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This paper reviews the basis and applications of the finite-difference time-domain (FD-TD) numerical modeling approuach
for Maxwell’s equations. FD-TD is very simple in concept and execution. However, it is remarkably robust, providing highly
accurate modeling predictions for a wide variety of electromagnetic wave interaction problems. The accuracy and breadth
of FD-TD applications will be illustrated by a number of two- and three-dimensional examples. The objecis modeled .range
in nature from simple geometric shapes to extremely complex aerospace and biological systems. In all cases where rigorous

: analytical, code-to-code, or experimental validations are possible, FD-TD predictive data for penetrating and scattered near
' fields as well as radar cross sections are in excellent agreement with the benchmarks. It will also be shown that apporunilies
are arising in applying FD-TD to model rapidly time-varying systems, microwave circuits, and inverse scattering. With
continuing advances in FD-TD modeling theory as well as continuing advances in supercomputer technology, there is a
strong possibility that FD-TD numerical modeling will occupy an imporniant place in high-frequency engineering electromag-

netics as we mave into the 1990s.

1. Introduction

Accurate numerical modeling of full-vector elec-
tromagnetic wave interactions with arbitrary struc-
tures is difficult. Typical structures of engineering
interest have shapes, apertures, cavities, and
material compositions or surface loadings which
produce near fields that cannot be resolved into
finite sets of modes or rays. Proper numerical
modeling of such near fields requires sampling at
sub-wavelength resolution to avoid aliasing of
magnitude and phase information. The goal is to

. provide a self-consistent model of the mutual

coupling of the electrically-small cells comprising

: the structure.

This paper reviews the formulation and applica-
tions of a candidate numerical modeling approach
for this purpose: the finite-difference time-domain

i (FD-TD) solution of Maxwell’s curl equations.

FD-TD is analogous to existing finite-difference
solutions of scalar wave propagation and fluid-flow
problems in that the numerical’ model is based

.upon a direct solution of the governing partial

differential equation. Yet, FD-TD is a nontradi-
tional approach to numerical electromagnetic
wave modeling of complex structures for engineer-
ing applications, where frequency-domain integral
equation approaches such as the method of
moments have dominated for 25 years (see the
article by Umashankar in this issue).

One of the goals of this paper is to demonstrate
that recent advances in FD-TD modeling concepts
and software implementation, combined with
advances in computer technology, have expanded
the scope, accuracy, and speed of FD-TD modeling
to the point where it may be the preferred choice
for certain types of electromagnetic wave penetra-
tion, scattering, guiding, and inverse scattering
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problems. With this in mind, this paper will suc-
cinctly review the following FD-TD modeling vali-
dations and examples:
(1) electromagnetic
dimensions:
(a) square metal cylinder, TM polarization,
(b) circular muscle-fat layered cylinder, TE

wave  scattering,  two

polarization,
{¢) homogeneous, anisotropic, square material
cylinder, TM polarization,
(d) circular metal cylinder, conformally
modeled, TE and TM polarization,
‘(e) fanged metal open cavity,
(f} relativistically vibrating mirror, oblique
incidence;
(2) electromagnetic wave  scattering, three
dimensions:
(a) metal cube, broadside incidence,
(b} flat conducting plate, multiple monostatic
looks, .
(¢) T-shaped conducting target, multiple mono-
static looks;
{3} electromagnetic wave penetration and coup-
ling, two and three dimensions:
(a} narrow slots and lapped joints in thick
screens,
{b) wires and wire bundies in free space and in
a metal cavity;
(4) very complex three-dimensional structures:
(a) missile seeker section, ,
(b} inhomogeneous tissue model of the entire
human body;
(5) microstrip and microwave circuit models;
{6) inverse scattering reconstructions in one and
two dimensions.
Finally, this paper will conclude with a discus-
sion of computing resources for FD-TD and the
potential impact of massively concurrent

machines.

2. General characteristics of FD-TD

As stated, FD-TD is a direct solution of Max-
well’s time-dependent curl equations. It employs

no .potential. Instead, it applies simple, second-
order accurate central-difference approximationg
[1] for the space and'time derivatives of the electric
and magnetic. ficlds directly to the respective
diflerential operators of the curl equations. This
achieves a sampled-data reduction of the con.
tinuous electromagnetic field in a volume of space,
over a period of time. Space and time discretiz-
ations are selected to bound errors in the sampling

process, and to ensure numerical stability of the

algorithm [2]. Electric and magnetic field com.
ponents are interleaved in space to permit a natural
satisfaction of tangential field continuity condi-
tions at media interfaces. Overall, FD-TD is a
marching-in-time procedure which simulates the
continuous actual waves by sampled-data numeri-
cal analogs propagating in a data space stored in
a computer. At each time step, the system of
equations to update the field components is fully
explicit, so that there is no need to set up or solve
a set of linear equations, and the required computer
storage and running time is proportional to the
electrical size of the volume maodeled.

Figure 1{a} illustrates the time-domain wave
tracking concept of the FD-TD method. A region
of space within the dashed lines is selected for
field sampling in space and time. At time =0, itis
assumed that all fields within the numerical samp-
ling region are identically zero. An incident plane
wave is assumed to enter the sampling region at
this point. Propagation of the incident wave is
modeled by the commencement of time-stepping,
which is simply the implementation of the finite-
difference analog of the curl equations. Time-step-
ping continues as the numerical analog of the
incident wave strikes the modeled target embedded
within the sampling region. All outgoing scattered
wave analogs ideally propagate through the lattice
tfruncation planes with negligible reflection to exit
the sampling region. Phenomena such as induction
of surface currents, scattering and multiple scatter-
ing, penetration through apertures, and cavity exci-
tation are modeled time-step by time-step by the
action of the curl equations analog. Self-
consistency of these modeled phenomena is gen-
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Fig. 1. Basic elements of the FD-TD space lattice: (a) time-
domain wave tracking concept; {b) latlice unit cell in Cartesian
coordinates.

erally assured if their spatial and temporal vari-
ations are well resolved by the space and time
sampling process.

Time-stepping is contmued until the desired
late-time pulse response or steady-state behavior
is observed. An important example of the latter is
the sinusoidal steady state, wherein the incident
wave is assumed to have a sinusoidal dependence,
and time-stepping is continued until all fields in

- the sampling region exhibit sinusoidal repetition.

This is a consequence of the limiting amplitude
principle [3]. Extensive numerical experimenta-
tion with FD-TD has shown that the number of
complete cycles of the incident wave required to
be time-stepped to achieve the sinusoidal steady

state is approximately equal to the (-factor of the
structure or phenomenon being modeled.

Figure 1({b) illustrates the positions of the elec-
tric and magnetic field components about a unit
cell of the FD-TD lattice in Cartesian coordinates
[1]. Note that each magnetic field vector com-
ponent is surrounded by four circulating electric
field vector components, and vice versa. This
arrangement permits not only a centered-difference
analog to the space derivatives of the curl
equations, but also a natural geometry for
implementing the integral form of Faraday's Law
and Ampere’s Law at the space-cell level. This
integral interpretation permits a simple but
effective modeling of the physics of thin-slot coup-
ling, thin-wire coupling, and smoothly curved
target surfaces, as will be seen later.

Fig. 2. Arbitrary three-dimensional scactecer embedded in an
FD-TD lattice.

Figure 2 illustrates how an arbitrary three-
dimensional scatterer is embedded in an FD-TD
space lattice comprised of the unit cells of Fig.
1(b). Simply, the desired values of electrical per-
mittivity and conductivity are assigned to each
electric field component of the lattice, Correspond-
ingly, desired values of magnetic permeability and
equivalent conductivity are assigned to each mag-
netic field component of the lattice. The media
parameters are interpreted by the FD-TD program
as local coefficients for the time-stepping
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algorithm. Specification of media properties in this
component-by-component manner results in a
stepped-edge, or staircase approximation of
curved surfaces. Continuity of tangential fields is
assured at the interface of dissimilar media with
this procedure. There is no need for special field
matching at media interface points. Stepped-edge
approximation of curved surfaces has been found
to be adequate in the FD-TD modeling problems
studied in the 1970s and early 1980s, including
wave interactions with biological tissues [4],
penetration into cavities [5, 6], and electromag-
netic pulse (EMP) interactions with complex struc-
tures [7-9]. However, recent interest in wide
dynamic range models of scattering by curved
targets has prompted the development of surface-
conforming FD-TD approaches which eliminate
stair-casing. These will be summarized later in this

paper.
3. Basic FD-TD algorithm details

3.1, Maxwell's equations

Consider a region of space which is source-free
and has constitutive electrical parameters that are
independent of time. Then; using the MKS system
of units, Maxwell’s curl equations are given by

oH 1 p'

—=-—VxE-—H, (1)
or  p K

oE 1 o

—=—-VxH-—E (2)
ot € £

where E is the electric field in volts/meter; H is
the magnetic field in amperes/meter; £ is the elec-
trical permittivity in farads/meter; o is the elec-
conductivity in  mhos/meter  (sie-
mens/meter); p is the magnetic permeability in
henrys/meter; and p’ is an equivalent magnetic
resistivity in ohms/meter. {(The magnetic resistivity
term is provided to yield symmetric curl equations,
and allow for the possibility of a magnetic field
loss mechanism.) Assuming that ¢, o, u, and p’
are isotropic, the following system of scalar
equations is equivalent to Maxwell’s curl equations

trical

in the rectangular coordinate system (x, y, z):

9H, 1 3E, oE.
= W—__—-p HX k) (3a)
ar p\dz dy
oH, 1 {3E, JE
y_oo o /==_ X ’H. ,
at ,u(ax az 0 (3b)
o _L(0 0B ) ‘
ar p\ay ax L) (3¢)
9E, 1 f8H. aH, )
= —_”_JEY L] (43)
at e \@dy oz
aE, 1/0H, aH.
—_‘=_( - _——O.EI')i (4b)
t g\ dz oOx
8E, 1/0H, a8H,
gr e \NO0x Jy

The system of six coupled partial differential
equations of (3) and (4} forms the basis of the
FD-TD algorithm for electromagnetic wave inter-
actions with general three-dimensional objects.
Before proceeding with the details of the
algorithm, it is informative to consider one impor-
tant simplification of the full three-dimensional
case. Namely, if we assume that neither the
incident plane wave excitation nor the modeled
geometry has any variation in the z-direction (i.e.,
all partial derivatives with respect to z equal zero),
Maxwell’s curl equations reduce to two decoupled
sets of scalar equations. These decoupled sets,
termed the transverse magnetic (TM) mode and
the transverse electric (TE) mode, describe two-
dimensional wave interactions with objects. The
relevant equations for each case follow:

- IM case (E., H,, and H, field components only)

aH, 1 joE,

—':——(—“"'P'Hx), (5a)
at o\ ay

L (), (50
at ax

L l(aH a—Hx—crE.); (5¢c)
81 e\ax Oy :
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. TE case (H., E,, and E, field components only)
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oF, 1 /0H.
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o E\ 8x
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'3.2. The Yee algorithm

In 1966, Yee [1] introduced a set of finite-
difference equations for the system of (3) and (4),
iFollowing Yee’s notation, we denote a space point
ina rectangular lattice as

(i k) =(iAx, j Ay, k Az) (7a)
?and any function of space and time as
. F"(i,jk)=F(iAx,j Ay, kAznAf)  (7b)

:where Ax, Ay, and Az are, respectively, the lattice
space increments in the x-, y-, and z-coordinate
;qirections; Ar is the time increment; and i, j, k,
amd n are integers. Yee used centered finite-
difference expressions for the space and time
f_erivatives that are both simply programmed and
pcond-order accurate in the space and time incre-

ments respectively:

L BFT(i, k)

- ax
. F" '+l k 7F” —.—]‘ k s
o T P20 o),
Ax :
- (8a)
L dt
FU G g k) = F G k) :
- = - 2 » 2 Je + AI~ )
A At Ofar)
(8b)

;ngo achieve the accuracy of (8a), and to realize
ii]] of the required space derivatives of the system
i (3) and (4}, Yee positioned the components of
¥ and H about a unit cell of the lattice as shown
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in Fig. 1{b). To achieve the accuracy of (8b), he
evaluated E and H at alternate half time steps.
The following are sample finite-difference time-
stepping expressions for a magnetic and an electric
field component resulting from these assumptions:

HIT2 (G 45, k+3)

AGAS N SF Y
2pfi j+L k+1 2 :
e RV S RIY
1+.0(T,J+§,k+'z}m -
2i, j+5 k+1)

LA [ _p'(f,j+§,k+;)m]'
n(ij+3, k+3) 2p(h, f+3, k+1)
SALEN (G j+3, k+1)
—ENij+35,k)]/Az
+[EIG, J k+13)
—E(i,j+ 1, k+D)]/ Ay, (9)
EXTNG k)

1_0’(i,j, k+3)As
2eli, j, k+3)
o(i, j, k+5HAr
2e(i, j, k+3)

EX(ij k+3)

Ar a'(i,j,k-#;).ﬁ.t -
+—— o1+ — 3
©oe(ij k+3) 2e(i, J, k+3)
XALHT i+ 3, g ke+s)
—HITHi -4, k)] Ax
+[HT( j =3, k+3)
—HI'Y 045, k+91/Ay) (10)

With the system of finite-difference equations

~ represented by {9) and (10), the new value of a

field vector component at any Iattice point depends
only on its previous value and on the previous
values of the components of the other field vector
at adjacent points. Therefore, at any given time
step, the computation of a field vector can proceed
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" either one point at a time; or, if p parallel pro-
cessors are employed concurrently, p points at a
time.

3.3. Numerical stability

To ensure the stability of the time-stepping
algorithm exemplified by (9) and (10), Ar is chosen
to satisfy the inequality [2, 10]

1T 1 1y
ot =t 3] o

where ¢,,. is the maximum electromagnetic wave
phase velocity within the media being modeled.
Note that the corresponding numerical stability
criterion set forth in (7) and (8} of reference [1]
is incorrect (cf. [2]). For the TM and TE two-
dimensional modeling cases, it can be shown [10]
that the modified time-step limit for numerical
stability is obtained from (11} simply by setting
Az =00,

3.4. Numerical dispersion

The numerical algorithm for Maxwell’s curl
equations represented by (9) and {10} causes dis-
persion of the simulated wave modes in the compu-
tational lattice. That is, the phase velocity of
numerical modes in the FD-TD lattice can vary
with modal wavelength, direction of propagation,
and lattice discretization. This numerical disper-
sion can lead to nonphysical results such as pulse
distortion, artificial anisotropy, and pseudorefrac-
tion. Numerical dispersion is a factor in FD-TD
modeling that must be accounted to understand
the operation of the algorithm and its accuracy
fimits.

Following the analysis in [10], it can be shown
that the numerical dispersion relation for the three-
dimensional case represented by (9) and (10} is
given by

1y, 1 .,
(E) sin*Guwdr) = = sin® (tk Ax)

S 1.,
+FSm-(%k:’—\}’)'i‘z?Sm"(%kz:lz) (12)

where k., k,, and k. are, respectively, the x-, -
and z-components of the wavevector; o is the waye
angular frequency; and ¢ is the speed of light i
the homogeneous material being modeled.

In contrast to the numerical dispersion relation
the analytical dispersion relation for a plane wavé
in a continuous, lossless medium is just

w?/ct =ki+ ki tki {13)

for the three-dimensional case. Although, at first
glance, (12) bears little resemblance to the ideal
case of (13), we can easily show that {12} reduces
to {13) in the limit as A, Ax, Ay, and Az all go (o
zero. Qualitatively, this suggests that numerical
dispersion can be reduced to any degree that is
desired if we only use a fine-enough FD-TD
gridding.

To quantitatively illustrate the dependence of
numerical dispersion upon FD-TD grid discretiz-
ation, we shall take as an example the two-
dimensional TM case (Az =o0), assuming for sim-
plicity square unit cells (Ax =Ay =A4) and wave
propagation at an angle a with respect to the
positive x-axis {k, =k cos a; k, = ksin o). Then,
dispersion relation (12) simplifies to_

AN L
e in® GwAt
(CAI) sin® (GwAt)

=sin*(3k cos @ A) +sin’(3k sin « A).
(14)

Equation (14) can be conveniently solved for the

wavevector magnitude, k, by applying Newton's
method. This process is especially convenient if &
is normalized to the free-space wavelength.
Figure 3(a) provides results using this procedure
which illustrate the variation of numerical phase
velocity with wave propagation angle in the FD-
TD grid. Three different grid resolutions of the
propagating wave are examined: coarse (Ao/5):
normal (A,/10}; and fine (A,/20). For each reso-
lution, the relation cA7 = ‘A was maintained. This
relation is commonly used in two- and three
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dimensional FD-TD codes to satisfy the numerical
stability criterion of {11) with.ample safety margin.
From Fig. 3(a), it is seen that the numericai phase
velocity is maximum at 45° {obligue incidence),
and minimum at 0° and 90° (incidence along either
Cartesian grid axis) for all grid resolutions. This
represents a numerical anisotropy that is inherent
in the Yee algorithm. However, the velocity error
relative 1o the ideal case diminishes by approxi-
mately a 4:1 factor each time that the grid cell size
is halved, so that the worst-case velocity error for
the normal resolution case is only —1.3%, and only
—0.31% for the fine resolution case.

Figure-3(b) graphs the variation of numerical
phase velocity with grid resolution at the fixed
incidence angles, 45° and 0° (90°). Again, the rela-
tion cAr=3A was maintained for each resolution,
Here, it is seen that the numerical phase velocity
at each angle of incidence diminishes as the propa-
gating wave is more coarsely resolved, eventually
reaching a sharp threshold where the numerical
phase velocity goes to zero and the wave can no
longer propagate in the FD-TD grid. This rep-
resents a numerical low-pass filtering effect that is
inherent in the Yee algorithm, wherein the
wavelength of propagating numerical modes has
a lower bound of 2 to 3 space cells, depending
upon the propagation direction. As a result, FD-
TD modeling of pulses having finite duration {and
thus, infinite bandwidth) can result in progressive
pulse distortion as higher spatial frequency com-
ponents propagate more slowly than lower spatial
frequency components, and very high spatial
frequency components with wavelengths less than
2 to 3 cells are rejected. This numerical dispersion
causes broadening of finite-duration pulses, and
leaves a residue of high-frequency ringing on the
trailing edges due to the relatively slowly propagat-
ing high-frequency components. From Figs. 3{a)
and 3(b), we see that pulse distortion can be
bounded by obtaining the Fourier spatial
frequency spectrum of the desired pulse, and
selecting a grid cell size so that the principal spec-
tral components are resolved with at [east 10 cells

per wavelength. This would limit the spread of
numerical phase velocities of the principal spectra|
components to less than 1%, regardless of the wave
propagation angle in the grid.

In addition to numerical phase velocity
anisotropy and pulse distortion effects, numericaj
dispersion can lead to pseudorefraction of propa-
eating modes if the grid cell size is a function of
position in the grid. Such variable-cell gridding
would alsa vary the grid resolution of propagating
numerical modes, and thereby perturb the modal
phase velocity distribution. This would lead to
nonphysicai reflection and refraction of numerical
modes at interfaces of grid regions having different
cell sizes {even if these interfaces were located in
free space), just as physical waves undergo reflec-
tion and refraction at interfaces of dielectric media
having different indices of refraction. The degree
of nonphysical refraction is dependent upon the
magnitude and abruptness of the change of the
modal phase velocity distribution, and can be esti-
mated using conventional theory for wave refrac-
tion at dielectric interfaces.

We have stated that, in the limit of infinitesimal
Arand A, (12) reduces to (13}, the ideal dispersion
case. This reduction also occurs if Af, A, and the
direction of propagation are suitably chosen. For
example, in a three-dimensional cubic lattice,
reduction to the ideal dispersion case can be
demonstrated for wave propagation along a lattice
diagonal (k,=k,=k.=k/v3) and Ar=5/c3
(exactly the limit set by numerical stability).
Similarly, in a two-dimensional square grid, the
ideal dispersion case can be demonstrated for wave
propagation along a grid diagonal (k, =k, = k/V2)
and Ar=A/cv2 (again the limit set by numerical
stability). Finally, in one dimension, the ideal case
is obtained for At=A/c {again the limit set by
numerical stability) for all propagating modes.

3.5 Lattice zoning and plane wave source condition

The numerical algorithm for Maxwell’s curl
equations defined by the finite-difference system
reviewed above has a linear dependence upon the
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i%‘components of the electromagnetic field vectors.
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?évalidity to either the incident-field vector com-
gponents, the scattered-field vector components, or
‘the total-field vector components (the sum of
‘incident plus scattered). Present FD-TD codes utii-
‘ize this property to zone the numerical space lattice
‘into two distinct regions, as shown in Fig. 4(a},
separated by a rectangular virtual surface which
serves to connect the fields in each region [11, 12].
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Interocting | P ;f;'ig;
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Connecting-{___ Scartered
Surface And Fizlds
Plone Wave
Source
Lattice
Trunacation
al
(LR
®
|
|
|
[
NO SOURCES |
a t
i
ZERC FIELDS !
[

Fig. 4. Zoning of the FD-TD lattice: (a) rotal field and scatiered
feld regions; (b) near-io-far field integration surface located
in the scattered fieid region.

Region 1, the inner region of the FD-TD lattice,
is denoted as the total-field region. Here, it is
assumed that the finite-difference system for the
furl equations operates on total-field vector com-
ponents. The interacting structure of interest is
tmbedded within this region.

Region 2, the outer region of the FD-TD lattice,
is denoted as the scattered-field region, Here, it is
issumed that the finite-difference system for the
turl equations operates only on scattered-field vec-
lor components. This implies that there is no
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incident wave in Region 2. The outer lattice planes
bounding Region 2, called the lattice truncation
planes, serve to implement the free-space radiation
condition (discussed in the next section) which
simulates the fleld sampling space extending to
infinity.

The total-fietd/scattered-field lattice zoning
illustrated in Fig. 4(a} provides a number of key
features which enhance the computational flexibil-
ity and dynamic range of the FD-TD miethod:

Arbitrary incident wave. The connecting condi-
tion provided at the interface of the inner and outer
regions, which assures consistency of the numeri-
cal space derivative operations across the interface,
simultaneously generates an arbitrary incident
plane wave in Region | having a user-specified
time waveform, angle of incidence, and angle of
polarization. This connecting condition, discussed
in detail in [10], almost completely confines the .
incident wave to Region 1 and yet is transparent
to outgoing scattered wave modes which are free
to enter Region 2.

Simple programming of inhomogeneous struc-
tures. The required continuity of total tangential
E and H fields across the interface of dissimilar
media is automatically provided by the original
Yee algorithm if the media are located in a zone
{such as Region 1} where total fields are time-
marched. This avoids the problems inherent in a
pure scattered-field code, where enforcement of
the continuity of total tangential fields is a separate
process requiring the incident field to be computed
at all interfaces of dissimilar media, and then
added to the values of the time-marched scattered
fields at the interfaces. Clearly, computation of the
incident field at numercus points along' possibly
complex, structure-specific loci is likely to be much
more involved than computation of the incident
field only along the simple connecting surface
between Regions 1 and 2 (needed to implement
the total-field/scattered-field zoning). The latter
surface has a fixed locus that is independent of
the shape or complexity of the interaction structure
that is embedded in Region 1.
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Wide compuiational dynamic range. Low levels
of the total field in deep shadow regions or cavities
of the interaction structure are computed directly
by time-marching total fields in Region 1. In a pure
scattered-field code, however, the low levels of
total field are obtained by computing the incident
field at each desired point, and then adding to the
values of the time-marched scattered fields. Thus,
it is seen that a pure scattered-field code relies
upon near cancellation of the incident and scat-
tered field components of the total field to obtain
accurate results in deep shadow regions and
cavities. An undesirable hallmark of this cancella-
tion is contamination of the resultant low total-field
levels by subtraction noise, wherein slight percen-
tage errors in calculating the scattered fields result
in possibly very large percentage errors in the
residual total fields. By time-marching total fields
directly, the zoned FD-TD code avoids subtraction
noise in Region 1 and and achieves a compuia-
tional dynamic range more than 30 dB greater than
that for a pure scattered-field code.

Far-field response. The provision of a well-
defined scattered-field region in the FD-TD lattice
permits the near-to-far-field transformation tflus-
trated in Fig. 4(b}. The dashed virtual surface
shown in Fig. 4(b) can be located along convenient
lattice planes in the scattered-field region of Fig.
4(a). Tangential scattered £ and H fields com-
puted via FD-TD at this virtual surface can then
be weighted by the free-space Green's function
and then integrated (summed} to provide the far-
field response and radar cross section. (full bistatic
response for the assumed illumination angle) [12-
14]. The near-field integration surface has a fixed
rectangular shape, and thus is independent of the
shape or composition of the enclosed structure
being modeled.

3.6. Radiation condition

A basic consideration with the FD-TD approach
to solve electromagnetic wave interaction prob-
lems is that most computational domains of inter-
est are ideally unbounded or “open™. Clearly, no
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computer can store an unlimited amount of datg
and therefore, the field computation zone must be,
limited in size. A suitable boundary condition g,
the outer perimeter of the computation zone must
be used to simulate the extension of the CoOmputy.
tion zone to infinity. This boundary condition myg;
be consistent with Maxwell’s equations in that gp
outgoing vector scattered-wave numerical dnalog
striking the lattice truncation must exit the lattice
without appreciable nonphysical reflection, just as
if the lattice truncation was invisible.

Now, the vector field components at the lattice
truncation planes cannot be computed using the
centered-differencing approach discussed earlier
because of the assumed absence of known field
data at points outside of the lattice truncation
{which are needed to form the central differences).
Tt has been shown that a suitable lattice truncation
is provided by implementing a near-field radiation
condition separately for each of the Cartesian
tangential electric {or magnétic) vector com-
ponents present in the truncation planes [11-13].
In FD-TD ceodes to date, the radiation condition
used is a Pade (2,0) interpolant of the factored
(one-way) wave equation [15, 16] as differenced
in [11]. Higher-order Pade (2,2} and Chebyshev

(2,2} interpolants are currently under study for

numerical implementation in the FD-TD computer
programs [17].

4. FD-TD modeling validations for electromagnetic
wave scattering, two dimensions

Analytical and code-to-code validations have
been obtained relative to FD-TD modeling of elec-
tromagnetic wave scattering for'a wide variety of
canonical two-dimensional structures. Both con-
vex and re-entrant (cavity-type) shapes have been
studied; and structure material compositions have
included perfect conductors, homogeneous and
inhomogeneous lossy dielectrics, and anisotropic
dielectric and permeable media. Selected valida-
tions will be reviewed here.
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4.1. Square metal cylinder, TM polarization [12]

Here, we consider the scattering of a TM-polar-
jzed plane wave obliquely incident upon a square
“metal cylinder of electrical size k,s =2, where s is

I the side width of the cylinder. The square FD-TD

lgﬂd cell size is set equal to §/20, and the grid
“truncation (radiation boundary) is located at a
uniform distance of 20 cells from the cylinder
:surface.

Figure 5 compares the magnitude and phase of
“the cylinder surface electric current distribution
“computed using FD-TD to that computed using a
benchmark code which solves the frequency-
‘domain surface electric field integral equation
{(EFIE) via the method of moments (MOM). The
"MOM coede assumes target symmetry and discret-
‘izes one-half of the cylinder surface with 84
‘divisions. The FD-TD computed surface current
is taken as A x H,,, where A is the unit normal
‘vector at the cylinder surface, and H,,, is the
i=FD -TD value of the magnetic field vector com-
'ponent in free space immediately adjacent to the
eylinder surface. From Fig. 5, we see that the
agnitude of the FD-TD computed surface current

MOM {80 - Point Solution}
ecese FD-TD | 3-Cycle Sclution )

3.01 k2279

q +] 4

{2}
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agrees with the MOM solution to better than 1%
{£0.09 dB) at all comparison points more than
2 FD-TD cells from the cylinder corners (current
singularities). The phase of the FD-TD solution
agrees with the MOM solution to within =3° at
virtually every comparison point, including the
shadow region.

4.2. Circular muscle-far lavered cyhnder TE
polarization [18]

Here, we consider the penetration of a TE-polar-
ized plane wave into a simulated biological tissue
structure represented by a 15 cm radius muscle-fat
layered cylinder. The inner layer (radius=7.9 cm)
is assumed to be comprised of muscle having a
relative permittivity of 72 and conductivity of
0.9 S/m. The outer layer is assumed to be com-
prised of fat having a relative permittivity of 7.5
and conductivity of 0.48 S/m. An illumination
frequency of 100 MHz is modeled, with the FD-TD
grid cell size set equal to 1.5cm (approximately
1/24 wavelength within the muscle). A stepped-
edge (staircase) approximation of the circular layer
boundaries is used.

0°7
-30° 1

-60° 1

-l20° 1

- Ayl

~-1530° 1

2

- 1807

-210°

- 240°

MOM {80-Point Solution}

_270°) ¢4¢4¢ FD-TD (6-Cyele Solution) %

- 300° : } '
a b <

Position On Cylinder Surface

{0}

iFig. 5. Comparison of FD-TD and frequency-domain surface electric field integral equation results lor longitudinal sueface electric
current distribution on a k,5 =2 square metal cylinder, TM case: (a) magnitude; (b} phase [12].
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Fig. 6. Comparison of FD-TD and exact solutions for penetrating electric field vector compenents within a 15 em radius, circular,
muscle-fat layered cylinder, TE polarization, 100 MHz [18].

Figure 6, taken from [18], shows the analytical
validation results for the magnitude of the
penetrating electric field vector components along
two cuts through the muscle-fat cylinder, one
parallel to the direction of propagation of the
incident wave, and one parallel to the incident
electric field vector. The exact solution is obtained
by summing sufficient terms of the eigenfunction
expansion to assure convergence of the sum. Excel-
lent agreement of the FD-TD and exact solutions
is noted, even at jump discontinuities of the field
(and at jump discontinuities of the slope of the
field distribution)} that occur at the layer boun-
daries. This fine agreement is observed despile the
stepped-edge approximation of the circular layer
boundaries.

4.3. Homogeneous, anisotropic, square material
cylinder, TM polarization [19]

The ability to independently specify electrical
permittivity and conductivity for each E vector
component in the FD-TD lattice, and magnetic
permeability and equivalent loss for each H vector

component, leads immediately to the possibiiity of
using FD-TD to model material structures having
diagonalizable tensor electric and magnetic
properties. No alteration of the basic FD-TD
algorithm is required. The more camplicated
behavior associated with off-diagonal tensor com-
ponents can also be modeled, in principle, with
some algorithm complications [20].

Recent development of coupled, surface, com-
bined-field integral equation (CFIE) theory for
modeling electromagnetic wave scattering by
arbitrary-shaped, two-dimensional, anisotropic
material structures [19] has permitted detailed
code-to-code studies of FD-TD
anisotropic models. Figure 7 illustrates one such
study. Here, the magnitude of the equivalent sur-
face electric current induced by TM illumination
of a square anisotropic cylinder is graphed as 2
function of position along the cylinder surface for
both the FD-TD and CFIE models. The incident
wave propagates in the +y-direction and has a
+z-directed electric field. The cylinder has an elec-
trical size ko5 = 5, permittivity &,, = 2, and diagonat
permeability tensor p., =2 and pu,, =4. For the

validation
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Fig. 7. Comparison of FD-TD and frequency-domain surface

combined-field integrai equation results for longitudinal sur-

face electric current distribution oa a ks = 5 square anisotropic
cylinder, TM case [19].

case shown, the FD-TD grid cell size is set equal
to 5/50, and the radiation boundary is located at
a uniform distance of 20 cells from the cylinder
surface.

From Fig. 7, we see that the FD-TD and CFIE
results agree very well almost everywhere on the
cylinder surface, despite the presence of a compli-
cated series of peaks and nulls. Disagreement is
noted at the cylinder corners where CFIE predicts
sharp local peaks, but FD-TD predicts local nulls.
Studies are continuing to resolve this corner phys-
ics issue.

4.4. Circular metal cylinder, conformally modeled,
TE and TM polarization

A key flaw in previous FD-TD models of con-
ducting structures with smooth curved surfaces has

been the need to use stepped-edge (staircase)
approximations of the actual structure surface.
Although not a sericus problem for modeling wave
penetration and scattering for low-Q metal
cavities, recent FD-TD studies have shown that
stepped approximations of curved walls and aper-
ture surfaces can shift center frequencies of res-
onant responses by 1% to 2% for Q factors of 30
to 80, and can possibly introduce spurious nulls
[21]. In the area of scattering, the use of stepped
surfaces has limited application of FD-TD for
modeling the important class of targets where sur-
face roughness, exact curvature, and dielectric or
permeable loading is important in determining the
radar cross section.

Recently, two different types of FD-TD confor-
mal surface models have been proposed and
examined f{or two-dimensignal problems:

(1) Faraday’s Law
[22]. These preserve the basic Cartesian grid
arrangement of field components at all space cells
except those adjacent to the structure surface.
Space cells adjacent to the surface are deformed
to conform with the surface locus. Slightly
modified time-stepping expressions for the mag-
netic field components adjacent to the surface are
derived from the integral form of Faraday’s Law
implemented around the perimeters of the de-
formed cells. .

(2} Stretched, conforming mesh models [23, 24].
These employ avaiiable numerical mesh generation
schemes to construct non-Cartesian grids which
are continuously and globally stretched to conform
with smoothly shaped structures. Time-stepping
expressions are either adapted from the Cartesian
FD-TD case [23] or obtained via analogy to the
computational fluid dynamics formalism [24].

Research is ongoing for each of these types of
conformal surface models. Key questions<nclude:
ease of mesh generation; suppression of numerical
artifacts such as instability, dispersion, pseudore-
fraction, and subtraction noise limitation of com-
putational dynamic range; coding complexity; and
computer execution time. (See also the paper by
Madsen and Ziolkowski in this issue.)

contour path models
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The accuracy of the Faraday’s Law contour path
models for smoothly curved structures subjected
to TE and TM illumination is illustrated in Figs.
8(a) and 8(b) respectively. Here, a moderate-resol-
ution Cartesian FD-TD grid (having 1/20
wavelength cell size) is used to compute the
azimuthal or longitudinal electric current distribu-
tion on the surface of a k,a=35 circular metal
cylinder. For both polarizations, the contour path
FD-TD model achieves an accuracy of 1.5% or
better at most surface points reiative to the exact
series solution. Running time for the conformal
FD-TD model is essentially the same as for the
old staircase FD-TD model since only a few H
components immediately adjacent to the target
surface require a slightly modified time-stepping
relation.

4.5, Flanged metal open cavity {25] .

Here, we consider the interaction of a TM-polar-
ized plane wave obliquely incident upon a flanged
metal open cavity. The open cavity is formed by
a flanged parallel-plate waveguide having a plate
spacing, a, of 1 m, short-circuited by a terminating
plate located at a distance, d, of 1 m from the
aperture. At the assumed illumination frequency
of 382 MHz, kea = k,d =8, and only the first two
TE waveguide modes propagate within the open
cavity. An oblique angle of incidence, & =30° is
assumed for this case.

Figure 9 compares the magnitude and phase of
the penetrating electric field within the cavity im
from the aperture computed using FD-TD to that
computed using a cavity modal expansion and
OSRC [25]. Good agreement is seen. Figure 10
shows a similar comparison for the bistatic
radar cross section due to the induced aperture
field distribution. Again, good agreement. is
noted.'

! [tshould be noted that the results obtained using the cavity
modal expansion and OSRC represent a gaod approximation,
but not a rigorous solution.

4.6. Relativistically vibrating mirror, oblique
incidence [26]

Analytical validations have been recently
obtained for FD-TD models of reflection of g
monochromatic plane wave by a perfectly conduct-
ing surface either moving at a uniform relativistic
velocity or vibrating at a frequency and amplitude
large enough so that the surface attains relativistic
speeds [26]. The FD-TD approach of [26] is novel
in that it does not require a system transformation
where the conducting surface is at rest. Instead,
the FD-TD grid is at rest in the laboratory frame,
and the computed field solution is given directly
in the laboratory frame. This is accomplished by
implementing the proper relativistic boundary con-
ditions for the fields at the surface of the moving
conductor.

Figure 11 shows results for one of the more
interesting problems of this type modeled so far,
that of oblique plane wave incidence on an infinite
vibrating mirror. This case is much more compli-
cated than the normal incidence case, in that it has
no closed-form solution. An analysis presented in
the literature [27] writes the solution in an infinite-
series form using plane-wave expansions, where
the unknown coefficients in the series are solved
numerically. This analysis serves as the basis of
comparison for the FD-TD mode! results for the
time variation of the scattered field envelope at
points near the mirror.

Since it is difficult to model exactly an infinite
plane mirror in a finite two-dimensional grid, a
long, thin, rectangular perfectly-conducting slab is
used as the mirror model, as shown in Fig. 11(a}).
Relativistic boundary conditions for the fields are
implemented on the front and back sides of the
slab. The other two sides, parallel to the vetocity
vector, are insensitive to the motion of the slab,
and therefore no relativistic boundary conditions
are required there. To minimize the effect of edge
diffraction, the slab length is carefully selected so
that the slab appears to be infinite in extent al
observation point, P, during a well-defined early-
time response when the edge effect has not yet
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‘propagated to P. Since the TM case does not pro-
-vide appreciably different results than the TE case
:[27], only the TE case is considered. From Fig.
"11(b), we see good agreement between the FD-TD

:Fig. 8. Comparison of Faraday’s Law contour-path FD-TD and exact solutions for sucface electric current distribution on a kpa =3
circular metal eylinder: (a) TE case, azimuthal current; (b) TM case, longitudinal current [22].

and analytical results obtained from [27] for the
envelope of the scattered E field vs. time for an
incident angle of 30°, peak mirror speed 20% that
of light, and observation puoints z/d = -5 and
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matic plane wave illuminating a relativistically vibrating mirror

at a 30° ablique angle: (a) problem geometry; (b) comparative
solutions at two distances from the mirror surface [26].

z/d =-50, where kd =1. Similar agreement is
found for an even more oblique angle, 60° [26].
This agreement is satisfying since the action of the
relativistically vibrating mirror is so complicated,
generating a reflected wave having a spread both
in frequency and spatial reflection angle, as well
as evanescent modes. '

5. FD-TD medeling validations for electromagnetic
wave scattering, three dimensions

Analytical, code-to-code, and experimental vali-
dations have been obtained relative to FD-TD
modeling of electromagnetic wave scattering for a
wide variety of canonical three-dimensional struc-
tures, including cubes, flat plates, and .crossed
plates. Selected validations will be reviewed here.

5.1, Metal cube, broadside incidence [13]

Results are now shown for the FD-TD computed
surface electric current distribution on a metal cube
subject to plane-wave illumination at broadside
incidence. The electric current distribution is com-
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pared to that computed by solving a frequency-
domain surface EFIE using a standard triangular
surface-patching MOM code [13]. It is shown that
a very high degree of correspondence exists
between the two sets of predictive data.

The detailed surface current study involves a
cube of electricat size kys =2, where s is the side
width of the cube. For the FD-TD model, each
face of the cube is spanned by 400 square cells
(20x 20), and the radiation boundary is located at
a uniform distance of 15 cells from the cube sur-
face. For the MOM model, each face of the cube
is spanned by either 18 triangular patches or 32
triangular patches (to test the convergence of the
MOM model). Comparative results for surface
current are graphed along two straight-line loci
along the cube: abed, which is in the plane of the
incident magnetic field; and ab’c’d, which is in
the plane of the incident electric field.

Figure 12 compares the FD-TD and MOM
results for the magnitude and phase of the surface
current along ab’¢’d. The FD-TD values agree with
the high-resolution MOM data to better than
+2.5% (+0.2 dB} at all comparisen paints. Phase
agreement for the same sets of data is better than
+1°. {The low-resolution MOM data have a phase
anomaly in the shadow region.} In Fig. 13, compar-
ably excellent agreement is obtained along abcd,
but only after incorporation of an edge-correction
term in the MOM code [28] to enable it to properly
model the current singularities at the cube corners,
b and c

5.2. Flat conducting plate, multiple monostatic
looks [14, 20]

We next consider a 30 emx 10 cm % .65 cm flat
conducting plate target. At 1 GHz, where the plate
spans 1 wavelength, a comparison is made between
FD-TD and MOM results for the monostatic radar
cross section (RCS) vs. look-angle azimuth (keep-
ing a fixed elevation angle}, as shown in Fig. 14(a).
Here, the FD-TD model uses a uniform cell size
of 0,625 cm (Ay/48), forming the plate by 48 x 16 X
1 cells. The radiation boundary is located at a
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Fig. 12. Comparison of FD-TD and frequency-domain surface
electric field integral equation resulis for surface electric current
distribution along the E-plane locus, ab’c’d, of the k=2
metal cube: (a) magnitude; (b} phase [13].

uniform distance of only 8 cells from the plate
surface. For'the MOM model, study of the conver-
gence of the computed broadside RCS indicales
that the plate thickness must be accounted by
using narrow side patches, and the space resolution
of each surface patch should be finer than approxi-
mately 0.2 wavelength. As a result, the MOM
model forms the plate by 10 x 3 x 1 divisions, yield-
ing a total of 172 triangular surface patches. Figure
14(a) shows excellent agreement between the two
maodels (within about +£0.2 dB).

At 9 GHz, the plate spans 9 wavelengths, and
the use of the MOM model is virtually precluded.
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cube: (a) magnitude; (b) phase [13].

If we follow the convergence guidelines discussed
above, the plate would require approximately 50 x
15x1 divisions to properly converge, yielding a
total of 3260 triangular surface patches, and requir-
ing the generation and inversion of a 4890 x 4890
complex-valued system matrix. On the other hand,
FD-TD remains feasible for the plate at 9 GHz.
Choosing a wuniform cell size of 0.3125cm
{Ao/10.667), the plate is Fformed by 96 x 32 x 2 cells.
With the radiation boundary again located only 8
cells from the plate surface, the overall lattice size

is 112 x 48 x 18, containing 580,608 unknown-field
components (real numbers). Figure 14(b) shows
excellent agreement between the FD-TD results
and measurements of the monostatic RCS vs. look
angle performed in the anechoic chamber facility
operated by SRI International. The observed
agreement is within about 1dB and 1° of look
angle. As will be seen next, this level of agreement
is maintained for more complicated targets having
corner reflector properties. '

5.3. T-shaped conducting targei, muliiple
monostatic looks [14, 20]

We last consider the monostatic RCS pattern of
a T-shaped target comprised of two flat conducting
plates electrically bonded together, The main plate
has the dimensions 30 cmx 10 cmx (.33 cm, and
the bisecting fin has the dimensions 10cmx
10 cm x0.33 cm.” The illumination is a 9.0 GHz
plane wave at 0° elevation angle and TE polariz-
ation relative to the main plate. Thus, the main
plate spans 9.0 wavelengths. Note that look-angle
azimuths between 90° and 180° provide substantial
corner reflector physics, in addition to the edge
diffraction, corner diffraction, and other efiects
found for an isolated flat plate.

For this target, the FD-TD mode] uses a uniform
cell size of 0.3125cm (Ay/10.667), forming the
main plate by 32x96x 1 cells and the bisecting fin
by 32x32x1 cells. With the radiation boundary
again located only 8 cells from the target’s
maximum surface extensions, the overall lattice
size is 48 x 112 x 48, containing 1,548,288 unknown
field components (212.6 cubic wavelengths). Start-
ing with zero-field initial conditions, 661 time steps
are used, equivalent to 31 cycles of the incident
wave at 9.0 GHz.

Figure 15 compares the FD-TD ‘predicted
monostatic RCS values at 32 key look angles
between 0° and 180° with measurements performed
by SRI International. These look angles are selec-

2 The ceater lire of the “bisecting” fin is actually positioned
(.37 cm to the right of the center line of the main plate. This
is accounted for in the FD-TD model.
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the fine agreement for look-angle azimuths greater

" than 90°, where there is a pronounced corner reflec-

tor effect.

6, FD-TD modeling validations for

electromagnetic wave penetration and coupling,
two and three dimensions

6.1. Penetration models for narrow slots and
lapped joints in thick screens

The physics of electromagnetic wave trans-
mission through narrow slots and lapped joints in
‘shielded enclosures must be accurately understood
to permit good engineering design of equipment
'to meet specifications for performance concerning
‘glectromagnetic  pulse, lightning, high-power
‘microwaves, electromagnetic interference and
,compatibility, undesired radizted signals, and
?ERCS. In many cases, slots and joints can have very
‘narrow gaps filled by air, oxidation films, or layers
-of anodization. Joints can be simple (say, two metal
-sheets butted together}); more complex (a lapped
or “furniture™ joint); or even more complex (a
threaded screw-type connection with random
-points of metal-to-metal contact, depending upon
the tightening). Extra complications arise from the
possibility of electromagnetic resonances within
the joint, either in the transverse or longitudinal
{(depth) direction.

~ Clearly, to make any headway with this compli-
cated group of problems using the FD-TD
approach, it is necessary to develop and validate
FD-TD models which can simulate the geometric
features of generic slots and joints. Since a key
geometric feature is likely to be the narrow gap of
the slot or joint relative to one FD-TD space cell,
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it is important to understand haow subcell gaps can
be efficiently modeled.

Three different types of FD-TD subcell models
have been proposed and examined for modeling
narrow slots and joints:

(1) Equivalent slot loading [29]. Here, rules are
set to define an equivalent permittivity and permea-
bility in a slot formed by a single-cell gap to
effectively narrow the gap to the desired degree.

(2} Subgridding [30]. Here, the region within
the slot or joint is provided with a sufficiently fine
grid. This grid is properly connected to the coarser
grid outside of the slot. '

(3) Faraday's Law contour path  model
[31]. Here, space cells adjacent to and within the
slot or joint are deformed to conform with the
surface locus (in a manner similar to the conformal
curved surface model}. Slightly modified . time-
stepping expressions for the magnetic field com-
ponents in these cells are derived from the integral
form of Faraday’s Law implemented about the
perimeters of the deformed cells.

The accuracy of the Faraday’s Law contour path
model for narrow slots and joints is illustrated in
Figs. 16 and 17 by direct comparison of the com-
puted gap electric field distribution against high-
resolution numerical benchmarks. Figure 16
models a 0.1 wavetength thick conducting screen
which extends 0.5 wavelength to each side of a
straight slot which has a gap of (.025 wavelength.
Broadside TE illumination is assumed. Three types
of predictive data are compared: (1)} the low-resol-
ution (0.1 Ay) FD-TD model using the contour
path approach to treat the slot as a 3-cell gap; (2)
a high-resolution (0.025 A,} FD-TD model treating
the slot as a l-cell gap; and (3) a very-high-resol-
ution frequency-domain EFTE model, solved via
MOM (having 0.0025 A, sampling in the slot)
which treats the slotted screen as a pure scattering
geometry. From Fig. 16, we sce that there is excel-
lent agreement between all three sets of predictive
data in both magnitude and phase. Of particular
interest is the ability of the low-resolution FD-TD
model, using the contour path approach, to accur-
ately compute the peak electric field in the slot.




568 ' A. Taflove / Finite-difference rime-domain method

& T
3 E\HC E
25k 2 2
—_ 20 pine A/ s
E ! ro X
£ Ze o
Ll 2 a0
~ 15 F
, . A
LIJ o
- e To —l
Ghservetian
05 locus
P S SV S R S S S S A
FRONT OF SCREEN }—SLOT—'L BACK OF SCREEN
(o)
100
53"+
o
L o
~
T - A MOMUAo/220, o/ 400 resclulian!
Llj — FD-TO{ho/ 40 resolution}
~ ek & FD-TR{X o/ 10 resoiution
cantour model
PP VPR T S R

FRONT OF SCREEN L—SLOT—JE BACK OF SCREEK
A
(b}
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Figure 17 shows the geometry of a U-shaped
lapped joint which was selected for detailed study
of path-length (depth) power transmission reso-
ances. The U shape of the joint permits adjustment
of the overall joint path length without disturbing
the positions of the input and output ports at A
and F. A uniform gap of 0.025 wavelength is
assumed, as is a screen thickness of 0.3 wavelength

k 1.5 ula 15X —|
—{— .025x
F E
e ] I»
o} C A B

Ey¥ — 0 H®

Fig. 17. Geometry of U-shaped lapped joint in a conducting
screen, TE tllumination (shown to scale) [31].

and width of 3 wavelengths. Figure 18 compareg
the gap electric field distribution within the join;
as computed by: (1) a low-resolution {0.09 Ag)
contour path FD-TD model treating the gap as
0.28 cell; and (2) a high-resolution {0.025 A,) FD.
TD model treating the gap as 1 cell. The total path
length ABCDEF within the lapped joint is
adjusted to equal 0.45 wavelength, which provides
a sharp power transmission peak to the shadow
side of the screen. From Fig. 18, we see a very
good agreement between the low- and high-resol-
ution FD-TD models, even though this is a numeri-
cally stressful resonant penetration case.

An implication of these results is that coarse
{0.1 Ay) FD-TD gridding can be effectively used to
maodel the fine-grained physics of wave penetration
through subcell slots and joints if simple algorithm
modifications are made in accordance with the
contour path approach. This can substantially
reduce computer rescurce requirements and cod-
ing complexity for FD-TD models of complex

structures, without sacrificing appreciable
accuracy in the results.
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the lapped joint at the first transmission resonance: {(a)
IEg,np/Einc‘; (b) £ E /H-[A} [31]

BAp

4. Here, space
- to conform

A

6.2, CUIJ[),’;’;

In equipy
electromagr
and eleciro
electromapn
bundles log
problem th
penetration
4s narrow g
slot probleq
structure, in
may be smg
Thus, it s in
cell, wires a
if FD-TD is
problems.

Two ditig
have been |
thin wires:

(1) Fquid
equivilent i
a space cell,
the wire to by
the field sol

{2) Farad

similar to th
1/ ¢ singulag
and radial el
the deformed
eXpressions
ponents ir th
form of Far
perimeter of]
The accur
model for th
Figs. 19(a)
scattered azi
ance of 1/2
infinitely lo
between 1/ 3(
nation is ass
agreement b




18 compares
thin the joint
tion (0.09 A,)
1g the gap as
0.025 &,) FD-
The total path
ped joint s
hich provides
o the shadow
we see a very
nd high-resol-
1s is a numeri-
case.
is that coarse
ctively used to
Ve penetration
nple algorithm
ance with the
1 substantially
1ents and cod-
Is of complex
appreciable

N-TO{0025 %, resoiuliont

TD-TO (C.0B A, rescluticn)
ronteur medel

& distribution within
slon resonance: (a)

1) [31}

A. Taflove [ Finite-difference 1ime-domain method 569

6.2. Coupling models for wires and wire bundles

In equipment design for threats represented by
electromagnetic pulse, high-power microwaves,
and electromagnetic interference, understanding
electromagnetic wave coupling to wires and cable
bundles located within shielding enclosures is a
problem that is complementary to that of wave
penetration through apertures of the shield (such
as narrow slots and joints). Similar to the narrow
slot problem, a key dimension of the interacting
structure, in this case the wire or bundle diameter,
may be small relative to one FD-TD space cell.
Thus, it is important to understand how thin, sub-
cell, wires and bundles can be efficiently modeled
if FD-TD is to have much application to coupling
problems.

Two different types of FD-TD subcell models
have been proposed and examined for modeling

. thin wires:

(1) Egquivalent inductance [32}]. Here, an
equivalent inductance is defined for a4 wire within
a space cell, permitting a lumped-circuit model of
the wire to be set up and computed in parallel with

: the field solution.

(2) Faraday’s Law contour path model [21].
Here, space cells adjacent to the wire are deformed

% to conform with the surface locus (in a manner

similar to the conformal curved surface model).

i 1/r singularities of the azimuthal magnetic field

and radial electric field are assumed to exist within
the deformed cells. Slightly modified time-stepping
expressions for the azimuthal magnetic field com-

- ponents in these cells are derived from the integral
- form of Faraday’s Law implemented around the

perimeter of the deformed cells.
The accuracy of the Faraday’s Law contour path
model for thin wires in free space is illustrated in

- Figs. 19(a} and 19(b}. Figure 19{(a} graphs the

scattered azimuthal magnetic field at a fixed dist-

- ance of 1/20 wavelength from the center of an

infinitely long wire having a radius ranging

. between 1/30,000 and 1/30 wavelength, TM illumi-

nation is assumed. We see that there is excellent

" agreement between the exact series solution and
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Fig. 19. Validation studies for the Fardday's Law contour path
FD-TD model for thin wires in free space: (a) comparison of
FD-TD and exact solutions for rhe scattered azimuthal mag-
netic field at a fixed distance of 1/20 wavelength from the center
of ar infinitely long wire (as a function of wire radius); {b)
comparison of FD-TD and MOM resuits for the scattered
azimuthal magnetic field distribution along a 2.0 wavelength
(antiresonant) wire of radius 1/300 wavelength [21].

the low-resolution (0.1 Ap) FD-TD contour path
model over the entire 3-decade range of wire
radius. Figure 19(b) graphs the scattered azimuthal
magnetic field distribution along a 2.0 wavelength
(antiresonant) wire of radius 1/300 wavelength.
Broadside TM illumination is assumed, and the
field is observed at a fixed distance of 1/20
wavelength from the wire center. We see that there
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Fig. 20. Comparison of hybrid FD-TD/MOM modeting predictions with direct frequency-domain electric field integral equation
results for induced currents on a wire bundle [21].

is excellent agreement between a frequency-
domain EFIE {MOM) solution sampling the wire
current at 1/60 wavelength increments, and the
low-resolution {0.1 A,) FD-TD contour path
model. ‘

The FD-TD contaur path model can be extended
to treat thin wire bundles, as well as single wires.
Figure 20 shows the code-to-code validation results
for the induced currents on a bundle comprised
of 4 wires, where 3 are of equal length. Here, a
wire of length 60 ¢m (2.0 wavelengths) is assumed
to be at the center of the bundle, and three parallel
wires of length 30 cm (1.0 wavelength) are assumed
to be located at 120° angular separations on a
conceniric circle of Smm (1/60
wavelength). The radii of all wires in the bundle
are equal and set to 1 mm {1/300 wavelength}. The
assumed excitation is in free space, provided by a
1 GHz broadside TM plane wave. Following the
technique of [21], the bundle is replaced by a single

radius

wire having varying equivalent radius correspond-
ing to the three sections along the bundle axis. The
physics of the single wire of varying equivalent
radius is incorporated in a low-resolution {0.1 A,)
FD-TD contour path model, as discussed above.
The FD-TD model is then run to obtain the tangen-
tial E and H fields at a virtval surface conveniently
located at the cell boundary containing the
equivalent wire (shown as a dashed line in Fig.
20). These fields are then utilized as excitation to
obtain the currents induced on the individual wires
of the original bundle. This last step is performed
by setting up an EFIE and solving via MOM.
Figure 20 shows an excellent correspondence
between the results of the hybrid FD-TD/MOM
procedure described above and the usual direct
EFIE (MOM} solution for the induced current
distribution on each wire of the bundle.

The hybrid FD-TD/ MOM procedure for model-
ing thin wire bundies is most useful when the

bundle is lo
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Fig. 21. Geometry of the cylindrical metal shielding enclosure
and internal wire or wirg-pair [21].

_bundle is located within a shielding enclosure.
“Figures 21 and 22 show the geometry and test
results for such a model involving the variation of
induced load current with illumination frequency
for a single wire and a wire-pair located at the
ccenter of a cylindrical metal enclosure. The
“enclosure is 1.0ni high, 0.2 m in diameter, and
.referenced to a large metal ground plane. Approxi-
imate plane wave illumination is provided by an
ielectrically-large conical monopole referenced to
"the same ground plane. Wave penetration into the
‘interior of the enclosure is through a circumferen-
“tial slot aperture (12.5 cm arc length, 1.25 ¢cm gap)
at the ground plane. For the cases studied, an
internal shorting plug is located 40 em above the
-ground plane. For the single-wire test, a wire of
‘length 30cm and radius 0.495mm is centered
-within the interior and connected to the ground
.plane with a lumped 50-ohm load. For the wire-
pair test, parallel wires of these dimensions are
‘located 1 cm apart, with one wire shorted to the
ground plane and the other connected to the
-ground plane with a lumped 50-ohm load. All
results are normalized to a 1 V/m incident wave
_electric field.

From Fig. 22, we see that there is a good corre-
spondence between the measured and numerically
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modeled wire load current for both test cases. The
two-wire test proved to be especially challenging
since the observed @ factor of the coupling
response (center frequency divided by the half-
power bandwidth) is quite high, about 75. Indeed,
it is found that the FD-TD code has to be stepped
through as many as 80 cycles to approximately
reach the sinusoidal steady state for illumination
frequencies near the resonant peak [21]. However,
substantially fewer cycles of time-stépping are
needed away from the resonance, as indicated in
the figure.

7. Use of FD-TD for modeling very complex
three-dimensional structures

Two characteristics of FD-TD cause it to be very
promising for numerical modeling of electromag-
netic wave interactions with very complex objects:
(1) Dielectric and permeable media can be
specified independently for each electric and mag-
netic field vector component in the three-
dimensional volume being modeled. Since there
may be tens of millions of such vector components
in large FD-TD models, inhomogeneous media of
enormous complexity can be specified in principle.
{2) The required computer resources for this type
of detailed volumetric modeling are dimensionally
low, only of order N, where N is the number of
space cells in the FD-TD lattice.

The emergence of supercomputers has recently
permitted FD-TD to be seriously applied to a
number of very complex electromagnetic wave
interaction problems. Two of these will now be
briefly reviewed.

7.1. UHF wavpe penetralion into a missile seeker
section [6, 33]

Here, FD-TD is applied to model the penetra-
tion of an axially incident 300 MHz plane wave
into a metal-coated missile guidance section. The
FD-TD model, shown in Fig. 23, contains the

following elements: (1) magnesium fluoride
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Fig. 22. Comparisan of hybrid FD-TD/MOM modeling predictions with experimental data for induced load current: (a) single
wire in shielding enclosure; (b) wire pair in shielding enclosure [21].

infrared dome; (2) circular nose aperture; {3) cir-
cumferential sleeve-fitting aperture 23cm  aft
{loaded with fiberglass); (4) head-coil assembly;
(5) cooled detector unit with enclosing phenolic
ring; (6) pre-amp can; (7) wire bundle connecting
the detector unit to the pre-amp can; {8) wire
bundle connecting the pre-amp can to the metal

backplane; and (9) longitudinal metal support
rods. The fiberglass structure of the nose cone and
its metalization are approximated in a stepped-
surface manner, as is the infrared dome.

For this structure, the FD-TD model uses 2
uniform cell size of §cm (Ay/300), with an over-
all lattice size of 24x100x48 cells containing

24-

Distance from Front Aperture {cm)

2ir g

-2
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‘48 cells containing

. _ %/
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Distance from Axis (cm)
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690,000 unknown field components. (A single sym-
metry plane is used, giving an effective lattice size
of 48100 x 48.) The model is run for 1800 time
-steps, equivalent to 3.0 cycles of the incident wave
at 300 MHz.

Figure 24 plots contour maps of the FD-TD
-computed field vector components at the symmetry
‘plane of the model. An important observation is
that the simulated wire bundles connecting the
cooled detector unit, pre-amp can, and metal back-
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-Fig. 23. FD-TD model of the missile seeker section, showing compenent materials: (a} ai the vertical symmetry plane; (b} at the
horizontal observation plane [6, 33].

plane are paralleled by high-level magnetic field
contours (Fig. 24(b)). This is indicative of substan-
tial, uniform current flow along each bundle. Such
current flow would generate locally 'a magnetic
field looping around the wire bundle which, when
“cut” by the symmetry plane, shows up as parallel
field contours spaced equally on each side of the
bundie. Using a simple Ampere’s Law argument,
the common-mode bundle currents can be calcu-
lated, thus obtaining a key transfer function




e © between T
deﬂSil}’ a1
earlier, th
vuitlnerahilj
both nary
phenomen

Althoug
posed to d
map fields
having mny
engineerin
the full bis
structure is
no additio
resolution
model wo

L=

2

u
1

4]
Distance from Axis {cm)
(e)

(=]

2
. P
FAAB LA ALRAELALART LA RR Y
- N,

|
C
a8
(
L
{‘.

4207
+15 —1

01
-10 "
-20 7]

7.2, Whold
UHF jrequ

Here, Hl
tion of pla
into the eg
the abilit
inhomogen
highly real
models ot’“
ted. Specifi
each of the
16,000 to 4
modei. Ass
section tiss
cadaver stu
and catalo

cley L, [6, 33).

) N\ =

AR AR AR

[ = e S

Q
-20
l
I

!
Distance fr:n Axii {cm)
(b)

14
i
|

4
4

[§
{a) E.;

+17

properties.
fine us 1.3 4
have prove

Figure 2§
computed d
rate (SAR
through th
dimensiona
3 25(a), the i
1mW/em’
incident wa

(a)

{/‘;\
;/: S r?( \ -

—_

AR,

S

o La,

( e N

FFEE T IS

Distance from Axis (cm)

e i L

e S =
1'4'-{@:5‘4\0' '_F‘_'

Fig. 24. FD-TD computed contour maps of penetrating field vector components in the vertical symmetry plane of the missile secker section:
(b) H,

20
184
16
4
]
bl
8
[
&4
24
o
2

r T
o o~
~ o~

1
1
1

(wa) aanjaady Jueld wolal aJUEISIQ




pigtance from Axis {(cm}

(c)

()

(a)
Fig. 24. FD-TI) computed contour maps of penetrating

field vector components in the verlical symmetry plane of the missile seeker scetion:

(a) E.; (b) H, : (c) E, [6, 33].

i

A. Taflove / Finite-difference time-domain method 375

between free-field incident UHF plane wave power
density and coupled wire currents [33]. As stated
earlier, this information is useful for studies of
vulnerability of electronic systems to upset due to
both natural
phenomena.

and man-made electromagnetic

Although this missile seeker model was com-
posed to demonstrate the capability of FD-TD to
map fields penetrating into a complex structure
having multiple apertures and realistic internal
engineering details, it should be understood that
the full bistatic radar cross section pattern of the
structure is available as a’byproduct with virtually
no additional effort. Further, with the 3 cm space
resolution used, the FD-TD radar cross section
model would be useful up to 9 GHz.

7.2, Whole-body human dosimetry at VHF and
UHF frequencies [34, 35]

Here, FD-TD is applied to model the penetra-
tion of plane waves at VHF and UHF frequencies
into the entire human body. Directly exploiting
the ability of FD-TD to model media
inhomogeneities down to the space-cell level,
highly realistic three-dimensional FD-TD tissue
models of the complete body have been construc-
ted. Specific electrical parameters are assigned to
each of the electric field vector components at the
16,000 to 40,000 space cells comprising the body
model. Assignments are based upon detailed cross-
section tissue maps of the body (as obtained via
cadaver studies available in the medical literature),
and cataloged measurements of tissue dielectric
properties. Uniform FD-TD space resolutions as
fine as 1.3 cm throughout the entire human body
have proven feasible with the Cray-2.

Figure 25, taken from [35], shows the FD-TD
computed contour maps of the specific absorption
rate (SAR) distribution along horizontal cuts
through the head and liver of the three-
dimensional inhomogeneous man model. Tn Fig.
25(a), the incident wave has a power density of
1 mW/em® at 350 Mhz, while in Fig, 25(b), the
incident wave has the same power density but is

at 100 MHz. These contour maps illustrate the high
level of detail of tocal features of the SAR distribu-
tion that is possible via FD-TD modeling for highly
realistic tissue models.

8. FD-TD microstrip and microwave eircuit models

Recently, FD-TD modeling has been extended
to provide detaited characterizations of micro-
strips, resonators, finlines, and two-dimensional
microwave circuits. In [36], FD-TD is used to
calculate the dispersive characteristics of a typical
microstrip on a gallium arsenide substrate. A
Gaussian pulse excitation is used, and the eflective
dielectric constant and characteristic impedance
vs. [requency is efficiently obtained over a broad
frequency range via Fourier transform of the time-
domain field response,

In [37], FD-TD is first used to obtain resonant
frequencies of several three-dimensional cavities
loaded by dielectric blocks. Next, the resonant
frequency of a finline cavity is computed. Last, the
resonant frequencies of a microstrip cavity on
anisotropic substrate are obtained, and the disper-
sion characteristics of the microstrip used in the
cavity are calculated. FD-TD modeling results are
compared primarily to those obtained using the
transmission line matrix (TLM} approach, and the
two methods are found to give practically the same
resuits. (See also the paper by Johns in this issue
[pp. 597-610].)

- In [38], a modified version of FD-TD is presen-
ted which provides central-difference time-step-
ping expressions for distributions of voltage and
surface current density along arbitrary-shaped
two-dimensional  microwave  circuits.  This
approach is quite different from that of {36, 37],
which utilize the original velumetric field sampling
concept for FD-TD. As a result, the method of
[38] requires fewer unknowns to be solved, and
avoids the need for a radiation boundary condi-
tion. However, an auxiliary condition is required
to describe the loading effects of the fringing fields
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Fig. 25. FD-TD computed contour maps of the specific absorption rate due to penetrating electromagnetic fields within a highiy
realistic, three-dimensional model of the entire human body: (a} along a horizontal cui through the head at 350 MHz; (b) along a
horizontal cut through the liver at 100 MHz [35].
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 at the edges of the microstrip conducting paths. using a single FD-TD run for an appropriate pulse
© Figure 26, taken from [38], shows the FD-TD excitation, followed by Fourier transformation of
-~ computed S-parameter, |S;|, as a function of the desired response time-domain waveform. From
frequency for a two-port microstrip ring circuit. Fig. 26, we see good agreement of the predicted
_ The ring circuit, gridded as shown in the figure, and measured circuit response over the 2-12 GHz
: has an inner radius of 4 mm, outer radius of 7 mm, frequency band and a dynamic range of about
substrate relative permittivity of 10 and relative 30 dB. Reference [38] concludes that the applica-
permeability of 0.93 (simulating duroid), and is tion of its FD-TD approach to arbitrarily-shaped
connected to two 50-ohm lines making a 90° angle. microstrip circuits is encouraging, but more work
The broadband response of the circuit is obtained is needed to determine the modeling limitations,

— T,
T 3 .
TN :
pax AN REE I
} SETELE DR B N R el
T - ha \
: a7 f
s i X |
T f 4 mn o |
A EmENE gl I ]
- -1y B |
N HAS 1.
AT 7
- , o

[}
[~
=3
-8 - r
)
g measuraments .
R
m;: calculations
-36 -
@ @ -
-48 [ f | | 1
8 z 1 b B 18 12 f (GHzZ)

{b)

Fig. 26. Comparison of FD-TD modeling predictions with measurements of | S,,| for a two-port microstrip ring circuit: {a) geametry
and gridding of microstrip circuit; (b) comparative results over 2-12 GHz [38].
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especially at higher frequencies where media dis-
persion can become important.

9. FD-TD inverse scattering reconstructions in
one and two dimensions

Initial work has demonstrated the possibility of
accurately reconstructing one-dimensional profiles
of permittivity and conductivity [39], and the shape
and dielectric compositions of two-dimensional
targets [40, 41] from minimal scattered field pulse
response data. The general approach involves set-
ting up a numerical feedback loop which uses a
one- or two-dimensional FD-TD code as a for-
ward-scattering element, and a specially construc-
ted non-linear optimization code as the feedback
element. FD-TD generates a test pulse response
for a trial layering or target shape/composition.
The test pulse is compared to the measured pulse,
and an error signal is developed. Working on this
errot signal, the nonlinear optimization element
perturbs the trial layering or target shape/composi-
tion in a manner to drive down the error. Upon
repeated iterations, the proposed layering or target
ideally converges to the actual one, a strategy
similar to that of [42}.

The advantage of working in the time domain
is that a layered medium or target shape can be
reconstructed sequentially in time as the wavefront
of the incident pulse sweeps through, taking advan-:
tage of causality. This reduces the complexity of
reconstruction since only a portion of the layering
or target shape is being generated at each iteration.
Advanced strategies for reconstruction in the pres-
ence of additive noise may involve the use of
prediction/correction, where the trial layer or
target shape is considered to be a predictor of the
actual case, which is subsequently corrected by
optimization of the entire layered medium or target
shape wusing the complete scattered pulse
waveform.

Figure 27 shows the application of the basic
FD-TD feedback strategy to a one-dimensional

Helgnstructed Droginal
values wrofile

Sh.Lo 5C ul 5.0 w0 5,30 ar.co 8506 it

Fo0 | 83.to
TEHE STEP

Fig. 27. Application of the FD-TD/feedback strategy to recon.
struct a one-dimensional “sawtooth™ variation of electrical
permittivity and conductivity in the absence of noise [39].

layered medium in the absence of noise. Both the
electrical permittivity and conductivity of the
medium vary in a “sawtooth” manner with depth.
The curves show simulated measured data for the
reflected pulse for three cases defined by the peak
values of the conductivity {0.001 $/m, 0.01 S/m,
and 0.1 §/m) and the corresponding spatially coin-
cident peak values of relative permittivity (3, 2,
and 4) of the medium. In each case, the incident
pulse is assumed to be half-sinusoid spanning
50 cm between zero crossings. Noting that the dark
dots superimposed on the “sawtooth”™ represent
the reconstructed values of permittivity and con-
ductivity, we see that the basic FD-TD feedback
strategy is quite successful in the absence of noise
[39].

Figure 28 shows the application of the FD-TD
feedback strategy to reconstruct a two-dimensional
lossy dielectric target, The target is a 30 cm x 30 cm
square cylinder having a uniform conductivity of
0.015/m, and a tent-like relative permittivity
profile which starts at 2.0 at the front and left sides
and increases linearly to a peak value of 4.0 at the
back corner on the right side. These profiles are
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Fig. 28. Application of the FD-TD/feedback strategy to reconstruct 2 two-dimensional lossy dielectric target in the presence of
noise [411.

illustrated in a perspective manner at the top of
Fig. 28. The target is assumed to be illuminated
by a TM polarized plane wave that is directed
toward the front of the target {(as visualized at the
top of Fig. 28). The incident waveform is a 3-cycle
sinuspidal tone burst having a 60 MHz carrier
frequency. For the reconstruction, the only data
utilized is the time-domain waveform of the scat-
tered electric field as observed at two points. These
points are located 1 m from the front of the target,
and are positioned 15 em to either side of the target
center line. To simulate measured data, the FD-TD
computed scattered field waveforms are contami-
nated with additive Gaussian noise. In all of the

reconstructions, the target shape and location is
assumed to be known.

From Fig. 28, we see that for a signal/noise ratio
of 40 dB, the average error in the reconstructed
permittivity and conductivity profiles is.1.5% and
2.3% respectively. If the signal/noise ratio is
reduced to 20 dB, the average errors increase to
6.9% and 10.4%, respectively [41]. Research is
ongoing to determine means of improving the noise
performance, especially using predictor/corrector
techniques briefly discussed earlier. Given the rela-
tively small amount of scattered field data utilized,
the FD-TD feedback strategy appears promising
for future development.
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10. Very large-scale computer software

The FD-TI method is naturally suited for large-
scale processing by state-of-the-art vector super-
computers and concurrent processors. This is
because essentially all of the arithmetic operations
involved in a typical FD-TD run can be vectorized
or cast into a highly concurrent format. Further,
the O(N) demand for computer memory and clock
cycles (where N is the number of lattice space
cells) is dimensionally low, and permits three-
dimensional FD-TD models of structures spanning
50-100 A, to be anticipated by the early 1990s.

Table 1

Computation times

10-wavelength model

Machine present FD-TD code™®
VAX 11/780 {no floating-point 40.0h
accelerator)
Cray-2 (single processor, using 12.0min
the VAX Fortran)
Cray-2 (single processor, some 3.0min
code optimization)
Cray-2 (four processors, some 1 min (est.)
code optimization) )
True 10 Gflop machine 2 sec (est.)

* 1.55 - 10° unknown field vector components, 661 time steps
(T-shaped target). The complete bistatic RCS pattern is
obtained for a single illumination angle at a single frequency.
Times are increased by 50%-100% if an impulsive illumi-
nation/ Fourier transform is used to obtain the' bistatic RCS
pattern at a multiplicity of frequencies within the spectrum of
the impulsive illumination.

Let us now consider computation times of pres-
ent FD-TD codes. Table 1 lists computation times
(derived either from benchmark runs or based on
analysts’ estimates) for modeling one illumination
angle of a 10 A, three-dimensional structure using
the present FD-TD code. Note that the fourth
computing system listed in the table is a
hypothetical next-generation machine operating at
an average rate of 10 Gflops. This capability is
generally expected to be available in the early
1990s.

From Table 1, it is fairly clear that steadily
advancing supercomputer technology will permit

routine engineering usage of FD-TD for modeling
electromagnetic wave interactions with electri-
cally-large structures by 1993.

An interesting prospect that has recently arisen
is the reduction of the O{ N'} computational burden
of FD-TD to O(N'"*). This possibility is a con-
sequence of the appearance of the Connection
Machine (CM), which has tens of thousands of
and associated memories

simple processors

arranged in a highly efficient manner for processor- -
to-processor communication, With the CM, a

single processor could be assigned to store and
time-step a single row of vector field components
in a three-dimensional FD-TD space lattice. For
example, 1.5 - 10° processors would be sufficient
ta store the 6 Cartesian components of E and H
for each of the 300x 500 rows of a cubic lattice
spanning 30 A, (assuming 10 cells/A, resotution).
FD-TD time-stepping would be performed via row
operations mapped onto the individual CM pro-
cessors. These row operations would be performed
concurrently. Thus, for a fixed number of time
steps, the total running time would be proportional
to the time needed to perform a single row
operation, which in turn would be proportional to
the number of field vector components in the row,
or O(_N“S).

For the 30 A, cubic lattice noted above, this
would imply a dimensional reduction of the com-
putational burden from O(500%} to O(500), a
tremendous benefit. As a result, it is conceivable
that a suitably scaled CM could model one illumi-
nation angle of a 50 A, three-dimensional structure
in only a few seconds, achieving effective fioating-
point rates in the order of 100 Gflops. For this
reason, FD-TD software development for the CM
is a promising area of research for developing

ultralarge numerical models of electromagnetic

wave interactions with complex structures.

11. Conclusion

This paper has reviewed the basic formulation
of the FD-TD numerical modeling approach for
Maxwell’s equations. A number of two- and three-

dimensiona
tromagnetiq
provided 10
FD-TD apg
in nature
extremely ¢
tems. In all
analvtical, ¢
tions were
penetraling
radar cross
with bench
opporiunitig
rapidly timg
and inverse
in FD-TD
advances 1n
technology,
numerical
place in hig
netics as wd

Acknowledg

The dauth
contributioy
Umashankd
Chicago an
western LI
students at
Ben Beker,
foush, Mr.
and Mr. M4
edged. The
support of ]
ing the U.§
Center (Co
C-0039, F]
0140); Law
(Contract 64
{Grant NA(
(Grants E(
Office of N
0475,




i modeling
ith electri-

ently arisen
anal burden
y is a con-
Connection
iousands of

memories
I processor-
the CM, a
o store and
components
lattice. For
se sufficient
of E and H
zubic lattice
resolution}.
‘med via row
1al CM pro-
¢ performed
ber of time
proportional
single row
yportional to
s in the row,

above, this
1 of the com-
3 O(500), a

conceivable
s} one illumi-
inal structure
tive loating-
ps. For this
it for the CM
r developing
ctromagnetic
ctures.

¢ formulation
approach for
vo- and three-

A. Taflove / Finite-difference time-domain method

dimensional examples of FD-TD modeling of elec-
tromagnetic wave interactions with structures were
provided to indicate the accuracy and breadth of
FD-TD applications. The objects modeled range
in nature from simple geometric shapes to
extremely complex aerospace and biological sys-
tems. In all cases studied to date where rigorous
analytical, code-to-code, or experimental valida-
tions were possible, FD-TD predictive data for
penetrating and scattered near fields as well as
radar cross section were in excellent agreement
with benchmark data. It was also shown that
opportunities are arising in applying FD-TD to
rapidly time-varying systems, microwave circuits,
and inverse scattering. With continuing advances
in FD-TD modeling theory, as well as continuing
advances in vector and concurrent supercomputer
technology, there is a strong possibility that FD-TD
numerical modeling will occupy an important
place in high-frequency engineering electromag-
netics as we move into the 1990s.
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