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Effects of localization on two-dimensional superconductors have been inves-
tigated by taking into account quantum corrections to the theory of dirty super-
conductors in the order of (er7o)~* where & and 7, are the Fermi energy and the
relaxation time of an electron, respectively. The mean field superconducting
transition temperature is seen to be reduced by localization. This is because the
Coulomb repulsive interaction is enhanced and the density of states of electrons
is depressed in dirty systems. Recent experiments by Kobayashi ef al. on granular

films of tin are discussed in this context.

§1. Introduction

It has been proposed’? that two-dimensional
metals are not truly metallic and that electrons
are localized at absolute zero, 7=0, in non-
interacting systems no matter how weak the
disorder is. The precursor effect of this complete
localization at absolute zero is seen as a
logarithmic dependence of resistance on tem-
perature.? ™ This logarithmic region can be
called as weakly localized regime. Since pertur-
bational treatments from the metallic limit are
applicable in this regime,”’ microscopic calcula-
tions of the quantum corrections of transport
coefficients have been performed with respect
to (es7o) ', where & and 1, are the Fermi
energy and the relaxation time of an electron,
respectively. It has recently been shown® 1%
that quantum corrections with respect to
(ex7o)”! are also important in interacting
electron systems; the interplay between the
interaction and disorder introduces another
logarithmic term in resistance.

In this paper we investigate such effects of
localization on the superconducting transition
temperature T,. We will examine the quantum
corrections to the theory of dirty supercon-
ductors by Anderson'!) and Gorkov.!? One
of the characteristic features of their theory!1-12)
is that T, is not affected by static and non-
magnetic disorder. In their theory the interplay
between the interaction and disorder has not
been taken into account. We will see, however,

that this interplay, which is due to quantum
corrections, introduces important effects in
two-dimension: The Coulomb repulsive inter-
action is enhanced and the density of states of
electrons are depressed in disordered systems.

In §2, we evaluate a Cooper pair propagator
by using the one-electron eigenfunctions which
are diagonal in a disordered system. In §3,
the effects of the electron-electron interaction
on a Cooper pair in disordered systems are
examined, and T, in the mean-field theory is
obtained. It is shown that-T is reduced as the
sheet resistance is increased even if the BCS
coupling constant is fixed. In §4, recent ex-
periments by Kobayashi ez al.**** on granular
films of tin are discussed in the present context.
In our preliminary report,’> we have already
proposed that localization depresses T,
although the analysis there was not complete.
This paper reports our complete results. We
take units A=kg=1.

§2. Formalism

For calculating the superconducting transi-
tion temperature 7, in the mean-field theory,
we start with the BCS Hamiltonian

H=Ho+dacs j dr[A* 4O ()
FATEUEEL O

where ,(r) is the electron field operator with
spin ¢ and gpcg is the BCS attractive interac-
tion parameter (gpcs<0). Here, 4 is the
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superconducting order parameter defined by

A= J dr Tr e My, (), ())/Tr e 7. (2)
The Hamiltonian H, may be written as
H0=HKE+Himp+Hint’ ) (3)

where Hyp means the Hamiltonian of Bloch
electrons and H,,,, the impurity potentials. The
Hamiltonian H,,, includes all kinds of electron-
electron interaction except the BCS term given
in eq. (1). As we will see in the next section, the
details of the electron-electron interaction such
as the momentum transferred by the interaction
become important in disordered systems.
Assuming the second order phase transition
and using eq. (2), we obtain the following
equation for T, in the mean-field theory,

T-1
lchsl—l_ = jdr jdr' jo du

x LTup (v, wWr i (r, w)
Xy (r', O (', 0)g,, (D)

where u is the imaginary time, 7w is the time
ordering operator, and the bracket means the
thermal average in the space of H,,.

Following the theory of dirty superconduc-
tors by Anderson,’") we introduce the eigen-
functions in the disordered system which are
diagonal in the space of (Hgg+ H;pp) as'®

Yo (n= g Gu(r)Cas» &)

where ¢,(r) is the eigenfunction of state « and
¢, is the annihilation operator of the state
with spin o¢. Introducing eq. (5) into eq. (4),
we have

T-1
|chs|_1=Z [ du

a,p JO
x{Tuc ;l(u)c ;‘t(u)cﬂ‘T(O)cﬁl(O)>H0’
(6)
where o* denotes the time-reversed state of a
and thus the states a and o* are degenerate.
Let us first neglect H,,, in eq. (3). In this
case, eq. (6) is evaluated as follows,

lgBCSl 1= T ; Z Ga(en)Ga(_ Sn)' (7)

Here G,(¢,) is the thermodynamic Green’s
function of state o:

Ga(sn) = (ian - fa) -t ’ (8)
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where ¢,=2nT(n+3%) with » being integer, and
¢, is the energy of state « relative to the Fermi
energy &p. Replacing the summation over o
by the integral over &, in eq. (7), we find

|gcs| ™' =T ; nN(0)/le,l, ®

where N(0) is the density of states of electrons
per spin. If N(0) is assumed to be independent
of disorder, T, is unchanged. This result is
called as the Anderson’s theorem of dirty
superconductors.'” However, it has recently
been shown® 1% that the electron-electron
interaction strongly modifies the one-electron
states in disordered systems. In the next section,
we consider the effects of the electron-electron
interaction on a Cooper pair in disordered
systems.

§3. Effects of Electron-Electron Interaction

We assume that the interaction is in-
stantaneous and our Hamiltonian is written as

Hint= Z

0,0’

j dr j dar' Y. ¢X)ep(r)o(r—r)

a,p,y,0
X ¢7(r)¢6(r')c;:‘c;a"cyo"_06a ’ (10)

where «, B, y, and § mean the disordered eigen-
states, and v(r —r") the interaction function. The
first order effects of the interaction on a Cooper

~ pair are given in Fig. 1, where the solid lines

are the electron Green’s functions and the wavy
lines the interaction. In the figure, the processes
(a) and (b) denote the Fock corrections, (c)
and (d) the Hartree corrections, and (e) the
first order vertex correction.

, -
a /Na a ;
a a
v
a a\__sa a
(a) (b) (c)
a a B

(d) (e)

Fig. 1. Corrections of a Cooper pair in the first order
of the electron-electron interaction in disordered
systems. The processes (a) and (b) are the Fock
corrections, (c) and (d) are the Hartree corrections,
and (e) is the vertex correction. The wavy lines
denote the interaction.
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Let us first study the Hartree-Fock (H-F) corrections, Fig. 1(a)~(d). The contribution to the
right hand side (r.A.s.) in eq. (6) is written as Ry and is given by

RHF= - T2 Z Z j\ dr j‘ dr’ V(l‘—- l") Ga(sn)Ga(_ an)[Ga(sn)-l- Gu(— sn)]Ga'(sn')a

n,n’ a,o’

V(r—r)=¢ ()b — 1), (r)u(r) — 26 (r )b (r)o(r — )b, (r)d, (1),

(1
(12)

where the factor 2 in the Hartree term is due to the spin. Using eq. (8), we rewrite eq. (11) as

1 v
Ryr=T ; e, Zal [6G.(e,) —0G,(—¢&,)),

; 6G(g,)= ; T ; ; j dr j‘ dr' V(r—r)G2(e,)G, (e,).

Therefore, the H-F corrections to the Cooper

pair is expressed by the correction to the one-

electron states. As is easily seen, >, 6G,(e,)

given by eq. (14) is a first order correction of the

trace of the Green’s function due to inter-
=T !

actions, i.e.
<)
Ly 8 ()

where |o) is the eigenstate of the disordered
system and H is the total Hamiltonian. Since
I(g,) represents the density of states and is
independent of the base function, we can
evaluate this in terms of the ordinary
momentum representations. Such evaluations
of the modification of the density of states have
been performed by Altshuler et al.3:1%

Let us introduce electron-hole (e-h) and
electron-electron (e-¢) vertex functions in Fig.
2 as the broken and the double broken lines,
respectively.”) Here, the dotted lines and
crosses represent and

Ie)=Y, <<x is,,l—H

impurity potentials

p:en
]
1
1
'

(a)

P-q.€-w,

-P+Q. €,

Fig. 2. (a) Electron-hole vertex function. (b) Elec-
tron-electron vertex function.

(13)

(14)

averaging procedure over the distribution of
impurities; for simplicity, disorder is expressed
as impurities. In the case of g,(¢,—w;) <0,
|w|to«1, and Dg?ty«1, both of the vertex
functions are of diffusion type,

I'(g, w)=15"'(Dg*+|e) ™", (16)

where D =g¢gg7o/m is the diffusion constant with
m being the effective mass of an electron. In
the presence of finite inelastic scattering rate,
7,1, eq. (16) corresponding to the e-e vertex
function has correction. However, in the tem-
perature region where 77,>1 is satisfied, the
correction can be ignored, and we assume in
the following that this condition is satisfied.
The H-F corrections in the order of (ezt,) ~*
of an electron with energy ¢, and momentum
k are given in Fig. 3.7 In the figure, the
processes (a) and (b) are the Fock corrections,
and (c) and (d) are the Hartree corrections.
The characteristic values of momentum Q and
energy o, transferred by the process (a) are

(d)

Fig. 3. Self-energy corrections in the order of
(erTo)~1: The processes (a) and (b) are the Fock
corrections, and (c) and (d) are the Hartree correc-
tions. The wavy lines denote the interaction g, and

’

g.
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small, i.e. |Q|«2ky and |w,|«15", where kg
is the Fermi momentum, and this interaction
is denoted by g,. On the other hand, the value
of Q transferred by the processes (b), (c), and
(d) can be large, i.e. |Q| S 2kg although ||«
75!. The strength of these interactions is
assumed to be equal, for simplicity, and are
denoted by g'.® Introducing these corrections
into eq. (15), we find'®
Ryp=T Y. 16N (), (17)
ON(e,) _ —(9,—39)NO)
NO) 2negT,

1 1 el :
* [ln 2nTt, _¢<§+2nT>] » (18)

where y/(z) is the di-gamma function. We note
that the interaction g, will be strongly repulsive
(9,>0) due to the Coulomb interaction,
whereas g’ will be attractive (g'<0) because
the phonon-mediated interaction is dominant
at large momentum transfer in superconducting
materials; i.e. g’° will be close to the BCS
coupling constant ggcs(gpcs <0). Therefore, we
expect quite generally that the density of states
is depressed. As regards the energy dependence
of the density of states, we may introduce the
following approximation for |¢,|>2nT,

ON(,) _ (9:—39)NO) 1
NO) T Zmer, ek ()
Using eq. (19), we obtain

—(9:—39)N(0) 1)?
— (m T—f()) (20)

Ryr=

Here, we have neglected the constant terms.

Next, we consider the first order vertex
correction given in Fig. 1(e). The contribution
to the r.h.s. in eq. (6) is written as R, and is
expressed as '

R=-T*Y ¥ [dr jdr’
n,n’ a,f
X g (r)py (r)o(r —r)ps(r)ds(r)
X Ga(sn)Ga( - sn)Gﬂ(sn')GB( - 8n')' (21)
By introducing the real-space Green’s function
defined by

; G ez (Nba(r)=Ge,: v, 1),

- €q. (21) is rewritten as

(22)
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1
R,=T? ”zn:, a;a Toe jdr v(dr’ v(r—r)

x[G(—¢,: 1, ¥)—G(e,: r, r)]
x[G(—e,:r, ¥)—G(e,y:r, 1),

(23)

where the relation ¢¥*(r)=¢,(r) was used.
Introducing the Fourier amplitudes of the
interaction v(r—r’) and the Green’s function
G(e,: r, t'), we rewrite eq. (23) as

R=13 ¥ ¥ 1O

ww v G deEy
x[G(—¢,: k, k'Y—G(s,: k, k)]
x[G(—¢&y: —k—0Q, —k'=0Q)
-G, : —k—Q, —k'—0)].

We examine the singular contributions to
R, in the order of (ggty)~*. These are given in
Fig. 4 and are expressed as

R,=-T? Z ZZ 2
n,n’ k

q Enln’
X [glr(q’ 8n+8n’)Gk(8n)G—k—q(—8n')

+ gT(% &+ sn')Gk(sn)Gk +q( - sn')]a
(25)

with ¢,>0 and ¢,,>0. Here, the interaction
v(Q) was replaced by g, and g’ depending on
the value of Q. We note that since the time-
reversal symmetry relation has been used in
eq. (23), there is no difference between e-e
and e-h diffusion processes in Fig. 4. Taking
the summations over k, k', and g, we obtain

R=-T2Y 212N Q©) (9:+9)N(0)
v nn  Enbp EpTo

1
n b
TO(en + 8n')

24

x 1 (26)

where ¢,>0, ¢,,>0, and 15 '>(g,+¢,). We
take the summations over ¢, and e,, and
retain only the most dominant contribution.

Then, we have

(@) (b)

Fig. 4. Diagrams which contribute to the vertex
correction of a Cooper pair.



1384

R=— (gl+g’)N(0)< 1

3
6mepT, In E) ’ @7)
Although both g, and g’ contribute, the
Coulomb interaction g, will overcome the

attractive interaction g’. Using eqgs. (9), (20),
and (27), we have the equation for T

_ ’ 2
SEUE LT
T dneet, T
(9.+9)N©) 1\?
6TeRT, In Tro) (28)

where T, is the transition temperature in the
pure system. The first term in the r.A.s. in eq.
(28) is due to the correction of the density of

states and the second term is due to the vertex -

correction. In terms of the superconducting
coherence length of the pure system and the
mean free path of an electron, é,=vg/1.752T,,
and /=uvgt,, respectively, vp being the Fermi
velocity, we may express eq. (28) as

In e - _(91=3¢)NO) (0)[111 <5.4095>]2

T.o 4rept, I'T,
(9:+9")N(0) o Too\ TP
brenty In { 5.40 1T, .
29

Thus, the corrections due to disorder are
appreciable in real thin films where £, /.

In the usual superconducting materials, the
value of |g’|N(0), which is close to |ggcs|N(0),
is much smaller than one. On the other hand,
the value of g,N(0) can be of the order of
unity. Therefore, ignoring g’, we show in
Fig. 5 T,, given by eq. (28), as a function of
As=gN(0)/2negt, for several values of 7,T,,.
We see in the figure that T, is reduced as A is
increased. By noting that the sheet resistance is

[o] | 2 3 4 5 6 7
g, N(O)

—_— xI
2Ter Ty

2

Fig. 5. Numerical results of T, as a function of the
parameter g;N(0)/2regr, for several choices of
70T o in the case of g’=0.
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given by Rp=mn/e’ert,, we conclude that T,
is reduced roughly in proportion to Ry. We
also see that 7T, has two values for certain
choices of A, and 7, T, suggesting the reentrance
to the normal state at low temperatures. The
origin of the reentrance lies in the existence of
the logarithmic terms in eq. (28). In three-
dimensional bulk systems, the similar reduction
of T, for highly resistive materials also appears.
However, the reentrance is not expected because
no logarithmic terms exist.

§4. Discussion

We have calculated the superconducting
transition temperature in the presence of
localization effects within the mean field
approximation, and ignored the fluctuation
effects which are important in thin films.2®
The calculated transition temperature will,
however, be a measure of onset of short range
order. Therefore, pronounced changes in the
observed resistance may be discussed by use
of the results obtained in this paper.

Kobayashi et al.'*'*) have observed a rapid
rise of resistance below 2 K in superconducting
granular films of tin. Such rise of resistance
has also been predicted by Hebard and
Vandenberg?!) in superconducting granular
films of lead. Simanek?? and Efetov®® have
introduced a phenomenological model for
granular superconductors, in which localized
superconducting grains couple among them-
selves and the phase transition is described as
the onset of the coherent ordering of Josephson
phase. In the model, the Coulomb interaction
associated with charge fluctuations is taken
into account; it suppresses the phase ordering
at low temperatures. Such a phenomenological
model has been extended to two-dimensional
granular films.?* In the present theory, the
Coulomb interaction suppresses supercon-
ductivity and contributes to the reentrance.
Therefore, this theory, which was derived from
the metallic limit, has common physical aspects
as the phenomenological model. It is worth
while mentioning that the present theory
predicts the reentrance only in two-dimensional
systems but not in three-dimension.

In a typical granular film of tin'3:'* which
exhibits the reentrance, the sheet resistance R
is 6.71x10% ohm at room temperature. By
using the relation Rp=n/e’ept, with e?/n=
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7.54x 107 % ohm ™!, we have ggt,=2.0. There-
fore, our perturbational treatments with respect
to (e¢7o) ! may be applicable to this case, and
the observed reentrant phenomena will be
explained by the present mechanism.

In conclusion, we have studied the super-
conducting transition temperature 7, in two-
dimensional disordered systems in the mean-
field theory: T, is reduced by localization. This
is because the Coulomb repulsive interaction is
enhanced and the density of states of electrons
is depressed in dirty systems. The present
theory may be an extension of Anderson’s
theory of dirty superconductors.!’’ The
diagramatical representation of our results,
which may be an extension of Gorkov’s
theory,'? will be given in a separate paper.?>
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