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We apply the influence-functional method of Feynman and Vernon to the study of Brownian 

motion at arbitrary temperature. By choosing a specific model for the dissipative interaction of the 

system of interest with its environment, we are able to evaluate the influence functional in closed 

form and express it in terms of a few parameters such as the phenomenological viscosity coefficient. 

We show that in the limit h +O the results obtained from the influence functional formalism reduce 

to the classical Fokker-Planck equation. In the case of a simple harmonic oscillator with arbitrarily 

strong damping and at arbitrary temperature, we obtain an explicit expression for the time evolution 

of the complete density matrix p(x, x’, I) when the system starts in a particular kind of pure state. 

We compare our results with those of other approaches to the problem of dissipation in quantum 

mechanics. 

1. Introduction 

In nature there are many systems which, in the classical regime, can adequately 
be described by equations of motion of the form 

mj;_ + yX + u’(x) = F(t). (1.1) 

This could stand, for example, for a particle of colloidal size immersed in a viscous 
fluid. In this case, m is the mass of the particle, q is a damping constant, V(X) is 
the potential acting on the particle and F(t) is the so-called fluctuating force. The 
latter obeys the relations 

(F(O) = 0, 
(am) = 2qk73(t - t’), 

(1.2) 

where ( ) represents the statistical average over the ensemble of identically 
prepared systems. Eq. (1.1) subject to the relations (1.2) is the well-known 
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Langevin equation which has been used as the basis for the theory of Brownian 

motion for over half a century now’). 

Like any other phenomenological equation, (1 .I) has a restricted range of 

validity. It is reasonable to use Langevin equations when we are interested in the 

long time behaviour of the system. By long times we mean times long compared 

to the relaxation time of the reservoir coupled to the system in question. 

In the above-mentioned example we do not need to bother about quantum 

effects because a macroscopic particle in a viscous medium can be well described 

by the classical theory. However, in many other situations, things do not work 

in this way. If we take, for example, a LCR circuit we know that the equation 

for the charge at the capacitor plates has the form (1.1). As the temperature starts 

to achieve very low values we expect to observe quantum effects in this system. 

Therefore a very natural question arises: how can one reconcile damped equations 

of motion with the processes of quantization? 

The origin of this question lies in the fact that the standard procedures of 

quantization are based on the existence of either a Hamiltonian or a Lagrangian 

function for the system in which we are interested. On the other hand it is well 

known that we cannot obtain (1.1) from the application of the classical Lagrange’s 

or Hamilton’s equations to any Lagrangian or Hamiltonian which has no explicit 

time dependence. The employment of time-dependent functions would allow us 

to use the standard procedures of quantization directly2). However, this approach 

would inevitably lead us to face some problems with the uncertainty principlej). 

Over the last two or three decades, many people have tried to answer this 

question. In spite of the variety of methods used, all these attempts fall into two 

main categories: They either look for new schemes of quantization or use the 

system-plus-reservoir approach. We shall list some of the more important works 

in each category in what follows. 

In the beginning of the seventies, Kostin4) proposed a theory with a non-linear 

Schroedinger equation. Besides violating the superposition principle, this theory 

shows some highly controversial results such as stationary damped states. On the 

basis of Nelson’s Stochastic Quantizatior?), K. Yasue6) deduced Kostin’s equa- 

tion. It is possible to do so because in Nelson’s quantization what one needs to 

know is the equation of motion itself instead of Hamiltonians or Lagrangians. The 

main question here is whether Nelson’s theory is correct or not. 

Dekker’) developed a canonical quantization procedure using complex vari- 

ables. Despite reproducing some interesting results, such as the Fokker-Planck 

equation for the Wigner transform of the density operator, his theory seems 

obscure in some points. For example, he introduces an explicit noise source for 

the equation of the position, x(t), and another one for the momentum equation. 

We see no physical reason to do so. We shall return to some points in Dekker’s 

work later on. 
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The most successful approach we are aware of so far was pioneered by the work 
of Senitzky*). There, he takes explicitly into account the interaction of the system 
of interest with a reservoir. In his work he was particularly involved with the 
damping of electromagnetic field modes in a cavity. His strategy is carried out in 
the Heisenberg picture with the elimination of the reservoir operators. This theory 
was generalized later by Mori’). Still along these lines, Zwanzig’O) and Nakajima”) 
worked in the Schroedinger picture to get generalized master equations for the 
density operator. Excellent reviews of this sort of approach can be found in”) and 
13 

1. 

One further approach to this problem consists of attempting to generalize the 
classical Langevin equation (1.1) to the quantum case. The simplest way to do this 
is to leave equation (1 .l) itself unchanged, but to replace the classical force 
correlation expressed by (1.2) by the equation 

-i’-‘)tjho coth (1.2’) 

with some suitable cutoff on o, say s2. If we are interested in time intervals 
It - t’l B s1 -I, then eq. (1.2’) is effectively equivalent to (1.2) at high temperatures 
(kT 9 h(t - Cl-‘) but diverges from it at low temperatures. Very recently, this 
approach has been used by Koch et a1.14) to analyze the low-temperature 
behaviour of Josephson junctions; its theoretical foundation has also been recently 
discussed by Benguria and Ka@). It will be clear from the latter discussion that 
the general question of the validity of the “quantum Langevin equation” outside 
the especial case of the harmonic oscillator is a very open one. 

The general approach we shall adopt in this paper has much in common with 
the work of refs. 8-13. That is, we shall not even attempt to quantize the 
dissipative system itself, but will instead treat it from the beginning as interacting 
with a complex environment; it is precisely this interaction which will give rise to 
dissipation. Since the complete “universe” formed by the system plus environment 
may be treated as closed, there is of course no objection to applying to it the 
standard quantization procedures. Having done this, we will then eliminate the 
environment coordinates so as to obtain closed equation for the dissipative system 
alone. To achieve this elimination we must of course choose a sufficiently simple 
model for the systemenvironment interaction. Moreover, the model must be so 
constructed as to reproduce the results for classical Brownian motion in the 
classical (high-temperature) limit. 

A number of papers in the literature have studied related questions. Ford et 
a1.16) studied an array of identical particles interacting with each other through 
quadratic potentials. Fixing one of them, they investigated the form the inter- 
particle potential would have to have to make it a Brownian particle in the 
classical regime. Iche and Nozieres’7) constructed a general adiabatic expansion 
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for heavy particles in an environment but the results they obtain are mainly 

formal. Davies”) has proved some nice rigorous results concerning the diffusive 

behaviour of the particles of the system, Markoffian Fokker-Planck equations and 

so on. However, they hold only for extremely underdamped cases. Schwinger”) 

applied his action principle to the motion of a quantum oscillator weakly coupled 

to a bath and studied carefully the problems of the frequency shift and constant 

damping. 

What we aim to do in the present paper is to explore how far it is possible to 

obtain closed equations for a dissipative quantum-mechanical system which 

involve only phenomenological parameters (in principle experimentally accessible) 

such as mass, friction coefficient etc. To this end we set up a specific model of the 

systemenvironment interaction and fit the parameters of the model from the 

condition that it reproduce the classical equations of Brownian motion in the 

appropriate limit2’). We then explore its consequences in the more general, e.g. 

quantum, case. We show that a general formal expression (in the form of a 

functional integral) for the propagator of the density matrix can be written down 

which is only slightly more complicated than that which already occurs in the 

noninteracting case, and that in the special case of the harmonic oscillator it can 

be evaluated explicitly for all degrees of damping and all temperatures. As an 

application we study explicitly the time development of a damped harmonic 

oscillator which starts out in a certain kind of pure state. The technique used 

throughout is the functional integral formulation of quantum mechanics, and 

more specifically the “influence functional” technique of Feynman and Vernon. 
The original motivation of this work was our desire to understand the effect of 

dissipation on the phenomenon of quantum mechanical tunnelling through a 

potential barrier. It turns out that while the functional integral method itself is 

very well suited to this problem, the particular approach developed in the present 

paper is not; conversely, the method most appropriate to the tunneling problem 

(which involves the “imaginary-time“ representation and the consideration of two 

rather than four-point functions) is not well suited to the discussion of the time 

evplution of a system in the classically accessible region. For this reason we feel 

it is logical to separate the present discussion from our treatment of the tunnelling 

problem, which is given in ref. 21. Nevertheless a number of questions are 

common to the two discussions, in particular the question of the generality and 

degree of realism of our model of the dissipative mechanism and the modifications 

introduced by velocity-dependent coupling, and some of these questions are 

discussed in greater detail in”). We will therefore cross-reference this work at 

various points in the present paper. 

In section 2, we review the Feynman-Vernon theory of the influence 

functiona122,23). In sections 3 and 4 we evaluate the influence functional for specific 

models of the reservoir. This gives us the propagator for the reduced density 
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operator of the Brownian particle under appropriate circumstances. Section 5 
deals with the recovery of the classical equations of Brownian motion when we 
study the limit h -+O of our quanta1 expressions. Applications of the results of 
sections 3 and 4 are presented in section 6; in particular, we consider a damped 
harmonic oscillator which is described at time zero by a Gaussian (not necessarily 
minimum-uncertainty) pure state wave packet, and calculate its density matrix 
explicitly for all subsequent times. Finally, in section 7 we draw our conclusions. 

2. Feynman-Vernon theory 

Let us consider a system A interacting with a second system B (the reservoir) 
described by the following Hamiltonian: 

H=H,+H,+H,, (2.1) 

where 

HA= -&-$+u(x), (2.2) 

is the Hamiltonian of the system represented by a particle of mass M and 
coordinate x, 

HB= -;$+ixvB(Ri,Rj) 
i#I 

(2.3) 

is the Hamiltonian of the reservoir consisting of N particles of coordinates Ri and 
masses m. The N-component vector R stands for R = (R,, . . . , RN). Finally, HI 
is the interaction Hamiltonian given by 

(2.4) 

Our starting point in presenting the Feynman-Vernon theory22*23) is the integral 
form of the density operator of the system plus reservoir at a time t, 

p(t)=exp-yp(O)expy, 

which in the coordinate representation can be written as 

(~Rlp(t)l~Q) = ldx’ dy’ dR’ dQ’( x, Rlexp -T Ix'R') 

x (x’R’lp(O)y’Q’)(y’Q’lexp Tiy Q) . 

(2.5) 

(2.6) 
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Those terms containing H in (2.6) are easily recognized as”) 

and 

where all the functional integrations are evaluated over paths x(t), y(t), R(t’) 

and Q(t’) with endpoints x(t) = x, x(0) =x’, y(t) = y, y(0) =y’, R(t) = R, 
R(0) = R’, Q(t) = Q and Q(O) = Q’. In (2.7) and (2.8) the action S is given by 

S=S,+S,+S,= Ldt’, 
s 

(2.9) 

where 

n 

L = L, + L, + L, = i Mx2 - u(x) - 1 u,(x, R,) + c irn&f - $1 v,(Ri, R,) 
i i i#i 

(2.10) 

In this way we can write (2.6) as 

(xR(PW~YQ> = [ dx’ dy’ dQ’ dR’K(x, R, t; x’, R’, O)K*(y, Q, t; y’, Q’, 0) 
J 

x (x’R’l~(o)l~‘Q’> . (2.11) 

This expression for the density operator describes the behaviour of the system 

plus reservoir as a whole. However, we do not wish to have all that information. 

We want access to the properties of the system A regardless of the specific 

behaviour of the reservoir. All we need is its influence on the system A. Then the 

quantity we are really looking for is not the total density operator but the so-called 

reduced density operator 3.‘2*‘3). This is easily obtained by tracing out all the 

environment coordinates in (2.11). So, 

~(x,Y, t) = [dR(xRlp(r)lyR) = [ dx’ dy’ dR’ dQ’ dRK(x, R, t; x’, R’, 0) 
J 

x K*(Y, R, t; Y ‘Q’, O);x.R.lp(O)l~ ‘Q’) . 

Now, suppose we initially have the total density operator 

P (0) = PA(O)PB(O) 3 

(2.12) 

given by 

(2.13) 
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where ~~(0) and pA(0) are the density operators of the reservoir and,.$e-*m 
respectively, when they are not interacting with each other. After t = 0 they may 
both change with time. Inserting (2.13) in (2.12) and using (2.7) to (2.10) we get 

,XGY,~)= dx’dy’J(x,y,t;x’,y’,O)p,(x’,y’,O), s (2.14) 

where 

J(x, Y, t; x’, Y’, 0) 
WI . &[Y 1 

= D~Dyexpi~exp-ihF[x,y] (2.15) 

and 

9[x, y] = 
s 

dR’ dQ’ dRp,(R’, Q’, 0) DR DQ exp i 

x C%k RI - NY, Ql + %[Rl - NQI) (2.16) 

is the so-called influence functiona122,23). 

When there is no interaction between the system of interest and the environment 
the influence functional is equal to one. Then our expression (2.15) reduces to a 
product of two propagators, one forward and the other one backward in time. 
This happens because for a closed system the density operator can be written as 
the product of the wave function with its complex conjugate. When the interaction 
is switched on we do not have these two propagations taking place freely. Instead, 
the influence functional couples them. 

Expression (2.15) is the central formula in our development of the quantum 
theory of Brownian motion. 

3. The model 

In principle our problem is solved. Once we know the interparticle potentials 
vi(x, Ri) and us(Ri, Rj) in equations (2.3) and (2.4) and the initial state of the 

reservoir, described by pB(0), we can find the influence functional in (2.16). 
However, our experience tells us that life is not that simple. We know that very 
few problems can be solved exactly in the field of many body systems. It is hopeless 
to think we can solve the problem exactly in its full generality. What we need to 
do is to employ a specific model, soluble by construction, from which we expect 
to draw some general conclusions we believe can be extended to many other 
systems. 

Let us assume our reservoir is composed of particles interacting through a 
general potential u(R,, . . . , RN) which has an absolute minimum R,, = (R,,, 

R20, . . . , Rm). Now, suppose we couple to it the system A described by the general 
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Hamiltonian (2.2) and that the coupling is weak in the sense that we have to 
consider just the linear response of the reservoir to the system. In this way, the 
reservoir is very weakly perturbed by the system and we are allowed to describe 
the former in the harmonic approximation*. The interaction between the two 
systems is linear by hypothesis and the system is subject to a general potential 
V(X). The only thing we must be sure of is that we shall not have to consider very 
drastic deviations from equilibrium in the system; this is necessary in order to 
preserve all the approximations we have already started to make. In other words 
we want to study the whole system described by a Hamiltonian of the form 

(3.1) 

where the C,‘s are the coupling constants of the reservoir particles to the system 
A and the wk’s are the frequencies of motion of the reservoir particles. The action 
that appears in (2.16) can now be written as 

S,[R] + S,[x, R] = 
J 

L,(R, R> dt + 
J 

L,(x, R) dt , (3.2) 

0 0 

where 

and 

(3.3) 

L, = - x 1 C,R, . 
k 

(3.4) 

This problem has been solved exactly in22.23 ) and the final expression for the 
influence functional in (2.16) is 

F[x, y] = exp - i [x(r) -y(r)][cr(z - s)x(s) - c(*(z - s)y(s)] dz ds, 

0 0 (3.5) 

where 

c: cY(z -s>=c- 
k 2mwk 

exp-i&r --s)+ ho 
exp ic!&(r - 3) + exp - iok(r - s> 

exp$ - 1 
hc% exp- - 1 
kT 1 

(3.6) 

*The question of the justification for this model as general description of dissipative systems is 

further discussed in ref. 21. 
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and we have assumed that the environment is initially in equilibrium at tem- 
perature T which means that its initial density matrix can be written as 

A@‘, Q’, 0) = I-j ~if’(R;, Q;, 0) 3 

with the usual 

(3.7) 

d?(R;, Q;, 0) = 
m"k 

271h Sinh(hc&/kT) exp - 
mwk 

2h sinh@wJkT) 

x (RL2 + QL2) coshz - 2R;Q; II . (3.8) 

A much more useful way to write the influence functional is in terms of the real 
and imaginary parts, aR and a, of a(r - s). In fact we can write the propagator 
for the density operator as 

I 7 

SJx] - S,[y] - 
ss 

[x(r) - Y(~)l 
0 0 

x a,(~ - s)[x(s) -t y(s)] dr ds 

I 7 
1 

x exp-- 
h ss 

[x(r) - ~(~k,(~ - s)tx(s) - y(s)1 dt ds > 
0 0 

(3.9) 

where aR and aI are given by 

c: 
aR(z -s)=C- 

k 2mok 
coth $; COS ok@ - S) (3.10) 

and 

a,(7 - s) = - $& sin e_&(r - s) . 
k 

(3.11) 

Now, once we have the reduced density matrix of the system at t = 0, 
expressions (2.14) and (3.9) will give us its time development. There is no 
dependence on reservoir coordinates any longer. As far as the model Hamiltonian 
(3.1) is concerned we have solved the problem exactly. Now, our main goal in 
developing all this was to describe a Brownian particle in the classical limit. At 
this stage it is clear we have no evidence of any such thing occurring. On the 
contrary, we see no way we can get an irreversible process out of our exact 
solution. 
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To solve this problem we need to remember that the ensemble of oscillators 
must have some definite characteristics in order to behave as an actual reservoir. 
For example, a reservoir must have infinite size in such a way that the energy lost 
by the system of interest will not return to it within a finite period of time. Now, 
suppose that our ensemble of oscillators represents the set of normal modes of 
vibration of a certain physical quantity in a finite region of space. For instance, 
it could be the set of normal modes of the electromagnetic field in a box or the 
vibration of atoms from their equilibrium positions in a crystal (however, see ref. 
21 for more general considerations about the ensemble of oscillators). Therefore, 
taking the limit of infinite volume means that we need to consider a continuum 
of allowed oscillator frequencies. 

What we intend to do next is to give some arguments to indicate that one can 
manage to choose a very suitable distribution of oscillators in the continuum limit 
which will lead us to the Brownian motion. Later on, we shall adopt the chosen 
model to deduce the Fokker-Planck equation in the classical limit. 

Suppose that instead of coupling the system A to a reservoir B as we have done 
in (3.1), we were to excite it by applying a classical external force F(r). In that 
case, one can easily convince oneself that the propagator of the density matrix 
would be given byz2) 

[x(t) - Y(T)lF(T) dz (3.12) 

If, in addition, we consider that F(r) is not known exactly but instead we know 
the probability distribution functional P[F(r)] of different histories F(r), the 
averaged density matrix propagator reads 

Dx Dy DI;P[F(r)] exp S,[x] - S,b] 

(3.13) 

The functional integration over F(r) in the expression (3.13) is the well-known 
characteristic functiona12’) 

~[“(‘)~~(~)]~yDI.,P,FolCrpiSII(T1n)(r)lr(i)dT. (3.14) 

0 

With the help of (3.14) we can find the correlation of forces between two different 
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instants as 

(3.15) 

where 6 stands for functional differentiation (or variation). When P[F(z)] is a 
Gaussian distribution, 4 has a very simple form22), 

m[T”‘hY”‘]=‘e~p-~jj td~)-_y(t)lA(~ --~)b(~)--.d~)ld~ ds, 
00 

(3.16) 
which with the help of (3.15) gives 

(F(5)&)) = A (5 - 8) . (3.17) 

Now, inserting (3.14) back into (3.13) and assuming P[F(r)] is a Gaussian 
functional distribution, the propagator J reads 

Dx DY exp i (PAM - &[YI} exp - $ LX(~) 

0 0 

- y(z)]A(z - s)[x(s) -y(s)] dz ds . (3.18) 

Comparing (3.18) to (3.9) we notice that those two expressions are very similar 
to each other except for the additional imaginary part that appears in the exponent 
of (3.9). Regardless of this difference we believe that the real part of the exponents 
plays the same role in the two cases. The physical meaning of A (T - s) in (3.18) 
or ha,(r - s) in (3.9) cannot be different. So, ha,(r - s) must give the correlation 
of forces in the classical regime. The question now is: under what conditions will 
our quantum-mechanical model reproduce the correlation between the stochastic 
forces acting on a classical Brownian particle? This is not hard to answer. The only 
thing we need to do is to investigate the behaviour of ho,(z - s) for high 
temperatures. When kT B hook (3.10) becomes 

%(T - s) +g cos Wi(Z - s) + j&W c0sw,(z-s)+*~‘, 
8 

(3.19) 

As we are looking for the expansion of Ra,(t - s) we see that its leading term is 

ha,(z - s) 2&$ cos co& - s) + 0(h2), (3.20) 

thus, this is the classical correlation to which our quantum mechanical model led 
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us. We wish to compare (3.20) to the well-known correlation 

(F(r)&)) = 2?'/k73(T - S), 

given by the classical theory of the Brownian motion. Here, 

of forces’), 

(3.21) 

u is the damping 

constant. To do so, let us consider a continuum of oscillators with density p,,(o). 

Then. 

I 

hU,(T - S) % 5 P(w) 
PD(O I__ 

w? 
COSOJ(T -s)dw. (3.22) 

If we choose’“) 

p,(w)P(o) = (3.23) 

where we have introduced a high frequency cutoff Sz in the distribution of 

oscillators, eq. (3.22) becomes 

1 sinCJ(2 -s) 
hCi,(T - s) = (F(T)F(S)) = 2qkT; 

(t -3) ’ 
(3.24) 

which tends to (3.21) if we let Q -+a. In other words, we shall recover (3.21) when 

we are interested in times much longer than the typical time R ‘, meaning that 

it is the low-frequency behaviour of (3.23) which is important in this case. This 

fact is in accordance with the classical theory of Brownian motion since (3.21) 

is valid only when we consider times longer than the typical relaxation time of the 

reservoir. 

We can still go a bit further if we write (3.10) as 

ha,(r -S)=; dwx;i(m)coth$Tcosro(r --s), 
I 
0 

where we have defined 

(3.25) 

(3.26) 

This induces us to regard ha,(7 - s) as a time correlation function of an operator 

F(t) at different instants. Thus, defining 

haR(7 -s)= t((~<7),~:(s)})-(F"(r))(F"(s)), (3.27) 

we recover (3.21) in the classical limit provided that P(t) becomes the classical 

fluctuating force F(t) in that limit. Expression (3.25) is the well-known 
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fluctuationdissipation theorem”). The advantage of using (3.25) and (3.26) is that 
besides allowing us to find a suitable distribution of oscillators to recover (3.21) 
it allows us to find corrections to that distribution by employing sum rules for 
x&(o). Obviously, these corrections will be important only when we are interested 
in the short time behaviour of the system24). 

In order to find the final form of the propagator for the reduced density 
operator, we still need to find the additional imaginary part in the exponent we 
have mentioned earlier. At this stage it is a very simple task because the 
distribution of oscillators is already fixed by (3.23). Inserting this expression in 
(3.11) one gets 

P 
d 

a,(z -s)=II--p 
27rd(r -s) s 

cos w(r - S) do, (3.28) 

which tends to 
-R 

ad7 - 4 = v d(7 _ s) 
--5(7 -s) 

as Q+co. Finally, using (3.25) and (3.28) in (3.9) we have I r J(x,y,t;x’,y’,O)= S,[x] - S,[y] - 
!I 

rt[x(~)-Y(~)l 
00 

d 
x-6(7 -S)[x(S)+y(s)]drds 

d(r - s) 

1 n,lw 
f r 

xexp-z 7 s 
coth gT 

ss 
[x(r) -YIP 

0 00 

x cos w(z - s)[x(s) -y(s)] * dz ds do. (3.30) 

This expression can be further simplified if we integrate the term containing the 
derivative of the delta function by parts. The procedure is straightforward and the 
result is 

ss d 
q[X(r)--(r)]d(t _S) ____ 6(r - s)[x(s) + y(s)] dr ds 

0 0 

= - q[x’(r) - y*(z)]G(O) dz 

0 

+; s [x(z)i.(z) + x(z).?(7) -_d7>W) --Y(7)i(7)1 d7. 
0 

(3.3 1) 
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At first sight one would worry about the divergence due to S(0). However, we must 

be careful in interpreting that term. We do better to remember that it comes from 

the expression (3.28) when L? -co. Thus we can write 

6(O) = lim 
sinQ(r -8) a 

n-r 71(2--s) _=!nS 
(3.32) 

Now, as we can see from (3.31), 6(O) appears multiplying the damping constant 

‘I, so, the product 16(O) is actually 

~6(0)= lim *, 
R-n’ n 

(3.33) 

This is a very subtle point. At first sight, one should obviously say that when 

Q+cc this expression diverges. On the other hand, we could argue against this 

statement by saying that the meaning of the limit R+cc is to consider Q much 

higher than the typical frequencies for the motion of the Brownian particle. 

Consequently, depending on how q is related to 52, one would expect the product 

qs2 to be finite (if v is really the phenomenological damping constant). However, 

this argument is not free from criticism either. 

A more formal way to see what happens is by integrating both sides of (3.23). 

Then, assuming that we have N oscillators in the reservoir and that C(w) = C, a 

constant, we can express the right hand side of (3.33) as 

r/Q 3NC’ __=------- 
n 2mfS2 

(3.34) 

In this expression both N and R tend to infinity. Therefore, @I diverges or not 

depending on the term NSZ m2. If we adopt an ensemble of oscillators where 

Sz cc N’12 as a model (3.34) clearly converges. 

However, all these arguments can be avoided if we investigate the limit of large 

Sz only after evaluating those integrals which contain a,(r - s). If we do this, the 

first integral on the right-hand side of (3.31) reads 

, I 

$ 

s 

[-u2(T) _ y2(t)] & + Prdy(o)n+ ‘(‘)I 

s 

q [x(z) -y(z)] &. (3.35) 

0 0 

where we have appropriately replaced 6(z - s) by (l/x) sin[Q(r - s)]/(r - s). The 

limit of large 52 simply reflects the fact that we are interested in times 

t z co -I $ a-‘. Consequently the second term in (3.35) becomes &[x2(0) - y2(0)] 

which is clearly much smaller than the first one. This result allows us to substitute 

Q+(O) by @/rc in (3.31) without taking the limit Sz +co. For further considerations 

about the frequency shift (see definition (3.37) below) we refer the reader to section 

4 of this paper and to2’). 
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Defining the relaxation constant y as 

y = ?/2M 

and the frequency shift do as 

we can finally write (3.30) as 

&[xl - &bl 

-My 
s 

(xi -yj +xj -yi)dz 

0 

’ ?f! j-to cothgjj[x(7)-v(7)] xexp-h IL 

0 00 

xcoso(7--)[x(s)--((s)]dzdsdo, 

where we have introduced S, as the renormalized action given by 

I I 

S,= [;M,$2-v(x)]d7 + 
s s 

$M(Ao)2x2d7. 

0 0 

601 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

In other words S, is the action with the potential u(x) renormalized by the 
subtraction of a harmonic term with frequency do. From now on we shall call 
it the renormalized potential us(x). In the case u(x) = iMo2x2 (simple harmonic 
oscillator) we define also a renormalized frequency oR by wi = w2 - (Am)‘. This 
effective potential felt by the particle may always result when we couple it to a 
reservoir”). Here, this assumes a very simple form because of the model we have 
been employing to the environment. 

At this point we wish to emphasize some connections of our expression (3.38) 
with other previously developed ones. To start with let us notice that the 
imaginary exponent of that expression is very similar to a two variable action 
proposed by Morse and Feshbachz5). Suppose for simplicity that uR(x) = 0, then 
calling the imaginary part of that exponent S,, we have 

, 

Se,= [fkC2-$4j2-kQ(xi --y+ +xj -yi)]dz. 
s 

(3.40) 

0 

Now, defining a new. set of variables {X, j} obtained from the original set by a 
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rotation by rc/4 we get 

(3.41) 

where the Morse and Feshbach Lagrangian spontaneously appears integrated 

over time. Thus, our expression (3.38) gives us a clue of how to interpret that 

Lagrangian correctly. The variables ?c and jj (or x and y) cannot be thought as 

being representative of two different systems interacting with each other. Instead 

they represent coupled paths going forward and backward in time. These two 

paths are needed to describe the time evolution of p”(x, y, t). A diagrammatic 

expansion for the coupling of those paths is made in ref. 17 for a general 

interaction with a heat bath using the Kjeldysh formalismz6). 

Some years ago, Nemes and Piza*‘) created a phenomenological theory for 

dealing with damping in quantum mechanics based on the Morse and Feshbach 

Lagrangian. There, they regard jj as an unphysical variable and trace it out. The 

procedure is very interesting; however, they end up with a result which contradicts 

the linear response theory, namely, the freezing of the width of the wave packet 

at long times. 

In a context much closer to ours, Papadopoulos”) deduced an expression very 

similar to (3.38). Nevertheless, there are two main differences between our 

formulae. The first one concerns the real exponent in (3.38), which he writes as 

(real exponent) = - $ M$o coth $$ 
s 

[x(r) -Y(T)]* dr , 

0 

(3.42) 

for the case of a harmonic oscillator with frequency o. This can be shown to be 

a particular case of our expression. We shall exploit this point later on, in section 

6. The second difference is that he does not have the y dependent term in the 

imaginary exponent of (3.38). To account for the final effect of that sort 

he introduces an explicit time-dependent damping ad hoc. However, we 

is totally unnecessary since a y-dependent term arises spontaneously 

microscopic calculation. 

of term 

think it 

from a 

4. Coupling to velocities 

Suppose we wish to study the motion of a particle coupled to a reservoir such 

that the total Lagrangian is given by 

ux, x, q, 4) = ; Mi2 - v(x) + x 1 e,lji + c $ncj~ - 1 grlofqf . 
I I 

(4.1) 
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This expression differs from the one with which we dealt above only through the 

coupling term (compare (3.4) and (4.1)). 
Consequently, we cannot apply the results of the previous section to this new 

model, at least directly. What we are going to show is that we can transform (4.1) 
into a very similar Lagrangian with a coordinate coupling instead. 

In order to overcome this probiem, let us introduce a new set of coordinates 
given by 

y, = m4, + e,x . (4.2) 

If we write L(x, i’, y, j) and use the Euler-Lagrange equations we shall not 
reproduce the correct equations of motion we obtain from (4.1). This means that 
L is not invariant under the transformation (4.2). It is a very simple exercise to 
prove that the correct Langrangian in the new set of variables is 

i(x,x,y.~)=:Mx2-v(x)-~~+~~ +iC 
I 

, s-;+ (4.3) 

Defining an extra variable R, such that 

R-y, 
mo, ’ 

we can rewrite (4.3) as 

(4.4) 

E(x, i, R, d) = i MX2 - v(x) - 7 s + 1 C,xR, + 1 irndf - 1 ;mwfRf , 
l I i I 

(4.5) 

where Ci = e,oi, which is exactly of the form of the Lagrangian we used in the 
previous section. The difference here is that the transformation (4.2) introduced 
a new quadratic term into the bare potential v(x). Thus, the new potential is 

i(x)=v(x)+$&x2~ 
I 

(4.6) 

Now we can proceed as we have done before. Our problem was reduced to the 
one of section 3. The propagator for the reduced density operator is once again 
given by the expression (3.38). What is worth noting here is the form of the 
renormalized potential V,(x) which is written as 

r&(x) = V(x) - 4 M(Aco)~x~. (4.7) 

The frequency shift do is defined in eq. (3.37) however, to get it we have already 
assumed a specific distribution of oscillators. We can proceed more generally if 
we follow the steps (3.28) to (3.31) with a,(z -3) given by the more general 
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expression (3.11). In this way do is such that 

M(do)2=2C 
C2 

~coso,(z -5) 
, 2mof 

=2+ 
T=s , 2mof’ 

(4.8) 

which clearly reduces to (3.37) if we assume the distribution (3.23) to be valid. The 
advantage of working with (4.8) is that we can show that the correction potential 
which depends on do, exactly cancels the extra bit in (4.6). Moreover, this fact 
is completely independent of the distribution of oscillators we are using. Thus, for 
the model proposed in (4.1) we can say that the renormalized potential is the same 
as the bare one. that is 

&(x) = v(x). 

The physical interest of the apparently rather academic point discussed in this 
section lies in the conclusion that not every system which is dissipatively coupled 
to its environment need undergo a frequency shift (or potential renormalization) 
due to the coupling. This point is of some significance in the context of the 
quantization of LCR- circuits and similar systems (where a failure to appreciate 
it has, indeed, caused some unnecessary confusion in the recent literature), and 
is discussed further in ref. 21. 

5. The Fokker-Planck equation 

In the last two sections we derived an expression for the propagator of the 
reduced density operator of a particle interacting with a reservoir with some 
specific characteristics. We also showed that in classical limit, the real exponential 
of (3.38) reduces to the characteristic functional of the stochastic force acting on 
a Brownian particle. At the same time we gave a definite form for the additional 
imaginary part of the integrand, i.e. the term involving x.?, etc, in (3.38). The 
question we want to answer now is whether this term makes sense. In other words: 
is that term compatible with the classical Brownian motion of a particle? In order 
to answer this question we shall initially investigate the equation of motion for 
the reduced density operator in the semiclassical region. If we wish to compare 
this equation to the one of a classical Brownian particle we must find a way to 
write it down in the phase-space representation. That is the only way we can 
compare it to the equation of motion of the phase-space distribution in classical 
physics. The way we can perform the transformation from the Hilbert to the phase 
space is by using the so-called Wigner distribution function29). For recent reviews 
on Wigner’s formalism we refer the reader to3”O). 

Let us start by writing (3.38) when 2kT 2 hln 9 ho,, 52 being the cutoff 
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frequency of the reservoir oscillators. This reads 

&[x] - S,[y] - My 
s 

[xi - yj, 

0 

Tl[x(r) - y(r)]2 dr . (5.1) 

0 

At this point one should worry about the meaning of this high temperature 
quantum-mechanical propagator. Of course this expression becomes meaningless 
if we consider the classical limit kT 9 ho, and still keep its quanta1 form. 
However, one must bear in mind that this is our first step to obtain an equation 
of motion for the reduced density operator in the classical limit. Later, we shall 
take the appropriate measures in order to be consistent with this approximation. 
We shall use (5.1) rather than (3.38) only to simplify our future expressions. 

What we shall do now is to follow Feynman’s procedure inz2) when he derives 
the Schroedinger equation from the functional integration formalism. Here our 
problem is analogous to that one. While in2*) one has the propagator for the wave 
function from which one gets the equation of motion for $, here we have the 
propagator for the density operator from which we intend to get a master equation 
for b. 

Suppose we have the reduced density operator at a time t and wish to find its 
value at t + L where e +O. By (2.14) we have 

P(x,y,t +c)= 
ss 

dx’ dy’J(x, y, t + 6; x’, y’, t)p”(x’, y ‘, t) . (5.2) 

The propagator J in (5.2) can be written in a very simple form when L is small. 
To do so we only need to remember that for small time intervals any regular path 
can be approximated by a straight line. Thus, functional integrations over paths 
in short time intervals can be put equal to the value of the integrand times a 
normalization constant22). Then, 

I+6 

J(x,y,t+c;x’,y’,t)=$exp$ 
‘is 

($fi2 - uR(x)) dr 

I+6 t+c 

- 

s 
($f~’ - u&) dr - 

s 
My[xl -yi, +yi -xp]dr 

1 
f f 

I+6 
1 

x exp-- 
A2 s 

2MykT[x - y]* dr . 

I 

(5.3) 
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All the integrals appearing above can also be approximated when c-0. Calling 
x(t + t) = x, Y(t + 6) =Y, x(t) = x’ and Y(t) =Y’ and using the fact that 

I+< 
x-x’ 

xz_------, 4,&-Y’ and 
t t s 

(5.4) 

, 

in the expression for J, eq. (5.2) becomes 

_!!7 (x _3, +7 (y _;)82_!!$3x _y)2 

- y (x - Y )(P, - 82) - F (BE - 8212 

i 

xp”(x -B,?Y -B*,t>3 (5.5) 

where x - x’ s j?, and y - y’ = p2. Now we can evaluate (5.5) in the limit t -+O. 
First of all we must notice that the integral in (5.5) contains two very fast 
oscillating terms with exponents proportional to t -I. It is clear the main 
contribution comes from 8, and /& very small, otherwise the factor 
exp(iM/2th)(B: - /?:) would oscillate wildly giving no finite contribution to (5.5). 
To be more specific, we want 

8, Z/?*M $ 
0 

“2, (5.6) 

because in this region the phase of both exponentials will change by an amount 
of order 1. One might wonder at this point about the contribution of the region 
jj, z flz z b with finite fi. In this case the phase of the two exponentials combined 
would change by an amount of order 1 when 

(5.7) 

Now, if we define new variables D; = p, - y(x - y)~ and /J; = b2 + y(x - y)t and 
expand the exponentials of (5.5) in t we can easily show that in the limit E +O all 
terms depending on d/I in the integrand will be 0(6*). This means that we can 
safely forget the region j?, z p2 z /I. 

The procedure now is simple. Let us expand p(x - j?,, Y - fi2, t) for fl, z. b2 z 0 
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and keep all terms O(c) in the product. In terms of /I; and /?; it reads 

a2i +:_P;'-ILUR(X)~+lEURCV)P"- ay h h q!E(x_y)$j . 1 (5.8) 
All the integrals appearing in (5.8) are of the Fresnel type and can be evaluated 

from - cc to + co since we know their main contribution will come from a tiny 

region about /I; = /I; = 0. Expanding the left-hand side of (5.8) up to terms Co(t) 

and equating them to the corresponding ones on the right-hand side one concludes 

the following: 

a) The zeroth order term in t gives us the normalization constant 

27Lch 
A2=---; 

M 
(5.9) 

b) The first order term in t gives us the desired equation of motion for fi in the 

semiclassical region, 

ac h a2b+ ii a2b a6 hdx) _ 
rpp 2Mi 8.x’ 

----~-~(x -Y); +y(x -Y)- +- 
2M i ay ay ihP 

OR(Y) - 2M@T( _ y)‘p”. -TP-Tx (5.10) 

Once again, we wish to emphasize that (5.10) is not the most general equation 

for p”. It is valid only when we have 2kT >, h0 9 Aw,. If we were interested in 

obtaining something more general we would not have been allowed to write (5.1) 

instead of (3.38) and the last term of (5.10) would involve a time integration (it 

would depend on the past history of the system). 

The form (5.10) is not the most suitable one if we wish to compare it to 

previously developed master equations. We would rather write it as an operator 

equation independent of representation. This can be done with the help of some 

identities such as 

and 

(x IY) =w -Y>, (XIW)IY) = U(YV(X -Y) 

(5.11) 

(ilp(y)= -S&6(x-y). 

Employing them one can check that (5.10) is the coordinate representation of the 
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operator equation 

(5.12) 

where H, is the renormalized Hamiltonian of the system alone, D = qkT, 

A = - ihy and [ ,] stands for the commutators while ( , } for the anti-commutators. 

Eq. (5.12) was deduced by Dekker’) by a completely different method. Actually 

his equation contains two additional diffusive terms (besides D) which he shows 

to vanish under certain conditions. Moreover those extra terms are due to the 

inclusion of noise sources in the equation of motion of the position as we 

mentioned in the introduction. Another difference is that Dekker’s equation is 

valid for zero temperature with D given by some finite value while ours is valid 

only when T is high and D = qkT. 

At the beginning of this section we have pointed out that once we had the 

master equation for p’, another step would be necessary to compare it to the 

equation for the classical distribution in phase space. As we have said before what 

we need now is the Wigner distribution (or, the Wigner transform of p”) defined 

by 7 

(5.13) 

In spite of presenting a purely quanta1 description of a system the Wigner 

distribution becomes very important when we are interested in the semiclassical 

region. This is because Wigner’s theory is described directly in the classical phase 

space of the system. When h -+O, w(x,p, t) tends to the classical distribution in 

phase space. For discussions on the validity of this assertion we refer the reader 

back to refs. 3 and 30. 

If we take the Wigner transform of equation (5.12) and employ the identities 

(5.11) we shall find (see’) for details) 

aw 
~pr~+%+~+27~prv+D111’ 

Z = -ax ap ap ap' ’ (5.14) 

which is the well-known Fokker-Planck equation describing the time development 

of the Wigner transform of the reduced density operator of the system. This is a 

purely quantum mechanical equation. However, in order to be consistent with the 

fact that we are considering D = VkT we need to take the limit h-+0 in the 

expression for w. As we said before, w(p, x, t) tends to the classical phase space 

distribution in this limit. Then we conclude that (5.14) describes the time 

development of the phase space distribution of a classical Brownian particle when 

h-+0. 
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We also realize that the third term on the right-hand side of (5.14) is a direct 
consequence of the existence of the y dependent term in the imaginary part of the 
exponent in (3.38). Therefore, the latter is responsible for the appearance of a force 
of the form VA! in the classical equation of motion for the Brownian particle. 

What we have achieved so far is that our quantum-mechanical expression (3.38) 
for the propagator J is in total accordance with the equations believed to describe 
the classical motion of a Brownian particle. It also means that the choice made 
for p,(w) C’(o) in (3.23) is a very suitable one, allowing us to describe J solely 
in terms of the phenomenological damping constant q. 

6. Some applications 

In this section we shall study the behaviour of p”(x, y, t) for some specific 
examples, namely the damped simple harmonic oscillator and its special case, a 
damped free particle. We shall now drop the restriction of high temperatures 
because we are interested in the extreme quantum limit (T-0) as well. However, 
before starting it we would like to point out that the model presented in this paper 
is compatible with several kinds of motion. For example, suppose we start off from 
a harmonic potential u(x) = $4w2x2. One can easily show that both underdamped 
and overdamped motions can be described by a proper choice of the microscopic 
parameters of the theory. This is valid for coordinate coupling as well as for 
velocity coupling. The difference between these two cases is that in the former one, 
it is the renormalized frequency wR given by ok = o* - (do)* which is the 
frequency to be compared to y, while in the latter this oR is such that wR = w. For 
details we refer the reader to3’). 

Now, we shall proceed to evaluate (3.38) for the harmonic oscillator and the 
free patrticle (wR = 0). To begin with let us rewrite (3.38) as 

J(xf3 Yf3 l; xi, Yi, O> Dx DY ev i @, ~1 exp - :4rX, ~1, (6.1) 

where 
I 

S[x,y]= 
s 

L(x,.?,y,j)dz- (6.2) 

0 0 0 

L =;Mi*-+Mj*-+M~;x*+fMco;y*-Myxj +Myyi (6.3) 

0 00 

x cos v(z - s)[x(s) - y(s)] ds dz dv . (6.4) 
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The procedure to evaluate (6.1) is simple. We shall expand the whole integrand 

about the two-dimensional path which makes s”[x, y] an extremum. This path is 

found by 

ss” d aL aL 
iG=zax-ax 

=Mi+My~+Mc&x=O, 

8s” d aL dL 

by dr aj -=Mj+MyifMwZ,y=O, 
(3) 

(6.5) 

(6.6) 

because the last two terms in (6.2) involve just end point variations. It is suitable 

to introduce new variables in order to solve (6.5) and (6.6). Then we define 

X(z) = x(s) +-V(T) and t(z) = x(z) -J(T) (6.7) 

and our equations become 

x+2ylli+o2,x=o, (6.8) 

4’-2y[+o2,5 =o. (6.9) 

When X(t) = X,, C(t) = &, X(0) = X, and ((0) = t,, their solutions are: 

X(z)=(sinwt)~‘(X,e;“sinw~ +X,sino(t -T)}e-;‘, (6.10) 

[(T) = (sin wt)-‘{tfe -?‘sin oz + 5, sin o(f - T)] eYi, (6.1 1) 

for the underdamped harmonic oscillator (UDHO from now on) with 

<I)’ E oi - 1”. Fo r tl le overdamped case (ODHO) the solutions are obtained by 

substituting w by iG in (6.10) and (6.1 1) where ~3’ E y’- ok, while for the free 

particle (FP) the substitution is of w by iy. Actually, these substitutions will be 

always valid for our subsequent expressions, however we warn the reader that in 

some of them (FP ones) the limit (,+--+O must be taken carefully wherever it is 

necessary. Bearing this in mind we shall write the formulae in this section only 

for the UDHO. 

The action ,‘?[,I’, <] calculated along those paths (6.10-6. I 1) is found to be 

expressible as 

(6.12) 

Now. let us write our functional integral in terms of the translated paths 

c’(T) = C(T) - c(T) and X’(T)=X(T)-z?(T), 
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with t’(O) = t’(t) = 0 and X’(0) = X’(t) = 0. Then one gets 

R 

A(t) = T 
s 

dvv coth $yI,(t), 

0 
I I 

A,(t) = g ss sin or cos V(T - S) sin ws e”‘+ ‘) dr ds , 

0 0 

R 

B(t) = T 
s 

dvv coth $&IV(~), 

0 

, I 

B(r)= y7’ 
Y sin’ot 

sin wr cos v(z - S) sin w(t - s) ey(‘+“) dr ds , 

0 0 

R 

C(t) = G 
s 

dvv coth &T C,(t) , 

0 

, , 

sinw(t -r)cosv(z -.r)sino(t -.s)ey(r+S)dr ds, 

0 0 

x exp k ME 5'1 

and 

&.[& (‘I= $ 
I 

dvv coth $& ~(z)cosv(z -s){‘(S)dr ds. 

0 0 0 

611 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

What is left to evaluate now is the functional integral (6.22). As both t’(z) and 
X’(z) vanish at z = 0 and t = t, we can expand them in terms of an orthogonal 
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set obeying the same boundary conditions**), 

X’(t) = C X, sin W,T and ~‘(r)=~&,,sino,,,r, (6.24) 
n m 

where o, = m/t. Now, inserting (6.24) in (6.22) one gets after some straight- 

forward integrations (see”) for similar procedure) 

(6.25) 

where c is the normalization constant. This result is exactly the square of the wave 

function amplitude for the undamped case. So, it means that the damping modifies 

just the exponent of J(X, ts t; X,, t,, 0) and its final form is 

L(r)XiSf- N(t)XfS, exp - k {A(t)Sf + B(tEf5; + C(t)tY} . (6.26) 

Now we have the tool we need to calculate the time development of the reduced 

density operator of the system in which we are interested. For example, suppose 

we initially have the system in a pure state described by a wave packet centered 

at the origin with initial momentum p and width 0. The reduced density operator 

is then 

p(X,, (,, 0) = (2na*)- I:* exp !+ exp - v (6.27) 

and its time evolution reads 

d(& 5f, 2) = 
ss 

dX, dS,J(& i’r> f; x,, 5,,O)p”W,, r,, 0) . (6.28) 

which can be evaluated with the insertion of (6.27) and (6.26). All the integrations 

in (6.28) are Gaussians and very simple. However, despite the simplicity the 

resulting expressions in the intermediate steps are quite lengthy, forcing us to 

quote only the final result 

x exp - c A 2a’L’ 
x+p- 

(4a*K,L - Bh)* 

ii? h2(8a2K; + 4hC,) 1 5? f 
x exp i K2Xfrf - (6.29) 
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where we must remember that A, B, Cl, K,, K2, L and N are all functions of time 
and have defined 

c,(r)~c(r)+$, ~,(t)=K(r)+y and Kdt)=K(l)-y. (6.30) 

Of particular interest is the expression we can get from (6.29) by making 
&=x,-yr=O or X,=xr+y,=2x,, that is 

P(x,,x,,I)=F2(1)[2~2~~~~C1]1’2exp-2o~~-hC,(x’-~)2. (6.31) 

This shows how the initial 1$(x)1’ develops in time. Its centre follows the path 
given by 

P 
q(t) = - 3 

2N(t) 
(6.32) 

which is the one of a classical damped particle, for example, for the UDHO it 
reads 

x0(t) = & sin ot edy’ 

while its width obeys the equation 

l?(t) = ; 
20’K:(t) + fiC,(t) 

> N2(t) ’ 

(6.33) 

(6.34) 

This expression gives us the width of p(x, x, t) at any time t. An interesting result 
is obtained when we study it at infinite times. The procedure is straightforward 
but extremely tedious. Inserting (6.13), (6.20) (6.21) and (6.30) into (6.34) one gets 

02(t+co) = ((x - x,(a~))~) = h rr[ vcoth&(&(W;_~$v+4Y2v2)~ d 

0 (6.35) 

where we took the limit s2 + co at the upper limit of integration. Expression (6.35) 
is a very familiar one. The imaginary part of the response of a harmonic oscillator 
of frequency oR to an external force F(t) is given by 

x”(V) = 1 w 
A4 (v’ - Wi)’ + 4y2v2 

Thus, 
cc 

a2(ca) = 1 
s 

dv coth &“(v), 

0 

which is the well-known fluctuationdissipation theorem[32]. 

(6.36) 

(6.37) 
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7. Conclusions 

Using a specific model for a particle interacting with a reservoir we have 
deduced the expression (3.38) for the propagator of the reduced density operator 
of that particle. Under certain circumstances we could get a closed expression for 
b(x, y, t) at any instant t and for all temperatures as we have shown in the 
previous section. The centre of the packet p(x, x, t) follows the motion of a 
classical Brownian particle (see (6.33)) and its width in the infinite time limit is 
shown to agree with the fluctuation-dissipation theorem (6.35). The latter result 
can be exploited a bit further. 

To start with, (6.35) disagrees with ref. 27. There the authors claim that the 
width of the wave packet of a free particle “freezes” at infinite time. If we make 

wR+O in (6.35) we can show that when T-0, (6.35) diverges as (- lnv) as v -+O. 
This is equivalent to say that a’(t) behaves as In t when t +co. Consequently, a’(t) 
spreads slower than it does in the undamped case (a’(t) = J-), however 
it does not freeze. 

We attribute this difference between our approaches to the fact that, unlike us, 
the authors of?‘) do not take any sort of diffusive effects into account. By making 
4[x, y] = 0 in (6.1) we reproduce their results, despite the completely different 
physical interpretation of the two approaches. 

Diffusion terms were also omitted from other attempts to quantize Brownian 
Motion starting from the Morse and Feshbach Lagrangian (see, for example, refs. 
33 and 34 or sections 3 and 6 of ref. 35). 

Our second comparison comes out when we study the extremely underdamped 
limit (y -0). When this happens the final width at t -+ cc can be worked out at 
any temperature as 

h 
a’(c0) = - 

ho 

2M0, 
coth 2 

2kT’ 
(7.1) 

which is the well-known result of equilibrium quantum statistical mechanicsZ2). 
The same expression should be obtained if instead of working with the exact 
propagator J given by (3.38) we had worked with the one in (5.1) but with 2MkTy 
replaced by hMyw, coth(hoJ2kT). In other words, we should have a diffusion 
constant (in momentum space) given by 

D = Myo, h coth ho, 
2kT’ 

(7.2) 

valid at all temperatures. When T-co, (7.2) gives us the classical relation 
D = 2MykT, while when T-+0 the diffusion constant becomes 

D = Myhw, = $,&wR, (7.3) 

which is the result found by Dekker’). 
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As we have pointed out in the introduction, Dekker applied canonical 
quantization to complex variables making use of explicit noise sources in the 
equations of motion of the position and momentum operators (however, see ref. 
36 for an alternative derivation of expression (7.3)). It is true there are microscopic 
models which allow one to do so, nevertheless it can be showr?‘) that these 
equations have the same solutions as the usual ones (with noise sources only in 
the momentum equation) in the limit of very weak damping. 

The trick proposed in (7.2) does not seem to be correct for finite y. It means 
that the kernel cl,(t - t’) appearing in the exponent of the influence functional in 
(3.9) can always be replaced by a function of the temperature times a delta 
function of (t - t’). However, this is not true for our specific model. Even if one 
can find a different model for the reservoir for which (7.2) is correct for any y, 
our model serves as a counter-example to show that the procedure is not general. 

A diffusion constant of the form (7.2) was proposed by Papadopoulos2*) and 
Svin’in3’). But, once again, their theories are valid only in the weak damping limit 
because this is a necessary condition for the validity of that expression. 

Actually, it has been an old dream of many physicists to try to describe the 
relaxation to equilibrium by Markoffian equations (no time kernels involved) even 
in the quantum regime. However, we are a bit sceptical about the possibility of 
this, since as we have shown simple models can recover both equilibrium statistical 
mechanics and linear response theory asymptotically without being Markoffian at 
all. Ford et al.16) also achieved the same conclusion about the Markoffian 
assumption in the quantum limit. Notice that we are talking here only about the 
diffusion terms. Our drift term (the one involving y) is always Markoffian. In order 
to find non-Markoffian corrections to the latter one needs to study the 
modifications of x”(v) due to the sum rules which are important to describe the 
short time behaviour of the Brownian particle. 

Finally, we should emphasize that although we have taken a model for the 
system-environment coupling that at first sight looks very arbitrary, the main 
features of our results should be fairly insensitive to its details. In particular, 
modification of the choice (3.23) for the quantity p,(o)C2(o) should make little 
qualitative difference to the results provided only that the form (3.23) continues 
to hold for o of the order of the characteristic frequencies of the system; all it will 
really affect is the frequency shift (Am)‘, which is in any case not directly ob- 
servable (cf. the discussion of the analogous point in the tunnelling problem ir?‘). 
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