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We apply the influence-functional method of Feynman and Vernon to the study of Brownian
motion at arbitrary temperature. By choosing a specific model for the dissipative interaction of the
system of interest with its environment, we are able to evaluate the influence functional in closed
form and express it in terms of a few parameters such as the phenomenological viscosity coefficient.
We show that in the limit #—0 the results obtained from the influence functional formalism reduce
to the classical Fokker-Planck equation. In the case of a simple harmonic oscillator with arbitrarily
strong damping and at arbitrary temperature, we obtain an explicit expression for the time evolution
of the complete density matrix p(x, x’, r) when the system starts in a particular kind of pure state.
We compare our results with those of other approaches to the problem of dissipation in quantum
mechanics.

1. Introduction

In nature there are many systems which, in the classical regime, can adequately
be described by equations of motion of the form
mi+nx +v'(x)=F(@). (1.1)

This could stand, for example, for a particle of colloidal size immersed in a viscous
fluid. In this case, m is the mass of the particle, 1 is a damping constant, v(x) is
the potential acting on the particle and F(z) is the so-called fluctuating force. The
latter obeys the relations

(F(t))=0,
(F(OF(1')) =2nkTo(t — 1),

where { ) represents the statistical average over the ensemble of identically
prepared systems. Eq. (1.1) subject to the relations (1.2) is the well-known

(1.2)

* Based on part of a thesis submitted by A.O. Caldeira for the degree of D. Phil. at the University
of Sussex, September 1980.
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Langevin equation which has been used as the basis for the theory of Brownian
motion for over half a century now').

Like any other phenomenological equation, (1.1) has a restricted range of
validity. It is reasonable to use Langevin equations when we are interested in the
long time behaviour of the system. By long times we mean times long compared
to the relaxation time of the reservoir coupled to the system in question.

In the above-mentioned example we do not need to bother about quantum
effects because a macroscopic particle in a viscous medium can be well described
by the classical theory. However, in many other situations, things do not work
in this way. If we take, for example, a LCR circuit we know that the equation
for the charge at the capacitor plates has the form (1.1). As the temperature starts
to achieve very low values we expect to observe quantum effects in this system.
Therefore a very natural question arises: how can one reconcile damped equations
of motion with the processes of quantization?

The origin of this question lies in the fact that the standard procedures of
quantization are based on the existence of either a Hamiltonian or a Lagrangian
function for the system in which we are interested. On the other hand it is well
known that we cannot obtain (1.1) from the application of the classical Lagrange’s
or Hamilton’s equations to any Lagrangian or Hamiltonian which has no explicit
time dependence. The employment of time-dependent functions would allow us
to use the standard procedures of quantization directly?). However, this approach
would inevitably lead us to face some problems with the uncertainty principle’).

Over the last two or three decades, many people have tried to answer this
question. In spite of the variety of methods used, all these attempts fall into two
main categories: They either look for new schemes of quantization or use the
system-plus-reservoir approach. We shall list some of the more important works
in each category in what follows.

In the beginning of the seventies, Kostin*) proposed a theory with a non-linear
Schroedinger equation. Besides violating the superposition principle, this theory
shows some highly controversial results such as stationary damped states. On the
basis of Nelson’s Stochastic Quantization®), K. Yasue®) deduced Kostin’s equa-
tion. It is possible to do so because in Nelson’s quantization what one needs to
know is the equation of motion itself instead of Hamiltonians or Lagrangians. The
main question here is whether Nelson’s theory is correct or not.

Dekker”) developed a canonical quantization procedure using complex vari-
ables. Despite reproducing some interesting results, such as the Fokker-Planck
equation for the Wigner transform of the density operator, his theory seems
obscure in some points. For example, he introduces an explicit noise source for
the equation of the position, x(¢), and another one for the momentum equation.
We see no physical reason to do so. We shall return to some points in Dekker’s
work later on.
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The most successful approach we are aware of so far was pioneered by the work
of Senitzky®). There, he takes explicitly into account the interaction of the system
of interest with a reservoir. In his work he was particularly involved with the
damping of electromagnetic field modes in a cavity. His strategy is carried out in
the Heisenberg picture with the elimination of the reservoir operators. This theory
was generalized later by Mori®). Still along these lines, Zwanzig'®) and Nakajima'')
worked in the Schroedinger picture to get generalized master equations for the
density operator. Excellent reviews of this sort of approach can be found in'?) and
13

).

One further approach to this problem consists of attempting to generalize the
classical Langevin equation (1.1) to the quantum case. The simplest way to do this
is to leave equation (1.1) itself unchanged, but to replace the classical force
correlation expressed by (1.2) by the equation

(F()F(t')) = %{ fe"“’“")nhw coth(%) dow, (1.2)
with some suitable cutoff on w, say Q. If we are interested in time intervals
|t — | > Q7" then eq. (1.2') is effectively equivalent to (1.2) at high temperatures
kT > hlt —t’|~") but diverges from it at low temperatures. Very recently, this
approach has been used by Koch et al.') to analyze the low-temperature
behaviour of Josephson junctions; its theoretical foundation has also been recently
discussed by Benguria and Kac'®). It will be clear from the latter discussion that
the general question of the validity of the “quantum Langevin equation” outside
the especial case of the harmonic oscillator is a very open one.

The general approach we shall adopt in this paper has much in common with
the work of refs. 8-13. That is, we shall not even attempt to quantize the
dissipative system itself, but will instead treat it from the beginning as interacting
with a complex environment; it is precisely this interaction which will give rise to
dissipation. Since the complete “universe” formed by the system plus environment
may be treated as closed, there is of course no objection to applying to it the
standard quantization procedures. Having done this, we will then eliminate the
environment coordinates so as to obtain closed equation for the dissipative system
alone. To achieve this elimination we must of course choose a sufficiently simple
model for the system—environment interaction. Moreover, the model must be so
constructed as to reproduce the results for classical Brownian motion in the
classical (high-temperature) limit.

A number of papers in the literature have studied related questions. Ford et
al.'%) studied an array of identical particles interacting with each other through
quadratic potentials. Fixing one of them, they investigated the form the inter-
particle potential would have to have to make it a Brownian particle in the
classical regime. Iche and Noziéres'’) constructed a general adiabatic expansion
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for heavy particles in an environment but the results they obtain are mainly
formal. Davies'®) has proved some nice rigorous results concerning the diffusive
behaviour of the particles of the system, Markoffian Fokker-Planck equations and
so on. However, they hold only for extremely underdamped cases. Schwinger'®)
applied his action principle to the motion of a quantum oscillator weakly coupled
to a bath and studied carefully the problems of the frequency shift and constant
damping.

What we aim to do in the present paper is to explore how far it is possible to
obtain closed equations for a dissipative quantum-mechanical system which
involve only phenomenological parameters (in principle experimentally accessible)
such as mass, friction coeflicient etc. To this end we set up a specific model of the
system—environment interaction and fit the parameters of the model from the
condition that it reproduce the classical equations of Brownian motion in the
appropriate limit®®). We then explore its consequences in the more general, e.g.
quantum, case. We show that a general formal expression (in the form of a
functional integral) for the propagator of the density matrix can be written down
which is only slightly more complicated than that which already occurs in the
noninteracting case, and that in the special case of the harmonic oscillator it can
be evaluated explicitly for all degrees of damping and all temperatures. As an
application we study explicitly the time development of a damped harmonic
oscillator which starts out in a certain kind of pure state. The technique used
throughout is the functional integral formulation of quantum mechanics, and
more specifically the “influence functional” technique of Feynman and Vernon.

The original motivation of this work was our desire to understand the effect of
dissipation on the phenomenon of quantum mechanical tunnelling through a
potential barrier. It turns out that while the functional integral method itself is
very well suited to this problem, the particular approach developed in the present
paper is not; conversely, the method most appropriate to the tunneling problem
(which involves the “‘imaginary-time* representation and the consideration of two
rather than four-point functions) is not well suited to the discussion of the time
evolution of a system in the classically accessible region. For this reason we feel
it is logical to separate the present discussion from our treatment of the tunnelling
problem, which is given in ref. 21. Nevertheless a number of questions are
common to the two discussions, in particular the question of the generality and
degree of realism of our model of the dissipative mechanism and the modifications
introduced by velocity-dependent coupling, and some of these questions are
discussed in greater detail in?'). We will therefore cross-reference this work at
various points in the present paper.

In section 2, we review the Feynman—Vernon theory of the influence
functional®*%). In sections 3 and 4 we evaluate the influence functional for specific
models of the reservoir. This gives us the propagator for the reduced density
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operator of the Brownian particle under appropriate circumstances. Section 5
deals with the recovery of the classical equations of Brownian motion when we
study the limit #—0 of our quantal expressions. Applications of the results of
sections 3 and 4 are presented in section 6; in particular, we consider a damped
harmonic oscillator which is described at time zero by a Gaussian (not necessarily
minimum-uncertainty) pure state wave packet, and calculate its density matrix
explicitly for all subsequent times. Finally, in section 7 we draw our conclusions.

2. Feynman—Vernon theory

Let us consider a system A interacting with a second system B (the reservoir)
described by the following Hamiltonian:

H=HA+HI+HB7 (2.1)
where
h? 9?2
H,= —E‘MW-FU(X), (2.2)

is the Hamiltonian of the system represented by a particle of mass M and
coordinate x,

hz 62
+% Z vp(R,, Rj) (23)

Hy=——5=
P 2moR* 'L

is the Hamiltonian of the reservoir consisting of N particles of coordinates R; and
masses m. The N-component vector R stands for R = (R, ..., Ry). Finally, H;
is the interaction Hamiltonian given by

H, = Z v,(x, R)) 2.9)

1

Our starting point in presenting the Feynman—Vernon theory”?) is the integral
form of the density operator of the system plus reservoir at a time ¢,
iHt iHt
p(t)=cxp——;—l—p(0) exp—-, (2.5)

which in the coordinate representation can be written as

(xR|p(DyQ) = de’ dy’dR’ dQ’<x, Riexp — IHTI x’R’>
< ROy @lern e ). 26)
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Those terms containing H in (2.6) are easily recognized as®)

<xR
<y’Q’

where all the functional integrations are evaluated over paths x(¢), y(¢'), R(t")
and Q(t') with endpoints x(1)=x, x(0)=x", y(t)=y, y0)=y’, R(t)=R,
R(0O)=R’, O(t)=Q and @Q(0)=Q’. In (2.7) and (2.8) the action S is given by

{

S=SA+S[+SB=JLdt’, 2.9

0

iHt

exp ——

x’R’> =K(x,R,1;x",R’,0) = [ {Dx DR exp - S[x, R]
h
1 Q2.7)
and

exp I—T{yQ> =K*y, Q. t;5,0Q°,0) :JJDy DQ exp —%S[y, 0],
(2.8)

where

L=Ly+L+Ly=iMx*—v(x)—Y 0,(x, R)+ Y. imR?—1 Y vg(R, R) .
i i i#j
(2.10)

In this way we can write (2.6) as

(xRlp()|yQ) = de’ dy'dQ’ dR’K(x, R, t;x', R, 0)K*(».Q, t;y', 0", 0)
Q). 2.11)

This expression for the density operator describes the behaviour of the system
plus reservoir as a whole. However, we do not wish to have all that information.
We want access to the properties of the system A regardless of the specific
behaviour of the reservoir. All we need is its influence on the system A. Then the
quantity we are really looking for is not the total density operator but the so-called
reduced density operator*'>!*). This is easily obtained by tracing out all the
environment coordinates in (2.11). So,

x (x'R’|p(0)

plx,y,1)= de(xR|p(t)|yR> = de' dy’dR’dQ’ dRK(x, R, t; x’, R’, 0)

x K*(y, R, t;'Q", 0)(x'R’

y'Q). (2.12)

p(0)
Now, suppose we initially have the total density operator given by

p(0) = pA(0)ps(0), (2.13)
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where pg(0) and p,(0) are the density operators of the reservoir and the system
respectively, when they are not interacting with each other. After ¢ = 0 they may
both change with time. Inserting (2.13) in (2.12) and using (2.7) to (2.10) we get

plx,p,t)= jdX’dy’J(x, Y, 5%y, 0)pa(x’, ", 0), (214
where

J(x,y,t;x",y",0) =JJ Dx Dy expi SA;[IX] exp —1i SAf[ly] Flx, y] (2.15)
and

Flx,y]= de’ dQ’ dRpg(R’, Q’, O)JIDR DQ exp%

x (Silx, R] — Sily, @] + Sa[R] — Sp[Q)) (2.16)

is the so-called influence functional?>?).

When there is no interaction between the system of interest and the environment
the influence functional is equal to one. Then our expression (2.15) reduces to a
product of two propagators, one forward and the other one backward in time.
This happens because for a closed system the density operator can be written as
the product of the wave function with its complex conjugate. When the interaction
is switched on we do not have these two propagations taking place freely. Instead,
the influence functional couples them.

Expression (2.15) is the central formula in our development of the quantum
theory of Brownian motion.

3. The model

In principle our problem is solved. Once we know the interparticle potentials
v:(x, R;) and vg(R;, R;) in equations (2.3) and (2.4) and the initial state of the
reservoir, described by pg(0), we can find the influence functional in (2.16).
However, our experience tells us that life is not that simple. We know that very
few problems can be solved exactly in the field of many body systems. It is hopeless
to think we can solve the problem exactly in its full generality. What we need to
do is to employ a specific model, soluble by construction, from which we expect
to draw some general conclusions we believe can be extended to many other
systems.

Let us assume our reservoir is composed of particles interacting through a
general potential v(R,,..., Ry) which has an absolute minimum R,= (R,
Ry, - . ., Ryp). Now, suppose we couple to it the system A described by the general
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Hamiltonian (2.2) and that the coupling is weak in the sense that we have to
consider just the linear response of the reservoir to the system. In this way, the
reservoir is very weakly perturbed by the system and we are allowed to describe
the former in the harmonic approximation*. The interaction between the two
systems is linear by hypothesis and the system is subject to a general potential
v(x). The only thing we must be sure of is that we shall not have to consider very
drastic deviations from equilibrium in the system; this is necessary in order to
preserve all the approximations we have already started to make. In other words
we want to study the whole system described by a Hamiltonian of the form

P

H=H,+H+Hy=2

pl
vt v(x)+x ; CkR,(-f-;é—r; +;%mw2Ri, (3.1

where the C.’s are the coupling constants of the reservoir particles to the system
A and the w,’s are the frequencies of motion of the reservoir particles. The action
that _appears in (2.16) can now be written as

t H

Sg[R]+ Si[x, R]= JLB(R, R)dr + le(x, R)d:, 3.2)
0 0
where
Ly=Yim R} -3 imwiR} (3.3)
k k
and
Li=—x Z C.R, . 3.9
k

This problem has been solved exactly in?*%) and the final expression for the
influence functional in (2.16) is

1 T
Flx,yl=exp—4 IJIX(T) = y(@)lla(r —5)x(s) —a*(x —s)y(s))dr ds,

(3.5)
where
; . expiwy(t —s)  exp —iw(t —s)
a(r—s)—zklzmwk exp — iwt — )+ . @_] N @_’E_]
Pyt Per

(3.6)

* The question of the justification for this model as general description of dissipative systems is
further discussed in ref. 21.
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and we have assumed that the environment is initially in equilibrium at tem-
perature T which means that its initial density matrix can be written as

ps(R’, Q',0) = l;l PP(RL, Q1 0) 3.7

with the usual

PO(R}, 01 0) = -k { daas.

2k sinh(ho JkT) P~ |2k sinh(ho kT)

h
x [(R,’f +02) coshk—a;,f _ 2R;Q;]} . (3.8)
A much more useful way to write the influence functional is in terms of the real
and imaginary parts, ag and o of a(r — s). In fact we can write the propagator

for the density operator as

t T

J(x,p,t;x7,y",0) =J[Dx Dy GXP% {SA[x] = Salyl— JJ[X(t) —y()]
00

x oyt — s)[x(s) + y(s)] dz dS}

1 T
X exp— JJ[X(?) — y(@))or(t — 5)[x(s) — y(s)) dv ds,
00

(3.9)
where ay and a; are given by
ag(t —5) = ; 2’iik coth ;l%, cos Wt — 5) (3.10)
and
c?
at —s) = _zk:Zm:ok sin w,(t —s). 3.11)

Now, once we have the reduced density matrix of the system at =0,
expressions (2.14) and (3.9) will give us its time development. There is no
dependence on reservoir coordinates any longer. As far as the model Hamiltonian
(3.1) is concerned we have solved the problem exactly. Now, our main goal in
developing all this was to describe a Brownian particle in the classical limit. At
this stage it is clear we have no evidence of any such thing occurring. On the
contrary, we see no way we can get an irreversible process out of our exact
solution.
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To solve this problem we need to remember that the ensemble of oscillators
must have some definite characteristics in order to behave as an actual reservoir.
For example, a reservoir must have infinite size in such a way that the energy lost
by the system of interest will not return to it within a finite period of time. Now,
suppose that our ensemble of oscillators represents the set of normal modes of
vibration of a certain physical quantity in a finite region of space. For instance,
it could be the set of normal modes of the electromagnetic field in a box or the
vibration of atoms from their equilibrium positions in a crystal (however, see ref.
21 for more general considerations about the ensemble of oscillators). Therefore,
taking the limit of infinite volume means that we need to consider a continuum
of allowed oscillator frequencies.

What we intend to do next is to give some arguments to indicate that one can
manage to choose a very suitable distribution of oscillators in the continuum limit
which will lead us to the Brownian motion. Later on, we shall adopt the chosen
model to deduce the Fokker-Planck equation in the classical limit.

Suppose that instead of coupling the system A to a reservoir B as we have done
in (3.1), we were to excite it by applying a classical external force F(r). In that
case, one can easily convince oneself that the propagator of the density matrix
would be given by?)

;

Jx, 3, 1;x7,y,0) =JJDX Dy exp, {SA[X] — Salv]

+ f[X(T)—y(t)]F(T)dr} (3.12)

If, in addition, we consider that F(t) is not known exactly but instead we know
the probability distribution functional P[F(t)] of different histories F(z), the
averaged density matrix propagator reads

J(x,y,t;x’,y,0) =~H7J' Dx Dy DFP[F ()] exp% {SA[x] — Saly]

+J[x(r)—y(r)]F(r)dr}. (3.13)
0

The functional integration over F(z) in the expression (3.13) is the well-known

characteristic functional®?)
t

¢[x(r) ;y(r)] E[DF(T)p[F(T)] exp i j [ﬂ;y—(’)] Foyde.  (.14)

With the help of (3.14) we can find the correlation of forces between two different
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instants as

_ 59 |
FOFD =" o @, [0-20] G
O

where & stands for functional differentiation (or variation). When P[F(7)] is a
Gaussian distribution, ¢ has a very simple form®),

x=y

[ 4

o 2029 | e -5 [ [1x -y e — o) -y o,
00

(3.16)
which with the help of (3.15) gives

(FEF(s))y=A( ~5)- (3.17)

Now, inserting (3.14) back into (3.13) and assuming P[F(r)] is a Gaussian
functional distribution, the propagator J reads

J(x,y,;x°,y’, 0) JJDX Dy exp {[SA[X] Saly]} exp — j f [x(7)

—y(0)]A(x —s)[x(s) —y(s))dr ds. (3.18)

Comparing (3.18) to (3.9) we notice that those two expressions are very similar
to each other except for the additional imaginary part that appears in the exponent
of (3.9). Regardless of this difference we believe that the real part of the exponents
plays the same role in the two cases. The physical meaning of 4(z —s) in (3.18)
or hag(t — 5) in (3.9) cannot be different. So, hor(t — 5) must give the correlation
of forces in the classical regime. The question now is: under what conditions will
our quantum-mechanical model reproduce the correlation between the stochastic
forces acting on a classical Brownian particle? This is not hard to answer. The only
thing we need to do is to investigate the behaviour of hag(t —s) for high
temperatures. When k7 > hew; (3.10) becomes

ag(t —S)~—‘Z cosw(r -5+ lzhszczcosw(t -+
(3.19)

As we are looking for the expansion of hag(t — s) we see that its leading term is

2
hog(t —s) =~ % Zg—gcos w;(t — 5)+ Oh?), (3.20)

i

thus, this is the classical correlation to which our quantum mechanical model led
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us. We wish to compare (3.20) to the well-known correlation of forces'),
(F()F(s)) =2nkTé(x —s), (3.21)

given by the classical theory of the Brownian motion. Here, 5 is the damping
constant. To do so, let us consider a continuum of oscillators with density pp(w).
Then,

x

kT C?
hoag(t — 8) =~ — jpD(w)——(?—)—)cos w(t —s)dw. (3.22)
m w?
0
If we choose®)
2 2
e w < Q,
po@)CHw)=1 T (3.23)
0, w >0,

where we have introduced a high frequency cutoff Q in the distribution of
oscillators, eq. (3.22) becomes

hag(t — 5) = (F()F(s)) = 2nkT~ ST = 5) (3.24)

n (t—s)
which tends to (3.21) if we let 2 —cc. In other words, we shall recover (3.21) when
we are interested in times much longer than the typical time Q ~', meaning that
it is the low-frequency behaviour of (3.23) which is important in this case. This
fact is in accordance with the classical theory of Brownian motion since (3.21)
is valid only when we consider times longer than the typical relaxation time of the
reservoir.
We can still go a bit further if we write (3.10) as

o

hog(c — 5) =Z fdwx;F(w)coth%cos w(t —s), (3.25)

0

where we have defined

5

nC;
(@) =3 5 5@ — ). (3.26)

This induces us to regard hagz(t — 5) as a time correlation function of an operator
F(1) at different instants. Thus, defining

hog(t — ) = ${F (1), F(s)}) — {(F(0)Y{F(s)), 3.27)

we recover (3.21) in the classical limit provided that F(¢) becomes the classical
fluctuating force F(¢) in that limit. Expression (3.25) is the well-known
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fluctuation—dissipation theorem?). The advantage of using (3.25) and (3.26) is that
besides allowing us to find a suitable distribution of oscillators to recover (3.21)
it allows us to find corrections to that distribution by employing sum rules for
¥ #r(w). Obviously, these corrections will be important only when we are interested
in the short time behaviour of the system?®).

In order to find the final form of the propagator for the reduced density
operator, we still need to find the additional imaginary part in the exponent we
have mentioned earlier. At this stage it is a very simple task because the
distribution of oscillators is already fixed by (3.23). Inserting this expression in

£ 11 s code
{J3.11) OHC ged

Q
ot —) =2 d r cosw(t — 5)dow, (3.28)

which tends to

ot —s)= ”d(t%a(t —5) (3.29)

5)
as 2 —o0. Finally, using (3.25) and (3.28) in (3.9) we have
t

J(5.y,6:x',3",0) =”Dx Dy exp {sAlxl —Suly]- f f nle(e)— y(@)]
00

X T ) oz —s)[x(s)+y(s)]dz ds}
1
N exp—gj hae f j (@) — @)
x cos W (T — 5)[x(s) —y(s)] d‘r dsdw. (3.30)

This expression can be further simplified if we integrate the term containing the
derivative of the delta function by parts. The procedure is straightforward and the
result is

d
J Jn[x(t) ~ Y@l g3y — 9 (s) + y)] de ds

=- fﬂ[xz(f) —y(0)6(0) dr

0

+ %f[x(r)i(f) +x(@)y(r) —y(0)x(x) —y(E)y()]dr. (331
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At first sight one would worry about the divergence due to §(0). However, we must
be careful in interpreting that term. We do better to remember that it comes from
the expression (3.28) when Q — 0. Thus we can write

5(0) = lim sin Q(1 — s)

= lim 8 (3.32)
0-x T(T —35)

Now, as we can see from (3.31), §(0) appears multiplying the damping constant
1, so, the product 5#6(0) is actually

76(0) = lim E (3.33)
Qoo T
This is a very subtle point. At first sight, one should obviously say that when
Q— oo this expression diverges. On the other hand, we could argue against this
statement by saying that the meaning of the limit £ — oo is to consider Q much
higher than the typical frequencies for the motion of the Brownian particle.
Consequently, depending on how 7 is related to Q, one would expect the product
n€Q to be finite (if # is really the phenomenological damping constant). However,
this argument is not free from criticism either.
A more formal way to see what happens is by integrating both sides of (3.23).
Then, assuming that we have N oscillators in the reservoir and that C(w)=C, a
constant, we can express the right hand side of (3.33) as

nQ 3NC?

= (3.34)

In this expression both N and @ tend to infinity. Therefore, nQ2 diverges or not
depending on the term NQ 2. If we adopt an ensemble of oscillators where
Q oc N'? as a model (3.34) clearly converges.

However, all these arguments can be avoided if we investigate the limit of large
Q only after evaluating those integrals which contain a;(t — 5). If we do this, the
first integral on the right-hand side of (3.31) reads

1

A%? f () — v de 4+ TEO@ :y(on Jsiner ) v de. (335)

0

where we have appropriately replaced é(t — s) by (1/n) sin[Q(t — 5)]/(t — 5). The
limit of large Q simply reflects the fact that we are interested in times
t~w "> Q"' Consequently the second term in (3.35) becomes 11 [x2(0) — y*(0)]
which is clearly much smaller than the first one. This result allows us to substitute
n6(0) by n€2/m in (3.31) without taking the limit Q —co. For further considerations
about the frequency shift (see definition (3.37) below) we refer the reader to section
4 of this paper and to).
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Defining the relaxation constant y as

y=n2M (3.36)
and the frequency shift Aw as
4 Q
(Ao =" (3.37)
we can finally write (3.30) as
;
J(x’ Vs L] -xla y/’ 0) =JJ Dx Dy expg {SR[x] - SR[y]
t
— My J(xfc -y +xy —y)é)dr}
0
1 2My
xexp—ﬁ-—;—— J thmjj[x(f) y(T)]
x cos (1 — §)[x(s) —y(s)ldr ds dw, (3.38)
where we have introduced Sy as the renormalized action given by
Sg = f[%M)'cz —v(x)]dt + f% M(dw)*x?dr. (3.39)

0

In other words Sy is the action with the potential v(x) renormalized by the
subtraction of a harmonic term with frequency Aw. From now on we shall call
it the renormalized potential vg(x). In the case v(x) = :Mw>x? (simple harmonic
oscillator) we define also a renormalized frequency wy by w3 = w? — (Aw)?. This
effective potential felt by the particle may always result when we couple it to a
reservoir'?). Here, this assumes a very simple form because of the model we have
been employing to the environment.

At this point we wish to emphasize some connections of our expression (3.38)
with other previously developed ones. To start with let us notice that the
imaginary exponent of that expression is very similar to a two variable action
proposed by Morse and Feshbach®). Suppose for simplicity that vg(x) = 0, then
calling the imaginary part of that exponent S we have

1

Seg= j[%sz —IMYP? — My(xx — yy + xy — yx)]dr. (3.40)
0
Now, defining a new. set of variables {x, 7} obtained from the original set by a
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rotation by 7/4 we get

1

S = J[Mi'y‘ —%(xy" —f)'é)jl dr + n(x()y(t) — x(0)y(0)), (3.41)

where the Morse and Feshbach Lagrangian spontaneously appears integrated
over time. Thus, our expression (3.38) gives us a clue of how to interpret that
Lagrangian correctly. The variables ¥ and J (or x and y) cannot be thought as
being representative of two different systems interacting with each other. Instead
they represent coupled paths going forward and backward in time. These two
paths are needed to describe the time evolution of g(x,y, ). A diagrammatic
expansion for the coupling of those paths is made in ref. 17 for a general
interaction with a heat bath using the Kjeldysh formalism®).

Some years ago, Nemes and Piza?’) created a phenomenological theory for
dealing with damping in quantum mechanics based on the Morse and Feshbach
Lagrangian. There, they regard j as an unphysical variable and trace it out. The
procedure is very interesting; however, they end up with a result which contradicts
the linear response theory, namely, the freezing of the width of the wave packet
at long times.

In a context much closer to ours, Papadopoulos®) deduced an expression very
similar to (3.38). Nevertheless, there are two main differences between our
formulae. The first one concerns the real exponent in (3.38), which he writes as

1 h
(real exponent) = — e Myhw coth % J[x(r) — y(r)Pdr, (3.42)
0

for the case of a harmonic oscillator with frequency «. This can be shown to be
a particular case of our expression. We shall exploit this point later on, in section
6. The second difference is that he does not have the y dependent term in the
imaginary exponent of (3.38). To account for the final effect of that sort of term
he introduces an explicit time-dependent damping ad hoc. However, we think it
is totally unnecessary since a y-dependent term arises spontaneously from a
microscopic calculation.

4. Coupling to velocities

Suppose we wish to study the motion of a particle coupled to a reservoir such
that the total Lagrangian is given by

L(x, %, q,4) = Mi> —v(x) +x ¥ e+ Y 3md} — Y ymoiq] (4.1)
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This expression differs from the one with which we dealt above only through the
coupling term (compare (3.4) and (4.1)).

Consequently, we cannot apply the results of the previous section to this new
model, at least directly. What we are going to show is that we can transform (4.1)
into a very similar Lagrangian with a coordinate coupling instead.

In order to overcome this probiem, let us introduce a new set of coordinates
given by

y;=mqg;+ex. “4.2)

If we write L(x,x,y,y) and use the Euler-Lagrange equations we shall not
reproduce the correct equations of motion we obtain from (4.1). This means that
L is not invariant under the transformation (4.2). It is a very simple exercise to
prove that the correct Langrangian in the new set of variables is

- . eix’ | eyix i ;
L(x %,y 9) =§ME —0() ~E 5+ +18 —gzy—. (4.3)
[ <m i i L
Defining an extra variable R; such that
R=21, (4.4)
mw

we can rewrite (4.3) as

Cix?

Lo, x, RR)=IMx*—v(x)= Y —— e?

i

+Z C.xR, 4—2:2mR2 Y imwlR?,
4.5)

where C,= e,w, which is exactly of the form of the Lagrangian we used in the
previous section. The difference here is that the transformation (4.2) introduced
a new quadratic term into the bare potential v(x). Thus, the new potential is

v(x)—v(x)—l-z (4.6)

2mw?

Now we can proceed as we have done before. Our problem was reduced to the
one of section 3. The propagator for the reduced density operator is once again
given by the expression (3.38). What is worth noting here is the form of the
renormalized potential x(x) which is written as

Tp(x)=0(x) = M(dw)x?. 4.7

The frequency shift Aw is defined in eq. (3.37), however, to get it we have already
assumed a specific distribution of oscillators. We can proceed more generally if
we follow the steps (3.28) to (3.31) with oy(r —s) given by the more general
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expression (3.11). In this way 4w is such that

M(dw): = 22 cosa)(r—s) —22 (4.8)

2mw

T=

which clearly reduces to (3.37) if we assume the distribution (3.23) to be valid. The
advantage of working with (4.8) is that we can show that the correction potential
which depends on Aw, exactly cancels the extra bit in (4.6). Moreover, this fact
is completely independent of the distribution of oscillators we are using. Thus, for
the model proposed in (4.1) we can say that the renormalized potential is the same
as the bare one, that is

op(x)=v(x). 4.9)

The physical interest of the apparently rather academic point discussed in this
section lies in the conclusion that not every system which is dissipatively coupled
to its environment need undergo a frequency shift (or potential renormalization)
due to the coupling. This point is of some significance in the context of the
quantization of LCR- circuits and similar systems (where a failure to appreciate
it has, indeed, caused some unnecessary confusion in the recent literature), and
is discussed further in ref. 21.

5. The Fokker—Planck equation

In the last two sections we derived an expression for the propagator of the
reduced density operator of a particle interacting with a reservoir with some
specific characteristics. We also showed that in classical limit, the real exponential
of (3.38) reduces to the characteristic functional of the stochastic force acting on
a Brownian particle. At the same time we gave a definite form for the additional
imaginary part of the integrand, i.e. the term involving xx, etc, in (3.38). The
question we want to answer now is whether this term makes sense. In other words:
is that term compatible with the classical Brownian motion of a particle? In order
to answer this question we shall initially investigate the equation of motion for
the reduced density operator in the semiclassical region. If we wish to compare
this equation to the one of a classical Brownian particle we must find a way to
write it down in the phase-space representation. That is the only way we can
compare it to the equation of motion of the phase-space distribution in classical
physics. The way we can perform the transformation from the Hilbert to the phase
space is by using the so-called Wigner distribution function®). For recent reviews
on Wigner’s formalism we refer the reader to**).

Let us start by writing (3.38) when 2kT = hQ > hwg, 2 being the cutoff
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frequency of the reservoir oscillators. This reads
H
i . .
J(x,y,;x',y',0) =JJDX Dy exp, {Sn[x] — Sely]— My J[xx —yy
0

1

+ x5 — y¥] dt}exp - 2"?2"Tj[x(r) —y@)Pde. (5.1)

At this point one should worry about the meaning of this high temperature
quantum-mechanical propagator. Of course this expression becomes meaningless
if we consider the classical limit k7T » hwy and still keep its quantal form.
However, one must bear in mind that this is our first step to obtain an equation
of motion for the reduced density operator in the classical limit. Later, we shall
take the appropriate measures in order to be consistent with this approximation.
We shall use (5.1) rather than (3.38) only to simplify our future expressions.

What we shall do now is to follow Feynman’s procedure in?) when he derives
the Schroedinger equation from the functional integration formalism. Here our
problem is analogous to that one. While in??) one has the propagator for the wave
function from which one gets the equation of motion for i, here we have the
propagator for the density operator from which we intend to get a master equation
for p.

Suppose we have the reduced density operator at a time ¢ and wish to find its
value at ¢ + ¢ where ¢ —0. By (2.14) we have

plx,y, t +e€)= de’dy’J(x,y, t+e;x,y,0p(x",y",1). (5.2)

The propagator J in (5.2) can be written in a very simple form when ¢ is small.
To do so we only need to remember that for small time intervals any regular path
can be approximated by a straight line. Thus, functional integrations over paths
in short time intervals can be put equal to the value of the integrand times a
normalization constant?). Then,

t+e¢

i .
Jx,y,t+ex,y’, 1) z?exp%{ f GMx? — vg(x)) dt
t

t+e¢ t+e

- J‘ GMy* — va(y) dt ~ J My[xx —yy +yx —XJ’]dT}

t+e

X exp —% J 2MykT[x — y)*dz. (5.3)
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All the integrals appearing above can also be approximated when ¢ —0. Calling
x(t+e)=x,y(t+€)=y, x(1)=x" and y(r) =y’ and using the fact that

[
’

xzx—x” yzy:y and jf(x(r))dr~ef<x+x> (5.4)

€
!

in the expression for J, eq. (5.2) becomes

N iMBl e B\ iMB3
plx,y, ¢ +e)—f f dg, dﬂzexp{ 2eh —Af;vk<x =5

ievg B\ iMy B IMV B,
HEEE

*M< ﬁ)ﬁl'*'m—y( ﬂz)ﬂz 2MYkT€ (x —y)

h h

2MykT MykT
— =B — B - V‘m—m%
Xﬁ(x_ﬂl’y_ﬁbt)’ (55)

where x — x’ = f, and y — y’ = f,. Now we can evaluate (5.5) in the limit ¢ —0.
First of all we must notice that the integral in (5.5) contains two very fast
oscillating terms with exponents proportional to ¢ ~'. It is clear the main
contribution comes from B, and f, very small, otherwise the factor
exp(iM [2eh)(B? — B2) would oscillate wildly giving no finite contribution to (5.5).
To be more specific, we want

1/2
B ~ﬂz~(5ﬁ) , (5.6)

because in this region the phase of both exponentials will change by an amount
of order 1. One might wonder at this point about the contribution of the region
B, = B, =~ B with finite . In this case the phase of the two exponentials combined
would change by an amount of order 1 when

Aﬂzﬁl—ﬁzz;[—hﬁ. (5.7)
Now, if we define new variables =8, — y(x —y)eand B;=§,+ y(x — y)e and
expand the exponentials of (5.5) in ¢ we can easily show that in the limit ¢ —0 all
terms depending on 4f in the integrand will be @(¢?). This means that we can
safely forget the region g, = f§, ~ f.

The procedure now is simple. Let us expand p(x — 8,y — f,, t) for g, =~ B, =0
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and keep all terms ((¢) in the product. In terms of ] and f; it reads

N _(fdBidp; _iMB? iMBP [ . op,, 0,

p(x,y,t)—” VRN P s S px,y, 1) axﬁl ayﬁz

_0p op b .,
y(x— )€+ y(x —y)e +25 zﬁ 5y'BlB2

0 2MykTe .
1A 87 o + o)~ (x~y)2p] (58)

All the integrals appearing in (5.8) are of the Fresnel type and can be evaluated
from — oo to + oo since we know their main contribution will come from a tiny
region about ] = 85 = 0. Expanding the left-hand side of (5.8) up to terms O(¢)
and equating them to the corresponding ones on the right-hand side one concludes
the following:

a) The zeroth order term in ¢ gives us the normalization constant

2neh

A2: . .
sl (5:9)

b) The first order term in ¢ gives us the desired equation of motion for § in the
semiclassical region,

op h 0% h 0% vr(x) .
" oo Tamiar ¢ y)—”(x_ )_+ i
v . 2MykT .
R a (5.10)

Once again, we wish to emphasize that (5.10) is not the most general equation
for p. It is valid only when we have 2kT 2 hQ > hwg. If we were interested in
obtaining something more general we would not have been allowed to write (5.1)
instead of (3.38) and the last term of (5.10) would involve a time integration (it
would depend on the past history of the system).

The form (5.10) is not the most suitable one if we wish to compare it to
previously developed master equations. We would rather write it as an operator
equation independent of representation. This can be done with the help of some
identities such as

(x|y)y=0(x—y), =v(y)0(x —y)
and (5.11)

0
(xlply)y = —ihg‘s(x -¥).

Employing them one can check that (5.10) is the coordinate representation of the
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operator equation

op 1 3 1 V|
3 = e 21+ 52 Upox) 21— 1 DI Ix 411+ 15 (0, p] — [p. ).
(5.12)

where Hy is the renormalized Hamiltonian of the system alone, D =nkT,
4 = — ihy and [,] stands for the commutators while {, } for the anti-commutators.

Eq. (5.12) was deduced by Dekker’) by a completely different method. Actually
his equation contains two additional diffusive terms (besides D) which he shows
to vanish under certain conditions. Moreover those extra terms are due to the
inclusion of noise sources in the equation of motion of the position as we
mentioned in the introduction. Another difference is that Dekker’s equation is
valid for zero temperature with D given by some finite value while ours is valid
only when T is high and D = nkT.

At the beginning of this section we have pointed out that once we had the
master equation for p, another step would be necessary to compare it to the
equation for the classical distribution in phase space. As we have said before what
we need now is the Wigner distribution (or, the Wigner transform of j) defined

by

1 i M1 y
w(x,p, t)= Ik exp(ﬂ> <x p ‘p X +}5> dy. (5.13)

In spite of presenting a purely quantal description of a system the Wigner
distribution becomes very important when we are interested in the semiclassical
region. This is because Wigner’s theory is described directly in the classical phase
space of the system. When A —0, w(x, p, 1) tends to the classical distribution in
phase space. For discussions on the validity of this assertion we refer the reader
back to refs. 3 and 30.

If we take the Wigner transform of equation (5.12) and employ the identities
(5.11) we shall find (see’) for details)

ow 0 0 i 0w
e Wt vw+ 2y —pw + DY 5.14
= P +apva+ yappw+ R (5.14)

which is the well-known Fokker—Planck equation describing the time development
of the Wigner transform of the reduced density operator of the system. This is a
purely quantum mechanical equation. However, in order to be consistent with the
fact that we are considering D = nkT we need to take the limit #—0 in the
expression for w. As we said before, w(p, x, ) tends to the classical phase space
distribution in this limit. Then we conclude that (5.14) describes the time
development of the phase space distribution of a classical Brownian particle when
h—0.
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We also realize that the third term on the right-hand side of (5.14) is a direct
consequence of the existence of the y dependent term in the imaginary part of the
exponent in (3.38). Therefore, the latter is responsible for the appearance of a force
of the form nx in the classical equation of motion for the Brownian particle.

What we have achieved so far is that our quantum-mechanical expression (3.38)
for the propagator J is in total accordance with the equations believed to describe
the classical motion of a Brownian particle. It also means that the choice made
for pp(w) C¥w) in (3.23) is a very suitable one, allowing us to describe J solely
in terms of the phenomenological damping constant 7.

6. Some applications

In this section we shall study the behaviour of g(x,y,t) for some specific
examples, namely the damped simple harmonic oscillator and its special case, a
damped free particle. We shall now drop the restriction of high temperatures
because we are interested in the extreme quantum limit (7—0) as well. However,
before starting it we would like to point out that the model presented in this paper
is compatible with several kinds of motion. For example, suppose we start off from
a harmonic potential v(x) = Mw*x% One can easily show that both underdamped
and overdamped motions can be described by a proper choice of the microscopic
parameters of the theory. This is valid for coordinate coupling as well as for
velocity coupling. The difference between these two cases is that in the former one,
it is the renormalized frequency wy given by w% = w?— (dw)* which is the
frequency to be compared to y, while in the latter this wy is such that wy = w. For
details we refer the reader to*').

Now, we shall proceed to evaluate (3.38) for the harmonic oscillator and the
free patrticle (wg = 0). To begin with let us rewrite (3.38) as

ia 1
J(xfa Ve L Xis Vis 0) =J/J7Dx Dy €Xp ﬁ S[x, ,V] €Xp — £¢[x’ y] ’ (61)
where
Slx, y]= f L(x, %,y,y)dt — _[ Myxx dt + '[Myyy dr, (6.2)
0 0 0
L =3 MX* =My —; Moyx® +; Mogy® — Myxy + Myyx (6.3)
and

2M h 1
plx,y1= 1 Jv cothfw @) -y
0 00

x cos V(1 — s)[x(s) — y(s)]ds dr dv . 6.4)
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The procedure to evaluate (6.1) is simple. We shall expand the whole integrand
about the two-dimensional path which makes S[x, v] an extremum. This path is
found by

o5 _diL OL _ M3 + Myj + Mojx =0 6.5)
ox diox ox M More=0, (®
68 doL oL

=~ = My 4+ Myx + Mowiy =0, .6
oy “didy  ar V + Myx + Moyy (6.6)

because the last two terms in (6.2) involve just end point variations. It is suitable
to introduce new variables in order to solve (6.5) and (6.6). Then we define

X(1)=x(@)+y(r) and &(r)=x(t)—y(r) (6.7)
and our equations become

¥4+ 29X + 0dX =0, (6.8)

E-29l+wiE =0. (6.9)
When X(¢) =X, £(t) =&, X(0) =X, and £(0) = &, their solutions are:

X(1) = (sinor) " "{X,e"sinwt + X;sinw(r — 1)fe ", (6.10)

E(r)=(sinwt) Y&e sinwt + Esinw(r — 1)) €7, (6.11)

for the underdamped harmonic oscillator (UDHO from now on; with
w”® = wi —y°. For the overdamped case (ODHO) the solutions are obtained by
substituting @ by i@ in (6.10) and (6.11) where & = 7> — w3, while for the free
particle (FP) the substitution is of w by iy. Actually, these substitutions will be
always valid for our subsequent expressions, however we warn the reader that in
some of them (FP ones) the limit wy—0 must be taken carefully wherever it is
necessary. Bearing this in mind we shall write the formulae in this section only
for the UDHO.

The action STX, &] calculated along those paths (6.10-6.11) is found to be
expressible as

~ . . My . .
Sa = KO[X&+ X&) — LnXE — NOX & — -Ei[ngf_ Xé&l. (6.12)
where
M M - Mw e
Ki)="3"cotwr, L)="o and N(1)= 5ot (6.13)
2 2sin ¢ 2sin wt

Now, let us write our functional integral in terms of the translated paths

Et)y=&(1)—Er) and X'(1)=X(1)— X(1), (6.14)
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with ¢/(0) = &’(1) =0 and X’(0) = X’(¢) = 0. Then one gets

J(X, & 15 X, & 0)—exp Siiexp — {A(t)é%+B(t)éf€i+C(t)é%}

h
X G(Xf’ éfat;A/i, éis 0)’ (615)
where
Q
M h
Ay =21 de coth 2= A1), (6.16)
¥
e t ot
- : s Ao s)
A S ot stm wT cos v(T — §)sinws € dr ds, (6.17)
00
Q
My hv
B(t)=— '[dvv coth — KT B(t), (6.18)
0
2e . . ;
B(t)=— stm wtcosv(t —s)sinw(t —s)e+9dr ds, (6.19)
sin’wt
00
Q
M
C(t)=7y 'f dwv coth zh cl0), (6.20)
0
C()= sin(t —t)cosv(t —s)sinw(t —s)e*drds, (6.21)

D X’ i~
G(Xy, & 15 X, &, 0) =” %exp FSIX. Elexp— PR RY

1 -
x expy é7(C, <) (6.22)

and

Q

d)r[f, El=— jdvv coth m Jff(t) cosv(t —s)E'(s)dr ds. (6.23)
0 0

What is left to evaluate now is the functional integral (6.22). As both £’(t) and
X'(r) vanish at 7 =0 and 7 = ¢, we can expand them in terms of an orthogonal
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set obeying the same boundary conditions?),
X()=) X,sinw,r and &'(t)=) ¢, sinw,t, (6.24)

where w, = nn/t. Now, inserting (6.24) in (6.22) one gets after some straight-
forward integrations (see?) for similar procedure)
. , . 4C ..
GXp & 15X, 8,0)=F4(1) = 1/2”3{ M1 (2nh) H o —ol’

i=1 i R

(6.25)

where C is the normalization constant. This result is exactly the square of the wave
function amplitude for the undamped case. So, it means that the damping modifies
just the exponent of J(X;, &, £; X, &, 0) and its final form is

J = F0) exp% {[K(z) - %} X+ [K(z) + @Jm

— L()Xi& — N(Z)er} exp — % (AWM + BOEEL+ C(1)ET} . (6.26)

Now we have the tool we need to calculate the time development of the reduced
density operator of the system in which we are interested. For example, suppose
we initially have the system in a pure state described by a wave packet centered
at the origin with initial momentum p and width o. The reduced density operator
1s then

ip¢; X1 +¢&

P(X,, &, 0) = (2no”) " P exp == exp — 5 (6.27)
h 8¢
and its time evolution reads
ﬁ(Xf* éﬁ ’) = J‘J‘dX. déiJ(Xfa é{’ I Xi, CVh O)ﬁ(Xi, éi’ O) . (6-28)

which can be evaluated with the insertion of (6.27) and (6.26). All the integrations
in (6.28) are Gaussians and very simple. However, despite the simplicity the
resulting expressions in the intermediate steps are quite lengthy, forcing us to
quote only the final result

nZhZ : NZ p 2
5(Xpy & 1) = FH1)| 75— |exp— =[x, — 2
P & 0) ()[202K1+hC1JeXP 202K%+4hcf< f 2N>

[A 26%L* (4¢°K,L — Bh)? :I )
X exp — 2

& f

R R T W80 K+ 4hC))

1 (46°K,L —BR)N[  p
X expz |:K2Xfff— @K1 20C,) Xi— N &, (6.29)
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where we must remember that 4, B, C,, K,, K;, L and N are all functions of time
and have defined

My My

cH=Ct)y+-5= i Kl(t)EK(t)+—2— and K2(t)EK(t)——2—. (6.30)

802

Of particular interest is the expression we can get from (6.29) by making
&= x;— ye=0 or X;= x;+ yy=2x,, that is

; o nh? 12 N? p 2 3l
L xXp 1) = F ()| 55— —e—m—— -] . .

p(xp, X, 1) ( )[202 K ih C1:| P~ 3 KT TR, (xf 5 N) (6.31)

This shows how the initial |¢(x)|2 develops in time. Its centre follows the path

given by

0= 55 (6.32)

which is the one of a classical damped particle, for example, for the UDHO it
reads

x(1) = ﬁ sin ot ¢ " (6.33)

while its width obeys the equation

o2(1) = %(202Kf(]:7)2(-}t—)hcl(t)> '

(6.34)

This expression gives us the width of p(x, x, ¢) at any time ¢. An interesting result
is obtained when we study it at infinite times. The procedure is straightforward
but extremely tedious. Inserting (6.13), (6.20), (6.21) and (6.30) into (6.34) one gets

@

ot > 00) = {(x — Xo(00))*) _h fdv coth hv < ! 2y ),

2kT\M (0} — v + dyH?
0 (6.35)
where we took the limit  — oo at the upper limit of integration. Expression (6.35)
is a very familiar one. The imaginary part of the response of a harmonic oscillator
of frequency wy to an external force F(t) is given by

//( ) 2‘))v
_M(v —wi) +4yW?
Thus,

(6.36)

@«

6} (0) = h jdv coth ;ILT;("(v), (6.37)
0

which is the well-known fluctuation—dissipation theorem[32].
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7. Conclusions

Using a specific model for a particle interacting with a reservoir we have
deduced the expression (3.38) for the propagator of the reduced density operator
of that particle. Under certain circumstances we could get a closed expression for
p(x,y,t) at any instant ¢ and for all temperatures as we have shown in the
previous section. The centre of the packet g(x, x, t) follows the motion of a
classical Brownian particle (see (6.33)) and its width in the infinite time limit is
shown to agree with the fluctuation—dissipation theorem (6.35). The latter result
can be exploited a bit further.

To start with, (6.35) disagrees with ref. 27. There the authors claim that the
width of the wave packet of a free particle “freezes’ at infinite time. If we make
wg—0 in (6.35) we can show that when T—0, (6.35) diverges as (— Inv) as v—0.
This is equivalent to say that c%(r) behaves as In ¢t when 1 —» co. Consequently, ¢(¢)
spreads slower than it does in the undamped case (¢%(¢) = /A + Bt?), however
it does not freeze.

We attribute this difference between our approaches to the fact that, unlike us,
the authors of?’) do not take any sort of diffusive effects into account. By making
¢[x, ¥]=0 in (6.1) we reproduce their results, despite the completely different
physical interpretation of the two approaches.

Diffusion terms were also omitted from other attempts to quantize Brownian
Motion starting from the Morse and Feshbach Lagrangian (see, for example, refs.
33 and 34 or sections 3 and 6 of ref. 35).

Our second comparison comes out when we study the extremely underdamped
limit (y —0). When this happens the final width at 1 —o0 can be worked out at
any temperature as

hwg
SR 7.1
IMawn coth 31 (7.1)

which is the well-known result of equilibrium quantum statistical mechanics®).
The same expression should be obtained if instead of working with the exact
propagator J given by (3.38) we had worked with the one in (5.1) but with 2MkT
replaced by EiMywy coth(hwg/2kT). In other words, we should have a diffusion
constant (in momentum. space) given by

o%(o0) =

ho
D = Mywg h coth — | 7.2
Ytwg h CO T (7.2)

valid at all temperatures. When T'—oo, (7.2) gives us the classical relation
D = 2MykT, while when T —0 the diffusion constant becomes

D = Myhwg = inhwy , (7.3)
which is the result found by Dekker?).
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As we have pointed out in the introduction, Dekker applied canonical
quantization to complex variables making use of explicit noise sources in the
equations of motion of the position and momentum operators (however, see ref.
36 for an alternative derivation of expression (7.3)). It is true there are microscopic
models which allow one to do so, nevertheless it can be shown?’) that these
equations have the same solutions as the usual ones (with noise sources only in
the momentum equation) in the limit of very weak damping.

The trick proposed in (7.2) does not seem to be correct for finite y. It means
that the kernel ax(¢ — t’) appearing in the exponent of the influence functional in
(3.9) can always be replaced by a function of the temperature times a delta
function of (¢ — ¢"). However, this is not true for our specific model. Even if one
can find a different model for the reservoir for which (7.2) is correct for any 7,
our model serves as a counter-example to show that the procedure is not general.

A diffusion constant of the form (7.2) was proposed by Papadopoulos®) and
Svin’in**). But, once again, their theories are valid only in the weak damping limit
because this is a necessary condition for the validity of that expression.

Actually, it has been an old dream of many physicists to try to describe the
relaxation to equilibrium by Markoffian equations (no time kernels involved) even
in the quantum regime. However, we are a bit sceptical about the possibility of
this, since as we have shown simple models can recover both equilibrium statistical
mechanics and linear response theory asymptotically without being Markoffian at
all. Ford et al.'®) also achieved the same conclusion about the Markoffian
assumption in the quantum limit. Notice that we are talking here only about the
diffusion terms. Our drift term (the one involving y) is always Markoffian. In order
to find non-Markoffian corrections to the latter one needs to study the
modifications of y”(v) due to the sum rules which are important to describe the
short time behaviour of the Brownian particle.

Finally, we should emphasize that although we have taken a model for the
system-environment coupling that at first sight looks very arbitrary, the main
features of our results should be fairly insensitive to its details. In particular,
modification of the choice (3.23) for the quantity pp(w)C*w) should make little
qualitative difference to the results provided only that the form (3.23) continues
to hold for w of the order of the characteristic frequencies of the system; all it will
really affect is the frequency shift (4w)?, which is in any case not directly ob-
servable (cf. the discussion of the analogous point in the tunnelling problem in?').
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