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Periodic modulation of the optical nonlinear coefficient of a propagation medium is proposed as a new method 
for phase matching. This proposal is examined in some detail in the case of a thin film waveguide where the prospects 
of its implementation seem favorable. 

The problem of phase matching in nonlinear op- 
tical interactions in thin films has received consider- 
able attention recently. This is due, in part, to the 
fact that in the thin film configuration the large 
power concentration can give rise to efficient interac- 
tions even at moderate total powers. Secondly, mater- 
ials which are not birefringent and cannot, conse- 
quently, be phase-matched by the conventional tech- 
nique [1] can be phase-matched by either dimensional 
[2] control or by periodic perturbation of the dielec- 
tric constant [3] or the boundary [4]. In this paper 
we wish to discuss a new approach to phase matching 
which involves a periodic modulation of the nonlinear 
optical properties of the propagating medium. This 
approach is capable in principle of yielding effective 
nonlinear coefficients approaching the bulk value 
while affecting little the propagation characteristics 
of the propagating modes. A technique for implemen- 
ing this idea in a thin dielectric waveguide is also des- 
cribed. 

Let us consider, for the sake of simplicity, a sec- 
ond harmonic generation in the dielectric waveguide 
shown in fig. l. The electric field of the nth TE 
guided mode, as an example, is given by the follow- 
ing expression: 

En(X, z, t) = A n g n ( X  ) exp [i(cot-t]~z)] . (1) 

* This work was supported by the Air Force Department of 
Scientific Research. 

n l : l  

n 2 
X = - t  

z 
Guid ing layer 

n 3 Subst ra te 

IL 

Fig. 1. The basic configuration of a dielectric waveguide and 
the required phase matching condition for second harmonic 

generation. 

The propagation phase constant__ ,,/3~ as well as the 
lateral mode profile ~°(x)(_f~lg~°(x)12 dx=l) are 
determined by the frequency 6o, the mode number n, 
the guide index n2(w), the substrate index n3(w ) and 

t o  the guide thickness t. The mode amplitude A n re- 
presents the power p~o carried by the mode and is 
given by 

IA~°l 2 2 to to, = ootSPn/WOn (2) 

where W is the width of the waveguide in the y direc- 
t i on . /~  varies between the bulk guide and substrate 
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wave numbers 

n3(CO ) k 0 </3~ < n2{co ) k 0 , (3} 

where k 0 - 27r/X 0 is the flee space wave number. For 
O3 large t and small mode number/3n approaches the 

upper limit, while the lower limit is approached by 
reducing the thickness t or choosing a higher number 
mode. The electric field of the second harmonic mth 
mode is given similarly: 

which arises from the need to eliminate the oscillating 
exponential term in the differential equation (8). The 
condition is: 

200 A/3 0~/31103 = ---~,-- = 0 ({}) 

The second requirement for a high rate of second har- 
monic power growth is a large value for the overlap 
integral of the fundamental intensity mode profile 
and the second harmonic field profile in eq. (8) 

£2W(X t) = A2ooa2oo(x) exp [i(2wt-~2ooe)] 

and the value for t3 200 is confined between the two 
limits 

n3(2w) 2k 0 </3 200 < n2(2co ) 2k 0 . 

( 4 )  

The second harmonic polarization generated by the 
fundamental E~(x, z, t) is taken as 

5~2W(X, Z, t) = 

(5) 

dNL(X)(A~)2 [P~0(X)]2exp [i(2cot-2/3,~z)] , (6) 

where dNL(X ) is the appropriate bulk nonlinear ten- 
sor element. This polarization drives the second har- 
monic radiation, thus the rate of growth of  the aver- 
age power in the ruth second harmonic mode is given 
by: 

f dNL(X) I~(x)l 2 ~;2~(X) d x .  (10) 

Under certain conditions, namely, n2(co ) > n3(2co) it 
is possible to compensate for the normal dispersion 
of the material and to phase match by choosing the 
right thickness t and the mode numbers n and m. 
However, this usually requires accurate control of  the 
thickness [2] and for n 4: m involves a large decrease 
in the magnitude of the overlap integral ( 1 0) thus 
reducing the effective nonlinear coefficient for the 
interaction. 

To overcome the problem of AI3 4 :0  in a thin 
t]hn structure, let us consider the waveguide shown in 
fig. 2. The nonlinear coefficient of the guiding layer 
is modulated periodically with a period A, while the 
index of refraction is assumed to remain unchanged. 
To analyze the new situation we note that the non- 

200 200 * clp2moo/dz = coWIm E m (7  ) dx . 
oo 

Substituting (4) and (6) in (7) yields 

(7) 
nl=l 

- A -  "q 

dNL:da INL-d b d a d b d a d b d a 

2{,o dPrn (z)/dz 

i 2w 2 ~ : coWIm (A~)2A2C°(z)exp [-  (tim - /3n )z]  

X ?dNL(X)[8~ m (8) 

r3 3 S u b s t r o t e  

2 r r  
; %  /do £ _ 

i= ,  - -  

P 
. . ? w  

t ,  

Eq. (8) readily gives the two requirements needed 
for effective nonlinear interaction. The first require- 
ment is the well known phase matching condition 

Fig. 2. A waveguide with a periodic modulation of the non- 
linear coefficient dNL, and the required phase matching con- 

dition for second harmonic generation. 
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linear coefficient dNL in (8) is now a function o fz  as 
well as o fx .  We limit ourselves to the case where the 
fundamental and the second harmonic are well con- 
fined zero order modes. This makes it possible to 
neglect the x dependence of dNL so that (8) can be 
written as 

dp2W(z)/dz = 03WIm{ ~ o(Ato)2AEt°(Z~o ~ J 

0 

× exp (i&(3Z)dNL(Z)} . (1 1) 
1 

If  the spatial modulation period A is chosen equal to 

2~r/A = Aft, (12) 

The modes overlap integral reaches an opt imum value 
when the modes are well confined and equals approxi- 
mately t -  1/2. Using (2) to express A ~ and A 2to in 
terms of the respective mode powers (15) becomes 

dp2W(z) 4035/21a3/2p ~ 
- dNL [P2W(z)]l/2 (16) 

dz ~(~2w)l/2(wt)l/2 n 

A simple manipulation of (16) where/3~ and/32to are 
assumed to be equal to the bulk propagation con- 
stants gives in the nondepleted pump approximation: 

eo  (0 2 2 2 ( .0 ,3 /2  
P~0 [n2(03)1 2 n2(203) __  -W-t" (17) 

This result is of a form identical to the bulk interac- 
tion [5] except that here the effective nonlinear coef- 
ficient is 

the fundamental component  in the Fourier expansion 
of dNt(Z ) will provide a term with an exponential 
dependence of exp (-iA~z).  This term, by multiply- 
ing the exp (iz343z) in (1 1) gives rise to a synchronous 
contribution that allows the cumulative buildup of 
the second harmonic power. The amplitude of this 
particular term in the expansion of dNL(Z ) determines 
the effectiveness of the interaction. To be specific, 
consider an example with 

da = dNL , db=O, (13) 

where dNL is the original nonlinear coefficient of  the 
guiding layer, and where the period A is chosen so 
that (12) is satisfied. The Fourier expansion of this 
rectangular form nonlinear coefficient is: 

~dNL+ sin z . (14) 
m=odd m/r 

Using (14) and (12) in (11) and keeping the syn- 
chronous term only leads to 

dp2W / dg = to 2 203 03W(A O) A o (z) 

de f  t = dNL/lr. (18) 

The conversion efficiency from 03 to 203 is seen to be 
proportional to the mode power density P~/Wt. 
Since W and t can be made comparable to X this 
power density can become very large even for small 
power input. The penalty for modulating dNL in or- 
der to phase match is a reduction of the effective non- 
linear coefficient by a factor of 1/Tr. 

A physical picture of  the way in which the spatial 
modulation of dNL overcomes the problem of phase 
matching is the following. When A/~ 4 :0  the generated 
second harmonic wave and the second harmonic 
polarization driving it drift gradually (with distance) 
apart in phase. When A/3z = zr the accumulated phase 
shift is 7r/2 and power begins to flow back from the 
second harmonic to the fundamental. This happens 
after one coherence length l c = n/A~. By having dNL 
equal to zero between z = l c and z = 2l c the reversal 
of power flow is prevented. By z = 2/c the accumu- 
lated phase shift has returned to the favorable region 
( -~n  < ~b < ~Tr) and the nonlinear interaction is 
"turned on" (dNL~:0) again*. The reduced value of 
de f  t as given by (18) reflects the fact that not all the 

E t X f [~°(X)] 2 ~2to(X) dNL (15) -~ - .  
0 

* It is clear from this picture that a reversal of the sign of 
dNL in the second half of each period will lead to a doub- 
ling in the value of def f. 
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physical length of the structure partakes in the inter- 
action. 

The practical implementation of the modulation 
o fd  seems feasible with presently available techni- 

ques, since the guiding layer extends only a few 
microns below the surface and therefore is readily 
accessible. One approach is to use ion-milling to 
fabricate a series of grooves normal to the propaga- 
tion direction in a single crystal thin film guide* and 
then sputter-fill the grooves with a polycrystalline 

form of the film material (for which dNL = O) or with 
some other material with a similar index of refrac- 
tion. 

In summary: recent experimental developments in 
thin film technology make it possible to control the 
dispersion characteristics of the propagating modes by 
means of spatial periodic modulation. The possibility 
of phase matched nonlinear interactions using a perio- 

* The fabrication of such gratings was reported by Garmire, 
Somekh, Stoll, Yariv, Garvin, and Wolf and is described in 
the Report on the Meeting on Integrated Optics by Pole et 
al. [6]. Further details are given in ref. [7]. 

dic modulation of the nonlinear dNL coefficient is 
examined. It is shown that interaction strengths ap- 
proaching the bulk phase matched value are possible. 

References 

[ 1 ] P.D. Maker, R.W. Terhune, M. Nisenoff and C.M. Savage, 
Phys. Rev. Letters 8 (1962) 21: 
J.A. Giordmaine, Phys. Rev. Letters 8 (1962) 19. 

[2] D.B. Anderson and J.T. Boyd, Appl. Phys. Letters 19 
(1971) 266; 
P.K. Tien, Appl. Opt. 10 (1971) 2395. 

[3] A. Ashkin and A. Yariv, Bell Telephone Laboratories 
Technical Memorandum, November 13, 1961 ; 
N. Bloembergen and A.J. Sievers, Appl. Phys. Letters 
17 (1970) 483. 

[41 S. Somekh and A. Yariv, Appl. Phys. Letters 21 (1972) 
140. 

[5] A. Yariv, Introduction to optical electronics (ttolt, Rine- 
hart and Winston, New York, 1971) p. 190. 

[6] R.V. Pole, S.E. Miller, J.tt. ttarris and P.K. Tien, Appl. Opt. 
11 (1972) 1675. 

[7] H.L. Garvin, E. Garmire, S. Somekh, H. Stoll and A. 
Yariv, Appl. Opt., to be published. 

304 


