Supplementary Figures

NV-axis // (1,1,1)

Supplementary Fig. S1: NV Schematic and Computational Plane (a) Depicts the diamond unit cell with corresponding NV axis

| (1,1, 1). The underlying lattice of the 2D array can be chosen with 1, and yy, defining the lattice grid (where (¢, yc, zc) represent the
Cartesian basis). For simplicity, in the derivations, we assume a (1, 1, 1)-cut diamond, whereby the plane of the cut is parallel to the
computational plane spanned by zr, and yr,. (b) In this particular case, all NV centers and Nitrogen impurities sit in the computational plane
defined by x 1., yr.. We note that this choice of axes is in slight contrast to the main text, where for simplicity &, ¢ is chosen to represent the
lattice in which all spins lie. Dark spins represent Nitrogen impurities while NV centers are represented as pairs of green (electronic) and
yellow (nuclear) spins (in analogy to the main text). Here, in contrast to the sparsely occupied plaquettes in the main text, we have chosen to
occupy all potential sites in the computational plane with spins for illustrative purposes.



Supplementary Methods

Realization of Dark Spin Chain Data Bus with Nitrogen Impurities

We consider a dipole-dipole coupled chain of nitrogen impurities which forms the basis for the DSCB that couples remote NV
registers. The Hamiltonian for a single Nitrogen impurity is given by

HN = ge,U/Bé . g—gN,U,Ng . f-'— AHSZ/IZ' —|—AL(Sx/I$/ —|— Sy/[y/)’ (Sl)

where A = —159.7MHz and A; = —113.8MHz are the hyperfine constants corresponding to the primed axes, which is

chosen with the Jahn-Teller (JT) axis as z’. As in recent reports, we consider the application of a magnetic field B of strength B,
(~ 1T), as defined in the main text, throughout the 2D array along the NV axis (consider e.g. NV || (1,1,1)), which defines the
quantization axis z. The existence of this large magnetic field implies that the ability to fabricate and control the crystallographic
direction of the NV axis is of critical importance; indeed, recent work in this direction has demonstrated the possibility of aligning
NV-axes during growth [60]. We envision the structural schematic of our architecture to enable optical access from above the bulk
diamond sample, while coherent MW manipulations are achieved via microcoil arrays below the sample. To model the additional
Jahn-Teller frequencies applied in the super-plaquettes, we calculate the impurity chain Hamiltonian between two nitrogens with
differing Jahn-Teller axes (assuming a (1, 1,1) cut diamond, as shown in Supplementary Fig. S1), and with the JT axis of N,
parallel to the NV axis (note that the non-parallel JT axes are equivalent to one another relative to the NV axis). We explicitly
represent the hyperfine interaction within a standard Cartesian basis by choosing the Jahn-Teller axis of the first nitrogen [V as
e. || (1,1,1) and subsequently e, || (2, —1,—1) and e, || (0,1, —1), and of the second nitrogen N> as e,/ || (1,1, —1) and
subsequently e, || (—2,1,—1) and e, || (0, 1, 1) (the generalization to other pairs of JT axes follows after). Here, the hyperfine
interaction of Ny then takes the form Hyp = AHSZI .+ AL (S I, + Syly), while the hyperfine term of the /N, takes the form
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is important to note that the electronic Zeeman term in the impurity Hamiltonian provides a shift ~ 10GHz and that the nuclear
Zeeman term provides a shift ~ 1MHz. Thus, to good approximation, we can disregard electronic spin flip terms proportional
to S, and S, since the hyperfine constants are two orders of magnitude smaller than the electronic Zeeman energy, yielding

Hyr ~ A S.1, for Ny and
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for No, where («, 8,7) = (—7.2,—-12.5,—118.9)MHz. For Ns, the hyperfine subspace is separated into two manifolds of

nuclear spin 1/2 and —1/2; to see that the nuclear spin-flip terms are highly off-resonant, it is easiest to work in a rotated basis
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wherein Hy g ~ \/a? + 82 + 725, I5. In the rotated basis, nuclear spin flips are captured by the Zeeman term —gyunBol, =
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are separated by \/a? + 32 +~2 ~ 100MHz, while the strength of the nuclear spin flip terms proportional to Iz and I
~ 100kHz and can hence be neglected. These secular approximations yield a nearest neighbor Hamiltonian given by (returning
to the original basis for simplicity of notation)
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where we have additionally neglected electronic spin flip terms originating from dipole-dipole interactions between the impu-
rities since their hyperfine terms vary by ~ 10MHz while the dipole coupling strength is only ~ 10kHz for 20nm separation
(neglecting the field gradient). Thus, in the case where neighboring impurities have differing Jahn-Teller axes, the electronic
spin flip terms can always be neglected to give an Ising interaction. In the case of parallel Jahn-Teller axes, when the neighboring

nitrogen nuclear spins are different, the combined hyperfine term takes the form +(S! — Sﬁ)(% + ATL) The dipole-dipole
terms which correspond to electronic spin flipping will attempt to couple | 11, 2) and | J1, T2); however, this coupling is again

highly suppressed since these states are separated by (% + 2"%) ~ 100MHz, while the dipole coupling strength is ~ 10kHz.
Furthermore, the states | 11, T2) and | |1, }2) are separated from the others by the electronic Zeeman energy, ensuring that
dipole-dipole induced spin flips will again be highly off-resonant. Finally, when the Jahn-Teller axes are parallel and the nuclear

spins are also identical, these dipolar spin-flip terms are suppressed by the external magnetic field gradient. It is important to



note that for each Nitrogen spin, since the hyperfine term can take on four possible values, all four frequencies, corresponding to
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+ 8“%) are applied in order to address the impurity (wq as defined in equation (2) of the main text).
In addition to the properties associated with single Nitrogen impurities, we now consider the NV-N interaction and show that it
is possible to distill an Ising interaction. The NV Hamiltonian is given by

Hyv = gepB.S: — gnunB. 1, + ANV(SZIZ + S0, + Sny) + AOSE (S4)

where Ayy = 3.1MHz and Ay = 2.87GHz is the zero-field splitting of the singlet. For the purposes of this derivation, we will
consider the mg = 0, 1 states to be the NV electronic qubit and will disregard the ms = —1 state which is far-detuned (Zeeman
shifted away due to the ~ 1T magnetic field). The flip terms between the electronic and nuclear spin (ST~ + S~IT) of the
NV are suppressed due to the zero-field splitting and the large magnetic field, since Ag, geptp B, > Any. The dipole-dipole
interactions between the NV electronic spin and an impurity electronic spin will be nearly identical to the impurity-impurity
dipole coupling which has previously been considered. In particular, considering quantization along the NV axis, which for
simplicity will also be the assumed Jahn-Teller axis (the result is analogous for other JT orientations), and noting that the unit
vector pointing from the NV to the N-impurity lies in the computational plane defined by the normal vector (1,1, 1), we find
that the Hamiltonian is (under the secular approximation in analogy to Sec. IA),

H = geppBo(S2Y +52) = gupn Bo(1Y + 1Y) + Ay SEVINY + Ao(SNV)? 4 4 SVIY + Lo g2 SNV SN (55)
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To keep only the Ising interaction term, we require wyv, wy, and |wyy — wy| to all be much greater than the strength of the
dipole coupling, where wy- is the coefficient of SV and wy is the coefficient of S,

Control of Directionality in Free Fermion State Transfer

We consider the Hamiltonian presented in equation (4) in the main text. Under the assumption that g < \/iﬁ, we work per-

turbatively in eigenstates of the bare Hamiltonian Hy = Zf\gl /<;(Si'|r S+ 5 S;:l), and consider coupling through the
perturbation Hamiltonian H' = g(SlJ{,V1 Sy + S]'f,% Sy + hc.). The essence of FFST can be understood as the long-range
coherent interaction between the spin qubits, mediated by a specific collective eigenmode of the intermediate spin chain. This
mode is best understood via Jordan-Wigner (JW) fermionization [61-63], which allows for the states of an XX spin chain to be
mapped into the states of a set of non-interacting spinless fermions. In this representation, the state transfer is achieved by free
fermion tunneling. By ensuring that the end spin qubits are weakly coupled to the intermediate spin chain, it is possible to tune
the NV registers to achieve resonant tunneling through only a single particular fermionic eigenmode. Particle-hole symmetry
of the Hamiltonian implies that the energy spectrum of the single fermion manifold is mirror symmetric across £ = 0. This
implies that in the case of even N intermediate spin chains (which are uniquely present in the proposed architecture), the NV
registers are always initially off-resonant from all fermionic eigenmodes of both left and right spin chains.

In this context, directionality becomes easily achievable so long as the left and right spin chains are of differing lengths, since
the single fermion spectrum will then be different. Thus, by ensuring that g is sufficiently small, it is possible to tune to and
hence be resonant with only a single spin chain direction. In particular, the energy spectrum of the single fermion manifold
is given by Ej, = 2k cos %, where k = 1,--- , N; thus, tuning to a particular fermionic eigenmode corresponds to making
choices of A and ) which ensure that A — Qx ~ FEj. The specific choice of k corresponds to the particular single fermion
eigenmode which is being tuned to. Interestingly, this can allow for control over the speed of quantum state transfer. This speed
is maximimized for k = % =+ 1 in the case of even N chains and for & = % in odd N chains. Directional control over state
transfer is achieved by ensuring that only either the left or right DSCB is resonant with the NV register. In this scenario, the
coupling between the NV and the neighboring spin chain, which is off-resonant is highly suppressed. Assuming that the two
neighboring spin chains are of differing lengths /N; and N, the characteristic energy separation between fermionic eigenmodes
in the two chains is approximately Nil — NLZ = % Thus, by ensuring that the register-impurity coupling g is smaller
than such an energy separation, it is possible to ensure that only single directional FFST occurs. Additionally, such an analysis
suggests that by tuning g, it may be possible to overcome coupling-strength disorder induced by imperfect impurity implantation.
In particular disorder will cause localization, asymmetry of the eigenmodes, and changes in the statistics of the eigenenergies. In
the case of coupling-strength disorder, there exists an extended critical state at &/ = 0 with a diverging localization length; this
ensures the existence of an extended eigenmode with a known eigenenergy, suggesting that FFST is intrinsically robust against
coupling-strength disorder. However, the existence of an extended mode is not sufficient to ensure state transfer as disorder also
enhances off-resonant tunneling rates and causes the eigenmode wavefunction amplitude to become asymmetric at the two ends
of the chain. Despite such imperfections, by individually tuning the qubit-chain couplings, gicf; and g,;gne, it is possible to
compensate for eigenmode asymmetry; furthermore, sufficiently decreasing the magnitude of the qubit-chain coupling ensures
that off-resonant tunneling can safely be neglected, even in the presence of disorder.



As mentioned in the main text, it is essential to consider the intrinsic properties of the dark Nitrogen impurity spin chain; in
particular, the room temperature T} ~ 2ms time of the Nitrogen impurity is limited by dynamic Jahn-Teller reorientation [64,
65]. Thus, nominally, the total time required for both DSCB mediated coherent coupling protocols introduces a significant
depolarization error if we consider limitation by the impurity 77" time. However, at room temperature, the dynamic Jahn-Teller
(JT) reorientation is governed by tunneling between the four tetrahedrally symmetric axes, and the associated rate is given by

1TV = 45102 /* 571, (S6)

where ¢ = 0.76eV is the experimentally determined activation energy. This exponential dependence on both activation energy
and temperature suggests that a combination of a static electric field (~ 105V/cm) [66—68] and slight cooling (T' =~ 250K) can
extend TlN to above 10s. Hence, in the discussion of operational errors in the main text, we have assumed limitation by TlN v,
the spin-lattice relaxation time of the NV center.

Simulations and Error Optimization

We consider the optimization of errors in the context of the DSCB mediated remote register coupling. First, we consider the

accumulated infidelity associated with the adiabatic SWAP sequence, represented by equation (5) in the main text, p53 =~
N (Padia + pf ff + Pdip + p%f + p%g ). Re-expressing p==. to capture the form of the associated infidelity yields
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where ¢ represents the time required to SWAP between a single pair of impurities, <’ represents an optimized coupling strength,
(2, represents the Rabi frequency on the impurities, A; ~ 10MHz represents the gradient-induced splitting for a magnetic field
gradient ~ 10°T/m, TNV =~ 350ms, and we assume all dephasing rates are limited by 74"V =~ 5—10ms (see Sec. IIC for details
on A, derivation). The assumption of TNV limited dephasing rates is consistent with recent measurements of 7' ~ 0.25ms,
which were performed in natural '3C abundance diamond samples [69]; hence, in direct analogy to T4¥", it is expected that
isotopic purification may well enhance such coherence times by more than an order of magnitude. Here, we describe the
error terms in more detail to evince the origin of the infidelity. The first term in 2. corresponds to the non-adiabatic correction
resulting from an optimized adiabatic ramp profile. The second term represents off-resonant excitations induced by €2;. The third
term corresponds to additional off-resonant errors induced by the finite initial splitting as well as by dipole-dipole coupling of
next-to-nearest neighbor impurities; since the dipolar interaction strength ~ ' while the characteristic energy spacing between
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impurities ~ €2;, the associated error is (5—) . The fourth error term corresponds to the depolarization error induced by the

finite NV T} time, t,,/T{"". The final two error terms correspond to the infidelity induced by dephasing of the NV center and
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The combined total error can be numerically optimized with respect to ¢ss and £2;. A crucial point to note here is the
importance of the coherence time of the substitutional P1 centers (Nitrogen impurities) forming the dark spin chain; this is
particularly relevant in the case of the adiabatic sequential SWAP since the quantum information is localized on the various P1

centers during the majority of the state transfer. Furthermore, we note that the current form of pro assumes that only a single
echo pulse is applied during an individual SWAP. This suggests that the functional form of the infidelity can be significantly

improved by increasing the number of echo pulses, with the extended coherence time scaling as ~ Nﬁ /3 Where N, is the number
of pulses (N, > 100 has already been experimentally demonstrated) [70, 71]; in fact, we expect that such an effect can easily be
achieved in our system due to the assumed strong driving [70, 71]. Numerically optimizing the full infidelity p5=. in parameters
tss and ; (for N = 18), yields ; ~ 800kHz and Nt,, ~ 5ms with total error ~ 4 x 10~2, consistent with the full numerical
simulations presented in the main text. While the current optimization utilizes the bare coherence times, by taking into account

dynamic decoupling, it is possible to demonstrate that to good approximation, dephasing errors can be neglected since they will
not participate in the dominant balance of the optimization. In particular, we find that p35 ~ Ntss/(T4" Ng / 3)]3 < 1073 when
only a small number of pulses, N, ~ 10 is applied. Hence, in the remaining error analysis, we assume that dephasing-induced
errors can be safely neglected. We note that the full numerical simulations presented in the main text account for the additional
Jahn-Teller (MW) frequencies utilizing a Floquet formalism and are obtained through numerical integration of the Schrédinger
equation with the optimized adiabatic SWAP profile [72]. Non-unitary errors corresponding to depolarization are then added to
the unitary errors and the total infidelity is subsequently optimized [73].

Before considering the numerical optimization of the infidelity associated with FFST, we address the issue of disordered cou-
pling strengths in the adiabatic sequential SWAP. In particular, implantation errors associated with the dark spin chain imply that
nearest neighbor coupling strengths between the various Nitrogen impurities will not be precisely known; this imprecision will



cause the qubits to accumulate an unknown phase during each adiabatic SWAP operation. One possible solution is to character-
ize the energy spectrum and coupling strengths of the intermediate spin chain; in particular, despite the fact that quantum control
and optical access are restricted to the NV registers, it is possible to indirectly characterize all couplings of the intermediate
chain through tomography on only a single register located at the end of the spin chain [74]. Once these couplings are known,
it may be possible to correct for unitary errors at each step along the adiabatic SWAP since the dark P1 centers are individually
addressable (via the field gradient).

A simpler alternative to overcoming the above unitary errors is to implement a spin-echo type global 7-pulse following the first
set of sequential SWAP gates. Indeed, after the quantum information has been sequentially swapped from one end of the chain to
the other, an entangling CP-gate between the nuclear memory and the swapped qubit is performed. Then, we implement a global
m-pulse on all Nitrogen impurity spins along the chain as well as the end qubits; this ensures that the second (reverse) set of
sequential SWAP gates designed to return the qubit to the original register will cancel the unknown phase accumulated during the
first set of SWAPs. This can be seen as follows: During the adiabatic SWAP of a pair of qubits, an initial state of the form |¢) =
¢1]00) 4 ¢2|01) + ¢3[10) + ¢4 |11) becomes |¢') = ¢1]|00) + c2€?|10) + c3e 7% |01) + ¢4|11), where 6 characterizes the unknown
acquired phase. By flipping all spins through a global 7-pulse, the state becomes |¢’) = c1|11) +c2€?|01) +c3e79|10) +c4|00),
which upon a reverse step of adiabatic SWAP yields |¢") = ¢1|11) 4 ¢2|10) + ¢3]|01) + ¢4|00). Finally, another global 7-pulse
is implemented, to yield |¢”) = ¢1]00) + ¢2]01) + ¢3]10) + c4|11). This implies that the proposed alternative protocol will
ensure that the unknown phases accumulated during the two segments of state transfer effectively cancel one another, ultimately
leaving only the desired long-range CP-gate.

FEST

Now, we consider the accumulated infidelity associated with FFST, represented by equation (6) in the main text p_,..

PEEPT +pp+pg + it 5T (neglecting pfif 57 as discussed above). Re-expressing pf =57 to capture the form of the associated
infidelity yields
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where () corresponds to the Rabi frequency applied on the impurity, {2 corresponds to the Rabi frequency applied on the NV
register, k ~ 12.6kHz, tppgr represents the total time required for state transfer, and A corresponds to the NV detuning as
defined in the Methods section in the main text. Here, we describe the error terms in more detail to evince the origin of the
infidelity. The first term in pZZ5T corresponds to the off-resonant excitation of an NV register. Similarly, the second term also
results from an off-resonant error and corresponds to undesired coupling with off-resonant fermionic modes. Since the coupling

strength is characterized by g/+/ N, while the characteristic eigenenergy splitting ~ /N, such an off-resonant error induces

an infidelity (£ ,i )/NN)Q The third error term results from the protocol designed to achieve controlled coupling g, as elucidated

SS

in the Methods. Finally, directly analogous to p2>., the final term corresponds to the error induced by the operational time,
tppsT ~ VN /g, which results in depolarization. However, it is essential to note that relative to the adiabatic sequential SWAP,
there is an additional factor of N in pEf"ST.

This factor results from the generation of multi-partite entanglement via a set of controlled-phase gates during a single FEST
step; despite such entanglement, remote register coupling is readily achieved because a second transfer step (corresponding
to the return of the quantum information to the original NV as shown in Fig. 3C of the main text) disentangles the quantum
information from the intermediate dark spin chain data bus. Crucially, the local two-qubit gate which is performed in the middle
of two FFST steps must commute with the controlled-phase multi-partite entanglement. In particular, the two-qubit operation
depicted in Fig. 3C could be a local CP-gate, which would be preserved in the disentangling step. Combined with single qubit
rotations, a controlled-phase gate allows for arbitrary two-qubit gates and hence universal computation.

The controlled coupling g is achieved by utilizing the NV three-level structure, whereby g ~ m% (as discussed in Methods
section of the main text), allowing for the re-expression of g in pZZST. Similarly, since FFST requires tuning to a particular
fermionic eigenmode, it is also possible to re-express A == Qy (see Sec. IIB for details on fermion tuning). These re-expressions
allow for numerical optimization in the two parameters {2 and €2 yielding Q2 v ~ 285kHz and 2 ~ 95kHz, with total operational
errors =~ 2.4 x 10~2 and total transfer time ¢ g7 = 0.21ms (where we have utilized parameters: 7} 1N vV = 250ms and N = 7),
in good agreement with the full numerical simulations presented in the main text. The numerical simulations of FFST also
account for the additional Jahn-Teller frequencies and are obtained through full Hamiltonian diagonalization. Non-unitary errors
corresponding to depolarization are then added and the total infidelity is subsequently optimized [73].

The optimizations presented above rely on the ability to control the spatial separation of impurity arrays during implanta-
tion patterning. Recent advances have enabled sub-100nm resolution diamond spin-patterning [75, 76] and further enhanced
resolution < 30nm is also possible [77]. As discussed in the maintext, in the case of FFST, although disordered implantation
may cause eigenenergies to shift, by tuning the NV registers, one can overcome such errors. Furthermore, in the case of the
adiabatic SWAP, even when coupling strengths are varied, perfect adiabatic SWAP can be achieved as long as the rate at which
Q; and ;1 are ramped through one another is sufficiently small. Moreover, both DSCB methods can be rendered completely



robust against implantation errors if one can tomographically characterize the intermediate chain [74]. In the case of FFST, such
tomography will enable the direct identification of eigenmodes. In the case of the adiabatic sequential SWAP, tomography will
enable perfect timing of each individual gate, since pairwise coupling strengths will be known.

Full Frequency Spectrum in Super-plaquettes

As mentioned in the main text during consideration of operational errors, the frequency spectrum of a given super-plaquette
requires careful consideration. Indeed, it is crucial to ensure that off-resonant cross-talk can be suppressed through optimization
of the field gradient. In particular, given a sufficiently large magnetic field gradient, it will be essential to consider the full range
of frequencies covered throughout a super-plaquette. For example, although the NV zero-field splitting (ZFS) Ay ~ 3GHz
naively protects the register from off-resonant excitations during impurity manipulation, it is important to note that this static
ZFS is bridged as rows progress vertically along the field gradient. Given a gradient of order 100MHz/10nm (in this section, for
simplicity, we assume 10nm row separation), a displacement of only 30 rows along the gradient direction is sufficient to fully
bridge the NV ZFS. Furthermore, since each Nitrogen impurity requires four separate frequencies to be addressed, it is essential
to ensure that such a congested frequency spectrum within a super-plaquette does not render the error probability intolerable.
As discussed, the four frequencies corresponding to each Nitrogen impurity result from the two possible nuclear spin states and
the choice of whether the JT axis lies along the NV axis; hence, the possible frequencies are wo + 1/24) = wy £+ 80MHz and

wo =1/ 2(% + MTL) = wo = 60MHz. To describe an adequate framework regarding the frequency spectrum, it is possible
to consider a simplified problem, in which we ignore the nuclear spin and thus, are left with three transitions corresponding to
the two NV transitions (|0) — | £ 1)) and the Nitrogen impurity transition. For a static magnetic field that gives a Nitrogen
ESR frequency equal to wg, the NV transitions correspond to wg + 3GHz and wy — 3GHz. Thus, we can describe the situation
according to three base lines at —3, 0, 3GHz, where the full frequency spectrum within the super-plaquette results from the
addition of all possible lines at subsequent 10nm intervals.

One possible solution to avoid frequency overlap is to choose the field gradient to be 3 * (MHz/10nm, where ( is as yet
undetermined. The possible choices of ¢ correspond to field gradients which for some n € Z yield that after n * 10nm, the
field due to the gradient is 3GHz—(. Such a choice immediately ensures that (disregarding JT) all possible transitions within a
super-plaquette are non-overlapping. Furthermore, by correctly choosing (, it is possible to ensure that even within the context
of addressing the four individual Nitrogen impurity transitions, the separation of any pair of nearest frequencies is ~ 10MHz. A
simple example can be illustrated by considering a gradient with strength 150MHz/10nm, where the absolute minimum spacing
between any two frequencies in a super-plaquette is A, = 10MHz.



Supplementary Notes

Note 1:  Using Laguerre-Gaussian Donut Beams

In the maintext, we mentioned two possible approaches to using Laguerre-Gaussian (LG) donut beams to further enhance our
scalable architecture. First, we discussed the possibility of using a red LG donut to enhance the readout fidelity. Second, we
discussed the possibility of using a green LG donut to enable subwavelength coherent control. Here, we provide a detailed
discussion of the associated errors and error suppression in both cases.

A red LG beam, which is detuned from the optical transition will only induce stimulated decay of an NV center, but will never
induce optical cycling. In this way, those illuminated NVs situated in the red LG circumference will be dominated by stimulated
emission, leaving only the desired readout NV (in the donut center) to emit spontaneously for fluorescent detection. Moreover,
such a red LG donut will also help suppress the undesired decoherence of neighboring NV registers. Indeed, it is favorable
to induce the fast stimulated decay of such neighboring centers since this will suppress the NV-excited state lifetime, thereby
limiting the effective dephasing of the nuclear spin memory. In particular, we can estimate the decoherence of the nuclear spin
qubit of a neighboring register during optical readout. With a highly focused green Gaussian laser beam, the probability to excite
a neighboring NV center can be very small. In particular, for a beam waist of 200nm, the optical intensity at 500nm (e.g. the
separation between plaquettes) is only 3 x 10~ of the beam center. Thus, the error probability associated with an unintended
excitation is roughly p; ~ 3 x 107° for each readout attempt. Next, the stimulated emission induced by the red LG beam
can reduce the excited state lifetime from 10ns to 7/ = 0.1ns (or less). Assuming that the excited state has a large hyperfine
coupling A’ = 40(27)MHz, yields an effective error probability, po = (A’7’)? = 0.03 for each unintended optical excitation.
In combination, the overall error probability associated with each attempted readout is p;ps ~ 10~7. Even after thousands of
readout repetitions, the error probability of neighboring NVs can be controlled to below 0.1% and hence can be safely neglected
in our discussion. Thus, our above error analysis demonstrates that the use of a red LG beam for stimulated emission can indeed
provide a further enhancement in our readout fidelity.

Furthermore, the use of green Laguerre-Gaussian optical donut beams may enable the subwavelength selective manipulation
of individual NV registers. Here, we consider the dominant imperfection in such subwavelength control: The residual optical
excitation rate «o for an unilluminated NV register in the dark donut center (due to imperfect destructive interference). We
estimate that the error probability for the selected (e.g. resonant and unilluminated) NV register is: perr selected = g—?, which
characterizes the undesired optical excitation probability during time 1/2;. Such an error must be optimized in the context of
off-resonant cross-talk; however, given good interference contrast xo/x = 106, Derrselected Can easily be rendered sub-percent.
The notion of subwavelength register control also naturally suggests the importance of microcoil engineering as a necessary
ingredient for our architecture; indeed, there has been tremendous recent progress demonstrating the possible optimization of
planar microcoil arrays [78].

Note 2: NV Implantation and Conversion

Although we have considered various errors accumulated during single- and two-qubit gate operations, an important further
consideration is the error associated with the imperfect positioning of Nitrogen ion implantations. This imperfect implantation
leads to errors in both the coupling strength as well as the individual impurity ESR frequencies. Crucially, both the vertical
adiabatic sequential SWAP and the horizontal FFST are robust to fluctuations in coupling strength. The adiabatic sequential
SWAP is also robust to errors induced by ESR frequency variations. Such variations result in an effective Rabi frequency, which
alters the start and end point of the optimized ramp profile, without significantly affecting the adiabatic passage. On the other
hand, such ESR frequency fluctuations induce an off-resonant error during FFST; however, improvements in the implantation
precision and utilizing larger €25 can sufficiently suppress such errors.

In addition to implantation errors, it is also important to consider the infidelity induced by imperfect NV conversion efficiency.
In particular, current experiments are limited by an optimistic NV conversion efficiency of approximately 40%. Within the
context of the current architecture design (Fig. 5), each plaquette contains 8 possible implantation sites that will allow for a
staggered super-plaquette NV register structure, yielding a nominal error ~ 1072, Thus, each super-plaquette will have a filling
fraction ~ 99% of functional plaquettes and the gate overhead associated with such faulty qubits will be negligible. Since the
threshold penalty for faulty qubits is expected to be proportional to the gate overhead, the error threshold € is expected to remain
~ 1.4% [79]. While plaquettes which do not contain an NV center will certainly contribute to errors, certain plaquettes will
also contain multiple NV centers. Such errors will ideally be minimized by our proposed two-step implantation process, since
individual Nitrogen impurities are implanted and annealed in each plaquette until the formation of an NV register. However, in
the event that this occurs, we envision two possible solutions: first, the second implantation step corresponding to the fabrication
of the DSCB can be tailored around the additional register so as to avoid its inclusion and second, the additional NV centers



can merely be considered elements of the DSCB. The electronic spin of these non-register NVs provide a natural alternative
to the P1 electronic spin; furthermore, no quantum information will be stored in the nuclear spin of these non-register color
centers ensuring that individual plaquettes can still be read out. However, since the control fields governing the quantum register
will also affect these additional NV centers, the spin chain will contain weakened couplings at these locations; tomographical
characterization of the spin chain eigenmodes will nevertheless enable FFST. Additionally, an intriguing possibility is to utilize
the dark Nitrogen impurities as computational resources in and of themselves. In addition to an electronic spin, each P1 center
also contains its own nuclear spin, which may be able to store quantum information; however, since each Nitrogen impurity is
dark, readout would still need to occur via the NV center.

Finally, the zig-zag structure of the vertical impurity spin chain allows for connectivity between any NV lattice site and the lattice
site directly above in the corresponding vertically adjacent plaquette, as well as any of the four nearest neighbor lattice sites in
either direction (in order to account for imperfect conversion efficiency), as can be seen in Fig. 5. The implantation region of
vertically adjacent plaquettes is somewhat limited by the particular location of NV registers in the preceding vertical plaquette;
however, such errors can be made negligible by considering larger plaquette sizes and hence, a larger range of connected vertical
sites through the impurity spin chain.
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