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Abstract

Highly correlated configuration interaction (CI) wavefunctions going
beyond the simple singles and doubles (CISD) model space can provide
very reliable potential energy surfaces, describe electronic excited states,
and yield benchmark energies and molecular properties for use in cali-
brating more approximate methods. Unfortunately, such wavefunctions
are also notoriously difficult to evaluate due to their extreme computa-
tional demands. The dimension of a full CI procedure, which represents
the exact solution of the electronic Schridinger equation for a fixed
one-particle basis set, grows factorially with the number of electrons
and basis functions. For very large configuration spaces, the number
of CI coupling coefficients becomes prohibitively large to store on disk;
these coefficients must be evaluated as needed in a so-called direct CI
procedure. Work done by several groups since 1980 has focused on using
Slater determinants rather than spin {5?) eigenfunctions because cou-
pling coefficients wc easier to compute with the former. We review the
fundamentals of the configuration interaction method and discuss var-
ious determinant-based CI algorithms. Additionally, we consider some
applications of highly correlated CI methods.
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1 Introduction

Most chemists picture the electronic structure of atoms or molecules by invok-
ing orbitals. The orbital concept has its basis in Hartree-Fock theory, which
determines the best wavefunction |¥) under the approximation that each elec-
tron experiences only the gverage field of the other electrons. This is also called
the “one-electron,” or “independent particle” model. While the Hartree-Fock
method gives very useful results in many situations, it is not always quantita-
tively or even qualitatively correct. When this approximation fails, it becomes
necessary to include the effects of electron correlation: one must model the in-
stantaneous electron-electron repulsions present in the molecular Hamiltonian.

The most broadly applicable method for describing electron correlation is
configuration- interaction (CI), which expresses the wavefunction as a linear
combination of S, eigenfunctions (Slater determinants) or S, and $? eigen-
functions (configuration state functions, or CSFs) describing the distribution
of N electrons. If all possible N-electron functions are included in the CI proce-
dure (subject to spatial and spin symmetry restrictions), then the Schrédinger
equation is solved exactly within the space spanned by the one-particle basis
functions. Hence, in its most general form, CI applies to difficult cases such
as excited states, open-shell systems, and systems far from their equilibrium
geometries. However, the dimension of this “full CI” procedure grows factori-
ally with molecular size, so it is necessary to select only the most important
N-electron functions.

A common approach is to restrict the CI space to the Hartree-Fock self-
consistent-field (SCF) configuration and those configurations related to it by
single and double substitutions of orbitals, in a procedure denoted CISD.
In cases where the SCF method yields a good approximate wavefunction,
CISD with double-( plus polarization (DZP) single-particle basis sets typ-
ically predicts equilibrium bond lengths of small molecules within 0.4% of
experiment and harmonic vibrational frequencies within 4%.! Unfortunately,
CISD (and most other standard CI methods short of full CI) are not size
extensive, meaning that their performance degrades with increasing molecu-
lar size. Size extensive alternatives include many-body perturbation theory
(MBPT) and coupled-cluster (CC) methods. The coupled-cluster singles and
doubles (CCSD) method outperforms CISD with only a moderately increased
computational effort (the cost of both methods scales as the sixth power of
the system size) because CCSD accounts for some triple and quadruple sub-
stitutions from the SCF configuration by approximating them as products of
single and double substitutions. When employed with a triple-¢ plus dou-
ble polarization basis set (TZ2P), the CCSD generally predicts bond lengths
within 0.2% of experiment and harmonic vibrational frequencies within 2%.?
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More accurate results can be obtained by using larger one-particle basis sets
and employing the CCSD(T) method, which accounts for the effects of irre-
ducible (or connected) triple substitutions in a single non-iterative step scaling
as n”.*5 Furthermore, recent equation-of-motion (EOM) or linear-response
coupled-cluster theories for singly-excited electronic states®” also outperform
CISD in the prediction of excitation energies because CISD is biased towards
the state described by the reference wavefunction.

Even the coupled-cluster methods eventually break down in cases where
the SCF wavefunction is not a qualitatively correct description of the system.
This can occur during bond-breaking reactions, for example, or for transition
metals.®® Hence, it is necessary to make the zeroth-order wavefunction mul-
ticonfigurational. Although multireference coupled-cluster theories are very
difficult to formulate, multireference CI methods have been used for many
years.}%!! These methods typically include single and double substitutions
from a set of “reference” configurations required to describe nondynamical
electron correlation. Unfortunately, reference selection is not trivial, since the
list of important references depends on the molecule and its geometry. This
tends to make MR-CI methods unsuitable as a “model chemistry,”!? since the
quality of the wavefunction is not uniform across different molecules. One MR-
CI wavefunction which is largely free from these difficulties is second-order CI
(SOCI),'® which is a multi-reference CISD in which the references are chosen
as all possible distributions of electrons within a given “active space” (unfor-
tunately, the acronym SOCI is also sometimes used to mean spin-orbit CI).
The SOCI wavefunction requires much less computational effort than a full CI,
yet it produces potential energy surfaces which nearly parallel the full CI sur-
faces.}417 If the active space is large enough, one can expect the SOCI method
to provide equally good results for any small molecule at any geometry, making
it a suitable model chemistry (SOCI is still not rigorously size extensive, so it
may be necessary to apply size extensivity corrections for systems with eight
electrons or more!3). Unfortunately, the SOCI method is too computationally
expensive to be generally applicable.

Hence there is a need to make SOCI more computationally efficient so that
it can be used for larger chemical systems, and to develop related methods
which scale better with the system size. Although the CI space can be reduced
by individual selection of references or N-electron functions, for the reasons
stated above it is beneficial to select the CI space in an a priori manner, once
a minimal set of parameters, such as the active space, has been specified.
For example, we have advocated a method we call CISD[TQ)],'%'® which is a
SOCI in which higher-than-quadruple substitutions have been excluded. For
systems dominated by a single reference, CISD[TQ)] performs nearly as well as
SOC1.16.17
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Although extremely costly to determine, full Cl results are invaluable in
the calibration of such multireference CI methods, or indeed of essentially any
ab initio electronic structure method, including many-body perturbation the-
ory (MBPT)!*® and coupled-cluster approaches.*67 1719222437 A few full
CI benchmarks!'?:%%:39 have been carried out using the loop-driven graphical
unitary group (LD-GUGA) CI approach,**? which uses a spin eigenfunction,
or CSF, basis. However, a majority of the full CI calculations to date have
employed Slater determinants, even though this typically makes the CI vector
2-4 times longer. In 1980, Handy demonstrated that the benefits of Slater
determinants can outweigh their disadvantages, primarily because the evalua-
tion of the required matrix elements becomes so much simpler.** In his 1980
article, Handy introduced the alpha and beta string notation which has com-
monly been used in the development of new CI algorithms. After an important
reformulation of the direct CI method by Siegbahn,*® Knowles and Handy in-
troduced a vectorized full CI algorithm that enabled a whole series of full CI
benchmark studies by Bauschlicher, Langhoff, Taylor, and others.!® In 1988,
Olsen and co-workers showed how to improve the Knowles-Handy algorithm by
reducing the operation count while still maintaining vectorization in the inner-
most loops.*® Another important advance was the extension to certain types
of truncated CI spaces in which determinants are chosen according to how
many electrons they place in each of three orbital subspaces. This restricted
active space (RAS) CI procedure is capable of evaluating SOCI and CISD[TQ]
wavefunctions. Subsequently, other full CI algorithms involving basically the
same amount of computational effort as Olsen’s algorithm have been presented
by Harrison and Zarrabian’ and by Bendazzoli and Evangelisti. 850

In this article, we provide an updated look at the configuration interaction
method in general, and at highly correlated CI methods in particular. Spe-
cial emphasis is given to methods which select the CI space in an a priori
manner. After reviewing the basic theory of the CI method and the typical
approximations employed, we discuss features common to all implementations:
transformation of the one- and two-electron integrals from the atomic orbital
to the molecular orbital basis, and iterative diagonalization methods. Next,
we survey several determinant-based algorithms for full and RAS CI wavefunc-
tions. We describe some technical issues in considerable detail and describe our
experience with our own determinant-based CI program. Finally, we discuss
some of the applications of highly correlated CI methods. Although crucial
to the efficient determination of optimized geometries and vibrational frequen-
cies, analytic gradients of CI wavefunctions are not discussed in this article;
we refer the reader to the recent article by Shepard®® and the monograph by
Yamaguchi et al.2 Furthermore, additional considerations may arise when
designing a CI program to be used along with orbital optimization in the mul-
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ticonfigurational (MC) or complete-active-space (CAS) SCF methods; these
issues are discussed elsewhere. 5356

2 The Configuration Interaction Method

This section presents the essential elements of the configuration interaction
method and is meant to be accessible to those who are not experts in CIL
The classic review by Shavitt covers the theoretical fundamentals and various
formulations given prior to 1977.57 More recent reviews have been presented
by Siegbahn,®® Karwowski,® and Duch.®®

2.1 Fundamentals

Configuration interaction is conceptually the simplest method for solving the
time-independent electronic Schrédinger equation H|¥) = E|¥) under the
Born-Oppenheimer approximation. The electronic wavefunction |[¥) is ap-
proximated by a linear expansion of N-electron basis functions (where N is
the number of electrons in the system), i.e.,

[T) =3 erl®r). 1)

The linear expansion coefficients ¢; are the CI coefficients. Substituting this
linear expansion into the electronic Schrodinger equation, one obtains®! a ma-
trix form more suitable for computation:

Hc = ESc, (2)

where the Hamiltonian operator H has been replaced by a matrix H and the
CI wavefunction |¥) has been replaced by a column vector of coefficients c.
In principle, this “matrix mechanics” formulation is equivalent to the original
electronic Schrodinger equation;®? hence it is said that CI constitutes an “exact
theory.” In practice, however, the matrix equations are not exact because the
expansion in equation (1) must be truncated to a finite number of terms. The
matrix elements of the Hamiltonian are given by Hy; = (®;|H|®;) and S is
the overlap matrix with elements Sr; = (®;/®;). If orthonormal functions
|®;) are used for the expansion, then of course S becomes the unit matrix
and the equation becomes an eigenvalue equation. Since H is a Hermitian
matrix, the number of orthogonal eigenvectors is equal to the dimension of the
matrix. The lowest-energy solution represents the electronic ground state, and
higher-energy solutions represent excited electronic states.

It is generally helpful to build into the expansion functions {|®;)} the
symmetry properties of the system. According to the antisymmetry principle,
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a wavefunction describing a system of electrons (more generally, fermions)
must be antisymmetric with respect to the interchange of spatial and spin
coordinates for any pair of electrons. This requirement is very commonly
satisfied by making the expansion functions Slater determinants. A Slater
determinant in which the one-electron functions ¢, ¢;,..., s are occupied
may be written

1 o3 - o

1 i\ X2)" (X2 v X2

o= 7wl 3 * : 3)
di(xn) ¢i(xn) ... or(xn)

and abbreviated as |¢;¢; ... ¢x) or simply as lij...k). Note that this determi-
nant is uniquely specified (up to a phase factor) by the list of occupied orbitals.
It is easy to see that such a determinant satisfies the antisymmetry principle,
since the interchange of coordinates for a pair of electrons translates to the
swapping of rows of the determinant, which introduces a sign change. We may
also write the above determinant as

\/—Z P¢1 x1)¢z(x2) ¢k(xN)a (4)

where P is a permutation of electron coordinates with sign (—1)?. In this
context it can be useful to define the antisymmetrizer as

1 2 b
A= Wéj(—l) P. (5)

This operator produces a Slater determinant when applied to a simple product
of spin orbitals. The antisymmetrizer is Hermitian, it commutes with H, and
its square is proportional to itself, i.e., A2 = vV NIA.

An electronic wavefunction can be described exactly by equation (1) if the
expansion includes all possible Slater determinants formed from a complete
set of one-electron functions {¢}.%3 Such a procedure has been called complete
CI.? Since a truly complete set of orbitals will typically be infinite, a complete
C1 is technically impossible to perform. However, if the one-electron basis set
is truncated, then only a finite (albeit large) number of Slater determinants
can be formed. Using all of these determinants in the expansion constitutes a
full CI procedure, and the resulting eigenfunctions and eigenvalues are exact
within the space spanned by the one-electron basis set. Although full CI
results are extremely costly to compute, they are essential for benchmarking
more approximate methods.
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It is straightforward to show that if the exact wavefunction |¥) is an eigen-
function of some Hermitian operator A, then expansion functions |®;) which
are eigenfunctions of A with different eigenvalues do not contribute to the CI
wavefunction and can be neglected in the expansion (1). If the Slater de-
terminants are formed from spin-orbitals which are eigenfunctions of §, and
spatial symmetry operators, then the Slater determinants themselves will also
be eigenfunctions of these spatial symmetry operators and of S,. However, a
Slater determinant is not generally an eigenfunction of $2. Hence, a common
alternative to Slater determinants are configuration state functions (CSFs),
which are simply linear combinations of Slater determinants chosen to be
eigenfunctions of $2. The benefit of using CSFs over determinants is that
fewer N-electron functions are needed to describe the same state. The draw-
back is that matrix elements of the Hamiltonian are easier to compute using
determinants. Of course, there are other possible choices for the N-electron
basis functions. For instance, one can incorporate functions of two electrons
(geminals),5*%7 as is done in the Hylleraas treatment of the helium atom.5°
Nevertheless, N-electron functions built from single-particle functions remain
the most common.

Unfortunately, even with an incomplete one-electron basis, a full CI is
computationally intractable for any but the smallest systems, due to the vast
number of N-electron basis functions required (the size of the CI space is
discussed in section 2.4.1). The CI space must be reduced, hopefully in such a
way that the approximate CI wavefunction and energy are as close as possible
to the exact values. By far the most common approximation is to begin with
the Hartree-Fock procedure, which determines the best single-configuration
approximation to the wavefunction that can be formed from a given basis
set of one-electron orbitals (usually atom centered and hence called atomic
orbitals, or AOs). This yields a set of molecular orbitals (MOs) which are
linear combinations of the AOs:

¢i(x1) ZC Xu(X1), (6)

where x,(x;) denotes an atomic orbital and CL is an SCF coefficient. The
CI space can then be expanded according to substitution or “excitation” level
relative to the SCF “reference” determinant, i.e.,

) =c e+ D e+ 3 el . (D)

ia a<bi<j a<b<ei<g<k

where |®?) means the Slater determinant formed by replacing spin-orbital ¢
in |®y) with spin orbital a, etc. The widely-employed CI singles and doubles
(CISD) wavefunction includes only those N-electron basis functions which rep-
resent single or double substitutions relative to the reference state. Since the
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Hamiltonian operator includes only one- and two-electron terms, only singly
and doubly substituted configurations can interact directly with the reference,
and they typically account for about 95% of the basis set correlation energy of
small molecules at their equilibrium geometries,3® where |®;) provides a good
zeroth-order description. Truncation of the CI space according to excitation
class is discussed more fully in section 2.4.1.

2.2 The Variational Theorem

One attractive feature of configuration interaction is that the computed lowest
energy eigenvalue is always an upper bound to the exact ground state energy.
This follows from the fact that the CI energy is given by the expectation value
formula, or Rayleigh quotient,

®|H|D

o (@IHD) -

(2[®)
The variational theorem may be proven by expressing the approximate wave-
function |®) as a linear combination of the exact eigenvectors |¥;); one easily
obtains

E—& =) calé — &), 9)

where &; is the ith ezact energy eigenvalue, i.e., ﬁ|\I!1) = &|¥;). Since the
right-hand side of eq. (9) is necessarily non-negative, E > &,. Likewise, we can
also insert an expansion over the exact eigenvectors for a given one-electron
space to prove that the CI energy must be an upper bound to the full CI
energy in the same one-electron basis set. Equation (9) demonstrates that the
approximate wavefunction approaches the exact one (cg = 1) as the energy E
is minimized (see section 2.2.1). Minimizing F is equivalent to minimizing the
right-hand side of eq. (9); that is, the sum of squares of the absolute values
of the coefficients of excited states is minimized with weight factors (&; — &).
This means that other properties do not generally converge as quickly with CI
space expansion as the energy. In fact, the error in the energy is quadratic in
the wavefunction error. This can be shown by writing the energy as

U — AU|H|T - AD)
(U — AU|T — AT)

with |¥) the exact wavefunction and the error |A¥) chosen orthogonal to |¥).
From this expression it is simple to demonstrate that all terms linear in |A W)
are vanishing and that only quadratic terms remain.

It is easy to extend proofs of the variational theorem to the case of states
which are the lowest roots of a given spatial and spin symmetry.”® Since the

gl

(10)
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self-consistent-field (SCF) and multiconfigurational SCF (MCSCF) wavefunc-
tions can be written as a linear expansion (1) containing one or a few Slater
determinants, with an energy given by eq. (8), they also obey the variational
theorem. Furthermore, just as the lowest CI eigenvalue is an upper bound to
the exact ground-state energy, more generally any CI eigenvalue Fj; is an upper
bound to the corresponding exact excited state energy &."' Additionally, as
other N-electron basis functions are added to the CI space, the eigenvalues
obey the MacDonald-Hylleraas-Undheim relations’72

E™ < E™) < B (11)

where m is the number of N-electron basis functions.

2.2.1 The Method of Linear Variations

Since the variational theorem proves that the energy of a CI wavefunction is
always an upper bound to the exact energy, one might start simply from the
linear expansion (1) and attempt to minimize the energy by varying the CI
coefficients subject to the constraint that they remain normalized. It is easy
to show®? that this method of linear variations, or the Ritz method,”™ yields
the matrix equation

Hc = ESc. (12)

That is, the method of linear variations is identical to the matrix formulation
of the Schrodinger equation. Another way of viewing this result is that only
solutions to eq. (12) are energetically stable with respect to variations in the
linear expansion coefficients.

2.2.2 The Correlation Energy

Since the CI energy is always an upper bound to the exact energy, approximate
CI methods can be judged according to what fraction of the correlation energy
they recover. The correlation energy is defined as the difference between the
energy in the Hartree-Fock limit (Egyr) and the exact nonrelativistic energy
of a system (&)

Ecorr = SO - EHF- (13)

This energy will always be negative because the Hartree-Fock energy is an
upper bound to the exact energy. The exact nonrelativistic energy & could
be calculated, in principle, via a full CI in a complete one-electron basis. If we
have an incomplete one-electron basis set, then we can only compute the basis
set correlation energy, which is the correlation energy for a given one-electron
basis. Frequently the term correlation energy implies basis set correlation
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energy. The correlation energy is the energy recovered by fully allowing the
electrons to avoid each other; the Hartree-Fock method, rather than using the
true instantaneous Coulomb repulsion between pairs of electrons, instead only
allows each electron to experience an average potential due to all the other
electrons. However, this description of dynamical correlation is not complete.
When a molecule is pulled apart, the electrons should not need to avoid each
other as much, so the magnitude of the correlation energy should decrease. In
fact, the opposite is true, as shown by the basis set correlation energies given
in Table 1 for H,O at five different geometries.

Table 1: Correlation Energy in H,O with a cc-pVDZ Basis as Both O-H Bonds
are Stretched Simultaneously.

Geometry  Eop, (hartree)®

R. -0.217 821
1.5 Re -0.269 961
2.0 R, -0.363 954
2.5 - Re -0.476 747
3.0 R, -0.567 554

%Data from Olsen et al., ref 22.
All ten electrons are correlated.

The magnitude of the correlation energy increases as the O-H bonds are
stretched beyond their equilibrium length because equation (13) also includes
a more subtle effect called the nondynamical or static correlation energy.
This part of the correlation energy reflects the inadequacy of a single refer-
ence in describing a given molecular state, and is due to nearly degenerate
states or rearrangement of electrons within partially filled shells. Shavitt3” has
pointed out this deficiency in the correlation energy definition and has sug-
gested that multiconfigurational Hartree-Fock may prove a more useful base-
line than single-configuration Hartree-Fock in equation (13).

2.3 Matrix Elements in Terms of One- and Two-electron
Integrals

2.3.1 Slater’s Rules

The matrix elements H;; = (&;|H|®,) can be expressed in terms of one- and
two-electron integrals. If we employ Slater determinants, the matrix elements
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may be evaluated using Slater’s rules (also called the Slater-Condon rules)”
if a common set of one-electron orbitals are used for all determinants and if
these orbitals are orthonormal. If nonorthogonal orbitals are employed (e.g.,
atomic orbitals) then the more complicated Léwdin rules” apply.

Slater’s rules are expressed here in terms of spin-orbitals, which are func-
tions of the spatial and spin coordinates of a single electron. The one-electron
integrals are written as

ilhl) = [ ¢ (x)hix) g (xi) s (14)

and the two-electron integrals, in Mulliken notation, are written as

1K) = [ 61x)85 (1) 0uloa)" o) (15)

Before Slater’s rules can be used, the two Slater determinants must be
rearranged so that they have the maximum possible number of columns in
common (recalling that each column swap causes a sign change). After the
determinants are in maximum coincidence, we see how many spin orbitals they
differ by and employ the following rules:

1. Identical Determinants:

. N N
(@1[H|®1) = > [ilhl] + > {[zilis] - [idl7al} - (16)
m i>j
2. Determinants that Differ by One Spin Orbital:
@) = |- i--9) (17)
@) = |-+ 5

(B1|H|®) = [ilhlf] + D {[iilkk] — [iklkd]} .
k

3. Determinants that Differ by Two Spin Orbitals:

|@1) = [-2j-) (18)
A|q>2> = |-kl
<<I>1|H|(I)2> = [ikUl]_[i”jk]-

Some of the terms above may vanish after integrating over spin coordinates,
and a pair of determinants differing by more than two spin orbitals have a
matrix element of zero. A derivation of these rules can be found in the intro-
ductory text by Szabo and Ostlund.%3 The rules for evaluating Hamiltonian
matrix elements in a CSF basis are more complicated and are generally de-
rived*®4% nsing second quantization, which we consider next.
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2.3.2 Second Quantization

We are free to write the matrix elements in the more general form

HIJ - Z’qu p|h|q +3 Z qurs pQ|TS)7 (19)

pgrs
where the use of parentheses rather than square brackets denotes a switch to
spatial orbital notation rather than spin orbital notation. Also note the factor
of 1/2 in the two-electron term. The constants v/ and T'  are called the one-
and two-electron coupling coefficients, respectlvely The CI energy in terms of

these coupling coefficients is

C n
E=Yc; |3 viplhlg) + 5 ZFWN (pairs)| cs, (20)
pq

PL]T’S

where we assume that the CI coeflicients are real. The one- and two-electron
reduced density matrices are defined as

ClI

Trq = ZCICJ’)’;qJ, (21)
J

quS Z CICJqur37 (22)

and using these definitions the energy may be written more compactly as

E= vaq (plhlg) + 5 Z Lpers(Palrs). (23)
2 pars
Some authors absorb the factor of 1/2 into the definition of the two-electron
coupling coefficient and reduced density matrix.
These coupling coefficients are generally derived using second quantiza-
tion,%™ in which the Hamiltonian is written (for a given one-particle basis
set) as

H= Z a aq[Pth] +5 Z aT Jra'saq[x’m1|7"9] (24)
quS

where a;f, and a, are the creation and annihilation operators, respectively, for an
electron in spin orbital p. Note that the second-quantized form of the Hamil-
tonian is independent of the number of electrons. If the spatial parts of o and
B spin orbitals are identical, it is easy to re-write the second-quantized Hamil-
tonian in terms of the following shift operators, which Paldus has shown® to
be generators of the unitary group:

By = al,aja + algasp. (25)
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Due to the anticommutation relations of creation and annihilation operators,

E, = Ej (26)
[Eijy E] = Eudjr — Eyjbu. (27)

The resulting Hamiltonian in terms of these operators is

. n R 1.m o R
H= Z hpqEpg + B > (pglrs) (quErs - 5qrEp8) ) (28)
Pq

pgrs

where we have used the more compact notation hyy = (p|hlq). It is clear that
the one- and two-electron coupling coeflicients can be written as

Yot = (1| By @), (29)
T = (O EpgBrs — 640 Eps|®). (30)
Furthermore, using equations (26) and (27), one can deduce the following:
Wi = (ap)” (31)
Tpars = Dripg = (Targp)™ = (Fapsr) ™ (32)

2.4 Reducing the Size of the CI Space

This section discusses strategies for reducing the number of N-electron basis
functions in the CI space (given that, in the general case, it is impossible to
include all of them). We have already discussed how N-electron functions with
the wrong symmetry properties (e.g., point-group symmetry, or spin symme-
try) can be dismissed immediately.

2.4.1 Truncating by Excitation Level

As noted in equation (7), the CI expansion is typically truncated according to
excitation level; in the vast majority of CI studies, the expansion is truncated
{for computational tractability) at doubly-substituted configurations. Since
the Hamiltonian contains only two-body terms, only singles and doubles can
interact directly with the reference; this is a direct result of Slater’s rules (cf.
section 2.3.1). Furthermore, the matrix elements of singly substituted deter-
minants (or CSFs) with the reference are zero when canonical SCF orbitals are
used, according to Brillouin’s theorem. Hence, one expects double excitations
to make the largest contributions to the CI wavefunction after the reference
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state. Indeed, this is what is observed. Even though singles, triples, etc.,
do not interact directly with the reference, they can still become part of the
CI wavefunction (i.e., have non-zero coeflicients) because they mix with the
doubles, directly or indirectly. Although singles are much less important to
the energy than doubles, they are generally included in CI treatments because
of their relatively small number and because of their greater importance in
describing one-electron properties.

After singles and doubles, the most important determinants are triples and
quadruples, because only these can interact directly with the doubles. The
importance of a determinant to the final CI wavefunction is expected to fall
off with increasing substitution or excitation level relative to the reference,
assuming that the reference is a reasonable zeroth-order description of the
desired electronic state. Table 2 demonstrates the importance of various exci-
tation classes in obtaining CI energies. Singles and doubles account for 95%
of the correlation energy at the equilibrium geometries of the molecules listed.
Quadruple excitations are more important than triples, at least as far as the
energy is concerned. At stretched geometries, the CISD and CISDT methods
become markedly poorer, yet the CISDTQ method still recovers a very high
(and nearly constant) fraction of the correlation energy, suggesting that CIS-
DTQ should give reliable results for energy differences across potential energy
surfaces for small molecules so long as no more than two bonds are broken
at once (simultaneously breaking three bonds would require up to sextuple
substitutions).

Table 3 demonstrates that the number of N-electron basis functions in-
creases dramatically with increasing excitation level. A DZP basis should be
considered the minimum adequate basis for a meaningful benchmark study.!%3!
While it is generally possible to perform CISD calculations on small molecules
with a good one-electron basis, the CISDTQ method is limited to molecules
containing very few heavy atoms, due to the extreme number of N-electron
functions required. Full CI calculations are of course even more difficult to
perform, so that despite their importance as benchmarks, few full CI energies
using large one-electron basis sets have been obtained.

The size of the full CI space in CSFs can be calculated (including spin
symmetry but ignoring spatial symmetry) by Weyl’s dimension formula.’? If
N is the number of electrons, n is the number of orbitals, and S is the total
spin, then the dimension of the CI space in CSFs is given by

_25+1 n+1 n+1
Pavs =25 (N/Z—S)(N/2+S+1>' (33)

The dimension of the full CI space in determinants (again, ignoring spatial
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Table 2: Percentage of correlation energy recovered by various CI excitation
levels for some small molecules.

Percent Corr. Energy®
Molecule CISD CISDT CISDTQ

BH 9491 nja  99.97
HF 95.41 96.49  99.86
H7 96.36 96.87  99.96

H,O(R.) 94.48 95.85 99.85
H,O(1.5 R,) 89.36 92.05 99.48
H,O(2.0 R,) 80.21 84.59 98.40
NH; 9444 9543 99.84
2Results are for a DZP basis and are taken
from refs 38 (BH, HF), 17 (H7), 22 (H,0),
and 80 (NHj). HyO results correlate all ten
electrons and employ the cc-pVDZ basis.

Table 3: Number of CSFs required for small molecules at several levels of CI.

CSFs required®

Molecule CISD CISDT CISDTQ FCI
BH 568 n/a 28 698 132 686
HF 552 6712 48 963 944 348
HF 1271 24468 248 149 2923 933
H,O 1311 27026 332491 94 165 610
NH; 2443 52595 619235 48 642 057

“Results are for a DZP basis and are taken from
refs 38 (BH, HF), 17 (H7), 22 (H,0), and 80 (NHj).
H,O results correlate all ten electrons and employ
the cc-pVDZ basis.
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Table 4: Dimension of Full CI in Determinants (CSFs in parentheses)

Number of electrons
Orbitals 6 8 10 12
10 144x10°  441x10° 635x10° 441 x 10°
(4.95x 10%) (13.9x 10%) (19.4 x 10%) (13.9 x 10%)

20 1.30x 105 23.5x 108 240 x 10°  1.50 x 10°
(379 x 10%)  (5.80 x 10°) (52.6 x 108) (300 x 106)

30 165x 105 751 x 106 20.3 x 10° 353 x 10°
(4.56 x 108) (172 x 10°)  (4.04 x 10°) (62.5 x 10°)

symmetry) is computed simply by

n
DnNaNﬁ = ( }:}’a ) ( Nﬁ ) ) (34)
or, in a form closer to equation (33),
n n
D"NS_(N/2+S)<N/2—S>‘ (35)

Table 4 shows the dimension of the full CI space (neglecting spatial symmetry)
in determinants and in CSFs for closed-shell systems. Current full CI algo-
rithms are typically limited to several million determinants. Although there
have been reports of larger calculations (including more than a billion deter-
minants®8), the computational expense is currently too great for routine
calculations of this size.

2.4.2 Multireference Configuration Interaction

A full CI wavefunction is invariant to orbital rotations and even to the choice of
the reference function. By contrast, the simple CISD method is quite sensitive
to the choice of reference and orbitals. This explains the poor performance
of CISD when the bonds are stretched in HyO (cf. Table 2): the SCF wave-
function becomes an inadequate reference at stretched geometries, and CISD
is unable to overcome this inadequacy. Such difficulties can occur even at
equilibrium geometries if multiple low-lying electronic states are present. For
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example, the zeroth-order wavefunction for a singlet diradical often requires
two electron configurations: one doubly occupies the MO formed from in-phase
radical orbitals, while the other doubly occupies the out-of-phase MO. Another
example is the ¢ state of CH,, which also requires a two-configuration treat-
ment: the two configurations correspond to the two choices for the lone pair of
electrons, either in the molecular plane or perpendicular to it.3%8 More than
two configurations can be critical for transition metals or when multiple bonds
are broken.

If a CISD procedure includes all the important N-electron functions from
the zeroth-order wavefunction (the “references”) and also the single and double
substitutions for each of these references, then the resulting method is referred
to as multireference (MR) CISD. The MR-CISD wavefunction may be written

|®nrer) =D c(R Y+ D CF(R)PE(R)) + DD ¢ (R)9F (R)),

R R iz R ijzy
(36)

where R denotes a reference function, and 7, (z,y) run over orbitals which
are occupied (unoccupied) for a given R. Clearly, a determinant or CSF which
is generated as a single or double substitution from one reference state might
also be generated as a single or double from a different reference; only unique
N-electron functions are included in the MR-CISD procedure. If a sufficient
number of references are included, then a MR-CISD can provide results nearly
as good as the full CI'*'%%7 at a dramatically reduced computational expense.
In the MR-CI method, the set of orbitals which are occupied in any of the ref-
erences constitutes the internal space, and all other orbitals are in the external
space. Sometimes a further distinction is made among the internal space or-
bitals: those whose occupancy is constant for all references are called inactive
(even though their electrons may be excited in the final wavefunction), and
the rest are called active. In the direct CI method®® (see section 4), it is more
convenient to rewrite (36) in an equivalent form which emphasizes the number
of external orbitals:

|(I)MRCI>=ZCI|CI>I +ZZCS’(I)“ +ZZC I(I)a.b (37)

where a and b are external orbitals, and I, S, and P denote internal states
(including spin coupling) with N, N — 1, and N — 2 electrons, respectively.
One very straightforward, a priori selection scheme is to make references of
all those N-electron functions which can be obtained by distributing electrons
in all possible ways in a subset of the most important orbitals (the “active
space”). This results in the second-order CI (SOCI),!* which is known?!6 17:89
to provide high-quality potential energy surfaces nearly parallel to those from a
full CI. Unfortunately, this prescription typically produces too many references
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and the final CI space is too large to be computationally tractable. One
strategy which has received relatively little attention'?+46:% is to approximate a
SOCI by restricting the references according to their excitation level. It is often
reasonable to assume that the most important references are single and double
substitutions from a dominant single reference.'®!"9 Making this restriction
leads to a MR-CISD which includes those triples and quadruples which have no
more than two electrons outside the active space. This wavefunction has been
designated CISD[TQ)] to emphasize the variational treatment of limited triples
and quadruples, and it has been shown to closely match SOCI when a single
reference configuration dominates.!®!” Although the CISD[TQ] expansion is
much smaller than SOCI, it remains intractable for systems with more than
two or three heavy atoms. Further strategies to reduce the cost of a CISD[TQ)]
are discussed later.

A much more common procedure for reference selection is to accept refer-
ences whose estimated importance is greater than some given threshold; this
can involve perturbative estimates of a function’s energetic contribution or
its coefficient in some preliminary wavefunction. These approaches are more
successful at obtaining the best wavefunction at the lowest expense, but they
sacrifice the simplicity of the excitation class selection and can become more
difficult to implement and to use. One complication is that potential energy
surfaces determined using such methods may not be smooth; to alleviate this,
one may need to determine the important references at each geometry and use
the union of these sets at every point.

Discarding some of the single and double excitations is another way to re-
duce the CI space. As with reference selection, the most common approaches
involve estimates of a function’s energetic contribution or coefficient. The
CIPSI method of Malrieu and co-workers selects determinants based on pertur-
bation theory estimates of their coefficients in the first-order wavefunction.9% 9
Alternatively, Buenker and Peyerimhoff' select spatial orbital configurations
on the basis of each configuration’s energetic contribution to a small CI con-
sisting only of the references and the CSFs formed from that configuration.
Obviously this involves solving a very large number of small CI problems.
Alternatively, one can estimate the importance of all configurations simul-
taneously via a procedure such as Gershgorn and Shavitt’s B, method.?%%
Shavitt’s 1977 review article®” surveys these and related alternatives.

Finally, Siegbahn has suggested two procedures for reducing the number
of variational parameters in a MR-CISD wavefunction. The first method,
externally contracted MR-CISD,® expresses eq. (37) as

|®Ec—mrer) E cr|®r) + Z Cs Z és|9%) + Z cp Z &P 0%)
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Soerl®r) + XS: cs|®s) + ; cp|®p), (38)

where the external contraction coefficients ¢& and ¢¥ are determined pertur-
batively and the coefficients ¢;, cg, and cp are determined variationally; hence,
this is a type of variational perturbation theory.%-% Note that the total num-
ber of variational coefficients is now drastically reduced compared to eq. (37).
Siegbahn states®® that the error in the correlation energy due to external con-
traction is roughly 1-3%.

An alternative contraction scheme which has received more attention is
internally contracted multireference CISD (usually denoted simply CMRCI),
which was first discussed by Meyer® and Siegbahn.'®® This method applies the
single and double excitation operators to a single multiconfigurational reference
wavefunction as a whole, including the reference coefficients. Thus, if the
reference wavefunction is

|®0) = Y cr|®r), (39)
R

then there are at least three other classes of expansion functions—singly ex-
ternal, semi-internal, and doubly-external:5®

|7) = Eul®o) =Y ds|®%) (40)
S

|B5F) = EaiEkj|q)0>:ZdS|(baS> (41)

[22) = (EuBy +pEa,Em |®g) = de|q>ﬂb (42)

where p is +1 (-1) for singlet (triplet) coupling of @ and b. The coefficients d
are not variational parameters, but fixed linear combinations of the reference
coefficients cg. The final wavefunction is then

|®rc—mrer) = calBo) + Y PN + > C?ﬂ Y+ Y Cup ml (43)

ia ijka ijpab

Once again, the contraction has dramatically reduced the number of variational
parameters. One difficulty with the internally contracted multireference CI
method is that the relevant coupling coefficients become considerably more
difficult to calculate. Werner and Knowles!®! alleviate this problem by leaving
internal and singly-external configurations uncontracted, i.e.,

|®ro-mrer) = 201@ + ZCSM’CL + Z f]b,, (I)gjbp (44)

ijpab

The remaining coupling coefficients still require elements of the third and
fourth order reduced density matrices, which can now be evaluated each time



164 C. D. Sherrill and H. F. Schaefer ill

they are required due to advances by Werner and Knowles.>*1%2 The con-
traction error in the internally contracted MR-CISD method is generally only
0.1-0.2%.58

2.4.3 Other CI Selection Schemes

In 1988, Olsen and co-workers® presented the restricted active space (RAS) CI,
which specifies the CI space in an a priori manner reminiscent of the second-
order CI (SOCI) and its derivatives. Olsen partitions the orbitals into three
subspaces, labeled RAS I, RAS II, and RAS III. Typically, RAS I contains
occupied and possibly very important virtual orbitals, RAS II contains the
most important virtuals, and RAS III contains the less important virtuals.
The CI space includes all determinants with a minimum of p electrons in RAS
I and a maximum of ¢ electrons in RAS III. There is no restriction on RAS
II, which is akin to the complete active space. Using this simple procedure, it
is possible to formulate any CI space truncated according to excitation level
(e.g., CISD, CISDT, etc.) as well as excitation class selected MR-CI spaces,
such as SOCI and CISD[TQ]. The RAS CI method is discussed more fully in
section 4.8.

There are of course many other possible ways to select the CI space. For
example, it is possible to generalize the RAS scheme to allow for more flexible
CI spaces; work along these lines is presented later. In contrast, it is also
possible to make the CI selection process essentially random. A recent paper
by Greer discusses the unusual strategy of selecting CSF's using a Monte Carlo
algorithm.%3

2.4.4 The First-Order Interacting Space

Another way of limiting the size of the CI space is to include only those N-
electron functions which contribute to the first-order wavefunction in Rayleigh-
Schrédinger perturbation theory. This is the motivation behind the interacting
space classification: the zeroth-order interacting space consists of the set of
references, and the first order interacting space includes all those N-electron
functions which have a nonzero Hamiltonian matrix element with some mem-
ber of the zeroth-order interacting space.!%*1%  Similarly, it is possible to
define n-th order interacting spaces as those functions having nonzero Hamil-
tonian matrix elements with some member of the (n — 1)th order interacting
space.% Various methods for obtaining the first-order interacting space have
been presented by Bunge,'%* Schaefer and co-workers,*3 1% and McLean and
Liju.1%

The first-order interacting space restriction is generally used to reduce the
number of double substitutions included in single- or multi-reference CISD
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wavefunctions. Although single substitutions from a Hartree-Fock reference
determinant may be noninteracting due to Brillouin’s theorem, they are of-
ten included nevertheless because of their strong interaction with the doubles
and their importance in describing one-electron properties. For closed shell
systems, the first-order interacting space criterion is inconsequential because
Slater’s rules dictate that all double substitutions are interacting. However,
for open-shell systems there can be CSFs whose spatial orbital configuration
differs from the reference by two electrons but which are noninteracting be-
cause of their spin coupling. In a basis of Slater determinants, one can enforce
the first-order interacting space restriction simply by ensuring that all deter-
minants differ from the reference by at most two spin orbitals. Aside from
being more compact, wavefunctions limited to the first-order interacting space
can exhibit certain orbital invariance properties.'%”

2.4.5 Computational Scaling

Depending on the relative sizes of the number of electrons, the number of or-
bitals, and the excitation level, one can derive several different simple estimates
of the computational cost of a configuration interaction procedure. Obviously
that cost relates to the number of N-electron functions in the linear expan-
sion of the wavefunction, and the size of the CI space for various methods has
already been discussed in section 2.4.1.

For present purposes, it is sufficient to work with spin orbitals. Typically,
the dimension of the CI space is dominated by determinants with the highest
excitation level, m. Thus

N Ty 1 m,.m
Nde‘N<m>(m>NWN Ty (45)

with n, spin orbitals unoccupied in the reference. Most CI procedures solve
only for the lowest or lowest few eigenvectors, via an iterative procedure
(cf. section 3.2). In such situations, the scaling is much less than the O(N3,,)
typical of standard matrix diagonalization methods. The most expensive step
in iterative procedures such as the Davidson method!®® is the construction of
the so-called o vectors,

where b; belongs to a set of trial vectors which is expanded each iteration until
convergence is reached. If the Hamiltonian matrix H were formed directly,
this procedure would require O(N3,) operations. This is never actually done
because the storage requirements would be too great, and such an approach
ignores the fact that the Hamiltonian contains only two-body terms, so that
the majority of the matrix elements are zero.
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Each element of a trial vector b; need only be multiplied by the nonzero
elements of H. The Hamiltonian will connect a maximally excited determinant
with other maximally excited determinants and with other determinants hav-
ing excitation level m > m’ > m — 2. The number of interacting determinants
is roughly

(3)(57)+ ()(5") wnirms o

which we further approximate as

imz(nv +m)? + %m2(N —m)? + m?n, (N — m). (48)

Each element in b; must be multiplied by the relevant nonzero matrix elements,
leading to an overall operation count on the order of

O(N™n! {m2n3 +m?N? + m2Nn,,}). (49)

Except for full CI, we typically expect N,n, >> m. Furthermore, we almost
always have n, > N, so that the leading term becomes

O(N™p2+m™). (50)

Thus the number of operations for a CISD procedure has a sixth power de-
pendence on the total number of orbitals, while CISDTQ scales as the tenth
power. For a given system, the number of occupied orbitals is fixed, and the
cost of increasing the basis set size scales as O(n2*™); for CISD and CISDTQ,
this scaling becomes O(nl) and O(n), respectively.

The scaling of a multireference CI procedure can be estimated by multi-
plying the single-reference scaling by the number of references. The scaling
of the CISD[TQ)] method, for example, is roughly O(Nn), since the number
of references is roughly N? if the active space is small relative to the external
orbital space. For very high levels of excitation, including full CI, the number
of interacting matrix elements for a given determinant becomes approximately
N2n?, so that the computational cost becomes roughly

OFC (Nt N*n?), (51)

where we have replaced the term N™n™ with the actual number of determi-
nants, Ng. For comparison, for n spatial orbitals the determinant full CI
algorithm of Knowles and Handy'® scales as O(Nyn*), while the algorithm
of Olsen et al.*® and similar approaches scale as O(NgN?(n — N/2)?) for a
closed-shell system. Although the exponents appearing in (51) are smaller
than those in (50), it is important to remember that N, contains a facto-
rial dependence on N and n (see section 2.4.1); hence, a full CI procedure is
extremely demanding computationally.
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2.4.6 Size Extensivity Corrections

If we truncate the CI (either in the one-electron or N-electron space), we no
longer have an exact theory. Of course either of these truncations will introduce
an error in the wavefunction, which will cause errors in the energy and all other
properties. One particularly unwelcome result of truncating the N-electron
basis is that CI energies are no longer size extensive or size consistent.

These two terms—size extensive and size consistent—are used somewhat
loosely in the literature. Of the two, size extensivity is the most well-defined.
A method is said to be size extensive if the energy calculated thereby scales
linearly with the number of particles N; the word “extensive” is used in the
same sense as in thermodynamics. A method is called size consistent if it
gives an energy F4 + Ep for two well separated subsystems A and B. While
the definition of size extensivity applies at any geometry, the concept of size
consistency applies only in the limiting case of infinite separation. In addition,
size consistency usually also implies correct dissociation into fragments; this
is the source of much of the confusion arising from this term. Thus restricted
Hartree-Fock (RHF) is size extensive, but it is not necessarily size consistent,
since it cannot properly describe dissociation into open-shell fragments. It can
be shown that many-body perturbation theory (MBPT) and coupled-cluster
(CC) methods are size extensive, but they will be size consistent only if they
are based on reference wavefunction which dissociates properly.

As previously stated, truncated CI's are neither size extensive mor size
consistent. A simple (and often used) example makes this clear. Consider
two noninteracting hydrogen molecules. If the CISD method is used, then the
energy of the two molecules at large separation will not be the same as the
sum of their energies when calculated separately. For this to be the case, one
would have to include quadruple excitations in the supermolecule calculation,
since local double excitations could happen simultaneously on A and B.

Clearly the fraction of the correlation energy recovered by a truncated CI
will diminish as the size of the system increases, making it a progressively less
accurate method. There have been many attempts to correct the CI energy to
make it size extensive. The most widely-used (and simplest)} of these methods
is referred to as the Davidson correction,''%!!! which is

AEDC = (1 — Cg)(ECISD d ESCF)- (52)

This correction approximately accounts for the effects of “unlinked quadru-
pp

ple” excitations (i.e. simultaneous pairs of double excitations), and there are

many similar expressions in use. For instance, the “renormalized” Davidson

correction'!? is
1—c?
AERppc = 2 (Ecrsp — Escr). (53)
0
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Note that, when ¢? = 1, the two versions are nearly equivalent. A number of
other variations exist,''®11* some of which force the correction to vanish for
two-electron systems.

A multireference version of Davidson’s correction is given by!!®

AEmr-pc = (1 - |Ci|2> (Emror — Emr), (54)

i€Ref

where Ejp per is the multireference CI energy and Eyp is the energy obtained
from a CI in the space spanned by the references. We have simply replaced
the CISD correlation energy in eq. (52) with the analogous multireference
correlation energy, and we have replaced c2 with the analogous sum of squares
of all the reference coefficients. If the sum of the squares of reference coefficients
is not near unity, better results may be obtained by using the renormalized
version of this equation:

1 — Ticret lcil®
Yieret €l

It should be noted, however, that for a fixed system size, increasing the number
of references decreases size extensivity errors. Indeed, for very highly corre-
lated MR-CI wavefunctions, applying corrections such as (54) and (55) can
sometimes lead to less reliable results.

There are a number of other a posteriori size extensivity corrections, most
of which are computationally trivial once the wavefunction has been obtained.
Duch!™ compares several of the more common corrections. Of course it is also
possible to allow coupling between the wavefunction and the size extensivity
correction. This leads to such methods as the coupled electron pair approxima-
tion (CEPA),!*® and the coupled pair functional (CPF) approaches.!” This is
also the motivation behind the quadratic configuration interaction method of
Pople, Head-Gordon, and Raghavachari.!'® These authors determine the cor-
relation energy and CI coefficients for quadratic CI with singles and doubles
(QCISD) by the following set of projection equations, in spin-orbital notation:

AEMR—RDC = (EMRCI - EMR)- (55)

<®0|ﬂlé?q)0> = Ecorr (56)
(q)ﬂH - Escf|(Cl +Cy + Clcg)(I’o) = C?Ecorr (57)

N ~ . 1.
(DY|H — Eyef|(1+C1 4+ Ca + 5O§)<I>0) = ¢ Eeorr, (58)

where intermediate normalization ((®|®) = 1) has been employed, the Bril-
louin condition has been assumed (($¢|H|®g) = 0), and C; and Cs are the
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standard single and double substitution operators,

C, = Z c“aT (59)
C, = Zc“b falaja;. (60)
Z]ab

The QCISD projection equations differ from the equivalent CISD equations
only in the addition of the quadratic terms C,C5 and %C‘%, which lead to size-
extensive energies. Alternatively, the QCISD equations may be considered an
approximation to CCSD in which certain terms have been neglected. Pople and
co-workers show how to extend this approach to include triples fully (QCISDT)
or perturbatively [QCISD(T)].!!8

A multireference method building approximate size extensivity into the
wavefunction is the Averaged Coupled Pair Functional (ACPF) method of
Gdanitz and Ahlrichs,!'® which introduces an electron number dependence
into the denominator of the MR-CISD energy functional. A similar method has
been presented by Szalay and Bartlett under the name multireference averaged
quadratic coupled-cluster (MR-AQCC).1?121 Also noteworthy is the work of
Malrieu and co-workers, who have presented a state-specific self-consistent
dressing of the MR-CISD Hamiltonian matrix which gives size extensive re-
sults, 122-124

2.4.7 The Frozen Core Approximation

It is quite common in correlated methods (including many-body perturbation
theory, coupled-cluster, etc., as well as configuration interaction) to invoke the
frozen core approximation, whereby the lowest-lying molecular orbitals, occu-
pied by the inner-shell electrons, are constrained to remain doubly-occupied in
all configurations. The frozen core for atoms lithium to neon typically consists
of the 1s atomic orbital, while that for atoms sodium to argon consists of the
atomic orbitals 1s, 2s, 2py, 2py and 2p,. The frozen molecular orbitals are
those made primarily from these inner-shell atomic orbitals.

A justification for this approximation is that the inner-shell electrons of
an atom are less sensitive to their environment than the valence electrons.
Thus the error introduced by freezing the core orbitals is nearly constant for
molecules containing the same types of atoms. In fact, it is often preferable
to employ the frozen core approximation as a general rule because most of
the basis sets commonly used in ab initio quantum chemistry do not provide
sufficient flexibility in the core region to accurately describe the correlation of
the core electrons. Recently, Woon and Dunning have attempted to alleviate
this problem by publishing correlation consistent core-valence basis sets.!2°
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Not only does the frozen core approximation reduce the number of con-
figurations, but it also reduces the computational effort required to evaluate
matrix elements between the configurations which remain. Assuming that all
frozen core orbitals are doubly occupied and orthogonal to all other molecular
orbitals, it can be shown'?® that

(®11H|2,) = (®1]Hol®.1), (61)

where ®; and ®; are identical to @, and @, respeqtively, except that the core
orbitals have been deleted from ®; and ®;, and H has been replaced by H,
defined by

. N—NCA N—-N, 1
Hy=E.+ Y, h(i)+ > —, (62)
i=1 isj Tij

where N is the number of electrons and N, is the number of core electrons.
E, is the so-called “frozen-core energy,” which is the expectation value of the
determinant formed from only the N, core electrons doubly occupying the
ne. = N./2 core orbitals

Be =235 b+ 32 120li) ~ (7130} (©3)

Finally, h.(z) is the one-electron Hamiltonian operator for electron 7 in the
average field produced by the N, core electrons,

heti) = hii) + 3 {24,6) - K@)}, (64)

with J;(i) and K;(i) representing the standard Coulomb and exchange opera-
tors, respectively. Note that, although we have written the frozen core energy
E. and frozen core operator h. in terms of molecular orbitals, it is not neces-
sary to explicitly transform the one- and two-electron integrals involving core
orbitals. Assuming real orbitals, we can define a frozen core density matrix!'%’
in atomic (or symmetry adapted) orbitals as

P, =3 C,C,, (65)

where C}; is the contribution of atomic orbital p to molecular orbital 7. Now
the frozen core operator in atomic orbitals becomes

e = b + 23 (poluv) Py, = Y (pplvo) Ps,, (66)
po

po
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and the frozen core operator in molecular orbitals hf; can be obtained simply
by transforming hj,. Similarly the frozen core energy can be evaluated as

E. = Y P (hw +55,) (67)
Ing

Tr(P°h) + Tr(P°h°).

An analogous approximation is the deleted virtual approximation, whereby
a few of the highest-lying virtual (unoccupied) molecular orbitals are con-
strained to remain unoccupied in all configurations. Since these orbitals can
never be occupied, they can be removed from the CI procedure entirely. The
rationalization for this procedure is that it is unlikely that electrons will choose
to partially populate high-energy orbitals in their attempt to avoid other elec-
trons. However, this conclusion is generally true only for very high-lying virtual
orbitals (such as those formed by antisymmetric combinations of core orbitals
for a given atom). For all other virtual orbitals, such simplistic reasoning is
insufficient. Indeed, Davidson points out that those high energy SCF virtual
orbitals which result from the antisymmetric combination of the two basis
functions describing each valence atomic orbital in a double-¢ basis set (such
as the 3p-like orbital formed from the minus combination of the larger and
smaller 2p atomic orbitals on oxygen) often make the largest contribution to
the correlation energy in Mgller-Plesset (MPn) wavefunctions.!?®

2.5 Choice of Orbitals

The results of any configuration interaction procedure depend on the choice of
the atomic orbital (AO) basis. However, for a fixed AO basis, certain choices of
molecular orbitals give equivalent CI wavefunctions. CI wavefunctions which
are based on a single closed-shell reference and are truncated at a given excita-
tion level are invariant to nonsingular linear transformations which mix doubly
occupied orbitals with each other or unoccupied orbitals with each other. The
invariance properties of CI wavefunctions based on open-shell references are
more complicated, and the energy is generally not invariant to the rotation of
open-shell orbitals unless certain extra references are added or the spin cou-
plings are restricted to the first-order interacting space.%” A full CI is invariant
to all nonsingular linear transformations among the orbitals, even those that
mix occupied and unoccupied orbitals; hence, the choice of the “reference” is
irrelevant for a full CI procedure.

Some of the more elaborate CI spaces also exhibit invariance properties.
Shavitt has defined the full class CI as one which partitions the orbitals into
an arbitrary number of orthogonal subsets and includes all or none of the
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N-electron functions which have a given partitioning of electrons among the
subspaces.’” The RAS CI wavefunctions are of this type, as are the RAS for-
mulations of SOCI and CISD[TQ)]. Such CI wavefunctions are invariant to sep-
arate, nonsingular linear transformations within any of the orbital subspaces.
This property is relevant to the formulation of analytic gradients.!?®

For bond breaking processes, the restricted Hartree-Fock approximation
will not yield a good reference. This can be remedied by employing a gener-
alized valence bond (GVB)'¥ reference or an unrestricted Hartree-Fock refer-
ence. However, the latter entails spin contamination in the CI wavefunction by
states of higher spin multiplicity. Another alternative is to use a multiconfig-
urational (MC)® or complete-active-space (CAS) SCF%13! reference, which
can be constructed to behave properly at all locations on the potential energy
surface.

For multireference CI's such as SOCI and CISD[TQ)], or any RAS CI which
uses the RAS II orbital subspace, it is important that the orbitals of the active
space be good correlating orbitals (i.e., they should be localized in the same
region of space as the occupied orbitals). This is equally important for selected
CI procedures, in that the number of configurations needed to achieve a given
accuracy will be reduced. This localization criterion is not generally satisfied by
canonical SCF virtual orbitals, whose construction is not physically motivated
because they are based on an N-electron potential rather than an (N — 1)
electron potential. One possible solution is to determine the virtual orbitals
using a different (and more suitable) effective Hamiltonian than that used for
the occupied orbitals, and to orthogonalize the resulting orbitals against the
occupied orbitals. This is the procedure in the improved virtual orbital (IVO)
method of Hunt and Goddard.'® IVQ’s look like excited state orbitals and
are more contracted than canonical SCF orbitals. Nevertheless, they remain
somewhat too diffuse for making the CI expansion as small as possible. A
related and improved method is the modified virtual orbital (MVO) approach
of Bauschlicher,'®® who obtains virtual orbitals by diagonalizing the virtual
subspace of a Fock matrix constructed for the core electrons only (eq. 64).
Another possibility for obtaining compact virtual orbitals is Davidson’s K-
orbital approach.!3

More commonly, good correlating orbitals are obtained with the MCSCF33
or CASSCF® methods. Yet another possibility are the natural orbitals from
a CISD wavefunction. Natural orbitals (NOs)7"135 are defined as the eigen-
functions of the one-particle density matrix; the eigenvalues are called the
occupation numbers of the NOs. One drawback of NOs is that the Hamilto-
nian is no longer diagonally-dominant,'3® and this can decrease the efficiency
of iterative diagonalization methods (section 3.2).

Grev and Schaefer have shown for a number of small molecules that the
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SOCI method performs just as well when based on CISD NOs as when based on
CASSCEF orbitals.'® Furthermore, they demonstrated that this is not merely
due to the highly accurate treatment of correlation in the SOCI method, be-
cause a SOCI wavefunction based on canonical SCF orbitals performs notably
worse. Omne advantage of CISD natural orbitals is that they can be easier to
compute than CASSCF orbitals. Another is that their importance to the CI
wavefunction falls off very rapidly with occupation number. This means that
one can delete several of the most weakly-occupied NOs from the MR-CISD
procedure with little loss in the correlation energy recovered; such considera-
tions do not necessarily hold for high-lying MCSCF or CASSCF orbitals. Ad-
ditionally, Parisel and Ellinger have investigated the use of CI natural orbitals
in variation-perturbation methods which employ a CI wavefunction as the
zeroth-order solution in a subsequent second-order perturbation treatment,3”
and Blomberg and Liu have considered the use of CI natural orbitals in SOCI
transition moment calculations.'® Balasubramanian uses SOCI natural or-
bitals in his relativistic CI procedure.!3?

Finally, it has long been recognized that spatially localized orbitals should
allow an efficient truncation of the CI space (see, for example, the PCILO
method of Malrieu and co-workers!4%141). SCF orbitals can be localized ac-
cording to the Boys procedure!*? or various other methods. In most cases,
the savings realized should outweigh any extra effort due to the loss of point-
group symmetry. In the 1980s, Saebp and Pulay developed various localized
correlation methods (including CISD) which can achieve computational sav-
ings in two distinct ways: first, the pair correlation energy for distant pairs
can be neglected (or estimated), and second, the set of virtual orbitals used as
correlating orbitals can be restricted to the atomic orbitals in the vicinity of
the orbital to be correlated (with components of occupied orbitals projected
out).!4314 Since standard CISD scales as the sixth power of the system size,
some type of localized correlation treatment is inevitable as quantum chemists
seek to apply correlated methods to large molecules.

2.6 Excited Electronic States

Here we will briefly discuss configuration interaction descriptions of excited
electronic states. As previously mentioned, excited states are described by
higher-energy eigenvectors of the Hamiltonian. However, since one can apply
spin and spatial symmetry restrictions to the N-electron basis functions, solv-
ing for excited states which are energetically the lowest of a given symmetry
species proceeds just as for the ground state. In this way, one can use orbitals
which are optimal for each state.

Much more challenging is the case when several states of the same symme-
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try species are required. Here, all but the lowest state are described by higher
roots of the CI secular equations. Better zeroth-order descriptions are obtained
if molecular orbitals are optimized separately for each state. However, this
means that the resulting CI wavefunctions are interacting and nonorthogonal
(complicating, for example, the evaluation of transition moments). The states
can be made noninteracting and orthogonal by carrying out a non-orthogonal
CI procedure,””> 145148 which requires the matrix S of overlaps between N-
electron functions and a more complex procedure for evaluating matrix ele-
ments of the Hamiltonian (the Slater-Condon rules no longer apply because
they assume a single set of orthonormal orbitals). Using orbitals optimized
separately for each excited state should allow one to use smaller CI expansions
to achieve a given level of accuracy.!4%149

However, optimizing excited state orbitals can be difficult because vari-
ational optimization always finds the lowest solution of a given symmetry
species; this problem is generally called “variational collapse”.!®® One solu-
tion is to first obtain the SCF ground state solution, and then obtain the
first excited state solution by requiring it to remain orthogonal to the ground
state;'® this process could in principle be repeated for higher-lying excited
states. Another solution is to optimize the orbitals by following a higher root
of the MCSCF secular equations. An early application of this idea was pre-
sented by Bauschlicher and Yarkony,®® who optimized orbitals for the 2 ' 4,
state of methylene by following the second root in a two-configuration SCF
procedure. A correlated treatment of this state was obtained by solving for
the second root of a two-reference CISD. This same procedure, in conjunction
with more highly correlated CI methods, was recently used to re-examine the
2 1A, state of methylene.’® In 1987, Allen and Schaefer presented analytic
gradients for this type of TCSCF-CI procedure and used them to study the 2
LA, state of formaldehyde and ketene.!50:152

Unfortunately, the MCSCF optimization generally worsens the description
of the ground state while it improves the description of the excited state. Fre-
quently it happens that the energetic ordering of the two states will become
swapped, in a process called “root flipping,” and further optimization will
yield orbitals describing the ground state.®® One way around these difficulties
is to use a single set of orbitals for all the states of a given symmetry. The
improved virtual orbitals (IVO) and modified virtual orbital (MVO) meth-
ods described in the preceding section may be useful in this respect. A more
typical approach is to modify the MCSCF method to yield a set of compro-
mise orbitals; these can be obtained by the “state-averaged” procedure, which
optimizes an averaged MCSCF energy obtained from averaged one- and two-
electron reduced density matrices.® A related possibility is to use averaged
natural orbitals (NOs).!5® Finally, one might simply use ground state orbitals
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in conjunction with a CI method including a sufficiently complete treatment
of electron correlation that the choice of orbitals becomes less important.

The most commonly used CI procedure, CISD based on the ground state
configuration and using SCF orbitals, yields excitation energies which are sub-
stantially too large. One reason for this is that the ground state is correlated
by all singles and double substitutions, whereas singly excited states are corre-
lated only by singles and those doubles that involve replacement of the singly
excited electron. Hence, the correlation treatment is imbalanced in favor of
the ground state. This has been considered in more detail by Head-Gordon
and Lee, who have analyzed the performance of CISD for excited states in the
context of perturbation theory for electronic excitation energies; they find that
CISD is not even correct through second order.!* Another problem is that
the SCF orbitals themselves bias results towards the ground state.

Alternatively, one might specifically design modified CI methods for ex-
cited states; the symmetry-adapted cluster (SAC) CI approach of Nakatsuji
is such a method,3 15515 although it also contains elements from coupled-
cluster theory.® Another alternative is the CASPT2 method of Andersson,
Malmgqvist, Roos, and co-workers,'®"1*° which is a second-order perturbation
theory based on a CASSCF reference function. Rather than employ more
complex CI approaches, Pople, Head-Gordon, and others have advocated the
use of configuration interaction with only singles (CIS) as a qualitative ex-
cited state theory and as a starting point for more advanced treatments.!?4 160
Clearly CIS offers no improvement for the ground state (Brillouin’s theorem),
but higher roots represent excited states with an accuracy in the excitation
energies of around 1 eV (23 kcal mol™!). CIS has the unusual property of be-
ing both size extensive and variational; no other truncated CI method is size
extensive. Its low computational cost and size extensivity make CIS applicable
to large systems. Head-Gordon and co-workers have introduced a perturbative
doubles correction for CIS which they denote CIS(D);!®! this method tends to
improve excitation energies, but it does not necessarily improve geometries or
other properties.!6?

The performance of simple CIS for open-shell systems such as radicals is
not as good as for closed-shell systems, regardless of whether an unrestricted
Hartree-Fock (UHF) or restricted open-shell Hartree-Fock (ROHF) reference
is used.'®® Maurice and Head-Gordon find improved results for these systems
by using a spin-pure CI wavefunction, denoted XCIS, which adds to the sin-
gles those doubly substituted determinants in which the excited electron has
its spin flipped and one of the open-shell electrons is also spin flipped to con-
serve 5,.1%% It is interesting to note that these limited double substitutions are
actually single substitutions from the point of view of spatial orbital config-
urations; this problem of the non-transferability of the substitution level (or
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“excitation level”) definition between determinants and CSFs has occasionally
been mentioned in the literature.?!%® Size extensivity is maintained in the
XCIS method by uncoupling the SCF solution from the excited states. More
flexible approaches which still scale favorably with system size would provide a
useful alternative to the more expensive EOM-CCSD® and CASPT2!% meth-
ods and are eagerly anticipated.

3 Common Features of Implementations

This section briefly discusses two elements common to all configuration inter-
action programs: transformation of integrals, and iterative subspace diagonal-
ization of the Hamiltonian.

3.1 Ihtegral Transformation

As discussed in section 2.3, the Hamiltonian matrix elements are generally writ-
ten in terms of one- and two-electron integrals in the molecular orbital (MO)
basis. However, these integrals are originally calculated in the atomic orbital
(AO) basis, or perhaps the symmetry-adapted orbital (SO) basis. Therefore it
is necessary to transform the AQ or SO integrals into the MO basis, according
to

hij = ZC’C s (68)
(ijlkl) = Z CLCiC,Co(uvlpo), (69)
pvpo

where sz is the coefficient for the contribution of atomic orbital i to molecular
orbital 7, and real orbitals have been assumed. Although the coefficients Cf‘
are generally the SCF coeflicients, they might instead be the coefficients of the

CI natural orbitals in the atomic orbital basis, etc.

3.1.1 Onme-electron Integrals

The transformation of the one-electron integrals is computationally inexpen-
sive and easily accomplished: without point group symmetry, this transforma-
tion can be performed as two half-transformations, each of which requires a
multiplication of the one-electron integral matrix by the SCF coefficient ma-
trix, for a total of 2n® multiplications. Spatial symmetry reduces this cost
because the one-electron integral and SCF coefficient matrices are block di-
agonal according to irreducible representation (irrep), and the transformation
can be carried out an irrep at a time {cf. Figure 1). Note that it would also be
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Figure 1: Transformation of one-electron integrals.

Loop over irreps I’
hgj =3, C,E}h;u (matfix mult)
hi; = ¥, CLihl,; (matrix mult)
end loop over I

possible to utilize the permutational symmetry h;; = hj;, but this would typi-
cally reduce efficiency because the transformation could no longer be written
in terms of matrix multiplications, which are very fast on vector supercomput-
ers (e.g., CRAY C90) or pipelined workstations (e.g., IBM RS/6000).1%¢ Note
that if orbitals are frozen in the correlated procedure (cf. section 2.4.7), h,, is
replaced by the frozen core operator Aj, (eq. 66).

3.1.2 Two-electron Integrals

Transforming the two-electron integrals is considerably more time-consuming.
Equation (69) implies that this transformation is an n* process for each of
n* integrals (ij|kl) (or n® overall), but of course it can be carried out as four
separate quarter-transformations analogous to the two half-transformations re-
quired for the one-electron integrals; this strategy requires 4n® multiplications
if symmetry is neglected and it constitutes a fairly demanding computational
procedure if n is larger than 100 or so. Fortunately, the full transformation is
not necessary for the simple CIS method because only MO integrals with two
internal and two external indices are relevant. Matrix elements for most other
CI wavefunctions are expressed in terms of the full set of MO integrals, but
by performing some compensating work, one can avoid the full transformation
for CISD,*5%16 internally-contracted MR-CISD,%:1%® and even uncontracted
MR-CISD.'%® For the latter, however, Saunders and van Lenthe argue that
the extra steps required to avoid the full transformation may cost more than
the transformation itself unless the AQ integral list exhibits considerable spar-
sity.'?” In the general case, the full set of integrals is required. Therefore,
various methods for employing spatial and permutational symmetry have been
proposed to reduce the operation count. In this context, the “permutational
symmetry” refers to the eight-fold redundancy in the two-electron integrals for
real orbitals.

Wilson! provides a very clear and helpful survey of four-index transforma-
tion methods published before 1987. More recent work has focused attention
on the sparsity of quantities in the AO basis. For example, Héser, Almlof, and
Feyereisen have presented an integral-direct transformation algorithm which
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Figure 2: Pre-sorting the two-electron AO integrals in TRANSQT.

Form frozen core density matrix, eq. (65)

Initialize Yoshimine structure for sorting AO two-el ints

Read two-el ints from disk; form frozen core operator, eq. (66)
and write integrals to Yoshimine buffers

Complete Yoshimine sort, ensuring p > g, r > s, but not pg > rs

Free Yoshimine pre-sort structure

Evaluate frozen core energy, eq. (67)

employs integral pre-screening techniques and can even exploit non-abelian
point-group symmetry.!” However, our attention here is focused on integral
transformation routines for highly correlated CI wavefunctions, which typi-
cally means that one can consider only small molecules for which there is less
benefit in exploiting sparsity in the AO basis. Of the conventional approaches
discussed by Wilson, one of the most promising is the Saunders-van Lenthe al-
gorithm,'?” which has an operation count of ~ 25n°/24 (the operation count is
somewhat less if the number of transformed orbitals is less than the number of
AO’s). Saunders and van Lenthe present an explicit algorithm for the case of
no spatial symmetry.'?” However, in our experience it is not entirely straight-
forward to symmetry adapt their algorithm and simultaneously maintain a
high degree of vectorization. On the other hand, we find it straightforward
to symmetry adapt a simpler series of quarter transformations in which some
of the permutational symmetry of the integrals is ignored. This simpler code
remains efficient because it calls optimized matrix multiplication subroutines.
This new program, TRANSQT, developed by Daniel Crawford, Justin Fermann,
and the present authors, runs faster than previous transformation programs
produced by this group which take more advantage of permutational symme-
tries.

The algorithm consists of three major parts: a pre-sort of the two-electron
SO integrals, the first half-transform, and the second half-transform (Figures
2-4). To keep track of spatial symmetry, the loops over orbitals are broken up
into loops over irreps of the point group and over orbitals within those irreps.
The atomic orbitals are numbered consecutively within each irrep, which al-
lows the use of relative indices (denoted by capital letters in the figures) for
numbering orbitals with a fixed irrep. Molecular orbitals are also numbered
this way until they are written out at the end of the transformation, when they
are renumbered according to whatever order is used by subsequent programs.
As seen in the figures, all multiplications which give zero by symmetry are
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avoided. The use of matrix multiplications means that the algorithm takes
only partial advantage of permutational symmetry. The pre-sorted integrals
P use the permutational symmetries (pg|rs) = (gp|rs) = (pg|sr) = (gp|sr),
but they do not allow the swapping of the first pair of indices with the last
pair [e.g., (pg|rs) = (rs|pg)]. These same permutational symmetries are em-
ployed during multiplication except that if rsym = ssym, then the symmetry
(pq|rs) = (pg|sr) is not utilized. Similar considerations apply to the second
half-transform: the half-transformed integrals J are stored similarly to P, with
(pqlkl) = (pgllk) = (gp|kl) = (qpllk).

The TRANSQT algorithm employs canonical indices®” for pairs of orbitals,
such as pqg =ioff[p] + ¢q. These indices are useful for computing the address
of an element in a symmetric matrix which is stored by writing only the lower
triangle to a linear array. The array ioff[p] contains the address of the first
element in row p, and it is assumed that p > ¢. If orbital numbering starts from
zero, then iof£[0] = 0 and ioff[p] = p + ioff[p-1]. The memory requirements
are for two matrices (A and B) with dimension equal to the number of atomic
orbitals, a matrix of SCF coefficients for each irrep, two blocks which hold all
two-electron integrals (pg|rs) with a fixed pair of first indices pg, and various
buffers associated with Yoshimine sorting. This sorting method, first described
by Yoshimine!™ in 1969, is needed to sort the integrals so that they can be
read sequentially in the required order. The pre-sort is necessary because the
first half-transform requires all (pg|rs) for a given pg, but the integrals are not
stored this way in the disk file produced by our integrals program, where they
posses the full eight-fold permutational symmetry. For instance, the first half-
transform will require integrals such as (11]43), but this integral is only stored
as (43|11) on disk. The pre-sort adds the redundant integrals (kl|ij) = (ij|kl)
and places them all in the correct order for reading. The second Yoshimine
sort involves the half-transformed integrals: these integrals are formed in the
order (pq|kl), where pq is fixed. In the second half-transform, however, the
program needs to read all (kl|pq) for a fized kl.* Since the integrals were not
written in this order, they must be sorted so they can be read this way.

3.2 Iterative Techniques for Solving Hc = Ec

Standard numerical methods exist for diagonalizing real symmetric matrices
such as the Hamiltonian H.! However, such methods usually require the stor-

*The convention used here is to write the fixed orbital pair first in the two-electron
integral. However, one must exercise caution because the half-transformed integrals do not
possess the symmetry (pq|kl) = (kl|pg) since a distinction must be drawn between the AO
and MO pairs.

tOnce again, real orbitals have been assumed, along with a nonrelativistic Hamiltonian.
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Figure 3: First half-transform in TRANSQT.

Initialize tmp matrices A and B and buffers Pblock and Jblock
Loop psym over irreps
Loop p over orbitals in irrep psym
Loop gsym over irreps w/ gsym < psym
Loop g over orbitals in irrep gsym w/ ¢ <p
pg=iof flp] + ¢
Read (pg|rs) for all rs given pg into Pblock
Loop rsym over irreps
Compute ssym from psym, gsym,rsym
Loop r over orbitals in irrep rsym (relative idx R)
Loop s over orbs in ssym w/ s <7 (rel idx S)
rs=1ioff[r]+s
A[R](S] = Pblock(rs)
if rsym = ssym, A[S|[R] = Pblock[rs]
end loop over s
end loop over r
matrix multiply:
loop rel idx R over orbs in rsym
loop rel idx L over active orbs in ssym
loop rel idx S over orbs in ssym
BIR|[L] = BIR)(L] + A[RI[S] » C*v{[S][L]
end loops over S, L, R
matrix multiply:
loop rel idx K over active orbs in rsym
loop rel idx L over active orbs in ssym
loop rel idx R over orbs in rsym
AIK][L] = A[K][L] + (Cm*™)T[K][R] * B[R][L]
end loops over R, L, K
loop k over active orbitals in rsym (rel idx K)
loop I over active orbs in ssym (rel idx L), I <k
kl = iof f[k] +1
Jblock[kl] = A[K][L)
end loops over I, k
Write Jblock to Yoshimine buffers
end loop over rsym
end loop over ¢
end loop over gsym
end loop over p
end loop over psym
flush, close I/0 files
free Pblock
Yoshimine sort half-transformed integrals J, free Yoshimine struct
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Figure 4: Second half-transform in TRANSQT.

Loop ksym over irreps
Loop k over active orbitals in irrep ksym
Loop lsym over irreps w/ lsym < ksym
Loop [ over active orbitals in irrep lsym w/ [ < k
kl =iof flk] +1
zero Jblock
Read all (kl|pq) for given k! into Jblock
Loop psym over irreps
Compute gsym from ksym, lsym, and psym
if (gsym > psym) next psym
Loop gsym over irreps, with gsym < psym
Loop p over orbs in psym (rel idx P)
Loop q over orbs in gsym (rel idx Q)
pg=ioff[p] + ¢ if p > g, else iof flq] +p
A[PI[Q] = Jblocklp]
end loop over g
end loop over p
matrix multiply:
Loop rel idx P over orbs in psym
Loop rel idx J over active orbs in gsym
Loop rel idx Q over orbs in gsym

B[P][J] = BIP|[J] + A[P][Q] x C***"[Q][J]

End loops over Q, J, P
matrix multiply:
Loop rel idx I over active orbs in psym
Loop rel idx J over active orbs in gsym
Loop rel idx P over orbs in psym

AlIJI) = A[NJ] + (CP¥™)T[1)[P] » B[P)[J]

end loops over P, J, I
Write matrix A to buffer
End loop over gsym
End loop over psym
End loop over [
End loop over Isym
End loop over k
End loop over ksym
free Jblock

flush and close I/O buffers

181
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age of H in core memory (if eigenvectors are also computed, then one actually
needs memory to store two matrices of this size). If the CI includes a mere
10,000 determinants (certainly a small CI space), storing the full matrix H
would require 800 megabytes. As of 1997, this represents a large amount of
core memory (although disk storage would not be a problem). It is little
consolation that the symmetry of H could be used to cut this requirement ap-
proximately in half. Another very important difficulty is the time required to
diagonalize matrices this size or larger. Most diagonalization routines scale as
O(n?), which is certainly problematic for n > 10%. Only for smaller matrices
do the standard methods become practical.

In typical applications, only the ground electronic state or perhaps a few of
the low lying excited states are of interest. Hence methods which obtain only
the lowest few roots of the CI matrix are greatly preferred over methods which
compute the entire spectrum. Furthermore, storage requirements are greatly
reduced if H is not stored at all; direci CI methods, discussed in section 4,
form products He = o directly from the MO integrals.

Most techniques for solving large eigenvalue problems fall under the cate-
gory of subspace iteration methods, which iteratively solve the eigenvalue prob-
lem in a linear vector subspace spanned by only a few vectors. Malmqvist!?3
provides a concise review of the subspace iteration methods most commonly
found in quantum chemistry. Here we will autline some of these methods and
note recent advances.

3.2.1 Davidson’s Method

Davidson’s method for the iterative solution of the lowest few eigenvalues
and eigenvectors of large real, symmetric matrices'® is undoubtedly the most
widely used technique for solving the CI secular equations. In this method,
one applies standard diagonalization methods to a small Hamiltonian matrix
formed in a subspace {b;} of L orthonormal expansion vectors, where L in-
creases from iteration to iteration but is typically very much smaller than the
dimension of H (the subspace generally includes less than a dozen vectors per
root). At each iteration, the Davidson algorithm estimates a correction vector
for each root currently under consideration and adds it to the set {b;} after
Schmidt orthogonalization.

Davidson used perturbation theory to argue!®® that the best correction
vector § to the current iteration’s guess vector c satisfies

(H - )5 = —(H — Al)c. (70)

In the Davidson method, one approximates A by the current iteration’s eigen-
value, and H is assumed to be diagonally dominant so that § can be approxi-
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mated by

§=—(Hy— AI)7'(H - A)c, (71)
where H; is the diagonal of H and the denominator is referred to as the
preconditioner.

Liu showed how to extend Davidson’s method to solve for several roots si-
multaneously,'” leading to what is called the Simultaneous Expansion Method,
the Davidson-Liu method, or the block Davidson method. The detailed Davidson
Liu algorithm, adapted from ref. 174, is presented in Figure 5.

At each iteration, the current approximations to the eigenvalues of H are
given by the eigenvalues of the small matrix G, which is the Hamiltonian in
the subspace spanned by the expansion vectors {b;}, with matrix elements
Gi;j = (b;,Hbj). Likewise, the current approximate eigenvectors are linear
combinations of the subspace vectors with coeflicients given by the eigenvectors
a of G:

L
cF =3 alb;. (76)
i=1

The convergence of the k-th root can be checked by the sum of squares of the
last m components of o in step 2 or by the norm of the residue vector r in
step 3.

Unless very tight convergence criteria are specified, it is possible for the
Davidson-Liu method to converge on the wrong eigenvector if the initial guess
vectors are poor. Although this will not happen for the ground state unless
a completely inappropriate guess is provided, it occasionally happens when
several roots are sought. Davidson and co-workers recommend initial loose
convergence of more roots than are actually needed, and then tighter conver-
gence on the desired roots.!” Possible choices for the initial vectors include
unit vectors (chosen according to the diagonal elements of H with the largest
magnitudes) or eigenvectors of some small block of H.

Equations (73) and (75) show that after a matrix-vector product o; = Hg;
is computed it is needed again in subsequent iterations. Since the construction
of the vectors {o;} is the most time consuming step in the iterative diagonaliza-
tion of H, they are stored on disk along with the expansion vectors {b;}. The
original Davidson method converges one root at a time and requires storage
for two (segments of) vectors at once in core memory. If more core memory is
available, then the Davidson-Liu method can reduce computational and I/0O
requirements. For example, one pass through the subspace expansion vectors
is sufficient to construct several correction vectors 4 simultaneously. Likewise,
a single construction of the matrix elements of H, several ¢ vectors can be
formed simultaneously.

Note that the preconditioner in eq. (74) requires the diagonal elements of
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Figure 5: The Davidson-Liu Iterative Method for the Lowest Few Eigenvectors
and Eigenvalues of Real, Symmetric Matrices (Ref. 174)

1.

Select a set of L orthonormal guess vectors, at least one for each root

desired, and place in the set {b;}.

Use a standard diagonalization method to solve the L x L eigenvalue

problem
Ga* = of k=1,2,.... M

where
Gi; = (bi,Hb;) = (b, 05),1 <4, < L

and M is the number of roots of interest.

. Form the correction vectors {6*},k = 1,2,..., M, defined as

o =\ —Hy) 2t 1=1,2,...,N

where

¥ =Y of(H - M)b;

i=1

and N is the number of determinants or CSFs.

. Normalize {6¥}.

(72)

(73)

. Schmidt orthonormalize 8! against the set {b;} and append the result to

{b;}. Repeat this process for each of the other M — 1 correction vectors,
neglecting those whose Schmidt orthonormalized norm is less than some
threshold T' ~ 103, This results in the addition of m new b vectors,

with 1 <m < M.

. Increase L by m and return to step 2.



Configuration Interaction Method: Advances in Highly Correlated Approaches 185

the Hamiltonian. These can be precomputed and stored on disk, or they can
be computed on-the-fly. Alternatively, they can be approximated in some cases
using orbital energies. In a determinantal basis, Davidson’s preconditioner can
actually cause the CI vector to break spin symmetry. Indeed, Knowles and
Handy noted this difficulty in their pioneering 1984 paper on determinant based
configuration interaction.!® They found that this problem can be avoided if
the diagonal elements of the Hamiltonian Hj; are replaced by an average Hj,
over all determinants which have the same spatial orbital configuration as
determinant I but differ in the distribution of spins.

If several roots are sought, or convergence takes many iterations, then the
number of vectors stored on disk can become large, leading to I/O delays
during the construction of G or r. Furthermore, disk storage can become a
problem if the vectors themselves are very large. One solution is to apply com-
pression algorithms to the subspace vectors and o vectors.'”®77 Additionally,
the Davidson-Liu method can be restarted with only M expansion vectors
by using the current approximation to each eigenvector, eq. (76), as the new
starting guess vectors. Clearly this procedure hinders the rate of convergence
because information is lost after the vector subspace is collapsed: subsequent
diagonalizations have less variational freedom because of the reduced dimen-
sion of the subspace. However, in 1990 van Lenthe and Pulay presented the
remarkable conclusion'” that when only a single root is sought, collapsing the
subspace does not substantially degrade the rate of convergence if the subspace
is collapsed down to two vectors instead of just one. This procedure, which
may be justified by the theory of conjugate gradients, was later generalized
to multiple roots by Murray, Racine, and Davidson.!”® The collapsed vector
subspace contains the current guess vector for each root, as before, and also
the guess vectors from the previous iteration (after they have been Schmidt
orthogonalized against the other vectors in the collapsed subspace).

Other work has focused on improving the correction vector. As noted by
Olsen,® Saad,'™ Sleijpen and van der Vorst,'® and others,!8%:182 Davidson’s
equation (70) seems to imply that the optimal update vector & is just the
negative of the current guess CI vector c¢. Clearly, this would not allow for
the expansion of the vector subspace. Sleijpen et al.!®0 have pointed out that
Davidson assumed that § is orthogonal to ¢ in deriving eq. (70). However,
Davidson’s method only enforces this orthogonality after é has already been
determined. Hence, a more effective preconditioner may result from explicitly
enforcing this orthogonality while § is being constructed, and several authors
have recently proposed such preconditioners.?3: 181,182

Another improvement suggested by these authors and others is to
lift the assumption of strict diagonal dominance of the Hamiltonian in the pre-
conditioner. One selects a subspace of the most important N-electron functions

54,56,173
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in the CI space and, for the purposes of the preconditioner, approximates the
Hamiltonian as

0 AII (77)
where primes denote the small selected subspace and double primes denote
the complement subspace. Although relatively few (up to several hundred)
determinants might be included in the selected space, it is important to take
complete sets of determinants which are capable of forming spin eigenfunctions
so that the spin symmetry of the CI vector can be maintained during the
iterative procedure. Note that the Hamiltonian is assumed diagonal in the
complement subspace and coupling is ignored. This leads to two equations for
the correction vector:

]
Hz[H 0}’

((Sk)l ___(HI _ /\kI’)_l(rk)l (78)
(6k)" - —(A” _ A"I”)"(r’“)”. (79)

)

The second equation of course becomes

k)n

61&: "n_ (TI , 80
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and is analogous to eq. (74). The first equation can be written in terms of the
eigenvalues y! and eigenvectors u! of the small matrix H':

Lyl 1
oty = U E)) &)

3.2.2 Olsen’s Method

Realizing the difficulties of storing several b and o vectors for very large CI
spaces, Olsen proposed that each correction vector be added directly to the
current CI vector, and that the resulting (renormalized) vector be used as
the next iteration’s guess vector. Of course for this scheme to work well, the
correction vector must be as good as possible. Olsen therefore introduced an
improved method for generating the correction vector, using some of the ideas
just discussed above. If the current (normalized) CI vector is denoted c, then
its energy is

E = (¢,Hc). (82)

The Hamiltonian is then divided into two terms,

H=HO +H®Y, (83)
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and the CI eigenvalue equation can be written
(HO + HD)(c + 6c) = (E + 6E)(c + dc), (84)

where éc and OF are the corrections to the current CI vector and energy. If
dc is required to be orthogonal to ¢ then (neglecting quadratic terms)

bc = —(HY — E)™'[(H — E)c — c4E], (85)

where
(c, HO® — B)~'(H - E)c)

(c, (H® ~ B)T¢)

The correction vector dc is superior to that used in the standard Davidson
method since it remains rigorously orthogonal to ¢ and therefore retains the
ability to introduce new character into the CI vector even near convergence.®
This correction vector was also derived by Bofill and Anglada from other con-
siderations.!®! In 1990, Olsen, Jgrgensen, and Simons used this method to
perform three iterations of the first one-billion determinant CI calculation.?
The zeroth-order part of the Hamiltonian H® was defined as a 400 x 400 block
of determinants formed from the lowest diagonal elements of H, and as the
diagonal of H outside this block. This procedure requires the storage of four
vectors on disk (three if the diagonal elements of H are computed as needed).
Although the Olsen method can be very helpful when disk space is lim-
ited, its convergence characteristics are not always very good. Indeed, as first
pointed out by Mitrushenkov,'%® the Olsen method does not guarantee that
the energy decreases every iteration. However, it is of course possible to use
Olsen’s preconditioner in conjunction with iterative methods which keep more
than one CI vector and o vector. Mitrushenkov® advocates diagonalizing the
Hamiltonian in the space of the current and previous CI vectors:

§E = (86)

Hy; = (c%,09) (87)
Hi,i—l = Hi—l,i (U(i),c(i_l)). (88)

I

Explicitly, the nonorthogonal pseudo-eigenvalue equation is

Hi ;1 Hiyy @\ _ (1 s Qi
(s ) (==L ) (%)

where s is the overlap between the current and previous CI vectors, (¢, c(i-1)),
At each iteration, the current CI vector is recomputed as ¢ = g;_;cC~1 +
a;c, and 0@ = q;_10% Y + ;o). Hj; is set to E; in eq. (89), and then
the new vector ¢+l is computed using Olsen’s method. This process is re-
peated until convergence is reached. In our experience Mitrushenkov’s method
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improves convergence substantially in the first few iterations compared to
the single-vector version of Olsen’s method. Unfortunately, as CI vector ap-
proaches convergence, eq. (89) becomes ill-conditioned because H;_; ; approaches
H;; and s approaches unity. This difficulty can be avoided by reverting to the
single-vector Olsen method near convergence.

4 Determinant-Based Algorithms for Highly
Correlated CI

This section describes several determinant-based CI algorithms. The alpha
and beta string formalism of Handy* is introduced, and the equations for
o = Hc within this formalism are derived for the full CI and RAS CI cases.*®
Practical considerations for implementation are also discussed.

4.1 Slater Determinants, CSFs, and Direct CI

Slater determinants are eigenfunctions of S;; therefore, the CI space includes
only those determinants with a given value of M, unless a spin-dependent
Hamiltonian is used.!® However, Slater determinants are not eigenfunctions
of 52 as are configuration state functions (CSFs), and dimension of the CI space
in Slater determinants is typically about 2-4 times larger than in CSFs (for
more about CSFs, see the books by Pauncz!®%18). Thus it would seem that
CSFs are preferable to Slater determinants for use as CI expansion functions.
However, determinants offer certain advantages in the context of “direct CI”
methods that can outweigh the disadvantage of a larger CI space.

In computational quantum chemistry the term “direct” has come to mean
that certain quantities, which are too large to hold in core memory, are com-
puted on-the-fly instead of being stored on disk and read as needed. A direct
SCF implies that the two-electron integrals are computed on-the-fly. For a
direct CI,% the integrals are still held on disk, but the Hamiltonian matrix it-
self is not explicitly constructed or stored. Instead, the vector o = He, which
is required in iterative subspace methods for diagonalizing the Hamiltonian
(cf. section 3.2), is computed directly from the one- and two-electron integrals
and the CI vector; the construction of ¢ is the time-consuming step in the di-
rect CI method. The coefficients for multiplying the CI vector by the integrals
have already been introduced (cf. section 2.3.2) as the one- and two-electron
coupling coeflicients; these may be written to disk in a file traditionally called
the “formula tape.” Unfortunately, this procedure is still unsuitable for a di-
rect CI, since the coupling coefficients will require as much storage space as
the Hamiltonian matrix itself, leading to long I/O delays. Hence, in a direct
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CI, the coupling coefficients should be calculated as needed (or they should
be built into the program). A next step would be to eliminate storage of the
CI vector itself; efforts along these lines have been described as superdirect
CI.18%:188  Alternatively, Carter and co-workers have considered pseudospec-
tral approaches which eliminate the need to construct two-electron integrals
as separate intermediates.!8%192

The direct CI method was first introduced in 1972 by Roos for the case
of CISD from a closed-shell reference function.!® However, generalization
to more complex CI spaces, such as MR-CISD, proved exceedingly difficult
due to the large number of special cases. The next breakthrough did not
occur until Shavitt*4? cast the work of Paldus on the unitary group ap-
proach (UGA)** into a graphical formalism which represents CSFs in the
Gelfand-Tsetlin canonical basis as walks on a directed graph. Not only did
this graphical representation make the UGA more accessible to chemists, but
it also provided a convenient formalism for carrying out computations. Any
pair of walks (CSFs) forms a loop, and matrix elements are evaluated based on
the shapes of these loops, with only certain loop types giving nonzero matrix
elements.1*? For example, one-electron coupling coefficients are expressed as

J
v = [IW(Te, ba), (90)

k=i
where T}, identifies the shape of the loop formed by walks I and J at level k&
on the Shavitt graph, and by is the “b-value” of the vertex on walk J at level
k (see ref. 42 for more details). The coupling coefficient vanishes unless walks
I and J coincide everywhere below level ¢ — 1 and above level j on the graph
(assuming ¢ < j). This graphical unitary group approach (GUGA) was devel-
oped with a philosophy similar to that of the direct CI. The idea was to use
each coupling coefficient, specified by a loop on the Shavitt graph, for a whole
series of Hamiltonian matrix elements differing in their common upper and
lower walks. The first multireference CI method based on the ideas of Paldus
and Shavitt was developed by Brooks and Schaefer.®® Particularly notable was
their computation on the ! By, state of ethylene involving all single and double
excitations relative to three open-shell singlet reference configurations.** How-
ever, a detailed analysis of the “loop-driven” GUGA CI program of Brooks and
Schaefer indicates that, in practice, few loops contribute to very many matrix
elements, and it remains more efficient to write the coupling coefficients to the
formula tape rather than to recompute them as needed.

Nevertheless, the graphical approach afforded new insight into the structure
of the Hamiltonian. In particular, for CI spaces which allow only one or two
electrons in the external space, the graphical representation of the external
space becomes very regular, and the external portion of a loop can only have
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a few possible shapes.!® Siegbahn made the crucial observation that the one-
and two-electron coupling coefficients can be factored into contributions from
the internal orbitals and from the external orbitals,

IJ _ int IJ ext, IJ
Yij = Yii X TV (91)
I1J — wntplJ extpIJ
Ciw = Fis % Liskir (92)

and that the calculation can be “direct” in the external space when the external
factors are very simple.

In 1979, Siegbahn showed!® that for the case of single replacements from
a reference wavefunction which is a full CI in the active space (i.e., first-order
CI'3), the external factors for the coupling coefficients are all simply +1; hence,
only the internal space coupling coefficients must be precomputed and stored
on the formula tape. This results in a substantial savings because the number
of internal coupling coefficients will be much smaller than the total number of
coupling coefficients. In 1980, Siegbahn extended these ideas to the general
case of all single and double substitutions for an arbitrary set of references
(i.e., MR-CISD).’® Once again, the external coupling coefficient factors are
simple (£1, £4/2, and 2) and can be dealt with in a direct fashion. The shape-
driven GUGA program of Saxe, Fox, Schaefer, and Handy?® is based in part
on Siegbahn’s approach, as is the program of Saunders and van Lenthe'?” and
the COLUMBUS program of Shavitt, Lischka, Shepard, and co-workers,!96-198

Unfortunately, these simplifications are not directly applicable®® when more
than two electrons are allowed into the external space (e.g., CISDT, CIS-
DTQ, and full CI). Furthermore, even for MR-CISD wavefunctions, large ac-
tive spaces can lead to a large number of internal coupling coefficients, which
can become difficult to deal with.}®? The next advance was once again due
to Siegbahn, who suggested a factorization of the two-electron coupling coef-
ficients by inserting the resolution of the identity:

Tisk = 275 v’ — i O (93)
K

Although the resolution of the identity requires an infinite sum in principle, in
this case only a finite number of states |®g) are relevant. For fixed ¢, 7, k,!, I,
and J, the product term will vanish unless |®g) is obtained from |®;) by
a single substitution from orbital ! to orbital k£ and from |®;) by a single
substitution from orbital ¢ to orbital j. For configuration state functions, this
completely specifies the orbital configuration of |®x), and only a few spin
couplings must be summed over. This approach led Knowles and Handy'%®
to present a vectorized full CI algorithm based on Slater determinants rather
than CSFs. For Slater determinants, the one-electron coupling coefficients
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appearing in (93) and elsewhere are very easy to calculate on-the-fly, allowing a
fully direct CI procedure. For Slater determinants |I) and |J), 7/} = (I |E;;]7)
is 0 unless determinant |J)} becomes determinant |I) (within a sign) when an
alpha or beta electron is moved from orbital j to orbital ¢, in which case fy{jJ
becomes +1. For the special case i = j,I = J, ¥/} counts the number of
electrons in orbital ¢ for determinant I, yielding 0, 1, or 2.

Because of this simplicity and the ability to carry out computations in a
fully direct fashion, many of the full and restricted CI algorithms developed
over the last ten years have employed Slater determinants, and in this section
we will focus our attention on these determinant-based methods. However, we
should note that further progress has also been made in CSF-based approaches.
Much of the recent work in direct CI methods has been based on the symmetric
group approach (SGA)!%-2% rather than the related unitary group approach
(UGA).**-4%™  Given the factorization (93), the problem of formulating a
fully direct CI procedure can be turned into the problem of determining the
one-electron coupling coefficients on-the-fly in the desired order. Knowles and
Werner presented a way of doing this in 1988.1%2 They use the identity

Elij = EiaEaja (94)

which holds for any orbital ¢, which is always unoccupied. This hypothetical
orbital, referred to as a “ghost” orbital, does not actually appear in any of the
integrals. The one-electron coupling coeflicient becomes

'YinJ = ;<I|Eia|Ks><Ks|Eaj|J>’ (95)

where the sum is over all spin couplings of the uniquely-specified orbital config-
uration K. By fixing one of the two orbital indices, it becomes feasible to store
the intermediates needed to evaluate the one-electron coupling coefficients effi-
ciently in the desired order. This ghost-orbital technique was used by Werner
and Knowles in their implementation of internally-contracted multireference
CL.1! That method requires third- and fourth-order reduced density matrices,
which can be evaluated by approaches analogous to (93). Another possibility
along the lines of Siegbahn’s internal /external factorization has been suggested
by Malmgqvist, Rendell, and Roos in their implementation of the RAS SCF
method.?® They modify the GUGA method to split all walks into upper and
lower portions and calculate coupling coefficients as products of upper and
lower factors. Although the upper factors are not necessarily very simple for a
RAS case, the storage requirements are substantially reduced in this approach.

Finally, we note that many other important advances have been made in
CSF-based approaches, even outside the context of direct CI. Much of this ef-
fort in recent years has focused on extending the unitary and symmetric group



192 C. D. Sherrill and H. F. Schaefer il

approaches to the spin-dependent Hamiltonians needed to account for rela-
tivistic effects.204210 Examples of other work include specialized unitary group
approaches for MRCI wavefunctions based on CAS references?! and applica-
tion of the unitary group approach to CI calculations on atoms using Hylleraas
coordinates® and to spin-adapted open-shell coupled-cluster theory.?? How-

ever, we now turn our attention to determinant-based formulations of direct
CIL

4.2 Alpha and Beta Strings

A 1980 paper by Handy*! represented a major advance in determinant-based
ClI, even though the paper was more concerned with how integrals and CI co-
efficients are stored than with the computational advantages of determinants
over CSFs. Handy realized that if determinants are used as N-electron ba-
sis functions, and particularly if these determinants are expressed as “alpha
strings” and “beta strings,” then the vector o can be evaluated very efficiently.

Although Handy was the first to use alpha and beta strings, we will employ
the subsequent notation of Olsen et al%® An alpha string is defined as an
ordered product of creation operators for spin orbitals with alpha spin. If I,
contains a list {7, j,... %} of the N, occupied spin orbitals with alpha spin in
determinant |I), then the alpha string a(1,) is aIaa}a ...a},. A beta string is
defined similarly. Thus a Slater determinant |I) in terms of alpha and beta
strings is

1) = lo(Ia)B(15)) = a(Ia)B(Ip)))- (96)

For example, consider the Slater determinant |I) = |¢1aP20P30P15P28015)-
Then the alpha string «([,) is given by

a(la) = alaalyala, (97)

and the beta string is given by

B(Is) = alzalsal,s. (98)

Note that the order of the creation operators matters; if we swap the order of
two creation operators within the alpha string (or within the beta string), then
we introduce a sign change due to the anticommutation relation of creation
operators. Also, applying the alpha string to the vacuum first, rather than the
beta string, may introduce a minus sign, depending on the number of alpha
and beta electrons. Typically, the beta string will be placed to the right of the
alpha string in equations like (96). Further, within each string, orbitals are
listed in strictly increasing order.



Configuration Interaction Method: Advances in Highly Correlated Approaches 193

Since a determinant is now specified by an ordered pair of indices rep-
resenting its alpha and beta components, the Ith element of the CI vector
becomes ¢(l,, Ig). Note that this vector can also be considered as a matrix
with coordinates I, and Is. Both vector and matrix addressing schemes are
computationally useful. The o vector,

0'1=ZH1JCJ, (99)
J

can be written in the new notation as

o(In, Ig) = 3 (B(Js)a(Jo) | H|a(12) B(I5))c(Jas J5), (100)

JarJp

where we have used H;; = H3; and assumed that H is a real matrix to obtain
the form most commonly seen in the literature when this notation is used.
Handy realized the following advantages to alpha and beta strings:

1. Direct CI methods often require an index vector which points to a list
of all allowed excitations from a given N-electron basis function. Using
alpha and beta strings, the index vector need not be the length of the
CI vector—its size is dictated by the number of alpha or beta strings,
which (for a full CI) is approximately the square root of the number of
determinants. This results from the fact that in determinant-based CI,
electrons in alpha spin-orbitals can be excited only to other alpha spin-
orbitals, and electrons in beta spin-orbitals can be excited only to other
beta spin-orbitals (because of the restriction to a single value of M,).

2. To form o(I,,Is) in equation (100), all functions |a(J,)B(Js)) which
have non-zero matrix elements with |a(l,)3(I5)) are generated, one at a
time, with the appropriate integral being looked up and multiplied by the
appropriate CI coefficient. No time is wasted considering determinants
which are noninteracting, and the coeflicients of the integrals are easy to
evaluate.

3. Efficiency is increased by realizing that all integrals which enter the ex-
pression {(a(l,)B(I5)|H|a(Ja)B(I5)) (equation 100), where a(J,) differs
from a(I,) by two orbitals, are independent of 5(I3).

This approach allowed several benchmark full CI computations, including the
first CI procedure (1981) to include more than one million determinants. 23
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4.3 The Vectorized Full CI Algorithm of Knowles and
Handy

In 1984, Knowles and Handy introduced a new direct CI algorithm for full CI
wavefunctions.!%?* As Siegbahn had pointed out,*® the efficiency of direct
CI algorithms is increased if, for a given |K), all one-electron coupling coeffi-
cients 55’ are available together. Examination of Siegbahn’s expression for o
elucidates this observation:*®

o = Y Hues (101)
= ZZ%] hijes + = z% ij|kl) ZF”,CICJ (102)
= Z{hij - —Z illls) }Z%J ¢
+ g:kl z]lkl)Z%KZm er, (103)

where the resolution of the identity has been used to turn the two-electron
coupling coefficients into products of one-electron coupling coefficients (eq. 93).
Notice that part of the two-electron contribution has been folded into the one-
electron term. The remaining two-electron term is the time consuming part in
the evaluation of o7, and it is most efficiently written as

-ZZ%KZ (45 kL) Zm er. (104)

Thus this part of o7 can be evaluated by the following set of operations:

D = Y iles (105)
J

Ef = > (ij|k)Df (106)
kt

U§2) = —ZZ%KE,’; (107)

The one-electron coupling coefficients would ordinarily be stored on disk,
making the evaluation of the D and ¢ quantities I/O intensive and thus ineffi-
cient. However, Knowles and Handy noted that in a basis of determinants the
one-electron coupling coefficients can be evaluated on-the-fly (direct CI) even
in the general case. A given determinant |K) can interact with at most two
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other determinants |I), and their contributions can be separated by rewriting
the shift operator in X = (I |Ei;|K) as
By = Eg + Ef, (108)

where E‘g replaces an a-spin electron in orbital j with an a-spin electron in
orbital 7 (cf. section 2.3.2). Note that this approach requires a sum over a
complete set of intermediate determinants |K) (or at least all determinants
which interact with the allowed determinants through E;), including those
determinants with the wrong spatial symmetry. This means that the Knowles
and Handy algorithm would be considerably less efficient for restricted CL.

Given equation (108), it is possible to write the one-electron coupling co-
efficients in terms of alpha and beta strings:

v = (a(l.)BIs)|ELloJa)B(J5))5(1s, Jp)
+ (L) BUIB) Ef|a(J) B(J)Y8( Lo, Ja), (109)

where |a(l,)) is related to |a(J,)) by a single excitation (and likewise for
|8(I5)) and |B(Js))). Thus the one-electron coupling coefficients are gener-
ated from lists of strings related by single excitations. For each alpha (beta)
string, one stores a list of all allowed single replacements to other alpha (beta)
strings; for closed-shell systems, the two lists will be identical and only one
must be stored. Each list contains the address of the new string, the orbital
index ij, and a phase factor, denoted by sgn(zj), which is £1. The sign can
be determined as (—1)?, where p is the number of transpositions of creation
operators needed to bring an excited string to its canonical form. String ad-
dresses were computed by table lookups using a canonical addressing scheme
explained in section 4.9.2. One can take advantage of the permutational sym-
metries (ij|kl) = (jilkl) = (ij|lk) = (ji|lk) of the two-electron integrals by
requiring ¢ > j, k > . This entails replacing v57 in (105) by (757 +v%7), an
analogous change for (107), and a modification of the integrals to avoid double
counting when i =jor k=1[.

The algorithm of Knowles and Handy is described as “vectorized” because
each of the three major operations (105)-(107) may be written as an opera-
tion performed on an entire vector at once. This is very beneficial for vector
supercomputers, which actually perform such operations a vector at a time
and give substantial increases in speed. To illustrate, consider Fig. 6, which
shows the Knowles-Handy algorithm for the formation of D, eq. (105). Due to
memory limitations, operations are performed for a block of strings at a time.
In the first half of Fig. 6, the operations in the innermost loop are identical
but independent of each other for different K. In the second half of the algo-
rithm, the same applies to K,; hence, this operation can be performed for a
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Figure 6: Knowles-Handy Vectorized Formation of D (Refs. 109,214).

loop alpha strings K, in block .
loop over excitations |a(J,)) = sgn(if) Ef|a(Ka))
loop over Kj in block
1K) = |a(Ka)B(Kp)), |J) = a(Ja) B(Kp))
D(Ka, Kp,ij) = D(Kq, Kp, ij) + sgu(ij)e(Ja, Kg)

loop alpha strings Kz in block
loop over excitations |5(J;)) = sgn(ij)EfjW(Kﬂ))
loop over K, in block
|K) = |a(Ka)B(Kp)), |]) = |a(Ka)B(Js))
D(Ka, Kﬂa 2.7) = D(Ka» Kﬁ, Z]) + Sgn(ij)c(Km Jﬂ)

whole range of Kz (K,) values simultaneously with a vector processor. These
same considerations apply to the analogous eq. (107). The remaining (and
most time consuming) step, (106), can be performed as a matrix multiplica-
tion when one uses compound indices ij and kI, and of course this is also a
vectorized operation.

These concerns about vectorization remain relevant even though quantum
chemists now perform a substantial fraction of their computations on worksta-
tion machines which lack vector processors. Nevertheless, workstations (and
now even personal computers, or PCs) feature pipelined processors. Pipelines
allow machine instructions to overlap to some extent, giving the processor
a limited ability to perform several tasks at once.'®® The superscalar IBM
RS/6000 POWER2 workstation processor has two floating point pipelines,
each of which can hold up to twelve instructions. If the processor can keep
a steady stream of independent instructions coming down the pipeline, then
overall performance will be increased substantially. However, if one instruc-
tion depends on results from another, then the pipeline can become stalled
and performance is degraded. Since vectorizable code implies many similar
but independent operations, as a general rule, vectorizable code becomes good
pipelined code.

The Knowles-Handy approach was expected to be very efficient on vector
supercomputers, and indeed it enabled many important full CI benchmark
calculations.’® Nevertheless, one can see that this algorithm does more work
than is strictly necessary. Equation (106) demonstrates that the operation
count for the time-consuming step is approximately iNdem‘*, where n is the
number of orbitals and Ny, is the number of interacting intermediate states,
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which may be larger than the number of determinants in the full CI space be-
cause the intermediate states are not subject to spatial symmetry restrictions.
The factor of i arises from the permutational symmetries of the integrals.
As discussed previously in section 2.4.5, the computational cost of a full CI
procedure should actually scale as O(Ny; N2n?). Thus, the Knowles-Handy
algorithm replaces Ny, with the larger Ny, and N? with the larger n®. Some
of the extra work is due to the fact that the intermediate matrix D can con-
tain a substantial number of zeros. For example, DE will be zero when K
has orbital k£ unoccupied or orbital [ doubly occupied (D becomes less sparse
under the condition k¥ > {). Even though matrix multiplications are ideal for
vector computers, Olsen and co-workers? realized that abandoning the ma-
trix formulation (105)-(107) might still lead to a faster algorithm due to the
substantially reduced operation count.

4.4 Olsen’s String-Based Full CI Algorithm

In order to avoid the unnecessarily large operation counts in the full CI al-
gorithm of Knowles and Handy, Olsen et al. abandoned the explicit use of a
complete set of intermediate states and returned to some of Handy’s original
(1980) ideas** concerning string-driven full CI approaches.

4.4.1 Full CI o Equations

We begin by describing Olsen’s expressions for the o vector. In second quantized-
form (cf. section 2.3.2), H becomes

H Z hklEk[ + = 2 Z Z]Ikl (EijEkl - éjkEil) . (110)

ijkt

Inserting this expression into that for o, eq. {100), yields

oUnls) = 3 (BUp)aln)l 3 b (111)
Jords Kl

3 DGk (BB — d3ea) laL)B(L5) el To)

ijkl

_ Now expandlng the shift operators into their two spin components, Ey, =
E2 + Ef,, we write o as a sum of three terms:*®

O'(Ia,fg) = Ul(Ia,Iﬁ) + Ug(Ia,Iﬂ) + 0'3(10;1[?); (112)
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where
ollasls) = XS (OUELS) [hw%i(wlm] (Tas J3)
Jg ki i
+ —EZw )| ES E318(16)) (45| kD)c(Las J5), (113)
Jg ijkl
ol ) = X3 alo)|Egletla >[hkz—§i(kjw)} (Jas Tg)
Ja Kl i
+ —EZ )Eg Egla(1.)) (i7|kl)e(Ja, Is), (114)
Ja ijkl

o3(layIg) = 3 E (Jo)|EG1BIs)Y a(Ja) | Efla(Ta)) (ij|kl)c(Ja, J5).-

Ja,Jg 15kl
(115)

For efficient implementation, it is convenient to precompute the quantities

n
= has = 5 3 (k3 ). (116)
j
Note that the first term (o) involves only beta shift operators, the second
(o2) involves only alpha shift operators, and the third (o3) involves both al-
pha and beta shift operators. These terms are also called the 343, aa, and
af} terms.*®4% Several determinant-based CI algorithms presented over the
last few years8?183,215.216 have been based on this set of ¢ equations or the
analogous equations for restricted CI (see section 4.8.1).

4.4.2 Simplifications for M, =0

Certain simplifications arise if the M; = 0 component of an electronic state is
used. The first of these is the time-reversal symmetry of the CI vector, which
may be expressed as

C(Im‘[ﬁ) = (_l)sc(Iﬂ’Ia), (117)
where S is the spin quantum number. Olsen et al. use this fact to show how

the oq contribution can be determined entirely from the oy contribution when
M, = 0.%6 The remarkably simple result is

02(Ia7fﬂ) = (—l)sol(fﬁ7fu)~ (118)
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Likewise, it is also possible to show that the ijkl-th component of o3 sat-
isfies the relation
5™ (Lay I5) = (=1)%05" (I5, L) (119)

This equation may be used to eliminate contributions from Iy > I, or (kl) >
(i7), where (ij) and (kl) are compound indices. Olsen argues that the restric-
tion I, > Ig is to be preferred where this can be used to eliminate entire blocks
of the o3 matrix. If all alpha/beta strings with the same irreducible representa-
tion are grouped together, then states which are not totally symmetric in their
molecular point group will have off-diagonal blocks which can be eliminated
using this restriction. On the other hand, when applied to totally symmetric
states, this restriction eliminates the upper half of each symmetry block of o3.
Since this reduces the average vector length in the vectorized algorithm, Olsen
recommends using the alternative restriction (¢5) > (kl) in these cases. This
may be accomplished by rewriting o3 as

03(Ia,lﬂ) = Z Jz]kl ImIﬂ + Z S glij(lﬂala)
(45)> (ki) (i5)<(k)
= 03(Ias 1) + (—1)%03 (I, L), (120)
where
os(Iay Ig) = 3 0™ (Iay I5) (1 + bigy )~ (121)

(23)> (k)
Hence the total o vector can be evaluated as

U(IaaIﬁ) = Ul(IasIB) + Uls(ImIﬂ) + (_1)5 [UI(Iﬂ’Ia) + U:;(IﬁvIn)] . (122)

The M, = 0 simplifications therefore reduce computational expense by roughly
a factor of two.

One further observation must be made about the loss of spin symmetry in
the CI vector in the iterative diagonalization of the Hamiltonian. Even very
slight deviations from (117), such as might occur from roundoff errors, become
magnified in subsequent iterations and cause the iteration procedure to become
numerically unstable because precise adherence to (117) is assumed if any of
the M, = 0 simplifications just described. If necessary, these difficulties can
be avoided by explicitly enforcing the spin symmetry of any new vector in the
subspace expansion. In this respect it is important to modify the diagonal
elements of the Hamiltonian in the preconditioner for the subspace iteration
method, as already discussed in section 3.2.

4.4.3 Algorithms for Computing o

From (113), one can see that the mathematical operations required to form
o1(l,, Ig) are identical but independent of each other for different I,. That is,
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Figure 7: Olsen’s Vectorized Algorithm for o, (Ref. 46).

loop over beta strings Ig
Zero array F' R
Loop over excitations Ek, from |B(14))
|B(K5)) = sen(kl) Eg|B(1p) )
F(Kg) = F(Kg) + Sgn(kl)
Loop over excitations E from |B(K35))

18(J5)) = sgn(ij) ulﬁ(Ka»
F(Jg) = F(Jp) + (1/2)sgn(kl)sgn(i7) (i7]kl)
end loop over Ef;
end loop over £,
loop over beta strings Jz and alpha strings I,
o1(Is, Ig) = 01(1a, Ig) + F(Jg)c(1a, Jp); vect'd
end loop over Iy, Jg
end loop over I

column I of o1 can be constructed by two multiplications of scalars by columns
(J3) of c. Hence the construction of o, is vectorizable over [,. The vectorized
algorithm for the evaluation of oy, adapted from Olsen et al.,** appears in
Figure 7. An analogous algorithm can be used to obtain ¢,. However, one can
also obtain o, for M, = 0 cases by (118). These algorithms require the same
string replacement lists used by Knowles and Handy'® (sec. 4.3). Note that
the vector F is sparse, and multiplication of F' by ¢ should only take place for
nonzero values of F.

Unfortunately, the construction of o3 (115) is harder to vectorize. A sim-
ple, non-vectorized algorithm for o3 is presented in Fig. 8. One can see that
this does not appear as a simple set of arithmetic operations on vectors. For
example, the contributions of the beta strings are not identical for different
alpha strings because each alpha string connects to a different set of excited
alpha strings with different indices k£ and /. Olsen et al. remedy this by op-
erating a fixed kl at a time;*® this makes their algorithm vectorizable in the
innermost loop. Their algorithm, adapted and expanded from Ref. 46, is pre-
sented in Fig. 9. Note that this algorithm also employs scatter/gather (i.e.,
data rearrangement) operations to ensure that all of the data relevant to the
multiplication step V' = F¢' are contiguous. This avoids “indirect addressing,”
which could substantially degrade performance due to long waits for data to be
fetched from scattered memory locations.'®® For M, = 0, an improvement to
the o3 algorithm can be made by utilizing equations discussed in section 4.4.2.
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Figure 8: Simple Algorithm for a;.

loop over I,
loop over |a(J,)) = sgn(kl)E2|a(1,))
loop over Iy
loop over |8(J5)) = sgu(if) Ef|8(5))
3(la, 1) = 03(la, Ip) + sgn(ij)sgn(kl)(ij|kl)c(Ja, Jp)
end loop over J3
end loop over Iy
end loop over J,
end loop over I,

Furthermore, if the integrals possess the full eightfold permutational symme-
try, then E,‘c’, can be replaced by (E,‘c’l + Eﬁc)(l + 63) 7! in order to increase the
average vector length in the formation of V. Note once again that F is sparse.

Clearly this algorithm takes less advantage of vector processors than the
Knowles-Handy algorithm, since it involves some overhead (setup of the L
and R arrays, and the scatter and gather) and uses smaller vector lengths.
Nevertheless, one would expect this algorithm to be faster in many cases due
to the substantially reduced number of mathematical operations performed.
Counting only multiplications, the operation counts for each part of o are
approximately*®

N, =~ iNde,Ng (n — Ng)* (123)
N, = %NdetNg(n - Na)2 (124)
N3 ~ Nde,NaNﬁ(n bl Na)(n bl Nﬂ) (125)

When N, = Ng, the overall operation count is thus approximately

Ny =~ gN,mNg(n ~ N,)2 (126)
Recall that this operation count can be cut approximately in half for M, =0
cases. Knowles and Handy are also able to take advantage of time reversal sym-
metry for singlet states, by employing the combinations 27Y/2(a(I,)3(I5) +
a(Ip)B(1,)). Recalling that the operation count for the Knowles-Handy al-
gorithm is approximately %Ndem“, we might expect the greatest savings for
Olsen’s algorithm when n/N is large.
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Figure 9: Olsen’s Vectorized Algorithm for o3 (Ref. 46).

loop over kl
set up lists L(I), R(I), and sgn([), such that
|lo{L(I)]) = sgn(I) Efj|a[R(I)])
loop over list entries I and beta strings Jj
(I, Jg) = c(L(I), Jg)sgn(I); vect'd gather
end loop over I and Jg
loop over Ig
zero array F
loop over excitations Ef; from |B(I5))
|8(J5)) = sgn(is) E;18(Ig))
F(Jp) = F(Jp) + sgn(ig)(ilkl)
end loop over Ez
loop over beta strings Jz and list entries J
V(I) = F(Jg)d (1, Jg); vect'd over I
end loop over Jg, I
loop over list entries J
os3(R(I), Ig) = os(R(I), I5) + V(I); vect'd scatter
end loop over I
end loop over Iy
end loop over kl



Configuration Interaction Method: Advances in Highly Correlated Approaches 203

4.5 Zarrabian’s Reduced Intermediate Space

Shortly after the publication of the 1988 paper by Olsen et al., Zarrabian,
Sarma, and Paldus presented?!” an alternative approach to avoid the unnec-
essarily large scaling of the Knowles-Handy full CI algorithm. These workers
employed an (N — 2)-electron intermediate space for the two-electron contri-
butions rather than an N-electron intermediate space. Their expressions for
o were originally derived using generators of the group SO(4), but to avoid
introducing new notation we will consider the later derivation of Harrison and
Zarrabian,!” which uses only the standard spin-orbital creation and annihila-
tion operators.
We begin by rewriting (24) over spatial orbitals, as

H= th 3 alap + Z ijlkl) Y al,abyanae. (127)
g=a,f z]kl Ao=o,f

Next, insert the resolution of the identity between the pairs of creation and

annihilation operators in the two-electron term. Clearly, the sum must run

over (N — 2)-electron states. The expression for ¢ becomes

or = ZHIJCJ (128)
= Zth] > (IMalajol T M)e
o=a,3
+ —ZZ ijlkl) 30 (I™lalal, | KN DKV D apajel 7™y,
JK ijki Ao=a,p

where the superscripts (N) and (N — 2) denote the number of electrons for
each state. The one-electron terms are exactly the same as before. The two-
electron contributions to o, denoted o®, may be written in terms of separate
contributions from each possible spin case:

oB = 3 3 Gkl - ()55)]{I™al,al [ KNV Y KD a)0050| TN e,
JK i>k,3>1

o = Y Y (Gilk) — (k)] (I™|alal s KV -D) KN =D aiai5| T M)e,
JK i>k,j>1

o) = 33 Gk IMalsale KV D) KN D|aga;5|I W), (129)
JK ikl

where the restrictions over the orbital indices in the ¢2) and al(,zﬁ) terms is made
possible by the permutational symmetry of the integrals and the anticommu-
tation relations of the creation and annihilation operators. Likewise, the two
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Figure 10: Harrison and Zarrabian’s Vectorized Algorithm for 6{2) (Ref. 47).

loop over alpha strings I,
loop over orbital pairs ¢ > & {creation op.)

define (N, — 2)-electron string K,

la(Ka)) = sgn(ik)aratiala(la))

loop over orbital pairs j > [ (annihilation op.)
define new N,-electron string J,
|o(Ja)) = sgn(jl)alaal,|a(Ka))
V' = sgn(ik)sgn(jt) [(ij]kl) — (il|k7)]
loop over beta strings I

0.((12a) (Iﬂv In) = 0.((120)‘ (Iﬁ7 Ia) +Vx C(Iﬂa ']01)

mixed contributions a§ and fa have been combined in a,(;"ﬂ), eliminating the
coefficient of .

The algorithm for constructing a‘(fg, adapted from Harrison and Zarra-
bian,?” is given in Fig. 10. The algorithm for 0},2‘2 is of course analogous. It is
easy to show that the number of floating-point multiplications involved in the

construction of 0 and ¢ with this algorithm are
8B aa

1
M = NaaNs(Ng—1)(n—Ns+2)(n—Ng+1) (130)
N, = %NdetNa(Na —1)(n = Ny +2)(n — Na +1), (131)

which are basically the same as the approximate operation counts (123)-(124)
for Olsen’s algorithm.6 Harrison and Zarrabian point out that this algorithm
can be parallelized over the outermost loop. Note that they address the CI
vector with the beta string as the row index instead of the alpha string; the
earlier paper by Zarrabian et al. used the alternative convention. This choice
can have some relevance for offg and 0%’ when only one of the terms is explicitly
constructed (i.e., when M, = 0). In that case, it is best to access the data in
C sequentially (i.e., with “unit stride”).1%

For 0,(,22, one can use a similar loop structure to that in Fig. 9 or Fig. 10.217
This yields an operation count*’ of

N3 = NdetNaNg(n - Na + 1)(n — Nﬂ + ].) (132)

However, Harrison and Zarrabian suggest that for parallel-vector machines, it
is better to revert to a matrix multiplication such as that used by Knowles
and Handy.!®® This algorithm is produced in Fig. 11. These loops are run
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Figure 11: Harrison and Zarrabian’s Vectorized Algorithm for 0((,2[3 (Ref. 47).

precompute info for adding orbs to (N, — 1)-elec. « string
precompute info for adding orbs to (N — 1)-elec. 3 string
zero D
loop over orbitals ! to be added to (N, — 1)-elec. string K,
loop over orbitals j to be added to (Nz — 1)-elec. string Kj
loop over (N, — 1)-electron strings K,
define N,—electron string J,
()} = sen(lal,la(Ka)
loop over (Ng — 1)-electron strings Kjp
define Ny—electron string Jg
|6(J5)) = sgn(j)als|B(Kp))
D(Kg, K,, jl) = D(Kg, Ka, jl) + sgn(k)sgn(j)c(Ja, Ja)
end loop over Kj
end loop over K,
end loop over j
end loop over [

call optimized matrix multiply for Ex ;s = Dg ;i{jl|ik)

loop over orbitals k to be added to (N, — 1)-elec. string Kq
loop over orbitals ¢ to be added to (INg — 1)-elec. string K
loop over (N, — 1)-electron strings K,
define N,—electron string I,
(L) = sgn(k)alala(Ko))
loop over (Vs — 1)-electron strings K
la(la)) = Sgn("»‘)alam(Ka))
define Ng—electron string I
|8(I5)) = sgn(i)aly|B(K5s))
05y (Is, Ia) = 03I, L) + sgn(i)sgn(k) (K, Ko, ik)
end loop over Kz
end loop over K,
end loop over i
end loop over k
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for blocks of several intermediate states K at a time, and additional loops
account for spatial symmetry. Note the use of two-electron integrals in Dirac
notation rather than Mulliken notation; i.e., (ji|tk) = (ij|k!) for real integrals.
Furthermore, the integrals are stored without any permutational symmetry.
This algorithm has an operation count of

N3 = Nyt N Ngn®/(n — Ny + 1)(n — N + 1), (133)

which can be obtained*” by using N,/(n— N,-+1) as the ratio of the number of
(N, — 1)-electron strings to the number of N-electron strings (and by ignoring
spatial symmetry). Note that this operation count is not too much greater
than that of the non-matrix version (132) when m >> N,, Ns. In such cases,
and given N, = Npg, the overall number of multiplications N; + Ny + N3 is
about & Ny, N2n?, compared to iNdetn“ for the Knowles-Handy algorithm.

Although the work done by this algorithm is basically equivalent to that
done in Olsen’s algorithm, Zarrabian et al. suggest!’*?!7 that their approach
would be better suited for the evaluation of three- and four-electron reduced
density matrices, which are important in the context of internally contracted
MR-CISD.!®! They also note that it should be possible to adapt their algo-
rithm to restricted CI spaces,*”?'7 and some work along these general lines
has been presented by Duch.?%

4.6 The Table-Based Algorithm of Bendazzoli and Evan-
gelisti

Using Handy’s alpha and beta string formalism,* along with some of the
notation of Olsen,*® Bendazzoli and Evangelisti have presented a full CI algo-
rithm?®4° which uses tables to represent the excitation operators E‘f; rather
than the string replacement lists of Knowles and Handy. The operation count
of their method is essentially the same as that of Olsen et al.*® and of Zarra-
bian et al.,*”?'” but the data are organized differently and the authors note
that their loop structure is more easily parallelized than that of Olsen et al.*6
The algorithm of Bendazzoli and Evangelisti*® for o; (which they call the 33
term), is presented in Figure 12. When M, = 0, o5 can be obtained from (118)
just as in Olsen’s approach.*6

The tables OOV'V represent the shift operator products EgE’fk; for a given
set of orbitals (i, j, k, 1), OOVV (i, j, 1, k) gives a list of all beta strings with or-
bitals ¢, j occupied and [, k unoccupied. This is the list of all strings which can
be acted on to the left by the shift operator product. Similarly, OOVV (L, k,%, )
gives a list of all strings which can be acted on to the right by this same prod-
uct. The clever aspect of this approach is that the I'th entry of OOVV (i, 4,1, k)
(denoted I;) is the same as the string produced by applying EﬁE]ﬂk to the Ith
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Figure 12: Bendazzoli and Evangelisti’s Algorithm for o, (Ref. 48).

loop over i > j,k > [
V = (iklsl) — (]k)
loop over I =1, length of list OOVV (i, j, k, 1)
I, = Ith entry of list OOVV (3, 7,1, k)
S = sign associated with /)
VS=Vx Sl
I, = Ith entry of list OOVV (I, k,1,7)
loop over J = 1, number of alpha strings
o(J\b)=0o(J, L) +c¢(J, 1)« VS
end loop over J
end loop over [
end loop over i, 5, k, [

element of OOVV (L, k,4,7) (denoted I). Bendazzoli and Evangelisti have so
far limited their attention to full CI; for restricted CI, the size of the lists
OV and QOVV will rapidly become large relative to the size of the CI vector
(sec. 4.9.4), so that these lists are probably appropriate only for full CI.

The o3 algorithm is presented in Figure 13. Note the same scatter/gather
structure as in Figures 9 and 22. Like our own version (cf. section 4.9.5),
this algorithm eliminates the F array and uses a DAXPY operation!® in the
innermost loop. Compared to the algorithm in Figure 22, our initial attempts
to implement this algorithm for o3 yielded a program running roughly 50%
slower on the IBM RS/6000 POWER2 model 3CT workstation.

More recently, Evangelisti, Bendazzoli, and co-workers have developed a
parallel implementation of their algorithm for the Cray T3D, a distributed
memory machine.?®3¢ The newest out-of-core version of their program allows
the CI and o vectors to be processed one symmetry block at a time. To avoid
storage of the diagonal of the Hamiltonian, they approximate it using orbital
eigenvalues. Following Olsen® (sec. 3.2.2), they minimize storage space by
using only one CI vector and one o vector in their iterative diagonalization
method, although the details of their iterative procedure differ somewhat from
those of Olsen and co-workers. In 1996, this parallelized version was used
on a 64-processor Cray T3D to obtain® the full CI wavefunction for Be,,
with all electrons correlated and using a 9s2pld basis (derived from a 4s2pld
ANO basis by uncontracting the primitive Gaussians corresponding to the
five largest coefficients in the first ANO orbital). This represents the first
converged CI calculation requiring more than one billion Slater determinants
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Figure 13: Bendazzoli and Evangelisti’s Algorithm for o3 (Ref. 48).
loop over k, 1

loop over I = 1, length of list OV (L, k)
I, = Ith entry of OV(l, k)
S2 = sign associated with I,
loop over J = 1, number of beta strings
C’(I, J) = C(IQ,J) * Sg
end loop over J
end loop over I

loop over 1, j
V = (ij]|kl)
loop over J = 1, length of list OV (i, j)
Ji1 = Jth entry of OV (4, )
Jy = Jth entry of OV (3, 1)
Sy = sign associated with J,
VE=V xS,
loop over I = 1, length of OV (I, k)
oI, o) =0'(I,J2) + (I, J;)*VS
end loop over I
end loop over J
end loop over i, j

loop I =1, length of list OV (I, k)
I, = Ith entry of OV'(l, k)
loop J = 1, number of beta strings
o(ly,J) =0'(1,J)
end loop over J
end loop over I

end loop over k, !
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(an unconverged calculation on the Mg atom involving more than a billion
determinants was reported in 1990 by Olsen, Jorgensen, and Simons®?).

4.7 Approximate Full CI Methods

In 1989, Knowles introduced® a modified full CI procedure which exploits the
sparsity of the Hamiltonian matrix and affords approximate full CI results at a
dramatically reduced computational cost. Employing the Davidson method®®
(cf. section 3.2.1), the correction to the current CI vector is given by

Tr

Acg=—1 .
" (E-Hp)

(134)
where 77 is the residual o; — E¢;. Knowles estimates the importance of these
corrections using the following simple expression inspired by second-order per-

turbation theory:
AE[ = T[AC[. (135)

If |AE;| is less than some threshold, Ac; is neglected. Thus far fewer de-
terminants are actually included in the correction vector, which is stored on
disk in a packed format. One problem with this approach is that neglected
corrections Acy can reappear during the standard Schmidt orthogonalization
against previous subspace vectors (cf. section 3.2). Knowles thus avoids the
Schmidt orthogonalization step and employs a non-orthogonal space of expan-
sion vectors. This allows for tight control over the size of the expansion space
vectors.

A potential difficulty of this approach is that the o vectors (which must also
be stored) are not necessarily sparse. Knowles notes®! that even when c is only
1% populated, typically 50% of o will be nonzero. Nevertheless, in order to
obtain variationally correct energies, the full & vector must be formed in core
memory and its dot product taken with all expansion vectors c. However, once
this is done, the only further use of & is in the construction of new subspace
vectors; hence, Knowles only writes to disk those elements of ¢ greater than
some threshold. According to (134)-(135), these neglected elements of o would
only contribute to elements of Ac which make very small energy contributions.

Given the Knowles-Handy full CI algorithm of section 4.3, it is clear that
the matrix formulation no longer applies with a sparse CI vector ¢. Instead, the
the formation of ¢ is driven from the list of nonzero elements in ¢, employing
scatter and gather operations to obtain some vectorization in the innermost
loops; this approach is therefore similar to the original string-driven approach
of Handy* or the subsequent algorithm of Olsen et al.%® To avoid core storage
problems, the exact ¢ can be formed one symmetry block at a time (where
a symmetry block of ¢ contains all elements o; having the same alpha string
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symmetry). Memory requirements can be further reduced, with some loss in
efficiency, by processing ¢ in smaller batches of arbitrary size.®!

Knowles and Handy demonstrated the power of this approach by estimating
the full CI energy of NH; in an atomic natural orbital (ANO) basis set of DZP
quality.?!® The full CI expansion contains more than 209 million determinants,
yet Knowles and Handy were able to obtain an apparently reliable variational
energy of -56.4235 hartree using a CI vector with only 665,247 nonzero elements
(0.3% of the full CI vector). Employing perturbation theory to estimate the
remaining energy error (presumably via equation 135), Knowles and Handy
arrived at a final estimate of -56.4236 3= 0.0001 hartree.?!8

Using perturbation theory to estimate the importance of determinants in
configuration interaction is a very old idea (see Ref. 57 for a detailed review).
Indeed, it is perturbation theory which provides the justification for truncating
the CI space at only singles and doubles from one or several references (i.e.,
the CISD and MR-CISD methods). The CIPSI method (1973) of Huron, Mal-
rieu, and Rancurel®® diagonalizes the Hamiltonian in some subspace of selected
determinants and uses the resulting eigenvector as the zeroth-order wavefunc-
tion in a subsequent perturbation theory treatment. Determinants having a
contribution to the first-order wavefunction greater than some threshold 7 are
added to the selected CI space, and this process is repeated until the selec-
tion threshold is considered acceptably small or until the selected CI space
becomes too large to handle. The effect of unselected determinants is evalu-
ated by second-order perturbation theory. The procedure of Knowles®:2!8 ig
similar to this, but differs in two important respects: first, Knowles selects de-
terminants based on a perturbative estimate of their contribution to the energy
rather than to the first-order wavefunction, and second, Knowles applies the
selection during the Davidson procedure, whereas CIPSI solves the CI prob-
lem exactly for each selected CI space. A more recent version of the CIPSI
method®® is somewhat more flexible and introduces a third class of determi-
nants of intermediate importance; interacting determinants with an estimated
CI coeflicient less than 7 but greater than a second threshold 7 can be treated
by higher-order perturbation theory or variationally, while those with contri-
butions less than 7 are treated by second-order perturbation theory as before.
The CIPSI scheme should yield wavefunctions approaching the full CI limit,
and indeed it has been benchmarked against full CI.93:122,123,215,219 The most
recent studies have added a self-consistent dressing of the Hamiltonian matrix
to ensure size consistency.1?%123

Another long-established approach to approximating full CI is to employ
successively larger MR-CISD spaces. Since the size of the CI space grows very
rapidly as the number of references is increased, Buenker and Peyerimhoff
(1974-5)'%11 guggested retaining only the most important singly and doubly
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substituted configurations and treating discarded configurations by Brillouin-
Wigner perturbation theory and extrapolation procedures; they call their pro-
cedure MRD-CL. Their strategy implies that the most compact wavefuntions
are obtained by truncating the singles and doubles space rather than the ref-
erence space, and indeed CIPSI studies support this idea.}?>2!% Unlike the
CIPSI method, Buenker and Peyerimhoff do not use perturbation theory in the
configuration selection; rather, orbital configurations are accepted or rejected
on the basis of the energy lowering they cause when added to the reference
space. A separate small CI procedure is required for each possible spatial or-
bital configuration. Although this may require somewhat more effort than the
perturbational estimates of CIPSI, the energy lowerings can be reused in the
extrapolations to zero threshold.}®!! Alternative approaches to making MR-
CISD more computationally tractable are the internal and external contraction
schemes discussed in section 2.4.2.

Knowles’ 1989 program®:2!® was able to approach the full CI limit more
closely than selected CI methods such as MRD-CI and CIPSI because it was
efficient enough to treat a much larger number of determinants variationally.
Subsequently in 1992, Povill, Rubio, and Illas noted®! that the principal diffi-
culty with the standard CIPSI program was its need to store the Hamiltonian
matrix H, allowing it to handle no more than 50,000 determinants variation-
ally. Hence, they presented?'® the direct selected configuration interaction
using strings (DISCIUS) algorithm employing the alpha and beta string formal-
ism of Handy;* the notation, (aa, 38, a8) spin decomposition, and M, = 0
simplifications of Olsen et al.;*6 and the reduced intermediate space of Zarra-
bian et al.*"-?'" Special ordering and addressing schemes, which make use of
large index arrays, allow for some degree of vectorization despite the lack of a
well-defined structure in the CI space.?'> Nevertheless, a more recent (1995)
version of this algorithm by Povill and Rubio?® largely abandons the vector-
ization of o3, noting that the average vector length for selected CI spaces is
generally too small for effective vectorization. These authors also found that
too much time is spent checking to see if doubly excited strings in the construc-
tion of o; or oy belong to the selected space; hence, they consider every pair
of allowed strings and determine all single and double excitations connecting
them. The DISCIUS algorithm is capable of treating selected CI spaces with
more than one million determinants.?20

A related algorithm, which has also been coupled to the CIPSI approach,
was presented by Caballol and Malrieu??! in 1992. Their approach is also direct
and determinant-based, but the strings are written as particle-hole excitations
from a single reference state; the program is named SCIEL, for selected CI with
excitation labeling. For a determinant with excitation level m, the particle-hole
labeling lists m holes and m particles. This is inefficient for full CI,?2! since
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it would require the listing of 2V, orbitals for a maximally-excited (m = N,)
alpha string, rather than only N, orbitals in the standard approach. However,
for CI spaces dominated by determinants with a relatively low excitation level,
this formalism could offer some benefits. Povill et al. have commented that
the DISCIUS and SCIEL programs seem to have similar efficiencies.!?2

Similar improvements have been made to the MRD-CI program of Buenker
and Peyerimhoff,!®»! which was previously limited to about 50,000 configura-
tions.??? In 1995, Krebs and Buenker presented??? a new table-direct CI al-
gorithm for use in the MRD-CI selection scheme which is capable of handling
variational spaces including at least several hundred thousand determinants.

Knowles’ 1989 sparse CI method has been the subject of additional study in
the last few years. In 1994, Mitrushenkov presented a very similar method'%?
which differs primarily in that it selects components of the CI vector based
on their magnitude (134) and not on their expected energy lowering (135).
This choice was motivated by the belief that it would yield more physical CI
vectors less likely to give errors for properties other than the total energy.!®3
Mitrushenkov described how to adapt Olsen’s full CI algorithm to implement
his approach, which he has called dynamic CI. Of particular interest is his
technique for avoiding core storage of the entire o vector: he calculates o (I, I5)
for a fixed Iy (i.e., the algorithm is driven by o rather than by nonzero elements
of ¢). The exact o values are used to update the Hamiltonian in the small
Davidson subspace, and then components larger than a given cutoff are written
to disk. Like Knowles, Mitrushenkov uses a nonorthogonal Davidson subspace;
however, he uses only two vectors and employs the improved preconditioner
of Olsen et al.8 (cf. section 3.2.2). Mitrushenkov reported results for NHj,
H20, and Mg test cases,'®® but unfortunately no results were presented for
systems where the exact full CI result was known (DZP NH; full CI results
have subsequently been reported,®®8 see below).

In 1991, Harrison emphasized the use of second-order perturbation theory
to approach the full CI results more rapidly.?”® In Harrison’s method, denoted
CI+PT, one chooses an initial reference space (perhaps a single determinant),
and an initial selection threshold . A CI is performed in the reference space,
yielding eigenvectors for all roots of interest. Unlike most of the other algo-
rithms discussed in this section, Harrison’s program employs CSFs rather than
determinants; two-electron coupling coefficients are evaluated as products of
one-electron coupling coefficients, which in turn are evaluated by the method of
Knowles and Werner!?? (see section 4.1). For every configuration I interacting
with (but not included in) the reference space, the second-order perturbation
theory energy contribution is determined for each of the desired roots &, using



