian; moreover it involves distribution
functions which depend on the modified velocities

v*0 = 00+ S (A - A)), (3.27)

The usual velocity dependence can only be restored by a coarse-graining of
the distribution function in the velocity space, i.e. by the approximation

d)(v + £ (A - AW, t’) ~ b(v, 1'). (3.28)

(ii1) In the case of a static electric field, the collision term can be recast into
a Markoffian form in the asymptotic limit (t = ) by the usual technics’);

(iv) The velocity distribution ¢(v,t) can be used to calculate the electric
current density as

J= % f d*v v (v, 1) (3.29)

and, as expected, for a static electric field Ey, ¢(v, t) is time independent in a
steady-state regime. This proves in turn that, in this stationary case, the
electron distribution function in |K)-states, f(K, t), is time dependent, as it
was noticed after eq. (3.17), since then

f(K,t) = é(v) (3.30)
is only a function of K+ eEt/h.
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4. Bloch electrons case (zero magnetic field)

We shall now treat the more realistic case of Bloch electrons submitted to a
spatially uniform, but possibly time-dependent electric field. We shall assume
for the sake of simplicity that we neglect interband transitions; thus the
electrons always remain in the same band v.

4.1. Gauge choice and basis states

The importance of the preceding section does not lie in the final results,
part of them having already been established by another way, but in the use
of a convenient gauge for the electric field. Similarly, the vector-potential
gauge will prove to be equally well suited to the derivation of a transport
equation for the E.D.F. of Bloch electrons.

We need to deal with the properties of three different Hamiltonians:

p?.
Hy= m + V(r), (4.1a)
2
Hy= %"—+ V(r)—eE(t)-r, (4.1b)
Hy = (l_—zer‘:—(‘)—)z + V(). (4.1¢)

H, describes simply a Bloch electron in the periodic lattice potential V(r); H,
and Hy correspond both to the same Bloch electron submitted in addition to
the uniform electric field E(t); Hy is written with the scalar potential gauge ¢
whereas we have used the vector-potential gauge $' for Hy-

Let us recall two properties satisfied by the different Hamiltonians:

(i) The state vectors |) and |¢') in the gauges $ and ¥’ obey the two
Schrodinger equations (3.4) and (3.8) and they are related by a unitary
transformation T defined by eq. (3.3);

(ii) This same unitary operator T transforms H, into H,. Effectively, one
easily verifies that

Hy = TH,T'. 4.2)

Accordingly, let us label |k) and e(k) the eigenstates and the eigenvalues of H,
(we omit the band index v for the moment). We know that

(r | ky = Q7" exp(ik - r)u,(r) (4.3)

are the usual Bloch functions. If we denote by |K) and E(K) the eigenstates
and the eigenvalues of Hy, we derive immediately from eqgs. (3.3) and (4.2)
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relations between the eigenstates |K) and |k) on the one hand, and between
the eigenvalues E(K) and (k) on the other hand:

IK)=Tlk) (4.4a); E(K)=e(k). (4.4b)

Then we arrive to the following expression for the eigenstates of Hy, deduced
from eqgs. (4.3) and (4.4a):

(r| K)= 0" exp(iK - r)wg(r), (4.5)
with

K=k +§A(z) (4.6)
and

Wi (r) = Ug_@man(r)- 4.7

So we proved that the eigenfunctions of Hy are also Bloch functions; this is
quite evident on the expression of H,, which possesses exactly the same
translational invariance property as H,.

Here we can introduce, as in the preceding section on free electrons, the
vector k(t), defined by eq. (3.6), with k(0) = K. Expressed in terms of k(t), the
results useful for the following are finally (we insert the band index v omitted
until now):

Hy|vK) = e,(k(t)|vK) (4.8)
and
(r l vK) =T Q" VZexp(ik(t) - r)ity ). (4.9)

It is at present straightforward to deduce from eq. (2.2) the equation of
evolution of the E.D.F. in the eigenstates |[vK) of Hy, defined by

fAK, t)= wK|Kt)pK). (4.10)

For the L.h.s., we simply get af,(K, t)/dt. In the r.h.s. collision term, we have
to evaluate expressions such as

B.(K) = (vK|x, exp[—%jH(T) dT]X;f(t') exp[%fH(T) df];um. @.11)

Since we assumed that the electrons always remain within the same energy
band », we immediately get

B,(K)= ; ; (WK |x VK YVK'|x {IvK")

xexpl = [ (k1) - e km) dr b K" 1), .12

It
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In the appendix, we show that the product (vK|x,JvK')vK'|x,[vK") differs
from zero only if K” = K and takes the value

8k k(K |Xa| VK = 8k k2, 8k K+ag
£

lfdrw* ( ’ 4.13
c vK r)wv,l(ﬂ](r) ’ ( . )

where g is a reciprocal lattice vector and c is the volume of an elementary cell
of the crystal. The expression of B,(K) is quite similar to the corresponding
term A(K) calculated in section 3. Each term of the r.h.s. of eq. (2.2) can be
calculated in a similar fashion. Finally the evolution equation of f,(K, t) looks
identical to eq. (3.14); the only differences lie in the meaning of |[vK) and
€,(k(t)) which here are the eigenstates and eigenvalues of the Bloch electrons
in the presence of the electric field described by a vector-potential gauge.

All the comments we made about (3.14) are still appropriate; nevertheless,
the contribution of the electrons in band v to the electric current has now the
expression

e
; (K -5 A(t)) £.(K, ). (4.14)

blm

4.2. Transport equation in the usual Bloch states

We have just derived the evolution equation for the E.D.F. in the |vK)
eigenstates of the Hamiltonian Hy. We want now to deduce the transport
equation for the E.D.F. in the usual Bloch states, which are the eigenstates of
the Hamiltonian H, in the absence of the electric field. This is quite easy;
starting from eqs. (4.10) and (4.4a), we obtain

f.(K, t) = (vK|f(t)|vK) = (vk|T'#(t) T|vk). (4.15)

Since f(t) and T'f(t)T represent exactly the same physical properties expres-
sed in the two different gauges $’ and ¢, the matrix element (vk|T'f(t)T|vk),
which we shall label ¢,(k, t), is the E.D.F. in the usual Bloch states |vk).

The steps of the derivation of the transport equation for ¢.(k, t) are quite
analogous to those described by egs. (3.21) to (3.23) for the free electrons
case, and we obtain

d>(k t)+ - Vi (k, t)-jdtZ{H(k’k t,t)

x 6, (k'+ £ (A®) - AOD, ¥) - LGk, K5 1,08, (k + £ (A0~ 4@, 1)},
(4.16a)
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with

2 [
Mkt t)=33Re X 3 [(vk |Xm,|Vk'>|2|C(q)|2(1\1q + 5*%)

g m=-1L~+
x exp{~ % j dr (e,, (k’ + 2 (AD - A(T))>
—e(k+ 5 (A - (D) + o, ) (4.16b)

This transport equation is valid at the lowest order in the electron-phonon
coupling, whatever the details of the band structure. Exactly as in the free
electrons case, the L.h.s. of the transport equation contains a drift term, and
the transition probabilities I1,(k, k’; t,t') depend explicitly on the electric field
through the vector-potential. This dependence constitutes the intra-collisional-
field-effect in the Bloch electrons case. All the comments on the non-
Markoffian character of the collision term for the free electrons velocity
distribution function ¢(v,t) can be repeated again for ¢,(k,t). The con-
tribution of the electrons in band v to the electric current density is given by

_ev!

J=g §k: e Ve (k). (k. 1). (4.17)
From eq. (4.17) and from the definition of ¢,(k, t), we verify easily that, for a
static electric field E,, the stationary distribution function f.(K,t) remains

time dependent since it is only a function of K + (eEyt/h).

5. Free electrons in the presence of uniform electric and magnetic fields

5.1. Paraliel fields case

The strong analogy which exists between this problem and the problem
treated in section 3 allows us to be rather succinct in the derivations. The most
convenient gauge to describe the two uniform fields E and B assumed to be
parallel to the z-axis is

t
Gauge #4: ¢(r.1)=0; A=(A,=0,A, =Bx A, = —f E(r) dT). (5.1)
0

The magnetic field B is always static; on the contrary the electric field E(t)
can vary with time. The electron Hamiltonian is in this gauge
1

Hyy=5 - [P+ (py — eBx)*+(p. — eA.(1))]. (5.2)
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[t can easily be checked that, exactly as plane waves were eigenstates of the
Hamiltonian (3.2b), the Landau states
' __ _ -1/2 . hK!
Yar) = (r | A)= 0" expi(K,y + K.2)é, (x'+

me, (5.3)

are eigenstates of the Hamiltonian Hy,. A is an index which summarizes the
three usual quantum numbers n, K, and K;; o. = |e|B/m. We have

Hy |A) = ex(0]A), (5.42)
where
() =€ (Kz - < Az(t)) - <n +-;>hwc+ m—K—“Z;A(‘—))—z (5.4b)

The E.D.F. in the eigenstates [A) of Hy, is defined by
fa(Ky, Koy t) = (AIf(1)|A). (5.5)

In the presence of a magnetic field, there is no gauge in which the electron
Hamiltonian is translationally invariant. But, if the fields E and B are uniform,
the physical properties of the electron gas must also be uniform; therefore the
E.D.F. f.(K,, K, t) should not depend on K, since the quantity #K,/m
represents the mean abscissa of an electron in the state JA); so we shall
simply write the E.D.F. as f,(K_, t).

As before, an evolution equation for the E.D.F. can be derived from eq.
(2.2). In the calculation of the diagonal matrix elements of the collision
operator we encounter expressions such as

Ci = (Alxq exp[—%f H(r) dT]X;f(t') exp[%f H(r) dT]iA), (5.11a)

or

Ci= ;: ; (A |x.,|A’)(A’|xf,|A")(A"|f(t’)|A)
x exp{ 3 d'r<e,. <K ~£4A (7)) ( . —%AZ(T)))}. (5.11b)

P.N. Argyres?) has proved that, owing to the summation over q in C,, the only
terms different from zero in C4 correspond to A” = A. We find finally that the
E.D.F. f,(K,, t) obeys the equation

LK = [ d T W (K Ko 1, 1,(K 1)
n'K;

- Wnn'(Kz, K;» t’ t’)fn(Kz, t)} (5128,)
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with

g ey 2 1
Warl K K5 11) = 23R > 3 8k, kioma, Mun(do 4)I1C(QF (N ta+ 2)

X
o

>
-

|
=) —-
Rn
o
-]
P
m

By
N
=

(— 5 An)

¢

fen(Kz—-;—Az(f))+ nhwq)} (5.12b)

and where

. h 2
’ 2 _ N nqy
un (G G3)] ‘ f & E(x) expl(igx)d, (x + mwc) dx

Again we can repeat all the comments following eq. (3.14), except for the
electric current density, which now expresses as

e hK, — eA,(t)
=& AR 7 AN . 5.
=g m o Kt (5.13)
We can transform the equation satisfied by f.(K.t) in order to get a
transport equation for the velocity distribution function of the electrons.
Since the expectation value in a state |A) of the electron velocity (directed
along the fields) is

_ K, — eAl(t)

2 m , (5.14)
the velocity distribution function is defined by
¢n(vz, ) = fu(K:(v:, 1), 1) (5.15)

and it obeys the transport equation

t
2 s 0+ 2L g0, 1) = f dt' 3 {Quntot v 1)

X fe(v4 S (A = AN 1) = Dy v 1, 1)

><d>,.<vz+%(Az(t)—Az(t’)), t)} (5.17a
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with

’ ’ 2 1
Qunvy, 035 8, 1) = _h_f Re E 21 " 8vzy02+(nﬁ4z/m){',nn'(q:n qy)lzic(q)lz(N,, + 5 + g')
q -1

n=

t

X exp{—% dr (en’(mv;+ e(A.(t) — Az(T))>

f

- (T e(A;f‘) = Az(”)) 4 nhw,,)}. (5.17b)

We underline that this equation is valid for a free electron gas submitted to
uniform and parallel electric and magnetic fields, when only the electric field
is possibly time dependent. The electric current density can be calculated
according to the formula

Jo=g 2 vbulva1). (5.18)
5.2. Crossed fields configuration

We turn our attention to the static case when the electric field is parallel to
the x-axis and the magnetic field is along the z-axis. This problem has been
explored many times’) by using the most convenient gauge which is

Gauge $5: o(r,t)=—eEx; A=(0, Bx,0). (5.19)

In this gauge, the electron Hamiltonian is simply
H =§l;(p§+(py— eBx)’+ p?) — eEx. (5.20)

Its eigenstates [n) and its eigenvalues €, are well known and the E.D.F.

fu@®) = (nf(t)|p) (5.21)

obeys the equation

%fu(t) = f dt’ 2 {Wu'n(t - tl)fu’(t,) - pr.’(t - t,)fy(t')}’ (5223)
where
Wt =)= AReS 3 Kb w)PIC@P(Ne+3+F)
ua! "’ q n=—1,+1 H X, 22

X exp{— % (€. — €. + nhiw )(t — t')}. (5.22b)
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The effect of the electric field on the collisions is entirely included in the
expression of the eigenenergies ¢,, in a way which is the simplest of all the
cases studied here. Due to this relative simplicity, we have been able to solve
under particular conditions the integral equation (5.22) (see for instance ref.
8). We can also notice that the stationary state corresponds here to the
condition df,(t)/ot =0, although there is no drift term in the Lh.s. of the
transport equation (5.22).

6. Conclusion

We derived the evolution equation for the distribution function of electrons
interacting with a phonon bath in three different physical situations:

(i) free electrons in the presence of a spatially uniform, but possibly
time-dependent electric field,

(i) Bloch electrons interacting with an electric field of the same type and
finally

(iii) free electrons submitted to an electric field of the type described above
and equally to a uniform and static magnetic field, parallel to the
electric field.

The electron-phonon interaction was taken into account only at the lowest
order, but there was no restriction on the intensity of the applied fields. The
calculations were made simple owing to the choice of a vector-potential gauge
to describe the electric field. For the Bloch electrons for instance, we
introduced two distribution functions, firstly the distribution f,(K,t) in the
eigenstates of the electron Hamiltonian in the presence both of a periodic
potential and of the electric field, and then the distribution function ¢,(k, t) in
the usual Bloch states, which deduces from f,(K,t) by a gauge trans-
formation.

The equation for f,(K,t) is apparently much simpler than the transport
equation for ¢,(k,t). There is no drift term in the left-hand side and the
K-dependence of the collision term is very simple. However this equation
must be handled with some care since for instance the stationary regime
induced by a static electric tield does not correspond to the condition
af (K, 1)[3t = 0.

On the other hand, the transport equation for ¢,(k, t) contains a drift term
in the left-hand side, and the collision integral involves distribution functions
which, strictly speaking, depend on modified k-vectors and have to be
coarse-grained in k-space in order to recover the usual k-dependence. The
stationary regime corresponds here to the standard condition a¢,(k, t)/ot = 0.

In both formulations, the transition probabilities in the collision term do
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depend on the electric field: this dependence constitutes the intra-collisional-
field-effect (I.C.F.E.). The existence of this effect has thus been established
very simply in the three different physical situations quoted at the beginning
of this section: free electrons, Bloch electrons and free electrons in the
presence of a magnetic field.
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Appendix

Calculation of the product P = (vK |x,|vK'XvK'|x}|vK")

Let us omit for the moment the band index v. We obtain, from eq. (4.5),
P = (l"z(j drwi(r) exp(—iK - r) exp(iq - r)wg{r) exp(iK' - r))

X (j drw¥(r) exp(—iK' - r) exp(—iq - r)wg.(t) exp(iK" r)). (A.1)

Since the functions wg(r) are periodic we get, if ¢ is the volume of the unit
cell

1 .
P=>> 8K’+qAK.g|8K”7q—K’,gZZ" J drwi(r)wi_q.¢(r) exp(ig, - r)

g1 82

1 .
12 [ AP WE g ()W) exDliga ), (A2)

where g, and g, are reciprocal lattice vectors and K, K’ and K” belong to the
first Brillouin zone. The two delta symbols impose

K'-K=g +go. (A.3)
Since K and K" belong both to the first Brillouin zone, this is only possible if
gi+g:=0, ie. K"-K=0. (A.4)

We get finally, after restablishing the band index v:

P = 8k (VK| xo|vK ) = 8k k 2, 8k K+asg,
| 4}

2
ledrw;“x(r)wv,x-.,(r) . (AS)
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(We used the property
Wig(r) explig - r) = wg(r).) (A.6)
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