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This paper sets out to review some of the theories which have been published concerning oscillating vane and 
fibre molecular vacuum gauges. The theories of gas damping of a vane or fibre produce results which differ only 
in a numerical constant. The reasons for the differences in these constants are discussed. 
The effective area of a fibre contributing to damping is considered and the result used to reconcile two 
apparently contradictory results. Departures from simple theory are discussed and a comparison is made of 
some measured and calculated constants for some gauges, including a comment on an absolute gauge. 

Introduction 
The principle of  the oscillating vane or  fibre vacuum gauge is 
that  of  a simple pendulum in which the damping is due mainly to 
the gas. The vane or fibre is set in mot ion  by some means and its 
rate o f  ampli tude decay measured, usually by observing the t ime 
taken for the ampli tude o f  the oscillation to fall to one half  of  its 
initial value, this t ime being denoted the half-life t0.5. Since the 
damping is a function of  the pressure and the half-life is a func- 
t ion of  the damping, a measure of  t0.5 is an indication of  
pressure. 

A quartz  fibre gauge was first suggested by Langmuir l  who 
used the device in investigating the clean-up of  gas in tungsten 
lamps. The fibre was allowed to swing freely f rom one end, oscil- 
lation being initiated by shaking the lamp in which the fibre was 
situated. The half-life was observed and found to increase over  a 
period of  time, indicating a decrease in pressure. Langmuir  gave 
no  analysis or  calibration for  the gauge which was used merely to 
show that a decrease in pressure had occurred. 

An approximate theory 
Assuming there is no  friction at the hinge o f  the vane or  fibre 
and that  the angular displacement 0 is small, the torque equat ion 
will be 

d20 dO 
I dt2 + G d t  + wgrO = 0  (1) 

where 1 = moment  of  inertia of  the fibre, G = co-efficient of  
damping,  w = mass of  fibre, r = radius of  gyration, and g = 
gravitat ional acceleration. Equat ion  (1) has the solution 

0 = Ooe-at COStot (2) 

where a = G/2I and to is the frequency of  oscillation which for 
G < / w i l l  be given by V / ~ .  

If0i  and 02 are two consecutive amplitudes in the same direc- 
t ion and z is the period of  oscillation then f rom (2) we have 

Gr 

02/01 = e 21 = e - ~  (3) 

where ~ is defined as the logari thmic decrement and is thus 
given by 

Gz 01 
= 2I-- = l ° g e  0 2 '  (4) 

and will be related to the half-life by 

T 
to.5 = ~ log e2. (5) 

Consider an infinitesimal area dA of the vane at a distance l 
f rom the hinge. The damping torque to this area is dG.dO/dt = 
dG.ufl where u is the linear velocity of  the area; but  the torque  
is also LPd.dA where Pd is the difference in pressure between the 
front and back of  the vane. Hence dG= Pd 12dA/u. 
The total damping coefficient due to the entire vane will be 

G =Pd f i  2dA = P d . j  (6) 
U J u 

where J may be defined as the second moment  of  projected area 
normal  to the direction of  motion.  The  rat io Pd/u is unaffected 
by the integration since it will be shown below to be independent  
of  the vane dimensions. 

A quartz  fibre gauge was used by Haber  and KerschbaumZ 
who gave an approximate theory which was apparently not  con- 
tradicted for almost 40 years. The pressure exerted on a plate 
located in the gas is given by 

1 
P = 3 mnC 2 (7) 

where m = mass of  a gas molecule, n = molecule density and 
C = r.m.s, velocity of  gas molecules. I f  the plate is moving with 
a velocity u then a pressure difference occurs between the front  
and back of  the plate which is assumed by Haber  and Kersch- 
baum to be 

1 1 4 
P d = ~ m n ( C + u ) 2 - - 3 m n ( C - - u )  2= 3mnuC.  (8) 

We may write that m = Mk/go, n = P/kTand C = ~/3RooT/M 
where M = molecular  mass, k = Bol tzmann 's  constant, R0 = 
universal gas constant,  T = absolute temperature and P = gas 
pressure. Substituting in (8) gives 

4 / _ _ =  p M 
u ~/~ R ~ T "  (9) 

It  follows f rom (5), (6) and (9) that 

1 4 J I M  
t0.5 -- ~v/3 " 21logeS2 " P 4 R o T  (10) 
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f rom which it is apparent that the half-life is inversely proport-  
ional to the pressure and the square root  of  molecular  mass of  
the gas. 

where ~ is the average velocity of  the molecules. This result may 
be compared with equat ion (8), and on substituting for m, n, and 

will yield equat ion (13). 

The theories of Mielenz and Schonhei t  
The theory of  quartz-fibre vacuum gauges has been discussed by 
Mielenz and Schonheit  5 in a paper published in 1953, in which 
they describe both an "approx imate"  and a "s t r ic t"  theory. 

The approximate  theory is similar to that of  Haber  and 
Kerschbaum except that the velocity of  the gas molecules in 
equat ion (8) is taken as 

:Ox ~ 2 ~ m  ' -  ¼v (17) 

and is based on the number  of molecules crossing unit area per 
second which is 

n C  
n~ := kn,~ = X/6=" (18) 

This results in a numerical  multiplying constant  in equat ion (9) 
of  4/(3~/2=) which is rather small. The method  is of  course open 
to the same objections as that of  Haber  and Kerschbaum. 

In their strict theory, Mielenz and Schonheit  consider a fibre 
of  circular cross-section which is struck by molecules travelling 
in an arbitrary direction. By assuming a Maxwell-Boltzmann 
distribution for the molecular  velocities and by considering 
components  of  molecular  and fibre velocities in a three-dimen- 
sional f rame of reference they obtain a value for the mult iplying 
constant of  V~2~. The effective area per unit length of  fibre with 
this value o f  constant  is again twice the radius of  the fibre, ie 
the projected area of  the fibre. In this analysis such a value for 
the effective area appears to be correct. 

An exac t  theory  
The  theory of  Haber  and Kerschbaum, reiterated by many 
others  since, is in error  in equat ion (8) where the plate velocity 
u is combined with the root  mean square velocity C of the gas 
molecules. This approach is only an approximat ion;  thus it is 
necessary to consider the velocity v of the individual molecules. 
The  method  is also in error  in that the effective area of  the fibre 
is taken as to be 2r per unit length where r is the radius of  the 
fibre, assumed to be of  circular cross-section. It  will be shown 
later that the effective area for damping must be determined by 
considering the rate of  change of  m o m e n t u m  of a molecule 
striking the surface and that this will depend on the shape of  the 
surface. 

Anderson 3 assumes a Maxwell -Bol tzmann distribution for 
this velocity, in say, the x direction which is given by 

( m 1½ ""~ 
d n - - n  \ 2 ~ k T ]  e 2kV.dv. (11) 

]f  a plate lying in a plane normal  to the x direction is moving in 
the x direction with a velocity u, then molecules strike the plate 
with velocities (v-u) at the back and (v + u) at the front. The 
numbers  of  molecules striking the front  and back surfaces per 
unit t ime are (v ÷ u) dn and (v -- u) dn respectively. The pressure 
exerted on the vane is twice the rate of  change of  momen tum in 
the x direction, so that on substituting for dn f rom equat ion (11 ) 
we obtain the pressure difference between front and back as 

= e 2 k V  [(v -t- u )  2 - -  ( v  - -  u) 2] dr. (12) 
Pd n \ ~ k T ]  o 

This yields the result, after substituting for m, n and k of  

Pd = 4 J 2 .  uP / - M  (13) 
~/  RoT  

which may be compared with equat ion (9). It  will be seen that 
these expressions differ only in tb.e numerical  constants, being 
dimensionally similar. 

This theory has been confirmed by Carter4 using a different 
approach.  Consider unit area of  the plate and let the density of  
molecules in the space around it be n. The probabil i ty  of  a 
molecule striking the plate at an angle q~ with the normal  to the 
surface is ½ sin q~ d ~b. I f  the plate is moving  with a velocity u 
along the normal  the molecules striking unit  area in unit t ime 
must  come f rom a parallelepiped of  length (v ÷ u/cos ~b) and 
base cos q~, ie, f rom a volume (v cos q~ + u). I f  the number  of  
molecules with a velocity v is dn, then the number  striking unit 
area  per unit  t ime at an angle ~ will be ½ (v cos ~b + u) sin q~ d 
dn at the front  and ½ (v cos ~ -- u) sin & d (o dn at the back. Since 
the pressure is twice the rate of  change of  m o m e n t u m  the front 
and  back pressures will be, respectively, 

fee f~r/2 
P f =  2 m (v cos q~ -t- u) . ½(v cos ~ + u) sin ~b . 

0 0 

f~ ~1r/2 Pb = 2 m (v cos q~ -- u) . -.} (v cos ~ --  u) sin ~ . dq~ . dn. 
0 ,/0 

The pressure difference will therefore be 

P d =  4 m u v s i n ( ~  . cos  ~b . d ~  .dn ~- 2 m n u ~ ,  (16) 
0 , / 0  

Comparison of theories 
The four  values of  mult iplying constant so far ment ioned are 
shown for ease of  comparison in Table  1 together with the 
system assumed in their derivation and the system for which 
they would  be applicable. The two approximate  values were 
derived on the assumption of  a projected area of  twice the radius 
of a circular fibre and as such would only be applicable in fact to 
a flat vane of the same area. Since they are also approximate  in 
the respect of  molecular  velocity they will not  be considered 
further. 

The exact values have been derived for a circular fibre and a 
flat vane respectively and should therefore be compatible.  That  
they are so may easily be shown by considering the force acting 
on a stationary fibre of  circular cross-section and radius r, as in 
Figure 1. Let  gas molecules strike the surface of  the fibre with a 
velocity v in the --  x direction, the angle between this velocity 
and the normal  to the surface of  the fibre being 0. Fo r  an elastic 
collision tee  new velocity of  the molecule is v at angle 20 to the 
x-axis, the component  of  velocity in the x direction being v cos 
2 0. The change of  m o m e n t u m  is thus mv (1 ÷ cos 20), and the 

d4, • d,,. (14)  

(15) 

force acting on an infinitesimal area r. dO. dl will be 

dv 
dF == 2 m . dt (1 + c o s 2 0 )  r . d 0 . d l .  (19) 
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X 

Figure 1 

The force acting on length d o f  the fibre is thus 
2/,r 

f dv dv 
F = 2 m .  d t  (1 + cos 20) rdO dl = 2~ rm dt  " dl. (20) 

--~r/2 

For a flat plate of width 2r the force acting on a length dl is, 
since in this case the change of momentum is 2 my, 

dv 
F = 8 rm dt  " dl. (21) 

It follows that the damping effect of gas molecules on a flat 
plate of width 2r is 4/~ times that on a circular fibre of radius r, 
and that the ratio of the Anderson-Carter constant to the 
Mielenz-Schonbeit constant should be 4/~, which is indeed seen 
to be the case. Alternatively one can say that the Anderson- 
Carter constant of 4~/2/:z may be used for circular fibres pro- 
vided that the effective area for damping is taken as err~2 per 
unit length, ie as one half of the actual area exposed to collision 
with molecules, and not the projected area 2r as is usually 
assumed. 

Table  1. Numerical multiplying constants produced by 
different analyses of vibrating vane and fibre gauges, 

Analysis Constant System 
Assumed Applicable 

Haber & Kerschbaum 4/~3 2 .31 Circular Flat vane 
fibre 

Mielenz & Schonheit 
Approx 4/3~/2~r 0.532 Fibre Flat vane 
Strict ~/2zr 2.51 Fibre Circular fibre 

Anderson'l 4/~/2 rr 3.19 Flat vane Flat vane 
Carter J 

Departures  from s i m p l e  theory  
The foregoing theories assume that the oscillating vane or fibre 
is situated in an infinitely large volume. In practice this can never 
be so although in the case of a very thin fibre the distance from 
the fibre to the walls of the housing may be such that little effect 
of the proximity of the walls is noticed. An automatic vane 
gauge developed by the author and described elsewhere 6 was 
found to exhibit a gas damping greater than the calculated 
value. Since the vane used was large and the walls of the housing 
were in close proximity to the vane, the number of molecules 

striking the vane in unit time would be greater than the free 
space value due to reflection from the walls resulting in an 
increased damping factor. This explanation may account for the 
fact that most gauges of this type are unsuitable as absolute 
devices and require calibration against a standard. 

The stiffness of the hinge or suspension of the vane will limit 
the lowest pressure that can be measured and may be expressed 
by the constant k2 such that 

log e2 
--  k i P  + k2. (22) 

t0.5 

If t0.5 is measured and the suspension damping is ignored then 
the apparent pressure will be 

log e2 
/'a -- (23) 

kl t0.5 

The true pressure will be lower than this since from equation 
(17) we obtain 

P = Pa -- k2 /k l .  (24) 

It follows that as Pa approaches k2 /k l  in magnitude, equation 
(19) gives the small difference between two comparable numbers 
with consequent inaccuracy. The ratio k2 /k l  may be regarded as 
the pressure equivalent of the suspension damping, and the 
lower limit of pressure measurement will be some fraction of 
this depending on the error that can be tolerated. 

The theory also assumes that the pressure is low enough for 
molecular flow to prevail. At higher pressures where viscous 
flow occurs there is a departure from the P ~ / M  law. Coolidge 7 
has investigated the higher pressure range experimentally, indi- 
cating that the departure from linearity occurs for P~/)t,I > 0.1, 
for pressure in torr. Darwin 8 has considered a ribbon gauge 
theoretically in order to obtain one equation which applies to 
both the molecular and viscous regions and there seems to be no 
reason why a similar argument should not be applied to the 
oscillating vane arrangement. 

Comparison of gauges 
It will be apparent from equation (19) that the basic requirement 
of a vane of fibre gauge is that the suspension damping pressure 
equivalent k2 /k l  must be as small as possible. This means that 
the suspension stiffness must be reduced to as small a value as 
possible but with a mechanical suspension, some limit must 
inevitably be reached. 

From equations (6) and (13) it is apparent that kl is pro- 
portional to the ratio J / L  For a simple vane hinged along one 
edge, J and I will be related by the density p of the vane 
material and the thickness t of the vane since 

J / I  = 1/pt  (25) 

from which one may make the otherwise obvious deduction that 
the vane should be made from a thin sheet of light material. 
Suitable materials are quartz or aluminium, having comparable 
densities. In the gauge used by the author the vane was made 
from aluminium of 0.005 mm thickness, but the value of J / !  
obtained was much less than 1/pt due to the complex configura- 
tion of the vane necessitated by the requirements of automatic 
control. 

A comparison of several fibre and vane gauges is given in 
Table 2 showing values of J / I  together with measured and cal- 
culated values of t0.5. The table is unfortunately incomplete due 
to a lack of information in some of the published papers. The 
values of J / I  and t0.5 were calculated from the gauge data where 
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Table 2. A compar ison of some f ibre and vane gauges. 

G a u g e  R e f  J/I p to.5 secs 
c r u z - g  I t o r r  C a l c  M e a s  

L a n g m u i r  1 1.8 × 10-5 - -  3960 

H a b e r  & K e r s c h b a u m  2 24 4 .2  × 10-4 955 415 

A n d r e w s  9 I b9 - -  - -  - -  

B r u c h e  10 60 2 × 10 -3 69 25 

H u r d & C o r r i n  11 6.4 5 × 10-5 3 K 104 - -  

A n d e r s o n  3 17.9 1 × 10 -3 266 330 

N e h e r  12 740 5 × 10-5 261 

C h r i s t i a n  & L e c k  6 373 2.8 × 10 -> 1050 353 
(neon) 

this was available, the suspensions being ignored. The measured 
values of to.5 and the pressures, in air or nitrogen, are those 
quoted by the individual authors. The effect of suspension 
damping is to reduce the value of t0.5 and this is generally seen to 
be so. In the case of the author's gauge, the greater part of the 
reduction was due to the increased sensitivity already discussed. 

Of all the gauges listed in Table 2 only one of these is claimed 
to be an absolute instrument. This is the gauge due to Neher a2 
which consists of an aluminium vane of width b and length 2 1 
attached through its centre to a torsional suspension so pro- 
ducing the maximum value of J / I  for the material used. Neher 
gives the lotharithmic decrement as 

d --  4 m n C b l 3 r/91,  (26) 

apparently based on the theory of Haber and Kerschbaum. The 
gauge was compared with an ionisation gauge in air at a press- 
ure of 5 × 10 -5 torr, the corresponding value obtained from the 
vane gauge being 6.8 × 10 -5 torr. The gauge appears to be in 
error by +36 per cent if equation (21) is used. However, from 
equations (8) and (16) we have 

K J ~  2 m n ~ J ~  
d . . . . . .  (27) 

21  21 ' 

and since J = 2bl3/3 then the decrement becomes 

6 = 2 m n ~ b l  3 ~ / 3 L  (28) 

which is the more accurate expression. If the decrement is 
measured and the pressure calculated using equations (21) and 
(23), denoted by P21 and P23 respectively, then the relation be- 
tween these values is seen to be 

2 P21 = n • P23 = 1.382 P23. (29) 

The pressure calculated from equation (21) is thus in error by 
+38.2 per cent. Since the ionization gauge used by Neher could 
probably be in error by as much as +2.2 per cent, this would 
explain the error of +36 per cent which he obtained. This gauge 
would thus appear to be an absolute device provided equation 
(23) is used. 

3 J R A l l d e r s o n ,  Rev Scient lnstrum, 29, 1958, 1073. 
4 G C a r t e r ,  Private Communication, Liverpool University, 1964. 
5 K D M i e l e n z  a n d  E S c h o n h e i t ,  Z Angew Phys, 5, 1953, 90. 

R G C h r i s t i a n ,  MEng Thesis, Liverpool University, 1965. 
R G C h r i s t i a n  a n d  J H L e c k ,  to be published. 

7 A S C o o l i d g e ,  J Amer Chem Soc, 45, 1923. 1637, 
8 H W D a r w i n ,  Vakuumtechnik, 2, 1962, 45. 
9 M R A n d r e w s ,  JPhys ('hem, 30, 1926, 1497. 
m E Br uc he ,  Physik. Z26, 1925, 717. 
11 D T H u r d  a n d  M L C o r r i n ,  Rev Scient lnstrum, 25. 1954, 1126. 
12 H V N e h e r ,  Rev Scient lnstrttm, 33, 1962, 803. 

Acknowledgement 
Thanks are due to Dr G Carter for his contribution to the 
theory of  the oscillating-vane gauge; to Dr  J H Leck for valu- 
able discussion and assistance; to Professor J D Craggs for 
providing facilities at Liverpool University; and to the Liverpool 
Education Authority for leave of absence and financial assist- 
ance. 

References 
1 I L a n g m u i r ,  JAmer,  Chem Soc, 35, 1913, 105. 
2 F H a b e r ,  a n d  F K e r s c h b a u m  ZElektrochem, 20, 1914, 20. 

178 


