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Abstract-A general theory of stress and deformation during interdiffusion is presented which spans the 
gap between the Darken analysis of the Kirkendall effect and the recent treatment by Larch.5 and Cahn 
of the interaction between stress and diffusion. Special consideration is given to the generation of internal 
stress and vacancy chemical potential, to the contribution of these potentials to the diffusion potentials, 
to the relaxation of these potentials via plastic deformation and vacancy creation/anni~ilation, and to 
convective transport due to deformation induced by diffusion. When the mobilities or the partial molal 
volumes of the components differ, the coupling of the relaxation equations for plastic strain and vacancy 
creation to the diffusion equations for the component densities can lead to a change in the rate-limiting 
step for interdiffusion as a function of the distance scale of the composition and stress profiles. The 
characteristic lengths at which these-changes occur are determined by relations between the mobilities, 
the viscosity, and the rate constant for vacancy creation. When a relaxation process is rate-limiting, 
composition penetration profiles have an exponential (rather than error-function) form, and the integrated 
amount of material transported increases linearly with time (rather than as r’,‘*). 

R&am&-Nous pr&sentons une thCorie g&n&ale de la contrainte et de la d&formation pendant 
~interdi~usion, qui rapproche l’analyse de l’effet Kirkendall due & Darken, et le traitement r&ent de 
I’interaction entre contrainte et dkformation propoti par Larch6 et Cahn. NOUS considtrons plus 
particuli&ement l’apparition d’un potentiel chimique de contraintes internes et de lacunes, la contribution 
de ces potentiels aux potentiels de diffusion, la relaxation de ces potentiels par dtformation plastique et 
par annihilation ou crCation de lacunes et le transport par convection dG B la d&formation induite par 
diffusion. Quand les mobilit& ou quand les volumes molaires partiels des composants sont differents, le 
couplage des kquations de relaxation pour la diformation plastique et la cr6ation des lacunes avec les 
tiquations de diffusion pour les densitis des composants peut conduire g un changement due stade qui 
contrBle l’interdiffusion, fonction de l’tchelle des profils de composition et de contrainte. On peut 
dtterminer les longueurs caract&stiques pour lesquelles apparaissent ces changements 1! l’aide de relations 
entre les mobili3s. la viscosit& et la constante de vitesse pour ta crkation des lacunes. Quand un mbnisme 
de relaxation limite la vitesse, les profils de @nitration de la composition ont une forme exponentielle 
(plutGt qu’une forme de fonction d’erreur), et la quantite intigrte de mattriau transport& croit linkairement 
avec le temps (plutBt qu’en I’ ‘). 

Z~~m~nfassu~-Es wird eine allgemeine Theorie der wghrend der ~nterdiffusion auft~tenden Span- 
nungen und Verformungen vorgelegt, die die Liicke zwischen der Analyse des Kirkendall-Effektes von 
Darken und der neueren Behandlung der Wechselwirkung zwischen Spannung und Diffusion von Larche’ 
und Cahn fiillt. Besonderes beachtet wird die Erzeugung innerer Spannungen und des chemischen 
Potentials der Leerstellen, der Beitrag dieser Potentiale zu den Diffusionspotentialen. die Relaxation dieser 
Potentiale durch plastische Verfo~ung und L~rstellenbildung~-annihilation und der konvektive, durch 
die Diffusion iiber die Verformung erzeugte Transport. Unterscheiden sich die Beweglichkeiten oder die 
partialen Molvolumen der Komponenten, dann kann die Kopplung der Relaxationsgleichungen fiir 
plastische Dehnung und Leerstellenerzeugung an die Diffusionsgleichungen fiir die Dichte der Kom- 
ponenten zu einem Wechsel im ratenbestimmenden Schritt der Interdiffusion in Abhiingigkeit von der 
Abstandsskala in Zusammensetzung und Spannungspro~l fiihren. Die charakte~sti~hen Abstinde, unter 
denen diese Wechsel auftreten. werden durch die Zusammenhlnge zwischen den BewegIichkeiten, der 
Viskositlt und der Ratenkonstanten fiir die Leerstellenerzeugung festgelegt. 1st ein RelaxationsprozeB der 
ratenbestimmende Schritt, dann sind die Durchdringungsprolile der Konzentrationsverllufe exponentiell 
(statt der Fehlerfunktion); in diesem Fall steigt der integrierte Anteil des transportierten Materials linear 
mit der Zeit an (statt wie I’ ?). 

1. INTRODUCTION 

In either amorphous or crystalline solids, the overall 
interdiffusion process can involve a complex set of 
interactions between the diffusive transport of each 
chemical component, the generation of internal 
stress, and convective transport due to the induced 
deformation. For exampie, consider a system which 
initially has non-uniform composition but is in a state 

of zero stress. When the components have different 
partial modal volumes or mobilities, their simul- 
taneous diffusion can give rise to an imbalance in the 
“volume” transport (i.e. a non-uniform stress-free 
strain). To accommodate this imbalance, elastic 
strain and internal stress are generated. The internal 
stress contributes to the the~odynamic potentials 
for both diffusion and plastic deformation. The 
resulting plastic strain tends to relax the stress gener- 
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ated by diffusion, and the overall deformation pro- 2. THEORY FOR AN AMORPHOUS SYSTEM 
duces convective transport (the Kirkendall effect [ 11). 
In crystalline substitutional solid solutions, the in- Kinetic equations for interdiffusion in a muhi- 

volvement of vacancies in the diffusion mechanism component amorphous system are developed below. 

can lead to additional complications, such as the Diffusion fluxes and strains are first carefully defined, 

generation of an internal vacancy chemical potential and their relationships to component densities are 

coupled to deformation through vacancy creation/ obtained. Maxwell-solid constitutive relations are 

annihilation at boundaries or extended defects. The used to relate elastic and plastic strain to stress. A 

effects of this vacancy chemical potential are anal- new general definition for the stress-free strain coup- 

ogous to those of the internal stress, since both enter ling diffusion to strain is proposed. Diffusion poten- 

into the potentials driving diffusive and convective tials are derived which include the internal stress. 

transport. Several basic kinetic equations then determine ‘the 
Recent fundamental treatments by Larchi and evolution of the system: a diffusion equation for 

Cahn of the generation of internal stress during each component, and a relaxation equation for plas- 

interdiffusion [2,3], and of the stress contribution to tic strain. These are written as coupled differential 

the diffusion potentials [3-S], focus on the behavior equations for the composition variables and the 

of systems which can reach equilibrium under non- stress. 

hydrostatic stress, such as the interior of perfect To demonstrate the behavior predicted by these 

crystals. In these models, stress relaxation and con- coupled differential equations, an analytical solution 

vective transport due to plastic deformation and for small composition changes in a two-component 

vacancy creation/annihilation are not allowed, and it system is obtained by linearizing the equations and 

is assumed that the lattice remains coherent (i.e. making a quasi-steady-state approximation. It is 

lattice sites are conserved) in order to relate the found that internal stress effects are important when 

internal stress distribution to the composition distri- the product of the partial molal volume and the 

bution. On the other hand, in the seminal analysis of mobility of one component differs significantly from 

convective transport during interdiffusion given by that of the other. The evolution of the composition 

Darken [6], the contributions of stress and vacancy is described by a simple Fickian diffusion equation in 

chemical potential to the diffusion potentials are two limiting cases. In the limit of low viscosity or 

neglected. In the Darken analysis it is assumed that large distance scale, the interdiffusion coefficient is 

the distance scale over which the interdiffusion occurs given by the Darken expression [6]. In the limit of 

is sufficiently large such that the time constant for high viscosity or small distance scale, one obtains an 
relaxation of these contributions by plastic defor- interdiffusion coefficient of the Nernst-Planck type 
mation and vacancy creation/annihilation is small [12]. In general, however, the rate-limiting step 
relative to the time constant for diffusion [I. The changes with time as the distance scale of the 

purpose of this paper is to develop a treatment of interdiffusion process changes, and a Fickian 

interdiffusion which takes into account both the diffusion equation does not describe the behavior of 
effects of stress and vacancy chemical potential terms the system. The characteristic lengths, at which the 
in the diffusion potentials, and also the relaxation of rate-limiting step changes from diffusion of the 
these terms and the resulting convective transport. “slower” component, to plastic deformation, to 
Such a treatment will be applicable to amorphous diffusion of the “faster” component, are obtained in 
and defective crystalline systems at relatively small terms of products of the viscosity and the mobihties. 
distance scales, a regime in which one or another of Graphs are presented showing the qualitative 
the assumptions used in previous models are not differences between the shapes of composition 
generally valid. A detailed theory is developed first profiles encountered during various stages of 
for an amorphous system having internal stress (but interdiffusion. It is found that the integrated amount 
no vacancy chemical potential) in which plastic defor- of material transported increases linearly with time 
mation occurs by Newtonian viscous flow. The when plastic deformation is rate-limiting, in contrast 
modifications necessary to apply this model to de- to the parabolic (t”*) time dependence obtained when 
fective interstitial and substitutional crystalline sys- diffusion is rate-limiting. 
tems are then considered. 

A brief letter has been published elsewhere [8] 2.1. Coordinates, densities and fluxes 

describing some of the results of the model which is In general, it is necessary to carefully distinguish 
presented in detail here. This model provides a foun- between transport due to diffusion and that due to 
dation for previous work on spinodal decomposition deformation (convection) in order to model 
in amorphous systems [9], primarily by addressing the interdiffusion in a multicomponent system [6]. This 
nature of stress-free strain in a system with no site development therefore begins at a fundamental level, 
conservation constraint. The treatment differs from so that the definitions of the quantities under dis- 
others recently proposed [lo, 111, particularly in the cussion are clear. Following the usual practice in 
relationships used between composition and strain continuum mechanics, deformation is modelled here 
and between stress and the diffusion fluxes. using a material (Lagrangean) coordinate system, 



STEPHENSON: OVERVIEW NO. 75 2665 

imagined as being imbedded in and deforming with the 
solid. The deformation is defined by the motion of the 
material coordinate system relative to a fixed spatial 
(Eulerian) coordinate system [13]. Diffusion fluxes are 
then defined relative to the material coordinate sys- 
tem. The material coordinate system is similar to the 
“network” of Larch6 and Cahn [2-51 in that it defines 
the total deformation; however, since plastic defor- 
mation is allowed here, the total deformation alone 
does not determine the stress state. It is not necessary 
at the outset to specify the relationship between the 
material coordinate system and the atomic structure 
of the solid. Rather, as in the Darken analysis, 
it is assumed that species which do not diffuse (e.g. 
components of negligible mobility or macroscopic 
inclusions) can in principle serve as “Kirkendall 
markers” to define the material coordinate system. 

The deformation state at time t can formally be 
described by a one-to-one relation, X,, between the 
spatial and material coordinates of every point [13]. 

r = X,(r’); r’ = X; ’ (r). (la, b) 

Here an unprimed vector, r, specifies position in the 
fixed spatial coordinate system, and a primed vector, 
r’, specifies position in the deforming material coordi- 
nate system. Any quantity which is a function of 
position can be expressed as a function of either r or 
r’ without ambiguity, since one determines the other, 
given the deformation state X,. For simplicity, no 
notational distinction is made between the function 
of r and that of r’ for a particular quantity. 

Gradients and divergences taken with respect to 
the spatial or material coordinate systems are de- 
noted by unprimed or primed symbols, V or V’, 
respectively. As is usual in fluid mechanics, the 
notations for time derivatives of any quantity a at 
fixed r and at fixed r’ are, respectively, 

da da Da aa _z- 
ar at r c*“s,p*,; Dt = at 

. @a, W 
I’ coastan 

The time derivative Do/Dt (often called the substan- 
tial derivative [14]) gives the rate of change of a seen 
at a point which follows the motion of the material 
coordinate system. The velocity field can be defined 
as [I33 

Dr 

V=EDt. 

The two time derivatives are re$ated by the expression 

Da a0 -=- 
Dt at 

+v+ a. 
P (4) 

A system with n chemical components is con- 
sidered. For simplicity, these cbmponents are as- 
sumed to, be uncharged, and electric field effects are 
not explicitly considered. (This mode 

P 
, n be applied 

to many ;problems in ionic systems y appropriate 
choice of neutral components-see Discussion.) The 
spatial density of each component, pi, is defined as 
the local number of moles per unit spatial- 

coordinate-system volume. Each density is a function 
of position and time. Likewise each material density, 
p I, is defined as the local number of moles per unit 
material-coordinate-system volume. The material 
densities are introduced because they are the natural 
variables for the description of diffusion in a de- 
forming system. Instead of separately specifying the 
component densities, the distribution of the com- 
ponents can equivalently be described by the total 
spatial density or total material density and n - 1 of 
the composition variables (mole fractions), defined 
respectively by 

@a, W 

, 
c,~E=pi for 

P P’ 
i = 1 to n. 

The composition variables do not depend on the 
volume basis used. Since only n - 1 of them are 
independent, here c, is taken to be a function of the 
others. 

The total spatial density is assumed to be a func- 
tion only of the instantaneous composition and 
stress. This assumption is consistent with the mechan- 
ical constitutive relations used below, in which plastic 
deformation does not produce volume change. The 
total spatial density at zero stress is denoted by the 
stress-free density, pSF, which is a function only of 
the ci. This is the inverse of the molar volume in a 
system of uniform composition at zero stress. The 
partial molal volumes in an unstressed system of 
uniform composition, vi, are related to pSF by 

1 ( > 2 ap 
Vj=Pn- SF dc for i=lton-1,(7a) 

P I 

Fp--&+ 
( > 

f ‘=&,~. (7b) 
J-1 J 

where each of the partial derivatives of pSF with 
respect to one of the independent Ci is taken with the 
remaining n - 2 independent Ck held constant. 

Continuity equations can be written in either the 
spatial or material coordinate system for the corre- 
sponding density of each component. 

aPi 
dt- --V-J, for i=lton 

DP~ 

Dr- 
- -V’.j, for i = 1 ton. 

In this model ji, the flux with respect to the material 
coordinate system, is the diffusion flux of chemical 
component i, while Ji, the flux with respect to the 
fixed spatial coordinate system, contains by diffusive 
and convective terms. Equation (9) indicates that the 
material densities at a point on the material coordi- 
nate system change solely because of diffusion, and 
are unaffected by deformation. Likewise, it can be 
seen that the composition variables at a point on the 
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material coordinate system change solely because of It can be related to the ratio of the material and 
diffusion, by differentiating equation (6) to obtain spatial densities by 

“‘-_l_Df; ci Dp’ 

Dt -p’Dt 
-;;;E for i-l ton. (10) 

2.2. Strain and stress 

The definition of the total strain and its su~ivision 
into elastic, plastic, and stress-free strains are care- 
fully considered below so that the coupling between 
diffusion and internal stress in amorphous systems 
can be precisely stated. Although increments in elas- 
tic strain are small during interdiffusion in many 
systems of interest, increments in plastic and stress- 
free strain (and thus total strain) can be large. The 
analysis is therefore based on large-strain theory. 
Following standard practice [13], the total strain is 
defined using the deformation-gradient tensor, _F1 
given by 

F=V’r. (11) 

Since the substantial derivative commutes with V’, 
the velocity field is related to _F by the expression 

LF=v’v 
Dt ’ (12) 

In these equations, the vector product is a dyadic 
product [14]. The deformation gradient tensor can be 
uniquely decomposed into an orthogonal rotation 
tensor, R, and a symmetric stretching tensor, U. 

F-R-U. 713) _ -- 

The Jacobian dete~inant gives the volume change 
due to the deformation 1131, which can be written as 
the ratio of the material and spatial densities. 

detg=$. 04) 

There are several strain measures which can be 
defined from IJ. For the present work, the true 
logarithmic str& [IS] is used. 

(TOT = log u. (15) -- 

Here the tensor logarithm is used, which can be 
formally defined using a power series expansion such 
as 

logU=(U-!_I)-$(_U-A).(~--A)+..., (16) 

where 1 is the unit tensor. It can be seen that this 
definition of the total strain reduces to the standard 
small-strain measure as U approaches 1. Logarithmic 
strain is particularly ap~op~ate for systems capable 
of plastic deformation, since increments in strain are 
referenced to the current deformation state rather 
than any fixed state. It is used here to simplify the 
relationship between strain and density. The total 
dilatation, eToT, is defined as the mean of the normal 
total strains by the relation 

eToT z i trace fToT. 07) 

eTOT=F ,tracelogU=flogdet_U=flog c . -- 
( I 

(18) 
P 

The total strain tensor is taken to be the sum of 
elastic, plastic and stress-free strain tensors, which are 
individually evaluated below. 

,ror=~E+$r+(Esr. 09) 

Dilatations are defined for the elastic, plastic, and 
stress-free strain tensors by relations analogous to 
equation (17). The local pressure, P, is likewise 
defined as the mean normal compressive stress, 

P E - f trace 4, (20) 

where u is the Cauchy stress tensor (force per spatial- 
coordinate-system area). 

In the present model, the constitutive relations of 
a Maxwell solid 19,161 are used to relate plastic and 
elastic strain to stress. These simple, isotropic con- 
stitutive relations provide the two physical aspects 
necessary to the analysis: stored elastic energy and 
stress relaxation. 

I-2v 

eE= -Ep 

ep =o (23) 

Dcp 1 
jy2fl@+P_1). 

Here E is Young’s modulus, v is Poisson’s ratio, and 
n is the shear viscosity. For simplicity in evaluating 
the stress distribution, the elastic coefficients E and v 
are assumed to be constants, independent of com- 
position and density. The plastic strain is non- 
dilatational, and leads to stress relaxation through 
Newtonian flow. The elastic dilatation relates the 
spatial density to the stress-free density. 

eE=ilog $ ( > (25) 

This can be derived from equation (18) by con- 
sidering the effect of applied stress on a system in 
which no diffusion occurs, so that eSF and p’ are 
constant. Beginning in Section 2.5 below, it is as- 
sumed that the elastic strain is much smaller than 
unity. This approximation is not necessary for the 
analysis, but it leads to significant simplifications in 
the kinetic equations obtained. 

Previous derivations of the stress contributions to 
the diffusion potentials [2-S] have focussed on sys- 
tems in which the stress-free strain distribution is 
completely determined by the composition distri- 
bution. For example, in a perfect crystal the stress- 
free strain can be defined in terms of the change in 
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the density of lattice sites as a function of com- 
position, at zero stress. This definition is based on the 
assumption that vacant lattice sites are not created or 
destroyed at internal sources or sinks (e.g. extended 
defects) during interdiffusion, so that the crystal 
lattice serves as the material coordinate system. 

To model amorphous or imperfectly crystalline 
systems in which there is no site-conservation con- 
straint, a more general definition of the stress-free 
strain is needed. For simplicity an isotropic system is 
considered here, so that the stress-free strain is purely 
dilatational. 

6sr = esrl _’ (26) 

The stress-free dilatation can be expressed in terms of 
the ratio of the material and stress-free densities 
through a relation analogous to equations (18) and 

(25). 
I 

eSF=flog $ . ( > P 

This follows from equations (17)-(19), (23), and (25). 
It can alternatively be derived from equation (18) 
directly by considering the effect of accumulation of 
density in a material-coordinate-system volume ele- 
ment because of diffusion, at zero stress. To compare 
this general expression for stress-free dilatation with 
the expression used previously, it is convenient to 
differentiate equation (27). 

DeSF 1 Dp’ 1 DpSF 
- - 

Df -3p’=-3pSFx. (28) 

Only the second term on the right-hand side has been 
considered in previous treatments [2-591. For ex- 
ample, the first term is zero in a perfect crystal with 
substitutional components where vacancies are 
counted as a component. since p’ is constant when no 
vacancy sources or sinks operate. In the present 
model no site-conservation constraint is imposed, so 
that the first term is determined only by solution of 
the separate transport equations for diffusion of each 
component. 

In the second term of equation (28). DpSF/Df can 
be expanded in terms of the independent Dc,/Dl. 
Equations (7a. b) and (10) then give a somewhat 
simpler form for equation (28) 

(2% 

A comparison of this with equations (9) and (10) 
shows that the change in the stress-free dilatation is 
determined by the diffusion fluxes, but is not in 
general determined by the change in composition. 
This result is one of the major differences between the 
current model and that developed in a previous 
article on spinodal decomposition in amorphous sys- 
tems [9], in which is was assumed that the stress-free 
dilatation could be expressed as a function of 
composition. 

2.3. Choice of the undeformed state 

One important aspect of the constitutive relations 
used is the arbitrary zero of tP and eSF owing to the 
unspecified initial state of the material coordinate 
system. Because of this, the state of the system can be 
defined to be the undeformed state (i.e. c ToT = 0. so 
that the material and spatial coordinate systems 
coincide) at any particular time. Only the local rate 
of deformation is significant, rather than the total 
amount of deformation of some reference state. This 
is physically reasonable for a system capable of 
plastic deformation. Whenever the system is un- 
deformed, there is no difference between the value of 
a gradient, divergence, volume density, or area den- 
sity taken with respect to the material coordinate 
system and one taken with respect to the spatial 
coordinate system. (There is a difference between the 
values of the time derivatives of these quantities, 
however; this is the reason for the use of two coordi- 
nate systems in the first place.) For the present 
purpose of developing differential equations for the 
evolution of the system, it is thus very convenient to 
stipulate that the system is undeformed at the par- 
ticular time for which expressions are evaluated. This 
is equivalent to specifying that X, in equations (la, b) 
is a “relative deformation function” [13]. 

One consequence of this choice is that the 
difference between primed and unprimed gradients, 
divergences, and densities can generally be ignored, 
provided that they are not within time derivatives or 
variations. Likewise, since no distinction need be 
made in the measurement of area. the relationship 
between the two fluxes of equations (8) and (9) can 
be obtained as 

J,=ji+piv for i = 1 ton, (30) 

where the second term gives the transport by con- 
vection. In addition, the substantial derivatives of 
cToT (I and Fcan be related by the small-total-strain 
form&, - 

DfTOT =; =fE+%). 
Df 

(31) 

Combining the traces of equation (12) and (31), one 
obtains 

DeToT 
- = 4v.v. 

Df 
(32) 

2.4. Stress distribution during interdiffusion 

To determine the stress distribution, the equi- 
librium relation for force balance is needed in addi- 
tion to the constitutive relations. For creeping flow in 
which acceleration is negligible, this is given by 

O=V.a. (33) 

In the analysis presented below, it is assumed for 
simplicity that the spatial average of the pressure is 
zero. (Adding a constant to the pressure has no effect 
on the thermodynamic potentials for transport [9].) 
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First consider an unbounded system with com- 
position and density profiles which vary only in one 
dimension (the x-direction). The stress distribution 
for this case is easily obtained because of symmetry 
[2,9]. The transverse total strains, 6FT and 6fpT. the 
longitudinal stress, a,, , and all off-diagonal tensorial 
components vanish. It is convenient to define a scalar, 
Acp, which determines the tensorial components of 
the plastic strain through the relations 

er xx = 2Acp, (34a) 

The stress and strain distributions can then be written 
in terms of this variable and the stress-free dilatation. 
The expressions obtained for the stress are [9] 

P = $esF- AcP), (3W 

a,, = 0, Wb) 
a 

YY 
=a,,= -;P, (35c) 

where Y is the combined elastic constant, defined by 

E 
YE-. 

l-v (36) 

The total dilatation can be written as 

emT 

For this stress distribution, the constitutive relation 
for plastic strain, equation (24), can be written as 

DAE~ P 

Dt=$ 

The stress distribution for an unbounded system 
with a three-dimensional variation in AC’ and esF 
can be obtained simply by superimposing one- 
dimensional solutions. Equations (35a) and (37)-(38) 
remain valid for an appropriately generalized 
definition of Acp [9]. Larchi and Cahn [2] have 
considered stress distributions for various boundary 
geometries. The relations obtained above remain 
valid for one-dimensional interdiffusion in a semi- 
infinite system bounded only by surfaces perpen- 
dicular to the transport direction, such as that 
considered in Section 2.7. In some situations (e.g. 
diffusion through a finite plate which is uncon- 
strained laterally), the stress distributions obtained 
lead to behavior which is significantly different from 
that of the simple case considered here. 

By differentiating equation (35a) and using equa- 
tions (29) and (38), the change in the pressure at a 
point on the material coordinate system can be 
written as 

(39) 

Since the substantial derivatives of the material den- 
sities are simply related to the diffusion fluxes 

through the continuity equation (9) the above 
equation explicitly shows the manner in which 
diffusion and plastic deformation affect the stress 
distribution. By combining it with diffusion equations 
for the components which include stress in the 
diffusion potential, the evolution of the system during 
interdiffusion is determined. 

2.5. Kinetic equations for the case of small elastic 
strain 

A kinetic equation can be written for each of the 
basic transport processes considered: diffusion of 
each component with respect to the material coordi- 
nate system, and plastic deformation of the material 
coordinate system. The thermodynamic potential for 
each of these processes is the variational derivative of 
the free energy functional for the system with respect 
to a variable associated with that process [17-191. The 
kinetic equation for a conserved variable (e.g. a 
material density) is a diffusion equation; that for 
a non-conserved variable (e.g. plastic strain) is a 
relaxation equation. The set of variables must 
be chosen such that each is directly affected by one 
and only one basic process. Because of this, cross- 
terms in the kinetic equations between the various 
thermodynamic potentials and rates of change of the 
variables are neglected [20]. In particular, for an 
amorphous system the diffusion of each of the n 
components is considered to be an independent pro- 
cess affecting only one of the material densities 
directly. The processes are coupled indirectly through 
the effects of composition and stress on the separate 
thermodynamic potentials and kinetic coefficients 
(mobilities and viscosity). 

For simplicity, kinetic equations are derived here 
for systems in which the elastic strain is negligible 
with respect to unity. The free energy functional is 
given by 

F= (pf +fg:cE)dr, (4) 

where f is the free energy per mole of an unstressed, 
uniform system as a function of composition, and the 
second term is the elastic energy density for small 
elastic strains. (Gradient energy terms could be added 
to the integrand to model spinodal decomposition or 
interdiffusion at small distance scales.) From the 
stress distribution obtained above for an unbounded 
system, the integrated elastic energy can be expressed 

as PI 

The set of variables which are independently 
affected by diffusion of each component and plastic 
deformation are the pj and AC’, respectively, 
provided that variations are taken with respect to 
the material coordinate system. Inserting equation 
(41) into equation (40) and changing to material 
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coordinates, one obtains 

The variation in free energy is given by 

6F= 

dr’. (43) 

The variations in the integrand can be expressed in 
terms of the 6pj and 6Acp by comparison with the 
relations between substantial derivatives. 

Wa) 

&zi=$+;-;& for i=l ton-l (44b) 

6p’= i 6p; 
i-1 

= 3P(SeSF-SAcP) 

Each of the partial derivatives offwith respect to one 
of the independent ci is taken with the remaining 
n - 2 independent c, held constant. 

Some simplifications result from the assumption of 
small elastic strain introduced at equation (40), which 
implies that P/Y and (psF - p)/p are negligible with 
respect to unity. The last term in the integrand of 
equation (43) can be neglected, and the variational 
derivatives can be evaluated as 

6F 
-= 
6P: 

psF+PiP for i=l ton, (45) 

6F 
-= -3P, 
bACP (46) 

where ps’ is the chemical potential (partial molal free 
energy) of component i in an unstressed system of 
uniform composition, related to f by 

af pTF=pzF+ac for i=l ton-l, (47a) 
I 

(47t-4 

Equation (45) for the diffusion potential in an un- 
bounded internally-stressed system with small elastic 
strain agrees with that obtained in other treatments 
[2,4,211. 

The equation for the diffusion flux of each 

component is written as 

ji= -MipiV SF 
( ) SP : 

for i = 1 to n. (48) 

Here M, is the molar mobility of component i, related 
to the tracer diffusivity 0: by 

M,=gk for i= 1 ton, (49) 

where R is the molar Boltzmann constant and Tis the 
temperature. With the continuity equation (9), this 
gives a diffusion equation for each material density. 

DP: 
- = V.M,piV(psF + P,P) for i = 1 to n. 
Dt 

(50) 

The relaxation equation for plastic strain is given 
by equation (38). This can also be written in terms of 
the variational derivative. 

DAc ’ 1 6F _=--- 
Dt 12~ 6Acp’ (51) 

The relaxation equation does not contain the 
divergence and gradient found in the diffusion 
equations. This leads to qualitatively different behav- 
ior when stress relaxation rather than diffusion is the 
rate-limiting step for interdiffusion. 

Although the variables pi and AC’ are used to 
define the variations occurring due to the basic 
transport processes considered, the variables c, and P 
are more convenient for describing the evolution of 
the system. After eliminating the substantial deriva- 
tives of the material densities in equations (10) and 
(39) using equation (50). one obtains a set of coupled 
non-linear differential equations 
and P, given by 

DC 
L = L V.[M,plV(p$ + rip)] 
Dt P 

- ;,$, W[M,P,V(PF + 

for i = 1 to n, 

in the unknowns c, 

pjp)lJ 

(52) 

;=;$ {8,V~[MipiV(p;‘+k’,P)J}--Pp. 
1-I 

(53) 

The kinetic equation for c,, is not independent, leav- 
ing n independent equations in n unknowns. Since 
these equations involve the substantial derivative, a 
knowledge of the velocity field is also required to 
determine the spatial evolution of the system. For 
elastic strains much smaller than unity, equations 
(29), (32), and (50) give 

V.v = 2 { P,V.[M,~J’(/I:~ + p,P)]}. (54) 
,=I 

2.6. Analytical solution to the linearized equations for 
a binary system 

The coupled differential equations for the c, and P 
can be solved analytically for the case in which the 
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composition and pressure deviations are small, so 
that higher-order (non-linear) terms, in expansions of 
these quantities about their average values, can be 
neglected. This solution shows the fundamental be- 
havior of the general equations (52)-(53). For sim- 
plicity, a two-component system is considered below 
with a single independent composition variable, 
c=c 

In :he linear approximation, the gradients, fluxes, 
and velocity field are proportional to small quantities. 
The product of two of these is negligible, so that the 
substantial derivative, D/Dt, reduces to the time 
derivative at fixed spatial position, a/at. The 
differential equations for composition and pressure 
can be written in linearized form as 

; = [( 1 - c,)M,, + cOMzO]cO( 1 - c,)f”VC 

+(~,oM,o - ~&f&,(1 - c0)V2P, 

ap 2~ 

(55) 

(56) 

IIere c, is the average composition, the subscript 
zeros on M, , M2, P, , p2, p, and q indicate evaluation 
at co, and the coefficient f’ is defined by 

f+$ . (57) 
co 

Because of the Gibbs-Duhem relation, only this 
single parameter is needed to specify the composition 
dependence of both chemical potentials in a binary 
system. 

To solve equations (55) and (56), it is convenient 
to express the dimensionless quantities c(r, I) and 
P(r, f)/ Yin terms of their Fourier amplitudes. Within 
the linear approximation, Fourier components of 
different wavevector do not interact. For appropriate 
initial conditions, the amplitudes of c and P}Y at a 
given wavevector are “in phase” at all times, and 
their phase does not change. It is then sufficient to 
consider only the real magnitudes, d(k, t) and @(It, 1). 
of the complex amplitudes. The kinetic equations 
become 

ae 
- = -[(I -co)M~o+coM&o(l -c,)f”k’~ at 

-_(P,oMio- ~zAr,)c,,(l -cofYk% (58) 

86 - = - f( P,oMlo - v, M20)Poco( 1 - co)f”k2C 
at 

where k is the wavenumber (the magnitude of the 
wavevector, k). This set of linear, first-order 
differential equations is readily solved by matrix 
methods 1221. 

From the linearized equations in either real space 
or Fourier space, one can see immediately that the 
coupling between the composition and internal stress 
fields vanishes when the mobilities and partial molal 
volumes satisfy the relation 

ti,oM,o = Pzo MzO. (60) 

In this case, the interdiffusion of the components 
leads to no stress-free dilatation, Conversely, large 
stress effects can be expected when the products in 
equation (60) are very different. 

2.7. Quasi-steady-state pressure distribution 

It is useful to consider a quasi-steady-state solution 
to understand how the rate-limiting step for 
interdiffusion can change, depending upon the dis- 
tance scale. Since the elastic constant Y is typically 
much larger in magnitude than the product 
poco( 1 - co)f”, the coefficient of @ in equation (59) is 
often much larger in magnitude than that of F. In this 
case (the “small-chemical-term” limit [9]), the pres- 

sure relatively rapidly approaches a quasi-steady 
state dist~bution obtained by setting i$Viiat to zero in 
equation (59). 

1 (r,oM,o- ~zoMzo)~ok’ 
p = - 3p, 

4tl, + [?%coM,o+ PL(1 - coPfzolp;k2 

X 
PoCo(l - cow i;. 

Y 
(61) 

The kinetic equation for composition can then be 
expressed as 

- = -&,(I - c,)f”k’E, 
at (62) 

where the net mobility A? is a function of wave- 
number given by 

[(I - co)M,,+ coMx,l -t M,oM,ok’ 
@= , (63) 

+ [P:,coM,,+ &(I - ~o)M~]p~k2 

These quasi-steady-state expressions are valid after 
an induction time given by the inverse of the 
coefficient of J? in equation (59), 

9Po ( J 2y 
tqsS= 

\ I 

3Po ( > 4tlo 
+[P:ocoMlo + V:o(l - co)Mzolp:k* 

fW 

AS discussed in the previous short article [8], 
equations (62) and (63) lead to interdiffusion behav- 
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ior which spans the range between that given by the 
Darken analysis [6] and that given by a modified 
Nemst-Planck analysis [ 121. In a system in which the 
viscosity is sufficiently small, stress relaxation occurs 
relatively rapidly, since the rate constant for plastic 
deformation is much larger than both of those for 
diffusion. The net mobility reduces to that given by 
the Darken analysis, in which stress is neglected and 
only the convective term couples the two spatial 
fluxes. 

tie = (1 - co)M,, + coM*o. (65) 

If the components have very different mobihties, the 
rate-limiting step for composition change in the 
Darken regime is diffusion of the faster component, 
since the slower can be transported by deformation. 
On the other hand, in a system in which the viscosity 
is sufficiently large, convective transport can be 
neglected, and only the stress term in the potentials 
couples the two spatial fluxes. The net mobility is of 
the Nernst-Planck form, 

Jf,df2* 
MN, = [P:&JM,O + Pj”(1 - cO)M,,]p;’ 

(66) 

In the standard Nernst-Planck analysis, a similar 
result is obtained using an electrostatic potential term 
rather than a stress term to couple the fluxes. In this 
case, if the components have similar partial molal 
volumes but very different mobilities, internal stress 
builds up to impede diffusion of the faster component 
and to drive counter-diffusion of the slower com- 
ponent. The rate-limiting step is thus diffusion of the 
slower component. When equation (60) holds, the 
Darken and Nernst-Pianck expressions for the net 
mobility are equivalent. 

In each of these two limits, the net mobility is not 
a function of wavenumber, so that the real-space 
form of equation (62) is given by the simple linear 
Fickian diffusion equation 

Here the interdiffusion coefficient is related to the net 
mobility by 

d = AC& - co).~* (63) 

To understand the interdiffusion behavior without 
making either of these assumptions about the vis- 
cosity, it is expedient to cast the quasi-steady-state 
kinetic equation for composition into dimensionless 
form by defining a characteristic time and a char- 
acteristic wavenum~r (inverse length) for the 
material, given by 

(70) 

As shown below, the characteristic time td is the time 

A.M. X!Kb-c 

constant for the relaxation of the stress generated by 
diffusion, and the characteristic wavenumber k, is 
the wavenumber for which Nemst-Planck-ty~ 
interdiffusion has the same time constant as stress 
relaxation. In terms of the dimensionless variables 
r z t/td and q Sk/k,, equations (62) and (63) 
become 

SE 
- = -f& 
ds 

Off 

I-= 1 [I + P&-;p;q;] + q2 
q; + [l $ F&(1 - c,yp;qfJq2 q2* I 

(72) 

where F is the dimensionless rate constant and q,,, is 
a dimensionless material parameter reiated to the 
ratio of the mobilities by 

Likewise equation (61) becomes 

xc1 - COY’ . 
~,ll y 

c, (74) 

and the quasi-steady-state induction time is given in 
dimensionless units by 

TQSS = 
Qm 

do+ [I + ml - Co)2i4qfls2 

9(1 - %W’ (75) 
x 2p,QY . 

Equations (72) and (74)-(75) can be simplified 
when the parameter q,,, is sufficiently small such that 
the terms involving qf within the square brackets are 
negligible with respect to unity. Provided that neither 

FiOcB~O nor F220(l - cO)p,, has a value close to zero, 
this approximation is valid under the condition 
f7120Mz0<< F&f,,. This is the same condition neces- 
sary for the Darken and Nernst-Ptanck net mobilities 
to differ significantly, i.e. necessary for the behavior 
predicted by the present model to be interesting. The 
simplified expressions are given by 

f-= 1+q2 ( > m q2* 
4mf4 

(77) 

‘QSS = 

9(1 - c,)Y 

2PoKY . 
(73) 

The approximation that q,,, is sufficiently small (de- 
noted simply by qi<c 1 below) is used in obtaining the 
simple asymptotic expressions (79x85) and 
(87)-(89), although the complete equations (72) and 
(74) are used in calculating the curves in Figs 1-4. 

The rate constant f of equations (71x72) is 
plotted against dimensionless wavenumber in Fig. 1, 
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Fig. 1. Solid curve: the dimensionless rate constant r as a 
function of dimensionless wavenumber q. for a binary 
amorphous system. Dashed lines: the Darken, Nernst- 

Planck and deformation-limited asymptotes. 

using logarithmic scales. The values of the dimen- 
sionless material paramters qm, co, and Plop0 used in 
calculating Fig. 1 are given in Table 1, along with 
Fz,,po and the mobility ratios implied by these values. 
From the breaks in the slope of F, one can see that 
the rate-limiting step for interdiffusion changes as a 
function of wavenumber. Three regimes can be dis- 
tinguished. For q much smaller than qm, diffusion of 
the faster component 1 is rate-limiting (the Darken 
regime). For q much larger than unity, diffusion of 
the slower component 2 is rate-limiting (the 
Nemst-Planck regime). For q between qm and unity, 
plastic deformation is rate-limiting, since it partially 
relaxes the internal stress due to the imbalance in the 
diffusion fluxes. In this regime, the rate constant does 
not have the strong dependence on wavenumber 
characteristic of diffusion; rather, it shows the 
wavenumber-independence of a relaxation process. 

A B 

NO. 15 

Table 1. Material parameters for Figs I4 

qm=O.l 
co = 03 

V IOPO = 1 

V i&a=1 
Mm/M, = 400 
A,& E loo 

The width of the deformation-limited regime is given 
by the square-root of the ratio of the Darken and 
Nemst-Planck net mobilities. When the dimen- 
sionless wavenumber range of interest includes this 
regime, in a system for which the net mobilities differ 
significantly, a simple Fickian diffusion equation does 
not describe the interdiffusion behavior. 

Also shown in Fig. 1 are dashed lines correspond- 
ing to simple asymptotic forms for the rate constant 
in the Darken, Nemst-Planck, and deformation- 
limited regimes. Under the condition q&ccl, these 
are, respectively, 

2 

Fn =$, for q2c-cqi, 
m 

rNP = q2, for l<<q2, (go) 

l- _,= = 1, for qfn<<q2<< 1. (81) 

The full solution approaches these asymptotes more 
closely for smaller values of q,,,. Each asymptotic 
form can be associated with a rate constant for one 
of the three basic processes (diffusion of the faster 
component 1, diffusion of the slower component 2, 
and plastic deformation, respectively). One can see 
that, in each of the asymptotic regimes, the rate- 
limiting step is always the next-to-slowest of the three 
processes. 

The effects of the complicated wavenumber de- 
pendence of the rate constant on the evolution of 
real-space composition and pressure profiles can 
easily be seen in the case of one-dimensional 
interdiffusion into a semi-infinite system. Consider a 
system, initially of uniform composition c, and zero 

C D E 

DISTANCE (I@ 

Fig. 2. Composition and pressure profiles as a function of dimensionless distance I z k,x, at various times 
after the surface composition is changed. The sequence is shown using five spatial magnifications A-E. 
The dimensionless time corresponding to each curve is indicated by the value of log,, r shown near the 

curve. 
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Fig. 3. Composition and pressure profiles as in Fig. 2, plotted on logarithmic scales as a function of linear 
distance. The non-Fickian exponential form of the profiles in the deformation-limited regime is evident. 

stress, in which the composition at the surface x = 0 
is instantaneously brought to a new value c, at time 
t = 0 and maintained there. Figure 2 shows com- 
position and pressure as a function of distance at 
specific times, calculated from the linearized quasi- 
steady-state solution to the model developed above, 
equations (71)-(74), by nume~cally computing the 
real-space profiles from the Fourier-space solution 
using the parameter values in Table 1. The five pairs 
of graphs show profiles at five different spatial 
magnifications, plotted in terms of dimensionless 
distance and time variables, I and T. The length of the 
displayed portion of the profiles is shown below each 
pair of graphs, expressed as a value of I = kdx. where 
x is the distance along the transport direction. This 
displayed length changes by an order of magnitude 
between each pair. The logarithm of the dimen- 
sionless time, log,,z, corresponding to each com- 
position and pressure profile is shown near the curve. 
The profiles shown span nine orders of magnitude in 
time. 

sionless variables in the limit qi<< 1. At the largest 
distance scale (graph E), the system is primarily in the 
Darken regime, in which the stress is completely 
relaxed and diffusion of the faster component 1 is 
rate-limiting. The composition profile is of the well- 
known error-function form obtained by solving the 
simple linear diffusion equation (67). 

(824 

P = 0. Wb) 
These asymptotes for the Darken regime are valid in 
the limit 

I <<7. (824 

At the smallest distance scale (graph A), the system 
is primarily in the Nernst-Planck regime, in which 
stress relaxation is negligible and diffusion of the 
slower component 2 is rate-limiting. The composition 
and pressure profiles are both of the error-function 
form. 

Since different portions of the kinked rate-constant 
spectrum shown in Fig. 1 are applicable to each of the 
pairs of graphs shown in Fig. 2, the shapes of the 
real-space composition profiles change funda- 
mentally from graph to graph. This can be seen even 
more strikingly in Fig. 3, in which the logarithm of 
the composition or pressure is plotted against (linear) 
distance. To take advantage of the logarithmic scales, 
the range of times shown has been shifted by one 
decade between Figs 2 and 3; otherwise, the par- 
ameters used to calculate the curves in the two figures 
are identical. One can see that the composition 
profiles, initially of error-function form, develop in- 
creasingly prominent exponential tails and then 
finally revert back to error-function form. 

(g3a) 

W+b) 

These asymptotes for the Nemst-Planck regime are 
valid in the limit 

z << I 
1 

- erf - ( > s7 Ii2 
. (83~) 

For qk<< I, the maximum pressure is given by 

P MAX = (84) 

This behavior can be understood by considering At intermediate distance scales (graphs B, C, and D), 
the aysmptotic forms for the quasi-steady-state com- the profiles show aspects of both diffusive and relax- 
position and pressure profiles in each of the three ational kinetics. When plastic deformation is rate- 
regimes. These can be simply expressed in dimen- limiting, the composition and pressure profiles decay 
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exponentially with distance and appear as straight 
lines in Fig. 3. The asymptotic solutions can be 
obtained by solving equations (55)-(56) in the limit 
that terms containing V*c are negligible. 

c - c, 
-=T exp(-q,l) 
co - CCC 

(85a) 

P 
- = exp( - qm I). 
P MAX 

Wb) 

These asymptotes for the deformation-limited regime 
are valid in the limit 

1 -erf $ <CT 
( ) 

and rctl. (85~) 

From the asymptotic forms obtained for the three 
regimes, it can be seen that the time exponent charac- 
terizing the extent of interdiffusion changes de- 
pending upon whether diffusion or plastic defor- 
mation is the rate-limiting step. The extent of 
interdiffusion can be defined as 

(S 
s 

mcdC”dl. (86) 
0 co-cc, 

This quantity is plotted against dimensionless time in 
Fig. 4, calculated from the same solution used to 
generate the curves in Figs 1-3. The asymptotic 
expressions for 5 obtained by integrating equations 
(82a), (83a), and (85a) are respectively given by 

(87) 

&,,, = -I for q jn << 5 << 1. (89) 
4m 

These three asymptotes are plotted as dashed lines in 

10“ 104 10-3 10-l 1 10’ id 
I- 

Fig. 4. Solid curve: the extent of interdiffusion < as a 
function of dimensionless time T, for the composition 
profiles shown in Figs 2-3. Dashed lines: the Darken, 

Nemst-Planck and deformation-limited asymptotes. 

Fig. 4. Once again, the full solution approaches these 
asymptotes more closely for smaller values of q,,, . The 
linear time dependence found when deformation is 
rate-limiting differs fundamentally from the parabolic 
time dependence of the diffusion-limited regimes. 

2.8. System with one immobile component 

It is of interest to consider an amorphous system 
in which the mobility of component n is negligible, 
since a component which does not diffuse serves to 
physically define the material coordinate system. In 
this case interdiffusion occurs by the diffusion of 
components 1 to n - 1 in the interstices of a deform- 
ing network of component n. An example of such an 
immobile component is a heavily cross-linked “back- 
bone” in a polymer or oxide glass system, or an inert 
component introduced as dispersed macroscopic in- 
clusions to provide Kirkendall markers for the mea- 
surement of deformation. As discussed below, this 
case is also applicable to an interstitial crystalline 
solid solution. 

For such an interstitial system, it is convenient to 
use n - 1 composition variables, xi, based on unit 
density of the non-diffusing component, 

xi=:=: for i=l ton-l. (90) 

Likewise, it is convenient to use the stress-free density 
of the non-diffusing component, p,SF, and the free 
energy per mole of the non-diffusing component, f,, 
defined by 

P,“‘S CJPF, (91) 

+. (92) 

The partial molal quantities can be simply expressed 
in terms of these variables as 

I ( ) 2ap;F Pi= - PSF - for i= 1 ton - I, (93a) 
n axi 

p.,j+ + yxjg, 

() 

Wb) 
I==1 I 

af. pSF=- for i=l ton-l, 
hi 

(944 

Wb) 
1-l "Lj 

Here each of the partial derivatives with respect to 
one of the xi is taken with the n - 2 remaining X~ held 
constant. The model developed above can be re- 
written using the xi, pp, andf, instead of the c,, pSF, 
and jI In particular, the change in the stress-free 
dilatation, equation (28), can be written as 

DeSF 1 DP:, 1 DpzF -=---- 
Dr 3p:, Dt 3p:‘Dt’ 

(95) 

When the mobility of component n is negligible, 
the continuity equation implies that the first term on 
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the right-hand side of equation (95) can be neglected. 
The change in the stress-free dilatation is then deter- 
mined by the change in pz’, which is a function only 
of the composition variables. An especially simple 
expression can be written using the x,. 

(96) 

The coupled equations for composition, pressure, 
and the velocity field are also simpler when the 
mobility of component n is negligible than in the 
general case. 

DX, 
- ‘v. tM,p,V(p~F + Pip)] Dt - pn 

for i = 1 to n - 1 (97) 

&$ Y,Z. (99) 
i-l 

The linearized equations for a binary system 
(n = 2) with one immobile component are given by 

ax 
5 = M,&(f;V*X + P,,V2P), (100) 

ap 2yp,,aX Y p 
-=-_A- 

at 9 at 6qo ’ 

with x 3 x, and 

d*J 
fZ=--i_ =(l -c,)3j”“. 

dX x0 

(101) 

To compare these results with equations (55)-(56), 
the relation between the linearized composition vari- 
ables is 

c - co 
x-x0=(] _co)2’ (103) 

Equations (1 OO)-( 10 1) are equivalent to those used in 
a previous article on spinodal decomposition in 
amorphous systems [9]. 

A solution can be obtained using the quasi-steady- 
state pressure distribution which is equivalent to 
equations (61)-(63) with MZo set to zero. 

p = - 

- i 

P,oM,oP?ok* 

3p,, 
- + 
4rlo 

P:oxoM,odok* 
1 

PzoXofE - 

Y x 

ax 
3p, M,, 
4qo -=- 

at 3P,o 
Xof;k’X^. 

- + 
4tlo 

Y:oxoM,odok* 

104) 

105) 

From the form of the net mobility in equation (105) 
one can see that only the Darken and deformation- 
limited regimes are found in a binary system when 
component 2 is immobile. The wavenumber at which 
the rate-limiting step changes from diffusion of com- 

ponent 1 to plastic deformation is the same as that 
obtained in Section 2.7 above. It is given by 
k, = q,,, k,, or equivalently 

k, = (106) 

In a ternary system with one immobile component. 
one can expect a Nernst-Planck-type regime to occur 
as well, although the solution is more complex than 
those developed above for binary systems because 
two composition variables and chemical potential 
gradients are independent. 

3. THEORY FOR CRYSTALLINE SYSTEMS 

In this section, the above treatment is extended to 
defective crystalline systems capable of plastic defor- 
mation. Although much of the model for amorphous 
systems is equally applicable to crystalline systems. a 
few of the assumptions made must be reconsidered. 
In addition, different assumption; are typically ap- 
propriate for crystalline systems with different domi- 
nant point defects. Two simple cases are considered: 
an interstitial solid solution, and a substitutional 
solid solution with vacancies. The behavior predicted 
for defective crystalline systems is found to be quali- 
tatively similar to that for amorphous systems. In 
both, the rate-limiting step for interdiffusion can 
change between a relaxation process and a diffusion 
process as the distance scale changes. 

A detailed treatment of deformation during 
interdiffusion is inherently more complex for a crys- 
talline system than for an amorphous system. The 
amorphous system is modelled above as a Maxwell 
solid, in which plastic deformation can occur by 
viscous flow at every point in the system. In a 
crystalline system, plastic deformation is expected to 
occur only at extended lattice defects such as dis- 
locations or grain boundaries. Thus the mechanical 
constitutive relations appropriate for a crystalline 
system are non-uniform in detail; to fully model 
microscopic behavior, regions at extended defects 
must be treated differently than the regions of perfect 
lattice in between. Likewise, in the model for amor- 
phous systems, the change in the total material 
density contributes to the stress-free dilatation at 
every point in the system. In a substitutional crys- 
talline system with vacancies, this contribution occurs 
only through the creation/annihilation of vacancies 
at extended defects. In addition, the stress-free strain 
is assumed to be purely dilatational in the 
amorphous-system model. The stress-free strain as- 
sociated with the occupation of a site in a crystalline 
lattice can have deviatoric components, and the 
alignment of this anisotropy with the lattice can lead 
to collective effects. These complications of non- 
uniformity and anisotropy are not addressed here. 
Rather, the isotropic continuum equations are re- 
tained, with the understanding that they involve an 
average over distance scales of the order of the 
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extended-defect spacing, and over all orientations of The change in the stress-free dilatation 
anisotropic sites. written as 

3.1. interstitial crystalline system 

A crystalline interstitial solid solution with a de- 
formable host lattice can be treated in a manner very 
similar to an amorphous system. Consider a system 
in which components 1 to n - 1 occupy interstitial 
sites in a host lattice of component n. For simplicity, 
diffusion of the host component and creation/ 
annihilation of vacancies on the host lattice are 
neglected, although it is assumed that the lattice can 
undergo plastic deformation (e.g. through dislocation 
glide). Since vacant interstitial sites are not consid- 
ered to be a component, diffusion of each of the n - 1 
interstitial components is an independent process 
affecting only one of the material densities directly. 
Within the Maxwell solid approximation, the treat- 
ment for this case is identical to that for an amor- 
phous system with one immobile component, equa- 
tions (96x106). The host lattice serves as the 
material coordinate system, and the stress-free strain 
depends only on the composition. The non-Fickian 
behavior which occurs when plastic deformation is 
the rate-limiting step for interdiffusion can thus 
be expected in a deformable interstitial crystalline 
system. 

DpSF 1 1 DpSF 

Dt =3p’ s-3pSFx. 

When the second term is expanded in the com- 
position variables, one obtains 

To derive the thermodynamic potentials for the 
kinetic equations, a set of variables which are inde- 
pendently affected by each basic process considered 
must be used in the variational derivatives of the free 
energy functional. The set for a substitutional crys- 
talline system with vacancies differs from that for an 
amorphous or interstitial crystalline system, so the 
potentials obtained differ. Only n - 1 independent 
diffusion processes occur: the exchange of vacancies 
with each of the other components. In addition to 
these, vacancy creation/annihilation and plastic de- 
formation are the basic processes considered. An 
appropriate set of variations for these processes are 
&I], for i = 1 to n - 1, 6p’, and 6Acp, respectively. 
The integrand of equation (43) can be expressed in 
terms of these variations using equations (44a, b, d, e) 
and 

3.2. Substitutional crystalline system with vacancies 

For a substitutional crystalline solid solution in 
which diffusion occurs by a vacancy mechanism, a 
model for interdiffusion must take into account both 
the creation/annihilation of vacancies at extended 
defects and the contribution of the vacancy chemical 
potential to the diffusion potentials. This leads to 
some significant differences with the treatment for 
amorphous systems. In particular, vacancies must be 
considered to be a component, and the continuity 
equation for vacancies must be modified to include a 
source term. If vacancies are component n, one 
obtains 

The variational derivatives can be evaluated as 

6F 
sF-p;F+(Vi- PJP dpj=pt 

for i=l ton-l, 

6F 
- = PI’+ P”P, 
6P’ 

6F 
-= -3P. 
6AcP 

As found in previous treatments [2-51, the diffusion 
potentials for substitutional crystals contain only 
differences between the chemical potentials (or 
partial molal volumes) of components 1 to n - 1 and 
vacancies. 

SP” 
- = -V.J,+s, 
St 

(107) 

DP:, 
Dt 

- -V’.j, + s, (108) 

where s is the rate of creation of vacancies per unit 
volume. The continuity equations for components 1 
to n - 1 do not contain this source term. 

Since diffusion occurs only by the exchanges of 
vacancies with other components, the diffusion fluxes 
obey the constraint 

0= i ji, 
1” 

(109) 

which implies that the change in the total material 
density is determined by the vacancy creation fate. 

can then be 

(114) 

(115) 

(116) 

As in the amorphous case, equation (48) is used to 
obtain the diffusion fluxes of components 1 to n - 1, 
and cross-terms between potential gradients and 
fluxes of different components are neglected. This 
may be a more restrictive approximation here than in 
the amorphous case, since “vacancy wind” effects can 
occur [23,24]. The coupled equations for com- 
position, pressure, and the velocity field can then be 
written as 

DP’ - =s. 
Dt 

ci 
--s for i=l ton-l, 

P 
(117) 



. v { M,p,V[p SF - pIF+V,- ~“,)PlJ - GP, 
1 

(118) 
n-l 

v.v= v> + 1 (P,- Y”) 
,=I 

~V{~,P,WS -p;F+(Pi- V”))P]}. (119) 

In addition, a kinetic equation for the vacancy 
creation rate is needed. To be consistent with the 
Maxwell-solid constitutive relations used for the 
plastic strain rate, a simple relaxation equation is 
appropriate. 

S = -L(p;r+ t’,P). (120) 

Here L is a rate constant for vacancy 
creation/annihilation. 

A quasi-steady-state vacancy chemical potential 
distribution can be obtained by considering the 
vacancy continuity equation. Because the mole frac- 
tion of vacancies is typically very small, the vacancy 
chemical potential is relatively sensitive to changes in 
vacancy density. This in turn makes the two terms on 
the right-hand side of equation (108), the divergence 
of the vacancy diffusion flux and the vacancy creation 
rate, relatively sensitive to the vacancy density distri- 
bution. The quasi-steady-state vacancy chemical 
potential is obtained by setting the change in the 
vacancy material density to zero, so that the two 
sensitive terms balance. This gives 

n-l 

s = 1 V.{M,p,V[p;F --p;F+(B,- Pn)P]}. (121) 
I=, 

When this is substituted into equations (117~(I 19), 
they take on forms very similar to those for an 
amorphous system, equations (52)-(54), with n - 1 
components. The only difference is that the vacancy 
chemical potential and partial molal volume are 
present in each of the diffusion potentials. In general, 
this net vacancy potential can be evaluated using the 
differential equation obtained from the two expres- 
sions for s, equations (120~( 12 1). 

It is interesting to consider in passing the limit in 
which the rate constant for vacancy creation/ 
annihilation, L, is very large. In this case the net 
vacancy potential must tend to zero. 

0 = pp + vn,P. (122) 

The kinetic equations for a substitutional crystalline 
system with n components (including vacancies) then 
reduce directly to those for an amorphous system 
with n - 1 components. The treatment developed 
above for an amorphous system is thus equivalent to 
that for a substitutional crystalline system in which 
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the vacancy chemical potential is always in local 
equilibrium. 

As in the section on amorphous systems, an 
analytical solution can be obtained to the coupled 
equations (117)-( 12 1) by expressing the linearized 
equations for a binary system (two components be- 
sides vacancies; n = 3) in Fourier space and making 
a quasi-steady-state approximation for the pressure 
distribution. Since the mole fraction of vacancies is 
small, only the single composition variable c = c, is 
used, and only the single parameter f” is needed to 
express the composition dependence of ~(s’ and pf’. 
It is once again expedient to cast the equations for the 
composition and pressure into dimensionless form 
using the same characteristic time, td, and wave- 
number, k,, defined above in the treatment for amor- 
phous systems. In addition to q,,,, a dimensionless 
material parameter related to the ratio of the vacancy 
creation/annihilation and plastic deformation rate 
constants is needed. 

4&&l I’* 
qS’3 . ( ) (123) 

The kinetic equation for composition can again be 
expressed as equation (71) with a dimensionless rate 
constant, r. To save space, the exact expressions for 
I’, 6, and ross are not reproduced here. They can be 
simplified in the limit qLc<l (as defined above), to 
give 

I-= 1 SIU + q2) + coPs7* 
d(d + q2) + [1 + (P,oPo - l)*q*lq* I q21 

(124) 

fi=- 1 4:4* + ~,&(~,0P0 - l)q4 
41(4fn + s2) + P + (~KIPO - 1)*q*lq* 

i 

(125) 

?QSS = Ml+ 4* 
434jn + q2) + D + (PlOPO - 1J2q21q2 

9(1 - c,>*f” 

x 2p,&Y . (126) 

One can see that these equations reduce directly to 
equations (76x78) for an amorphous system in the 
limit of large qs. 

Figures 5, 6 and 7 show the behavior of the rate 
constant r as a function of wavenumber for three 
values of q.. The parameter values used in calculating 
the three curves are given in Table 2; the exact 
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9 

Fig. 5. Solid curve: the dimensionless rate constant 
as a function of dimensionless wavenumber q, for 

9 

r Fig. 7. Solid curve: the dimensionless rate constant f 
a as a function of dimensionless wavenumber q. for a 

binary substitutional crystal with qs = 0.1. Dashed lines: binary substitutional crystal with qs= 10. Dashed lines: 
the Darken, Nernst-Planck and two relaxation-limited the Darken, Nemst-Planck and two relaxation-limited 

asymptotes. asymptotes. 

expression for F is used, rather than the approximate 
equation (124). The behavior is somewhat more 
complicated than in the amorphous case, because the 
effects of differences in mobility and in partial modal 
volume are separate when qs is not infinite. From the 
breaks in the slopes of each of the curves, four 
regimes can generally be distinguished. The rate- 
limiting step for interdiffusion is different in each 
regime. As in the amorphous case, at the smallest 
wavenumbers the rate-limiting step is diffusion of the 
faster component 1 (the Darken regime), since the 
slower component 2 is transported convectively. In 
the second regime encountered as wavenumber is 
increased, the rate-limiting step is the slower of the 
two relaxation processes, plastic deformation or 
vacancy creation/annihilation, as determined by the 
value of qs. Both are involved in the convective 

104 - 

9 

Fig. 6. Solid curve: the dimensionless rate constant F as a 
function of dimensionless wavenumber q, for a binary 
substitutional crystal with qs = 1. Dashed lines: the Darken, 

Nemst-Planck and two relaxation-limited asymptotes. 

transport of component 2. The third regime encoun- 
tered is the Nernst-Planck regime, in which diffusion 
of the slower component 2 is rate-limiting. Finally, 
when the partial molal volumes differ, the rate- 
limiting step at the largest wavenumbers is the faster 
of the two relaxation processes, since either can relax 
the internal stress generated by the misfit. 

These regimes correspond to four asymptotic 
forms for F in the limit qk<< 1, given by 

(127) 

(128) 

rNs=(P$f;;:)q2, 

for ” 
1+4I 

P2 2 ‘<+(glopo _ I)? 
lOP0 + 4, 

(129) 

r 
F:oP:+Qs 1 +qi 

RELAX = ( plop0 - ])I’ for (p,opo _ 1)2 <<q2.(W 

These asymptotes are plotted as dashed lines along 
with each of the curves in Figs 5-7. Each asymptotic 

Table 2. Material parameters for Figs 5-7 

q,=O.l P,fl,= I.1 
c, = 0.5 M,,/M, = 494 

P = 0.9 do &“/A,, LT 100 

Figure 5 6 7 

0. 0.1 I IO 
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form can be associated with a rate constant for one 
of the four basic processes. As in the amorphous case, 
diffusion of the faster component 1 and slower com- 
ponent 2 are associated with To and rNP, re- 
spectively. Of the two relaxation processes (plastic 
deformation and vacancy creation/annihilation), the 
slower is associated with rrerar and the faster with 
I- RELAX 3 as determined by the value of qS. In each of 
the regimes, the net rate constant r is always approxi- 
mated by the asymptote with the next-to-smallest 
value. 

3.3. Comparison of perfect -crystal and large-viscosity 
amorphous systems 

The results of previous models for perfect crystals 
[2-51 can be obtained from the models developed 
above for defective crystalline systems by considering 
the limits in which plastic deformation and vacancy 
creation/annihilation are negligible. In these limits 
the quasi-steady state approximations for the pres- 
sure distributions derived above are not valid for 
binary systems; the pressure distributions must in- 
stead be obtained directly from the general equations. 
For comparative purposes, an amorphous system in 
the limit of negligible plastic deformation is first 
considered. The essential differences between models 
for perfect crystals and for an amorphous system 
with large viscosity are reflected by the manner in 
which different terms in the diffusion potentials are 
evaluated. For simplicity, linearized equations for 
binary systems will be compared. 

A stress term enters into the diffusion potentials in 
all cases, amorphous and crystalline. From equations 
(35a-c) it can be seen that the stress is always 
determined by the stress-free dilatation in the large- 
viscosity limit, since no plastic deformation occurs. In 
an amorphous system the components are not con- 
strained to occupy a lattice of sites, so that the 
stress-free dilatation (and the stress) are not deter- 
mined by the composition. Instead, the stress 
approaches a quasi-steady-state distribution which 
produces balanced “volume” transport. For the 
large-viscosity limit, the quasi-steady-state pressure 
gradient can be obtained from equation (56) as 

(PlOM,O - P2oM:o) vp = - [P:ocoM,o + P:,(l - CO)M20] 

xc,(l -c,)j-“VC. (131) 

This can be substituted into equation (55) to give the 
diffusion equation for an amorphous system in the 
Nernst-Planck limit, 

dC M,oM20 
z = [ ~:ocoM,o + rTo( 1 - c,)M,“]p; 

x c,,( 1 - c,,)f”V%. (132) 

In an interstitial crystal, the stress-free dilatation is 

determined by the composition, because the com- 
ponent on the host lattice is immobile. For the 
large-viscosity limit, the pressure gradient is simply a 
function of the composition gradient. From equation 
(101) with a boundary condition of uniform pressure 
at uniform composition, one obtains 

vp /P20 - 
--y v,ovx. (133) 

This can be substituted into equation (100) to give the 
diffusion equation 

^I z = M,,&(f; + $Yp,,P;,)cT"x. (134) 

This solution is equivalent to those obtained in 
previous models for binary perfect crystals [2-51. The 
partial-molal-volume term tends to drive the system to 
uniformity. The quasi-steady-state approximation for 
the pressure is not useful for a binary perfect inter- 
stitial crystal. No diffusion occurs at quasi-steady- 
state, since one component is immobile; rather, all 
diffusion occurs during the “induction time”. (For 
multicomponent perfect interstitial crystals, diffusion 
can occur at quasi-steady-state even when partial 
molal volumes are large, provided that the individual 
terms in the pressure gradient tend to cancel.) 

In a substitutional crystal, the diffusion potentials 
contain both a stress term and a vacancy chemical 
potential term. When the vacancy creation rate is 
negligible, the stress-free dilatation is determined by 
the composition, as in an interstitial crystal. For the 
large-viscosity limit of a binary perfect substitutional 
crystal (two components besides vacancies; n = 3). 
with a boundary condition of uniform pressure at 
uniform composition, the pressure gradient can be 
obtained from equation (I 18) as 

VP = F (P,, - V,,)Vc. (135) 

The quasi-steady-state condition for the vacancy 
chemical potential, equation (121), reduces to 

- v,ovP. 

These yield the diffusion equation 

ac M,oM,o -= 
at COMAE + (1 - Co)Mm cou - co) 

x IS” + $ YPo( Y,, - P,,)z]v%. (I 37) 

This agrees with the expressions obtained in previous 
models for binary perfect crystals [2-51, although here 



2680 STEPHENSON: OVERVIEW NO. 75 

the net mobility is obtained in terms of the 
component mobilities. 

The Nemst-Planck-type mobility factor in equa- 
tion (137) is similar to its counterpart in equation 
(132) for an amorphous system; in particular, the two 
equations are equivalent when the partial molal 
volumes do not differ. However, the quasi-steady- 
state approximation used for equation (137) is 
different than its counterpart for equation (132), since 
it is based on an approximate vacancy chemical 
potential rather than pressure distribution. In the 
amorphous model, the stress which couples the fluxes 
arises only because of differences between the prod- 
ucts F,M, for each species. In the substitutional 
perfect-crystal model, the effect of partial molal vol- 
ume differences is separate from the effect of mobility 
differences. The stress term in equation (137) is 
similar to that in equation (134) for the binary perfect 
interstitial crystal. 

4. DISCUSSION 

4.1. New assumptions and predictions 

As outlined in the previous short article [8], each of 
the models developed above is essentially a synthesis 
of the Darken analysis for the convective and 
diffusive transport contributions to interdiffusion [6] 
with more recent work on stress effects during 
diffusion [2-51. In order to separate the transport due 
to deformation from that due to diffusion, the ma- 
terial coordinate system of continuum mechanics is 
introduced at the outset, It is assumed that mechan- 
ical constitutive relations govern the motion of the 
material coordinates relative to fixed spatial coordi- 
nates, and that diffusion equations govern transport 
relative to the deforming material coordinate system. 
Explicit constitutive relations between stress, 
diffusion, and the various strain terms, equations 
(21)-(24) and (29) are used to obtain equation (39) 
for the evolution of the stress in an unbounded or 
one-dimensional system due to diffusion and plastic 
deformation. Stress terms appropriate for a system in 
which the elastic strain is small are then included in 
the diffusion potentials. The resulting coupled 
differential equations for the evolution of the com- 
position and stress distributions are given by 
equations (52x54) (97x99) or (117)-(120), for 
amorphous, interstitial crystalline, or substitutional 
crystalline systems, respectively. 

The behavior of the composition distribution 
predicted by these coupled equations can differ 
fundamentally from that predicted by the Fickian 
diffusion equation obtained from a Darken or 
Nemst-Planck-type analysis [IX]. The differences in 
behavior are highlighted above by considering binary 
systems in the simple linear case, in which the com- 
position and pressure are sufficiently uniform such 
that non-linear effects unrelated to the issues at hand 
(due to composition or pressure dependence of ma- 
terial parameters) can be neglected. From the quasi- 

steady-state analytical solutions obtained, it can be 
seen that the rate-limiting step for interdiffusion can 
change as a function of the distance scale of the 
composition profile, since the time constants for 
relaxation processes such as plastic deformation and 
vacancy creation/annihilation are independent of dis- 
tance scale, while the time constants for diffusion 
depend strongly on distance scale. Thus the shape of 
the composition profile for interdiffusion into a uni- 
form semi-infinite amorphous system shown in Figs 
2 and 3 can change qualitatively during the course of 
the process, and the time dependence of the extent of 
interdiffusion shown in Fig. 4 can vary between 
parabolic and linear. 

Such behavior cannot be obtained from a Fickian 
diffusion equation, in which the diffusion potential 
gradient is expressed solely in terms of the com- 
position gradient. Although this is analytically dem- 
onstrated above only for the linear case in which 
composition deviations are small, it is true even in the 
general non-linear case. When the interdiffusion 
coefficient is allowed to be an arbitrary function of 
composition, the Fickian diffusion equation for a 
binary system is given by [8] 

ac 
- =‘V.(p26Vc). at p2 

It has long been known that composition profiles 
obtained from the general Fickian diffusion equation 
(138) for various times during interdiffusion into a 
uniform semi-infinite system can be plotted on a 
single curve by using the Boltzmann transformation 
I I x/t’12, and that the time dependence of the extent 
of interdiffusion is always parabolic [25]. In contrast, 
solutions to the coupled equations such as (52)-(54) 
will always show the qualitatively different behavior 
described above when a relaxation process is 
rate-limiting, whether or not complications due 
to composition- or pressure-dependent material 
parameters are considered. 

4.2. Relation between the viscosity and the mobilities 
in an amorphous system 

In an amorphous system, the range of distance 
scales for which interdiffusion is rate-limited by de- 
formation is determined by products of the viscosity 
and the mobilities. Expressed in terms of wave- 
number, the boundaries of the deformation-limited 
regime for the analytical solution obtained above are 
determined by the characteristic wavenumber k,, and 
the dimensionless material parameter q,,, . 

q;k;<<k2<<k;. (139) 

The distance scale of a composition gradient can be 
written as the inverse of the wavenumber. Expanding 
relation (139) the boundaries of the deformation- 
limited regime can be expressed in terms of distance 
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scale as 

( l%&41a@ “2<k_l 
-c,) NP (1 ) 

( p :clw ; 4vo a I’* 
< (1% D 

> 
’ ww 

where expressions for fiNp and fiD appropriate for 
the q$<< 1 limit have been used. 

The physical significance of these boundaries can 
be seen by expressing the viscosity in terms of a 
mobility and a length through a generalized 
Stokes-Einstein relation [26], 

(141) 

Here a& is the length over which components diffuse 
during the local rearrangements involved in the plas- 
tic deformation process, llfsE is the net mobility of 
these components, and C is a geometrical constant of 
order 10. The characteristic wavenumber can then be 
expressed as 

in the limit qi<< 1. In many systems the first factor is 
of order unity and can be neglected. The boundaries 
of the deformation-limited regime are then given 
approximately by 

dSE. (143) 

Since all components must take part in the local 
rearrangements involved in plastic deformation, in a 
binary system it is appropriate to associate fiss with 
the Nemst-Planck net mobility A?,, . The character- 
istic wavenumber in a binary system is then given 
approximately by the inverse of the Stokes-Einstein 
length, d,;' . In amorphous materials, the 
Stokes-Einstein length is expected to be a molecular 
diameter. Thus, for a binary amorphous system, the 
predictions for wavenumbers larger than kd (i.e. 
q > 1) are not meaningful, and only the Darken and 
deformation-limited regimes should be observed. In 
this case the deformation-limited regime extends to 
distance scales up to (fiD/&Np)‘/2 times a molecular 
diameter. If more than two components are present, 
then it is appropriate to associate A?,, with the 
mobility of the “slowest” of the components. For 
pseudo-binary interdiffusion of two other com- 
ponents in a multicomponent amorphous system, k,, 
could be significantly smaller than d& and the 
possibility exists of observing a Nemst-Planck-type 
regime as well. Of course, some modifications of the 
binary-system solution discussed here would be 
necessary to treat a multicomponent system. 

4.3. Relations between q, L and the M, in a substi- 
tutional crystallirte system 

The generalized Stokes-Einstein relation (141) can 
also be used for the viscosity of a defective crystalline 
system due to diffusional creep [27]. For a substi- 
tutional crystalline system with vacancies, this re- 
lation is derived by considering the rate of diffusion 
of vacancies between extended defects at which they 
are created or annihilated. The gradient in vacancy 
chemical potential is calculated from the deviatoric 
component of the stress, which produces differences 
in the resolved forces on extended defects of different 
orientation, and thus differences in the nearby equi- 
librium vacancy densities. The Stokes-Einstein 
length, dSE, then corresponds to the average distance 
between extended defects in a crystalline system. 
Likewise, an expression for the rate for vacancy 
creation/annihilation, L,,, can be obtained by con- 
sidering the rate of diffusion of vacancies between 
regions of perfect lattice and extended defects. Here 
the gradient in vacancy chemical potential is calcu- 
lated from the hydrostatic component of the stress, 
which determines the average equilibrium vacancy 
density near an extended defect, for comparison with 
the average vacancy density in the lattice. One 
obtains 

(W 

where C’ is a geometrical constant of order 10. The 
simple relaxation equations used here for the plastic 
deformation and vacancy creation rates are expected 
to be quantitative only for distance scales larger than 
dSE. (For interdiffusion over smaller distance scales, 
a perfect-crystal model with appropriate surface 
boundary conditions can be used.) 

Substituting the above relations for ‘lo and Lo into 
equation (123) gives 

(145) 

The material parameter qr is therefore expected typi- 
cally to be of order unity. From equation (128) one 
can see that the relaxation-limited regime corre- 
sponding to rrelnx occurs at distance scales given by 
relation (143), where dsE now corresponds to the 
extended-defect spacing. In a binary system, where 
A,, corresponds to GNP, this relaxation-limited 
regime extends to distance scales up to (ti,/A?Np)‘;2 
times the extended-defect spacing. For psuedo-binary 
interdiffusion on one sublattice of a crystalline com- 
pound, plastic deformation and vacancy equi- 
libration can be rate-limited by transport of the 
component on the other sublattice, so that the mo- 
bility ratio (A?Np/~s,)1~2 in relation (143) can be very 
large. In such cases both a relaxation-limited regime 
corresponding to Frrlu and a Nernst-Planck regime 
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can occur at distance scales larger than the extended- 
defect spacing. 

If the partial molal volumes of the interdiffusing 
components differ in substitutional crystals with . - 
(MNp/MsE)“2 >> 1, such as compounds, a second 
relaxation-limited regime corresponding to rRELAx 
can occur at distance scales larger than &, which 
from equation (130) is given by 

(I461 

Although the above expressions for the asymptotes 
are obtained in the limit qi<< 1, one can verify that 
equation (130) for rRELAX is valid in general. In 
crystalline compounds, interdiffusion on one sub- 
lattice can thus be rate-limited by relaxation of misfit 
even when the mobilities of the interdiffusing com- 
ponents are equal. 

4.4. Evidence for relaxation-limited interd@usion and 
applications 

The considerations addressed above can be im- 
portant in a wide variety of problems involving 
interdiffusion. Distinct defo~ation-limits regimes 
are expected to occur for solutes of interstitial nature 
with non-zero partial molal volume in either amor- 
phous or defective crystalline systems, since the 
mobility of the interstitial compondents is typically 
much larger than that of the host component. In 
substitutional crystals, interdiffusing components 
often have similar mobilities, so that the Darken and 
Nemst-Planck-type net mobilities do not differ 
greatly and the anomalies in the transition regime are 
not large. However, as shown by equation (146), even 
smafi differences in partial molal volume can produce 
a distinct relaxation-limited regime during inter- 
diffusion on one sublattice of a compound, if the 
component on the other sublattice is sufficiently 
immobile. In formulating kinetic laws for transport- 
limited processes such as spinodal decomposition, 
nucleation, growth, and interfacial reactions, one 
must consider whether interdiffusion is rate-limited 
by a diffusion or a relaxation process at the distance 
scales of interest. 

The experimental and theoretical literature on non- 
Fickian (“Case II”) interdiffusion during the pene- 
tration of polymers by liquids is mature and extensive 
[ 10, 11,25, and references therein]. Experiments show 
that the time exponent of the extent of interdiff~ion 
can vary between 112 and I, with non-Fickian behav- 
ior often associated with polymers of high viscosity 
and penetrants of non-zero partial molal volume. 
Similar behavior has been found for the interdiffusion 
of water into silicate glass [28]. Many theories to 
explain this behavior simply propose composition-, 
stress-, and time-dependent mobilities. The above 
treatment for amorphous systems suggests that, to 
understand this behavior, one must consider: (i) the 
generation of internal stress due to imbalance in the 

diffusion fluxes; (ii) the contribution of the stress to 
the diffusion potentials; and (iii) the relaxation of the 
stress through plastic deformation. Recently, Thomas 
and Windle [lo] and Stanley [l l] have incorporated 
similar ideas into theories for interdiffusion in poly- 
mers. From the present work, one can see that the 
non-Fickian behavior which results when plastic de- 
formation is the rate-limiting step for interdiffusion 
can occur in any amorphous or defective crystalline 
system in which the mob&ties or partial molal 
volumes of the components differ. 

It has long been recognized that stress can be 
generated during ion exchange in oxide glass systems 
[29]. Recently, stress relaxation during ion exchange 
has been considered [30]. Evidence for relaxation- 
limited interdiffusion in alkali-silicate glasses has also 
been obtained from analysis of the evolution of 
small-angle X-ray scattering from composition in- 
homogeneities during the early stage of spinodal 
decomposition [31]. In order to apply the model 
developed above to ionic systems, the effects of 
charged components must be treated. It is straight- 
forward to include an electrostatic potential term in 
the diffusion potentials, and to use Poisson’s equation 
to relate this potentiai to the densities of the com- 
ponents. It is generally found that local electro- 
neutrality is violated significantly only for very short 
wavelengths [32]. One can then use a flux-neutrality 
condition to solve for the quasi-steady-state electric 
field, as is done in the standard Nernst-Planck analy- 
sis of interdiffusion in ionic systems [12]. In a system 
of n components, this leads to effective mobilites and 
potentials for n - 1 diffusion processes which do not 
involve charge transport [20]. For example, consider 
a mixed-alkali silicate system A@-B,O-SiO,. As- 
sume that the tracer diffusivities of the ions obey the 
relations 0; >> t) 3 >> D X >> D $ . One can model 
interdiffusion in this system using three diffusion 
processes: exchange of A and B ions, governed by a 
mobility M,a N Dg/RT; diffusion of alkali oxide, 
governed by a mobility M,, z Db/RT; and diffusion 
of silicon oxide, governed by a mobility 
Msio2 N D,*i/RT. Sane and Cooper [30] have recently 
reported stress profiles measured after various 
amounts of K/Na exchange in a silicate glass. These 
stress profiles are initially sharply peaked at the 
surface. The peak subsequently shifts in from the 
surface, decays in amplitude, and broadens, in a 
manner similar to that shown above in Fig. 2, graphs 
C and D. The above analysis indicates that the peak 
shifts because the stress buildup from K/Na exchange 
is relaxed not only by plastic deformation, but also 
by a second, slower diffusion process, such as net 
outward diffusion of alkali oxide near the surface. 

Experimental evidence for relaxation-limited 
interdiffusion in crystalline systems is less common 
than in amorphous systems. From the above model, 
a deformation-limited regime can be expected during 
interdiffusion of interstitial components such as hy- 
drogen or carbon in metals at temperatures where 
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plastic deformation can occur. ft has been recognized 3. F. C. Larchi and J. W. Cahn. Acra meiaN. 33, 331 

that deviations from the equilibrium density of cation (1985). 

vacancies can occur during interdiffusion in oxide 4. F. Larch& and J. W. Cahn, Acra merall. 21. 10.51 (1973). 

crystals with cations of different mobility, making the 
5. F. Larch& and J. W. Cahn, Acra merall. 26, 53 (1978). 

Darken analysis inapplicable 1331. As outlined above, 
6. L. S. Darken, Trans. A.I.M.E. 175, 184 (1948). 
7. J. Bardeen and C. Herring. in Arom Muremencs. 

American Society for Metafs. Cfeveland, Ohio (19.50). 
_ - _ _ 

the relaxation of misfit due to differences in cation 
partial molal volume may also produce non-Fickian 
interdiffusion behavior at small distance scales in 
polycrystalline oxide solid solutions. 

8. 
9. 

10. 

G. B. Stephenson, Scripta merall. 20. 465 (1986). 
G. B. Stephenson. .I. Non-Cr.vsrafline So/ids 66, 393 
(1984). 
N. L. Thomas and A. H. Windle. Polymer 23, 529 
(1982). 
E. A. Stanley, Diffusion in glassy polymers, Ph.D. 
dissertation. California Institute of Technoloev C 1985). 
W. Nemst, 2. ph_ys. Chem. 2, 613 (1888); IV?: Plan&. 
Ann. Phys. Chem. ( Wiedemann) 39, 161 (1890); see also 
R. H. Doremus, J. phys. Chem. 68, 2212 (1964); A. R. 
Cooper, J. Non-Crystalline Solia!s 14, 65 (I 974). 
W. Jaunzemis, Confinuum Mechanics. Macmillan. New 
York (1967). 
R. B. Bird, W. E. Stewart and E. N. Lightfoot, Trans- 
port Phenumena. Wiley, New York (19~). 
C. Truesdell, J. rat. Mech. Anai,vsfs I, 125 (1952). 
G. W. Housner and T. V&and Jr, The Anaiysis of 
Srress and Deformorion. Macmillan, New York (1965). 
J. E. Hilliard, in Phase Transformations. American 
Society for Metals, Metals Park, Ohio (1968); J. W. 
Cahn, Acia meraff. 9, 795 (1961). 
J. S. Langer, Acra metaif. 21, 1649 (1973); J. S. Langer. 
M.Bar-on and H. D. Miller, P&r. Rep. A If, 1417 
(1975). 
H. Metiu, K. Kitahara and J. Ross, J. them. Phys. 65, 
393 (1976). 
A. R. Cooper, Phys. Chem. Glasses 6, 55 (1965); T. 0. 
Ziebold and A. R. Cooper, Acta merall. 13, 465 (1965). 
J. C. M. Li, R. A. Oriani and L. S. Darken, Z. phw. 
Chem. Neue Fdge 49, 271 (1966). 
T. M. Apostol. Cnlculus, Voi. 2, 2nd ed. Xerox, New 
York (1969). 
J. R. Manning, Diffusion Kinetics for Atoms in Crysruls. 
Van Nostrand-Reinhold, Princeton, NJ (1968). 
G. B. Stephenson, Thermomigration in the nickel 
oxide-cobalt oxide sysrem. SM. thesis. Massachusetts 
Institute of Technology (1978). 
J. Crank, The ~a~hernaffcs of ~z~sion, 2nd ed. Claren- 
don Press, Oxford (I 975). 
S. Glasstone. K. J. Laidler and H. Eyring, The Theory 
of Rafe Processes. McGraw-Hill, New York (1941). -__ 

Although not considered in the linearized solutions 
obtained above, the relatively strong composition 
dependences of material parameters found in many 
systems can have large effects of the shapes of the 
composition and pressure profiles. In substitutional 
crystalline systems, the mobilities are proportional to 
the vacancy density. Since the vacancy density may 
not be at its stress-free equilibrium value during 
diffusion over short distance scales, care must be 
taken to extract the vacancy density dependence 
explicitly when using measured tracer diffusivities. 
Likewise, history dependence of material parameters 
(owing to structural relaxation in amorphous sys- 
tems, for example) has not been considered. Solutions 
using composition- or history-de~ndent viscosity 
and mobilities can be obtained by numerically 
integrating the general equations. More complicated 
mechanical constitutive relations can also be incor- 
porated into the above analysis, 

5. SUMMARY 

19. 

20. 

21. 

22. 

23. 

24. 

The relaxation of internal stress and/or vacancy 
chemical potential generated by unbalanced diffusion 
fluxes can become the rate-limiting step for 
interdiffusion. Since the rate constant of a relaxation 
equation is independent of wavenumber, but the rate 
constant of a diffusion equation depends strongly on 
wavenumber, the rate-limiting step can change 
depending on the distance scale over which 
interdiffusion is occurring. When a relaxation process 

25. 

26. 

27. C. Herring, J. appl. Phys. 21, 437 (1950). 
M. Tomozawa and J. Molinelli. Rerra Sraz. Seer. Verro 

Il. 

12. 

13. 

14. 

1.5. 
16. 

17. 

18. 

such as plastic deformation or vacancy creation/ 28 
annihilation is rate-limiting, linearized composition 
profiles have an exponentjal (rather than error- 29 
function) form, and the extent of interdiffusion in- 
creases linearly with time (rather than as t”l). 

3. 

31. 
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