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the selected-space eigenvectors c* as zeroth-order solutions:

(I Ale*)

AEY = S
E* — (I|H|I)

(136)
The set of all configurations I with |AE¥| > n is added to the reference space,
and the new Hamiltonian is diagonalized; this process is repeated until no
new important configurations are found. The reference selection is thus self-
consistent, and Harrison notes??® that typically only two iterations are re-
quired. The sum of the estimated energy lowerings (136) provides a perturba-
tive correction for excluded configurations, and the total energy (variational
energy plus perturbative correction) is an approximation to the full CI energy.
An increasingly accurate sequence of wavefunctions is generated by repeating
this whole process for a series of thresholds 7 with decreasing values. Note,
however, that those configurations which do not interact directly with any
reference function are completely neglected. Although the individual contri-
butions of such configurations should be very small, there are a large number
of them. Harrison finds that the CI+PT method approaches the full CI en-
ergy from above, suggesting that the error due to the neglect of noninteracting
configurations is greater than the error due to the perturbative estimates of
configurations which are interacting but not included in the reference space
(the latter correction, being nonvariational, could conceivably lead to energies
below the full CI limit). Harrison’s approach is similar to the original two-
class CIPSI algorithm,®? but it selects references based on their contributions
to the energy rather than to the first-order wavefunction; Harrison notes that
for properties other than the energy, this might not be the optimal choice.??3
An advantage of his program was that it could handle larger variational spaces
than the versions of the CIPSI and MRD-CI programs available at that time
(recent improvements in these programs are described above). Results for H,O,
0, and O~ were compared to full CI and indicate that the perturbation theory
energy correction rapidly accelerates convergence to the full CI energy. For
example, the full CI energy for HyO at three different geometries was obtained
within 0.1 kcal mol~! with a variational reference space and perturbative in-
teracting space spanning less than 0.23% and 25%, respectively, of the full CI
space (these results correspond to a selection threshold of n = 4 x 1077).

The wavefunction operator (WFQO) approach of Luzanov, Wulfov, and
Krouglov (1992)??* seems to be the same as Harrison’s CI+PT approach, al-
though it is formulated differently and implemented using determinants. This
method appears to involve the same amount of work as other determinant-
based sparse CI methods,?%%20:22! but it uses rather different intermediate
arrays. Explicit algorithms for the WFO method were presented in 1996 by
Waulfov,??® who obtained results for HF dimer in a 4s3pld/2slp basis using a
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personal computer (PC) equipped with only 16 megabytes (MB) of RAM and
50 MB of disk space. The largest computation, with threshold = 1077, con-
sidered 65,751 determinants variationally and treated an unreported number
of interacting determinants perturbatively.

Perturbation theory corrections to variational energies have also been con-
sidered recently by Mitrushenkov and Dmitriev (1995),2'¢ who express the
second-order energy correction as

00(Ia, 15)[00(Jas Ip) — Eoco(la, Ip)]
AE =
gz:ﬂ Eo — H(Ia, Ip)

= (CO,ﬁAC), (137)

where ¢ is the current CI vector and Acy is the correction vector. The term
HD(I,, I,) is the diagonal element of the Hamiltonian for determinant |1, /p),
and the subscript sa indicates an average over all determinants with the same
spatial orbital configuration (cf. section 3.2.1). This correction is essentially
the same used by Harrison??® and others. Rather than employ this expression
exactly as it is, Mitrushenkov and Dmitriev note?'® that for a converged full
CI vector ¢ = ¢y + Ac, the full CI energy can be expressed as:

(Coa IA{C)
(CO) C)
Ey + (cq, fIAc)

- 1y (co,Ac) (138)

E =

Mitrushenkov and Dmitriev designate this the norm-consistent zero threshold
full CI estimate. When Ac is orthogonal to ¢, this is the second-order per-
turbation theory estimate (137). However, since selection in the dynamic CI
occurs during the subspace iteration process, Ac and c are not orthogonal. Of
course the exact og and Ac must be used in the evaluation of (138); these are
evaluated for fixed I as described above. Mitrushenkov and Dmitriev demon-
strated this zero threshold energy (ZTE) estimate for Ne, NH3, Mg, and H,O;
for Ne, comparisons with full CI indicate that the ZTE estimates approach
the correct energy much faster than the variational energies with respect to
decreasing threshold, but the approach is not monotonic and can occur from
below. Very recently, Mitrushenkov has extended this approach to perform
the dynamic CI+ZTE in the active space and to treat the external space using
only second-order perturbation theory,?2¢

In order to compare some of these selected CI methods, we present results
for DZP NHj; in Table 5. These results were obtained in point group C; with
the 1a’ core orbital frozen (i.e., constrained to remain doubly occupied). The
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Table 5: Selected and Full Configuration Interaction Benchmarks for NH; with

an ANO DZP Basis Set.®

Eci-  Npr Ecrypr-
Threshold NC[ EC] EFCI %108 ECI+PT EFCI
Knowles and Handy, Ref. 218:
2.0 x 104 171 867 -56.4219 0.0021 nfa -56.4220 0.0020
1.0 x 104 393 666 -56.4229 0.0011 n/a -56.4230 0.0010
5.0 x 1098 450 763 -56.4232 0.0008 n/a -56.4234 0.0006
4.0 x 1079 665 247 -56.4235 0.0005 n/a -56.4236 0.0004
Harrison, Ref. 223:¢
1.0 x 10~* 786 -56.390631 0.033376 0.61 -56.422854 0.001153
1.3 x 1073 1889 -56.411996 0.012011 1.04 -56.423766 0.000241
1.6 x 1078 5 814 -56.417497 0.006510 2.93 -56.423748 0.000259
3.9 x 1077 18 921 -56.420203 0.003804 5.92 -56.423719 0.000288
2.0 x 1077 32 288 -56.421211 0.002796 7.68 -56.423737 0.000270
Povill et al., Ref. 123:%
6.0 x 107%  1.00 x 108 -56.423659 0.000348 2.49 -56.423681 0.000326
0.4x107% 1.17x 105 -56.423785 0.000222 6.55 -56.423824 0.000183
0.1 x107% 1.25x 105 -56.423825 0.000182 15.10 -56.423875 0.000132
Mitrushenkov and Dmitriev, Refs. 183, 216:%¢
1.0 x 10-3 2 000 -56.4085 0.0155 n/a -56.42397  0.00004
1.0 x 10~* 34 000 -56.4195 0.0045 n/a -56.42392  0.00009
1.0 x 1073 590 000 -56.4235 0.0005 n/a -56.42400  0.00001

“Basis set and geometry of Ref. 218. Only valence electrons are correlated. N¢y

denotes the size of the variational space, and Npr denotes the size of the

interacting space treated by second-order perturbation theory. All energies are
given in hartree.
SNumber of nonzero elements in final CI vector.
“Dimensions are given in CSFs instead of determinants.
9The CIPSI algorithm nses two thresholds, 77 and 7. % is given, and 7 = 10710,
€Mitrushenkov reports the number of nonzero elements in the CI vector as a
percentage of the full CI space (209 626 425 determinants); the Ny values given
are thus only approximate.
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first highly accurate NH3; benchmark using a basis set this large was that
of Knowles and Handy in their 1989 demonstration of their new selected CI
method.?*® Hence, most subsequent selected CI benchmarks on this system
have used their geometry and atomic natural orbital basis set. An exception is
the wavefunction operator (WFO) benchmark,??* which employed a different
basis set; that method is therefore excluded from the table. The exact full
CI energy of NH;3 with this basis set was unavailable when these selected CI
benchmarks were published, and the Knowles-Handy?'® extrapolated selected
CI estimate of -56.4236 hartree has sometimes been used in place of the full
CI value. The apparent convergence of this estimate led Knowles and Handy
to propose error bars of £0.0001 hartree. However, in 1994 Povill et al.!?
used the 3-class CIPSI method® to select the most important 1.25 million
determinants and obtained a variational energy of -56.423825 hartree using
the DISCIUS algorithm.?*® This energy is lower than the lowest estimate of
Knowles and Handy, including the error bar. This difficulty was cleared up
in 1995 by Evangelisti et al.,”® who used the full CI program of Bendazzoli
and Evangelisti®®* to obtain an energy of -56.424007 hartree (this same value
was obtained independently by Olsen®). This demonstrates that the energy
of Knowles and Handy was not converged as tightly as expected, and that
it is easy to underestimate the importance of a large number of neglected
determinants.

The data in Table 5 show that the perturbation theory corrected energies
are better approximations to the full CI energy than the purely variational
results, and that the full CI energy is always approached from above; these
conclusions are in general agreement with previous benchmarks for smaller
systems.%216.223,22¢ However, we note that the perturbation theory corrections
become less effective for large variational spaces, and conversely, the CI+PT
energies are slowly convergent (and not monotonic) with the relatively small
CI spaces used in Harrison’s study®?® (note, however, that Harrison's Ng;
values are in CSF's rather than determinants, making his variational space
look smaller than it actually is). The norm-consistent zero threshold energies
of Mitrushenkov and Dmitriev?'® appear particularly effective, although they
do not approach the full CI energy monotonically.

Table 5 demonstrates that it is difficult to establish the convergence of the
energy for selected CI methods. Another problem which has received rela-
tively little attention is the convergence of properties other than the energy. It
would be expected that other properties should not converge as quickly with
respect to the size of the CI space as the energy (cf. section 2.2), particularly
for selected CI methods which use an energy selection criterion rather than a
coefficient criterion. However, a 1992 study by Cave, Xantheas, and Feller??’
used a selected CI method which is similar to the two-class CIPSI?? method but
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uses energy-based selection. These authors came to the remarkable conclusion
that most one-electron properties considered in their study (including isotropic
hyperfine values and dipole and quadrupole moments) converged even more
rapidly than the energy.?” Additionally, Wulfov??® has recently considered
the convergence of the equilibrium geometries and harmonic vibrational fre-
quencies of several diatomic molecules as a function of the selection threshold
value.224225 The convergence of these properties could not be firmly estab-
lished due to the lack of corresponding exact full CI values; however, a recent
full CI benchmark study by our group®®® on C; and CN7 finds only very small
errors in Wulfov’s best CI+PT geometries and frequencies (less than 0.001 A
and 4.0 cm™!, respectively).

4.8 Restricted Active Space CI

Rather than select individual determinants based on computational estimates
of their importance, one might instead select entire classes of determinants
which are expected a priori to be important based on their partitioning of
electrons among various orbital subspaces. This is the motivation behind the
truncation of the CI space according to “excitation level” (how many electrons
are placed in the virtual subspace) and the second-order CI (SOCI),!? which
includes all determinants with at most two electrons in the external subspace.
Such CI selection schemes were described in general terms by Shavitt,” who
defined the full class CI as one which partitions the orbitals into an arbi-
trary number of orthogonal subsets and includes all or none of the N-electron
functions which have a given partitioning of electrons among the subspaces.
As Shavitt points out, a full-class CI wavefunction is invariant to separate,
nonsingular linear transformations within any of the orbital subspaces.

A benefit of such class selection schemes is that the CI space exhibits a
regular structure which can be used to advantage in computational implemen-
tations. Additionally, it appears to be easier to gauge the general reliability of
wavefunctions obtained using class selection schemes as opposed to individual
selection. However, class selection methods will invariably include some less
important determinants and therefore cannot yield wavefunctions as compact
as those from an individual selection method.

A specialization of the full class CI which uses only three orbital subspaces
is the Restricted Active Space (RAS) CI approach introduced by Olsen et
al.* in 1988 along with the string-based full CI algorithm already discussed
(section 4.4). The three subspaces are labeled I, II, and III, and the CI space
is limited by requiring a minimum of p electrons in RAS I and a mazimum of
g electrons in RAS IIT (cf. Figure 14). There are no restrictions on the number
of electrons in RAS II, and thus it is analogous to the complete active space
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(CAS). There may be an additional frozen core subspace in which each orbital
is constrained to remain doubly occupied; these core electrons and orbitals
need not be treated explicitly in the RAS procedure (cf. section 2.4.7). The
full CI space may be obtained as the maximum limit of the RAS space. The
focus of Olsen’s paper was on the utility of the RAS method in limiting the
size of CI calculations, but thus far its maximum impact has been on the
development of determinant-based full CI algorithms.83183

Figure 14: Orbital partitioning and configuration selection in the Restricted
Active Space Configuration Interaction method. The CI space includes all
determinants in which at least p electrons are in RAS T and at most g electrons
are in RAS 1II.

RAS III { _ } max g electrons

RASI {:}

RASI e min p electrons
e

Any CI space truncated according to excitation level may be formulated
within the RAS CI framework: the occupied orbitals are placed in RAS I,
and the unoccupied orbitals are placed in RAS III, and the RAS II subspace
is absent. The maximum number of electrons in RAS III is set equal to the
maximum excitation level, and the minimum number of electrons in RAS I is
simply the total number of electrons N minus the maximum excitation level.
A full CI can be obtained by applying trivial restrictions, such as a minimum
of zero electrons in RAS I and a maximum of N electrons in RAS III.

One may also formulate excitation class selected MR-CI spaces within the
RAS framework. A SOCI can be obtained by setting RAS I equal to the active
space, deleting RAS II, allowing a maximum of two electrons in RAS III, and
requiring a minimum of N — 2 electrons in RAS I. Alternatively, this same CI
space may be constructed by placing the virtual orbitals of the active space
in RAS II, allowing a maximum of two electrons in RAS III, and requiring
zero electrons in RAS I. To obtain the CISD[TQ] wavefunction mentioned in
section 2.4.2, one places occupied orbitals in RAS I and virtual active space
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Figure 15: Two formulations of the SOCI wavefunction within the RAS CI
method.

111 {:} max 2 111 {:} max 2
_ I {:}
I = min N — 2

2 {ﬂ}
LL_ I e min 0
N

orbitals in RAS II. A maximum of two electrons are allowed in RAS III, and
a minimum of N — 4 electrons are required in RAS I (cf. Figure 16). Some
possibilities of extending the RAS selection scheme are discussed in section
4.8.3.

Figure 16: Formulation of the CISD[TQ] wavefunction within the RAS

method.
111 { : } max 2

I N min N — 4
N

The RAS CI algorithm of Olsen et al.*® relies on Handy’s separation of de-
terminants into alpha and beta strings (cf. section 4.2). As in other determinant-
based CI methods, the determinants are restricted to those having a given value
of M,. Since the number of electrons N is also fixed, this means that the alpha
and beta strings always have constant lengths of N, and Njg, respectively. For
a full CI, one forms all possible alpha and beta strings for a given N, and Npg,
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and the determinants employed are all possible combinations of these alpha
and beta strings. In a RAS CI wavefunction, the CI space is restricted in
two ways: first, not all alpha and beta strings are allowed, and secondly, not
all combinations of alpha and beta strings to form determinants are accepted.
This is best understood from an example: consider the case of 6 orbitals, with
N, = N = 3. If orbitals 4, 5, and 6 constitute RAS III, with a maximum
of 2 electrons allowed, then clearly alpha strings such as a];aa]:,aa};a are not al-
lowed. Similarly, even though a{aalaaga and al{ﬁalﬂa;ﬂ are allowed alpha and
beta strings, these strings cannot be combined with each other because the
resulting determinant would place four electrons in RAS III.

If the CI coefficient vector is viewed as a matrix, ¢(/,, Ig), then these re-
strictions, as well as those due to point-group symmetry, can be implemented
by allowing only certain blocks of ¢ to be nonzero. If strings with the same
irreducible representation are numbered consecutively, then only those blocks
of the CI coefficient matrix with the correct overall symmetry (determined as
the direct product of the alpha and beta string irreducible representations)
are allowed to be nonzero. For the RAS restrictions, it is convenient to assign
a particular code to each alpha and beta string which represents the distri-
bution of electrons among the RAS orbital subspaces. This means that the
allowed combinations of strings may be determined directly from their respec-
tive codes. In Olsen’s nomenclature,’® these codes correspond to different
string graphs; string representation and addressing is discussed further in sec-
tion 4.9. If strings with a given code (or within a given graph) are numbered
consecutively, then the allowed combinations of strings become allowed sub-
blocks of the symmetry blocks in the CI coefficient matrix. These are referred
to henceforth as the RAS subblocks. For a full CI, one can group all strings
belonging to the same irreducible representation in the same graph, so that
the RAS subblocks are the same as the symmetry blocks.

4.8.1 RAS CI ¢ Equations

The products of shift operators in equations (113) and (114) mean that some
alpha/beta strings can contribute to the o vector even if they are not necessary
to describe the CI space. Therefore the string lists must include all valid
strings and all the singly substituted strings derived from them. For a full CI,
all possible strings for a given number of alpha/beta electrons are allowed, so
all singly substituted strings are automatically present. For a restricted CI,
however, including all singly substituted strings is an ineflicient procedure.
Olsen et al. showed*® how to eliminate the contributions from these “out-
of-space” strings for the case of a RAS CI wavefunction. Since the equation for
o3 (115) contains no products of shift operators, only oy and o, can contain



Configuration Interaction Method: Advances in Highly Correlated Approaches 221

contributions from out-of-space strings. Moreover, since o, is analogous to
o1 (and can be derived from it for M, = 0 cases), it is sufficient to focus on
o1. Olsen’s approach is to change the sum over 4, 7, k,! into a restricted sum,
(i) > (kl), where (ij) and (k!) are canonical indices defined as

(i§) = in + j, (139)
if there are n orbitals and the numbering starts from zero. Consider the term

> (BURESELB(Ip)) (i |kl (I, Jp).- (140)

Ja (25)2(kl)

An out-of-space string Kj can only contribute if it is produced by E5|3(I5)),
and if Ef; transforms it back into an allowed string (Jp). But if the orbitals
are numbered consecutively within each RAS space, and if equation (139) is
used to define the canonical index (i5), such contributions are impossible. For
example, consider the case where a maximum of two electrons are allowed in
RAS III. If string I already contains two electrons in RAS III, then a single
replacement EZ|3(I)) which promotes a third electron to RAS III will yield
an out-of-space string. The shift operator Ef; could produce an allowed string
again if it moves any of the three electrons in RAS III back down into RAS I
or RAS II. However, if the summation over orbitals is restricted to (35) > (kl),
this is impossible, since k > 1.
Using the commutation relationship

[ 15 Elcl] = 61&:1 il 5zlEk]’ (141)
one can rewrite (113) to employ this restriction. The result’® is
o1laIp) = 3 Y {B()IEQIBUIs)) guuelLas J5) (142)
Jg ki

+ Y 3 (BUIB)ESELB(Is)) i1kl (T, ) (1 + 8 em)

Ja (5)=(k0)

where g is an asymmetric matrix defined as

hit = X<k (k3li0) — (kEIKD (1 +6u)7" k21 (143)
bt — X<k (Kjl30) k<l

Gkt
4.8.2 Algorithms for Computing ¢

The full CI algorithms must be modified to treat the more general RAS case.
Most significantly, the oy and o, equations for RAS CI spaces differ from
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the full CI equations: (142) requires that the summation over orbitals obey
(1j) > (k1) (recall that introducing this restriction into the full CI algorithm is
one way to reduce effort when M; = 0). The other required modification is that
the innermost loops must sum over allowed combinations of alpha and beta
strings only. For instance, the loop over I, near the end of the oy algorithm
in Figure 7 must be split into two loops: one over alpha string graphs, and
another over strings within each graph. This allows for the sum over Jz to run
over only those beta strings which are allowed to combine with strings from
the current alpha string graph. Similar modifications must be made to the g9
and o3 algorithms.

It is perhaps not entirely obvious what is the most efficient way to adapt
Olsen’s algorithms to account for point group symmetry and RAS restrictions.
Although it is a relatively simple matter to introduce a loop over graphs in
the multiplication of F' by ¢ or ¢/, it is also necessary to introduce loops over
graphs in earlier parts of the algorithm; otherwise, F' can contain irrelevant
entries. When the CI vector is processed a symmetry block at a time or a RAS
subblock at a time, it seems best to place these loops over graphs within the o,
02, and o3 routines. However, when the CI vector is processed a RAS subblock
at a time, these loops over graphs may be placed outside the o subroutines.
Further details are presented in section 4.9.

4.8.3 Beyond RAS: More Flexible a priori CI Space Selection

Although many useful CI spaces can be obtained in the RAS CI method, it
may nevertheless be beneficial to employ more complex CI spaces. Olsen has
begun to investigate CI spaces formed as the union of two RAS spaces,’® while
we have considered the addition of another orbital subspace.'® As first pointed
out by Grev and Schaefer,'® the most weakly occupied CISD natural orbitals
contribute almost exclusively to singly and doubly substituted configurations,
rather than to triples, quadruples, etc. This suggests the utility of extending
the RAS method to include another orbital subspace, formed from the most
weakly occupied natural orbitals. Labeling this new orbital set as “RAS IV”
may be somewhat misleading, in the sense that the orbital index restriction
(¢4) > (kl) is no longer sufficient to remove out-of-space contributions from
(142): we have alternatively referred to this new orbital set as the “tertiary
virtual subspace”.!®

Let us assume that the occupied orbitals are collected in RAS I, and that
if an electron occupies RAS IV, the determinant must represent a single or
double substitution of the reference determinant. Out-of-space contributions
arise if one electron occupies RAS IV and another electron occupies RAS II
or RAS IIT: such strings are allowed, but the promotion of another electron
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from RAS I results in a disallowed string |3(Kp)) = E5|8(I5)). Application of
the other shift operator in the oy equation, Ef;, can result in an allowed string
|8(Jp)) with (i5) > (k) if the electron in RAS IV is moved into one of the lower
RAS subspaces, as long as it occupies an orbital ¢ > k. Thus it is necessary
to include in the string space all allowed strings, plus the disallowed strings
which have one electron in RAS IV and two electrons in (RAS II + RAS III).
Once these strings are included, the RAS ¢ equations can be used for o; and
02. As in the standard RAS method, no out-of-space strings can contribute
to 03. By definition, the out-of-space strings are not allowed to combine with
other strings to form RAS subblocks of the ¢ or o matrices. Alternatively, in
some cases these out-of-space contributions might be dealt with by employing
the (IV — 2)-electron reduced space of Zarrabian et al."2!7 (cf. section 4.5).

4.9 Implementation of Determinant-Based Algorithms

In this section we discuss some of the practical issues relevant to the actual
implementation of the determinant-based CI algorithms. We also describe our
experience with our own fully direct CI program, DETCI, which is capable of
evaluating any CI wavefunction which can be formulated as a RAS CI, subject
to memory and disk limitations. This program is based in part on the alpha
and beta string formalism of Handy** and the algorithms of Olsen et al.%6:83
It has been modified to allow more complex CI spaces, as described in sections
4.8.3 and 5.4.

Qur program requires at least two memory buffers for CI vectors, where
a buffer can be either the length of the entire vector, or a spatial symmetry
block, or a RAS subblock. Using the fastest algorithm, the program also re-
quires a smaller memory buffer to hold a portion of the CI coefficients in a
given RAS subblock. An additional buffer the size of the largest RAS sub-
block may also be required for taking transposes of the ¢ subblocks if M; =0
symmetry is employed (this is determined by the core memory option, and if
possible the same buffer is used for transposes and gathered CI coefficients).
For diagonalizing the Hamiltonian, we have implemented many of the iterative
methods described in section 3.2.

4.9.1 Graphical Representation of Alpha and Beta Strings

As discussed in the previous section, it is necessary to have a method for
numbering the alpha and beta strings and a reasonable way of grouping these
strings together so that allowed combinations of strings can be determined a
group at a time. Olsen et al. use a graphical method to compute string ad-
dresses, and they group strings together by placing them on the same graph.*6
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We have employed a similar method.

The present approach is based on the work of Duch, who has described?*0
the graphical representation of CI spaces in considerable detail. First, we
consider the simple two-slope directed graphs (“digraphs”) which represent
alpha or beta strings without consideration of point group symmetry. Figure 17
presents a digraph representing all strings with five electrons in seven orbitals.
Each string is represented by a “walk” on the graph, from the head (at e =0 =
0) to the tail (at e = Ny/g, 0 = n). Moving straight down from vertex (e, 0)
to vertex {e,0+ 1) indicates that orbital o + 1 is unoccupied in the current
string, while moving down diagonally from vertex (e, 0) to vertex (e+1,0+1)
indicates that orbital o+ 1 is occupied. Each vertex on the graph is assigned a
weight z(e, 0), and each arc connecting two vertices is assigned an arc weight
Y (e, o) for the arc leaving vertex (e, o). Since, in general, two different arcs can
leave a given vertex, we write Y;(e, 0) for the arc originating from vertex (e, o)
which leaves orbital o + 1 unoccupied, and Y; (e, o) for the arc which occupies
orbital 0 + 1.} The index or address of a string or walk is obtained by adding
weights for each arc contained in the walk, i.e.,

I(L*) = X(L*) + XH: Y. (e, 1), (144)
i=0

where L; is the occupation (0 or 1) of the ith arc, and (e;, ¢) are the coordinates
of the vertices crossed by L*. The term X (L) gives the offset of a given graph,
if more than one graph is employed. The relative index for a determinant in a
block may be given by I(L%, L?) = I,(L*)Ss+ I5(LP), where Sg is the number
of beta strings in the block.

There are several different methods for assigning the arc weights by which
one evaluates the index of a string according to equation (144). Under the
lezical ordering scheme, the tail (N,,n) of an alpha string graph is assigned a
weight z = 1. Other vertex weights are computed according to the recursive
formula

z(e,0) =z(e+ 1,0+ 1)+ z(e,0+1). (145)

Using lexical ordering, typically all arc weights Yy(e, 0) are set equal to zero,
and the arc weights Y (e, 0) are determined according to

Yi(e,0) =z(e+ 1,0+ 1) +z(e+1,0)+ - +z(e+1l,e+1). (1486)

Figure 17a features vertex and arc weights computed in this manner. A result
of the lexical ordering scheme is that paths with a fixed upper part and an

}This differs somewhat from Duch,?*® who sometimes uses Y (e, 0) to denote the arc
entering vertex (e, 0) in reverse-lexical addressing.
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Figure 17: Alpha string graph for n, = 5,n = 7. Vertex weights are de-
termined according to lexical ordering, and arc weights are given so that the
rightmost path has index zero. (a) All unoccupied arc weights Yy(e, 0) are
zero. (b) All occupied arc weights Y;(e, 0) are zero.

(a) (b)
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arbitrary lower part have consecutive indices. The particular choice of Y values
above is appropriate if the rightmost path is to have an index of zero. The
same effects can be achieved using

Yi(e,0) = 0 (147)
Yo(e,0) = z(e+1,0+1), (148)

as illustrated in Figure 17b. Any walk has the same index in Figures 17a and
17b. For instance, the walk a},al,al,al,al, has an index of 54+4+3+2+2 = 16
(equation 144) from Figure 17a, and an index of 15+ 1 = 16 from Figure 17b.
In the so-called “reverse-lexical” ordering scheme, all upper paths for a
fixed lower path have consecutive indices. Vertex weights are now determined

as
Z(e,0) = Z{e,0— 1) + (e — 1,0 — 1), (149)

where the overbar indicates reversed-lexical ordering. Figure 18a depicts a
reversed-lexical graph with all non-occupied orbital arcs set to zero. The oc-
cupied orbital arcs are computed as

Yi(e,0) = Z{e + 1,0). (150)

Figure 18b is the same except that now all occupied arcs have weights of zero.
The non-occupied arc weights are

Yo(e,0) = Z(e,0) +Z(e+ 1,0+ 1)+ -+ FZN—-1,0+ N—-e—1). (151)

Note that string indices for reverse-lexical ordering are not necessarily the
same as indices for lexical ordering. For the string a},al,al,al,al, considered
previously, the index is calculated as 1 + 1+ 1+ 1+ 6 = 10 from Figure 18a,
or as 5 + 5 = 10 from Figure 18b.

The arc weights given in Figures 17 and 18 cause the rightmost path to
have an index I(R,,) = 0. If we change the arc weights so that the leftmost
path has index I(L,;) = 0, we obtain four more addressing schemes. The two
simplest schemes for I(L,,) = 0 are

Yo(e,0) =0 Yi(e,0) =z(e,0+1) (152)
Yi(e,0) =0 Yy(e,0) = Z(e — 1,0) (153)

where the overbars indicate that reversed-lexical vertex weights have been
used. Alpha strings for 5 electrons in 7 orbitals employing these addressing
schemes are depicted in Figure 19.

If we add another coordinate I' to each vertex, we can extend these simple
digraphs to include point group symmetry. However, this procedure is not
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Figure 18: Alpha string graph for n, = 5,n = 7. Vertex weights are deter-
mined according to reverse-lexical ordering, and arc weights are given so that
the rightmost path has index zero. (a) All unoccupied arc weights Yy (e, 0) are
zero. (b) Occupied arc weights Y (e, o) are set to zero.

(a) (b)
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Figure 19: Alpha string graph for n, = 5,n = 7, with arc weights determined
so that the leftmost path has index zero. (a} Vertex weights for lexical ordering,
and arc weights according to Ys(e,0) = 0, Yi(e,0) = z(e,0+1). (b) Vertex
weights according to reverse-lexical ordering, and arc weights according to
Yi(e,0) = 0, Yy(e, 0) = Z(e — 1, 0).

@) )
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really necessary as long as strings with different irreps are placed on different
graphs. These two-slope digraphs are actually simpler versions of the four-slope
digraphs first used by Shavitt to compute the addresses of configuration state
functions (CSFs) in the graphical unitary group approach.*’ The indexing
scheme used by DETCI is the reverse-lexical ordering with all unoccupied arc
weights set to zero, as depicted in Figure 18a. Olsen et al.*® use the lexical
ordering of Figure 17a.

In order to make the CI coeflicient matrix block diagonal according to
irreducible representation, it is necessary to number the strings consecutively
within each irrep. This is accomplished by grouping strings with the same
irrep into the same graph. For RAS CI spaces, it is also useful to number the
strings such that only certain subblocks of each symmetry block are nonzero.
This is accomplished by forming a different string graph for each different
distribution of electrons among the RAS subspaces; for example, all strings
with irrep a; having four electrons in RAS I and two electrons in RAS III are
grouped together, whereas strings with irrep a, but five electrons in RAS I and
one electron in RAS IIT are grouped together in a separate graph. In this way,
the allowed combinations of strings become allowed combinations of graphs,
and each allowed pair of alpha and beta graphs becomes a RAS subblock.

4.9.2 Nongraphical Methods for String Addressing

In their full CI program, Bendazzoli and Evangelisti*®*® dispense with the
graphs entirely and compute string addresses directly from their bit patterns,
with one bit for each orbital; set bits (ones) represent occupied orbitals. Strings
of N, ones and n— N, zeroes are a common representation of the combinations
of n objects taken N, at a time, and there exist standard numerical methods
of computing lexical addresses for such bit patterns.?!

Knowles and Handy present an explicit formula for computing a string’s
address from a list of its occupied orbitals.!®® They employ an auxiliary array
defined according to

20 = 3 [(yhoy) - (W750s)

m=n—1
n—-N+k>I>kk<N-1
Zk,) = 1+1—-N nz2l>N;k=N-1 (154)

where k labels electrons, ! labels orbitals, n is the number of orbitals, and N
is the number of electrons (we have modified the equation so that electron and
orbital numbering starts from zero). The address of a string is then computed
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according to:
Na-1

Ia = Z Z(Z, ¢z) (155)
i=0

Unfortunately, generalizing this formula to assign consecutive indices to strings
with the same irrep becomes complicated. Bendazzoli et al. note that, since
their strings are generated in the desired order, they can write the string’s
address to intermediate arrays and thus obviate the need to compute string
addresses on-the-fly. Such considerations are also true of Olsen’s program and
of ours. However, storing all strings with their single replacement information
can require a very large amount of memory, as discussed in section 4.9.4. In
this case, it becomes useful to compute string addresses on-the-fly as rapidly
as possible.

If only occupied orbitals are assigned arc weights in the graphical procedure,
it is possible to obtain an equation similar to (155), but using the graphical
numbering scheme instead of the Knowles-Handy numbering. This is easily
seen by comparing equation (155) to equation (144) when only occupied arcs
have nonzero weights:

No—1
L(L%) = X(L%) + 3 Y(i,6). (156)

i=0

This method of evaluation can be very efficient if the matrix ¥ (with dimen-
sion N, x n) is stored for each of the string graphs. The memory requirement
for this approach will generally be manageable, and far preferable to storing
the string replacement lists or Bendazzoli and Evangelisti’s OV and OOVV
lists.*®4° In the worst case, each excited string would then require N, matrix
lookups and (N, — 1) additions to determine its address. However, note that a
single excitation changes the occupancy of perhaps one and at most two RAS
subspaces. It can be seen from eq. (156) that the contribution of unchanged
RAS spaces to the string address are constant and need only be computed
once. Graphically, this means that certain RAS spaces are traversed by the
same segment of a walk. Finally, unless fast access to the arc weights is re-
quired, it is preferable to keep the arc weights and other graph information in
a compact form which stores only allowed vertices.

4.9.3 Example of CI Vector and String Addressing

This section applies the CI vector and string addressing methods just discussed
to the specific case of a CISD for H,O in a minimal basis. Assume that the
calculation is performed in Cj, symmetry, and that the core orbital has been
frozen. The orbitals are then ordered according to Figure 20. Note that the
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Figure 20: Orbital ordering for minimum basis CISD H,0 in Cs, symmetry.

RAS III { — } 2823
t 3 (1by)
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Table 6: Allowed strings for minimum basis CISD H;0 in Cy, symmetry.
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frozen core orbital is not assigned a number by DETCI because the frozen core
electrons are treated implicitly (cf. section 2.4.7).

The distribution of electrons among RAS subspaces can be determined
simply from the number of electrons in RAS III, since there are only two RAS
subspaces in this particular example. For a given string, there can be 0, 1, or
2 electrons in RAS III, and since there are four irreps in Cy,, there can be up
to twelve string graphs. For this closed-shell case, the same set of graphs can
be used to represent both alpha and beta strings. Table 6 lists all 15 allowed
strings. Note that some strings transform as a, even though there are no a,
orbitals; as a general rule for larger cases, strings are almost evenly distributed
among irreps. The strings in Table 6 are listed in increasing index order. For
the few graphs containing more than one string, it is straightforward to verify
using the techniques of section 4.9.1 that the relative addresses within the
graph are in the order shown if reverse-lexical ordering is used.
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Table 7: Single replacement list, for the first string in minimum basis CISD
H;0. J¢ is the graph of the target string and J is the target string’s relative
index.
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As discussed later in section 4.9.4, it is necessary to compute lists of all
singly excitations from each string. These excitations can be written in the
form |a(J,)) = sgn(ij)E{’an(Ia)), and for each string I,, the lists need to
contain the address of J,, the sign, and the pair of orbitals ij. The string
replacement lists for string 0 are given in Table 7.

Finally, it is helpful to show how this string ordering determines the ad-
dressing of the CI vector. There are two restrictions on the pairing of alpha
strings with beta strings: first, the direct product of the two string irreps must
be the irrep of the electronic state of interest (a;); second, the total number
of electrons in RAS III must be two or less. Due to the arrangement of the
graphs, these restrictions can be satisfied for pairs of graphs rather than for
pairs of strings. Each allowed pair of graphs becomes a RAS subblock. Table
8 lists the allowed RAS subblocks. An interesting feature of this unusually
small CI space is that not all allowed strings contribute to allowed determi-
nants: there are no beta strings which can be combined with alpha strings
from graphs 1, 6, or 8 which give allowed determinants.

4.9.4 String Replacement Lists

One of the first steps in implementing Olsen’s algorithm is the construction of
string lists which hold the information needed to generate all single replace-
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Table 8: Allowed RAS subblocks for minimum basis CISD H,O.

Block o Graph (3 Graph Dets

0 0 0 1
1 2 2 1
2 2 3 3
3 2 4 2
4 3 2 3
5 3 3 9
6 4 2 2
7 3 ] 9
8 7 7 1

ments for each string; for example, |3(J3)) = sgn(ij)E',-ﬂjW(Ig)) in Figure 9.
For each excited string, one needs 4, j, (or a composite index ij), the string
address Jg, and sgn(i7), which tells whether E,/; sends 3(I;) into plus or minus
B(Js). The sign is most easily derived using the rules of second quantization,
recalling that the phase convention is defined by always listing alpha/beta
strings according to increasing orbital number (cf. section 4.2). Note that the
equations require the inclusion of operators Ej;, which might not normally be
considered “single substitutions.”

In the innermost loop of Olsen’s o3 algorithm, V(1) = X2, F(Jg)c(1, Jg),
the summation should be restricted to only allowed pairs of strings (I, Jg).
If loops over graphs are introduced, then one loops over J, belonging to a
given alpha string graph (J¢) and Js belonging to a given beta string graph
(J3), where (J§,J3) is an allowed combination of graphs. Now the problem of
summing over all substituted strings becomes one of summing over all substi-
tuted strings belonging to a given graph. Thus DETCI divides the list of single
replacements into multiple lists, one for each target graph. A counter array
is used to store how many singly substituted strings there are for each graph.
For a large number of graphs (there can be several hundred), this method of
storage can be very memory intensive, since the number of pointers for each
string is proportional to the number of graphs; however, this method also pro-
vides very fast access to the relevant replacement information in the innermost
loops.

It is important to point out that the string lists can become very large if
there are more than a few thousand strings. For a full CI, the number of strings
is approximately equal to the square root of the number of determinants, so
quite large full CI spaces can be described using only a small number of strings.
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Table 9: Number of strings and determinants for selected CI problems.

CI problem Fzc Strings Dets Str/Det
cc-pVDZ+ Nefull CI* 0 8 568 9185280 9.3 x 10~¢
DZ H,0 full CI 0 2002 1002708 2.0x 103
DZ H,0 full CI 1 715 128 829 5.5 x 1078
DZP H,0 CISDTQ 1 10 626 558 823 1.9 x 1072

1
1
1

DZP H,0 CISD[TQ]” 4 326 78 895 5.5 x 1072
DZP H,0O CISDT 5 781 50 187 1.2x 107!
DZP H,O CISD 1221 2349 5.2x 107!
2Using the basis set of Koch et al.”

bThe RAS II space consists of the 2bp,4a;,2b1, and 5a; orbitals.

However, it is perhaps not well appreciated that for RAS CI spaces, the number
of strings can grow much faster with the number of determinants: this is
illustrated in Table 9. Such considerations indicate that any method of storing
the string replacement lists whose memory requirements are proportional to
the number of strings (with a large coefficient, no less) is unmanageable for
large-scale RAS CI procedures.

If the number of determinants remains much larger than the number of
strings for a given case, one might consider storing the string lists to disk and
loading them as needed. Indeed, such an approach would probably work in
conjunction with the o3 algorithm. However, this strategy is not amenable
to the oy algorithm as implemented by Olsen et al.,*® because one must con-
sider single replacements from all graphs which can be reached from the graph
containing the strings Is. It seems preferable to form the string replacement
information on-the-fly. A prototype method for doing this exists in DETCI, but
it is inefficient: walking down graphs to add up arc weights is rather slow with
our current storage scheme for the graphs. However, if the arc weights are
stored in a slightly different format, it is possible to compute string addresses
much more quickly; indeed, it is possible to compute addresses a RAS space at
a time, meaning that arc weight contributions from RAS spaces with fixed or-
bital occupancies are constant. This strategy was discussed in section 4.9.2 and
is currently being implemented in DETCI. Another option is to use an entirely
different implementation for restricted CI where storage of string replacement
information becomes a problem. Malmqvist et al.® have implemented RAS CI
using a split-graph unitary group approach, and this algorithm may be more
efficient for CI spaces which are not close to the full CI.
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4.9.5 Algorithms for 0, and o3 Used by DETCI

Assuming that the string replacement lists are available in-core, the algorithms
used by our program for computing o3 and o3 (simplified somewhat for clarity)
are presented in Figures 21 and 22 for the case in which o is computed a RAS
subblock at a time, where the loops over combinations of strings allowed by
symmetry and CI space restrictions are placed outside the o5 and o3 subrou-
tines. The symbol « in Fig. 22 represents an irreducible representation of the
molecular point group. These are the same algorithms used by our program
for full CI; if enough memory is available to hold a symmetry block of ¢ and o
in core, then the RAS subblocks are the same as the symmetry blocks for a full
CIL. Otherwise, one can use a larger number of string graphs and smaller sub-
blocks. For M, = 0 cases, it is possible to compute only the lower (or upper)
triangle of ¢, according to (119). Thus only one of each pair of off-diagonal
subblocks is determined explicitly. For diagonal blocks, (119) is used to im-
pose the restriction (zj) > (ki) in the evaluation of o3 (cf. section 4.4.2). In
FORTRAN, presumably it is best to eliminate redundant subblocks from the
upper triangle, since blocks with only a few rows will typically be found in the
upper triangle (assuming that larger indices are assigned to strings with more
electrons in RAS III): these blocks do not vectorize well due to short vector
lengths. In C, exactly the opposite holds: it is presumably most efficient to
eliminate the lower triangle subblocks. However, it is also true that longer
vector lengths require more time to set up the lists L, R, and Sgn.

The signs are actually taken care of by very fast bitwise logic operations.
04 is computed instead of o, because the preferred direction of vectorization
is reversed in ¢ as compared to FORTRAN. In the present context, this means
that the step [o3(Zq, I5) = 09(La, Ig) + F(Jo) x¢(Ja, Ig)] is performed with unit-
stride access to o, and ¢. Note that this is in fact a DAXPY operation, which
could be performed by calling the daxpy function from the BLAS library. For
the IBM RS/6000 POWER2 implementation, calling the BLAS library from
the oy or o3 routines resulted in no real savings. In fact, this slowed down
the o3 subroutine, presumably due to the overhead of placing the function call
within nested loops.

Note that the o, routine is actually quite close to Olsen’s g1 routine (swap-
ping alphas for betas, of course), except that the adaptation to point group
symmetry and RAS restrictions is now explicit. The o3 routine is also similar
to Olsen’s (with alphas swapped for betas), although the intermediate vector
F has been eliminated (see below). Note that this particular version of the o3
routine takes advantage of the (i5) > (k) simplification possible for M, = 0
cases; this restriction cannot be used for off-diagonal RAS subblocks if only
unique subblocks of o are computed.
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Figure 21: DETCI algorithm for o,.

Enter subroutine for block (I, I§) of o3 and block (J3, I§) of ¢
loop I, = 1, number of strings in I, graph IY
zero F(Jg)
loop over alpha string graphs K¢
Kent = ent(l,, K3)
Kidz = idz{l,, K3)
Kij = ij(Ia, K2)
loop K =1,Kent
kl = Kij(K)
K, = Kidz(K)
S = sign associated with K,
if (K3 = J2)
F(K,) = F(K,)+ S * h(kl)
Jent = ent(Kq, J9)
Jidz = idz(K,, J9)
Jij = ij(Ka, J2)
loop J =1, Jent

Jo = Jidz(J)
S, = (sign associated with J,) * .S;
ij = Jij(J)

F(Ja) = F(Jy) + 0.5 % (ij|kl) % Sz
end loop over J
end loop over K
end loop over K2
loop J, = 1, number of alpha strings in Jg
if (F(J,) = 0) skip to next J,
loop I = 1, number of beta strings in Iz graph I}
02(Ia, Ig) = 02(la, Ip) + F{Ja) * &(Ja, I)
end loop over Ig
end loop over J,
end loop over I,
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Figure 22: DETCI algorithm for a3.

Enter subroutine for block (I3, I§) of 3 and block (J3, Jg) of ¢
loop over ij
if (v(i) ® 7(7)® 7(J§) ® v(I§) # 0) skip to next 1
jlen = form list(I3, J§, ij, L, R, Sgn)
if (jlen = 0) skip to next ij
loop I, = 1, number of alpha strings in I3
loop J =1, jlen
¢ (I, J) = c(Iy, L(J)) * Sgn(J)
end loop over J
end loop over I,

loop I, = 1, number of strings in graph ¢
Jaent = ent(1y, J9)
Jaidr = idz(I,, J9)
Jaij = 4j(la, J9)
zero V
loop Ja =1, Jacnt AND ((kl = Jaij(Ja)) <= ij)
Jo = Jaidz(Ja)
Sy =sign associated with J,
VS8 =0.5x% 5,'3',“ * (’L]|kl) * Sl
loop Jb =1, jlen
V(Jb) =V (Jb) + VS * ' (Ja, Jb)
end loop over Jb
end loop over Ja

loop Jb =1, jlen
o3(la, R(Jb)) = o3{la, R(Jb)) + V(Jb)
end loop over Jb
end loop over I,
end loop over ¢j
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The figures clearly indicate that an efficient algorithm should take advan-
tage of the sparsity of F in both the o, and o3 routines. Although it is possible
to ignore this sparsity in order to obtain more highly vectorized algorithms,
this results in a slower code due to the large number of multiplications by zero.
Attempts to formulate the o3 algorithm as a standard matrix multiplication
resulted in a program which was slower by a factor of at least four (and usually
more) on the IBM RS/6000 model 3CT. The reader may wonder whether fur-
ther reductions in the overall operation count might increase efficiency: after
all, formulating the innermost loop as a DAXPY requires a certain amount
of overhead work (namely, the gather and scatter operations). Indeed, a very
simple algorithm which performs the minimum number of operations has al-
ready been presented in Fig. 8. However, there are a number of reasons to
think that this algorithm should be less efficient than that in Figure 22 for
workstation computers. One reason is that indirect addressing in the inner-
most loop causes cache misses and thus longer waits for elements of c. Another
is that the simple algorithm takes no advantage of the pipelining features of
current workstations, discussed in section 4.3. For DZ H,O full CI (1 million
determinants), using the algorithm in Fig. 22 instead of the simple algorithm
in Fig. 8 results in a speedup by a factor of five on the IBM 3CT. However,
it is also important to point out that the smaller block sizes in a RAS CI (as
opposed to a full CI) mean that the payoff for vectorization is less.

A few remaining comments should be made about our o3 algorithm in
Fig. 22. First, note that the intermediate vector F' has been eliminated. Stor-
age to and retrieval from this array requires several extra operations, yet the
efficiency of the DAXPY operation is not enhanced by the use of F, since F is
sparse (the only work saved is for excitations which map a string into itself).
Second, writing the innermost loop of this routine (and also of the oy rou-
tine) as a DAXPY is particularly efficient on the RS/6000 architecture, which
performs each pair of floating point multiplications and additions in the same
machine instruction, the floating point multiply-add (FMA).

In order to gauge the efficiency of our new determinant-based CI program,
several timing comparisons have been made between DETCI and the standard
Schaefer group CI program GUGACI. Table 10 presents averaged CPU and
total times for several full CI test cases. Both programs used the standard
Davidson method, keeping on disk the ¢ and o vectors for every iteration;
this lead to noticeable I/O delays for some of the larger test cases. Our new
program is also capable of using iteration methods which require fewer vectors
on disk (cf. section 3.2). Although we do not have access to Olsen’s code, he
has reported that his program takes about 40s per iteration for the 1 million
determinant DZ H,O full CI calculation,?®? whereas DETCI requires 30s per
iteration on the same model workstation (IBM RS/6000 model 590).
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Table 10: CPU and total times per iteration to evaluate several benchmark
full CT wavefunctions using the IBM RS/6000 model 3CT. Fzc/Fzv denote the
number of frozen core/frozen virtual orbitals.

Time/Iter (seconds)

GUGACI DETCI
Molecule Fzc/Fzv CSFs Dets CPU Tot CPU Tot
DZ H,0 1/0 37 353 128 829 77 79 3 3
DZ Hy0 0/0 256 473 1002 708 1430 1465 28 33
cc-pVDZ+ Ne® 0/0 2083968 9185280 13788 14007 282 532
DZP C, 2/2 6 571 116 27 944 940 32489 34831 1329 3160

2Using the basis set of Koch ef al.”

5 Applications of Highly Correlated CI

Most studies limit the CI space to single and double substitutions from a
single reference (CISD). Occasionally, when one reference does not provide a
sufficient zeroth-order wavefunction, the multi-reference CISD method will be
employed. The applications of such methods are too numerous to discuss here;
their general performance has already been described in section 2. We consider
studies which go beyond CISD for one or a few references; such highly corre-
lated wavefunctions are useful when very accurate results are desired or when
several electron configurations are needed for a qualitatively correct reference
wavefunction (such as when multiple bonds are broken). We will limit our
attention to methods which select the CI space in an a priori fashion based on
the distribution of electrons among various orbital subspaces.

5.1 Full CI

The most highly correlated configuration interaction method is of course full
CI, which solves the Schridinger equation exactly within the space spanned
by the single-particle basis set (section 2.1). Unfortunately, as explained in
section 2.4.1, the full CI space grows factorially with the number of electrons
or single-particle basis functions; currently, full CI is limited to very small
molecules (one or two heavy atoms with a few hydrogen atoms) described by
a basis set of double-( or perhaps triple-¢ quality. Furthermore, errors due
to the incompleteness of the single-particle basis set are generally more severe
than those introduced by the neglect of triple, quadruple, etc., substitutions
in the treatment of electron correlation. Hence full CI is useful primarily as



240 C. D. Sherrill and H. F. Schaefer Il

a benchmark method for evaluating approximate treatments of correlation.
Given their extreme computational requirements, it is perhaps surprising how
many full CI benchmarks have been reported. Here we will focus primarily on
the more noteworthy or more recent benchmarks, and on systems containing
more than four electrons.

The early (1980) full CI algorithm of Handy** enabled Saxe, Schaefer, and
Handy to obtain the exact variational solution for the ground state of HoO
within a modest double-{ (DZ) basis set; this represented the first CI wave-
function to include more than one million determinants.?!® In 1983, Harrison
and Handy used this same algorithm, along with the loop-driven graphical uni-
tary group approach CI (LD-GUGACI) program of Brooks and Schaefer,*? to
report full CI results for H,O and NH; with a DZ basis and for BH and HF in a
double-¢ plus polarization (DZP) basis.3® These two studies, which also gave
results for the CISD, CISDT, and CISDTQ methods, clearly demonstrated
that triply and quadruply substituted configurations account for nearly all of
the error in the CISD correlation energy (cf. Table 2). Moreover, by comparing
to Harrison and Handy’s results for H,O, Bartlett, Sekino, and Purvis demon-
strated that fourth-order many-body perturbation theory [MBPT(4)] performs
poorly when both O-H bonds are stretched,'® even though it partially accounts
for quadruple excitations. This occurs because the restricted Hartree-Fock de-
terminant provides an inadequate zeroth-order wavefunction as the bonds are
stretched too far from their equilibrium lengths, and it emphasizes the need
for multireference approaches.

The subsequent (1984) vectorized full CI algorithm!®® of Knowles and
Handy allowed Bauschlicher, Taylor, Langhoff, and others to carry out a se-
ries of important benchmark calculations. In 1986, these authors, along with
Partridge, presented full CI results for the Ne atom using a triple-¢ plus dou-
ble polarization (TZ2P) basis set.23® Once again, the CISDTQ wavefunction
yielded more than 99% of the basis set correlation energy; furthermore, the
contribution of quintuple and higher substitutions decreased with increasing
basis set size. Subsequent benchmark results using a DZP basis were pre-
sented for HF and NHy;?* H,0, F, and F~;?% the 14,-3B, separation in
CH;®¢ the barrier height to the reaction F + Hy — HF + H;®7 the 14,
1B, and 3B; states of SiH;?*® the 2 ' A, states of CH, and SiH, and the 24,
and 2B, states of CH3 ;% the low-lying states of Cy;2%° Ny, NO, and 0,24
the CH; radical;?*? and Be;y.?*3 Bauschlicher and co-workers have also inves-
tigated transition metals. They estimated the 3D-°F energy separation for
the Fe atom using a 5s4p2d1f basis set,?** excitation energies and oscillator
strengths for the 2D Rydberg series in the Al atom with a 7s6p4d3f ANO ba-
§is, 25 the 3F-°F separation for the Ti atom, and the *®-2A separation for
TiH in a 5s4p3d1f/2s basis set.?*6 Illas, Rubio, Ricart, and Bagus used the
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Knowles-Handy program to obtain full CI energies for the first row atoms and
their hydrides in 4s3p1d/2slp basis sets; these benchmarks were used to eval-
uate the CIPSI method?!® and the performance of ANO basis sets versus more
traditional segmented basis sets.?*” Casanovas, Rubio, and Illas have also per-
formed full CI studies on the interaction of H atom with Cus and Ags cluster
models to investigate the transferability of the correlation contribution to the
chemisorption bond for different pseudopotentials.?®

Several of these studies considered molecules at three geometries, with
equivalent bonds simultaneously stretched to 1.0, 1.5, and 2.0 times their
equilibrium lengths; hence, approximate methods could be judged not only
by what fraction of the correlation energy they recovered, but also by how well
they paralleled the full CI potential energy surface. The MR-CISD method
was found to parallel full CI very well, particularly when CASSCF orbitals
are used and all configurations present in the CASSCF are used as references.
More recently, these authors have used large basis set full CI benchmarks
to examine core-core and core-valence correlation effects®® and to calibrate
more approximate MR-CISD approaches for the dissociation energy of BH.?°
Many of these results are summarized in a 1990 review article by Bauschlicher,
Langhoff, and Taylor.!®

Most of the full CI studies just discussed involved CI spaces spanning tens
of millions of determinants. More recent full CI algorithms, which follow
Olsen et al. in sacrificing some degree of vectorization for reduced opera-
tion counts,*®48:% have allowed for CI spaces including hundreds of millions of
determinants. Indeed, Olsen, Jgrgensen, and Simons reported a full CI calcu-
lation on the Mg atom using a 5s3p2d1f ANO basis and requiring more than
one billion determinants; unfortunately, it was not possible to fully converge
the wavefunction due to the extreme amount of CPU time required.?3 The first
converged full CI benchmark requiring more than one billion determinants was
reported recently by Evangelisti, Bendazzoli, Ansaloni, Durf, and Rossi, who
presented an out-of-core adaptation of their full CI program for distributed-
memory parallel computers and used it to obtain the full CI energy of Be,,
with all electrons correlated, in a 4s2p1ld ANO basis set partially uncontracted
to 9s2p1d.%

In 1995, these workers used an in-core version of this algorithm to resolve
an uncertainty concerning the full CI energy of NH3 with an ANO DZP basis
set.’% Knowles and Handy had in 1989 presented an energy of -56.4236 +
0.0001 hartree using their approximate full CI method which truncates the o
vector; 665,247 of 209,626,425 determinants were treated variationally, and the
convergence limit was estimated perturbatively.?'® This value underestimates
the importance of the large number of neglected determinants, as was first
demonstrated by Povill, Rubio, Caballol, and Malrieu.!”® The true full CI
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energy was shown to be -56.424007 hartree.’:8 The program of Bendazzoli
and Evangelisti*® has also been applied to DZ Hg and N;*° and to C1gH)s using
a simple Pariser-Parr-Pople (PPP) Hamiltonian.*

In 1996, Olsen, Jgrgensen, Koch, Balkovd, and Bartlett presented DZP full
CI results for HyO at three geometries, where all ten electrons were correlated.
Although the basis set was not designed to describe core correlation, these
results are valuable in that they are fully invariant to orbital rotations, whereas
they would not have been if the 1s-like orbital on oxygen were frozen.?? As
shown by Handy and co-workers,? it is fairly straightforward (and valuable)
to generalize a full CI program to produce many-body perturbation theory
(MBPT) energies order by order. Hence, Olsen et al. considered MBPT
through 15th order and examined the convergence of the series as the two OH
bonds are simultaneously stretched, causing the zeroth-order wavefunction to
become progressively worse. In another 1996 study, Olsen, Christiansen, Koch,
and Jgrgensen examined the convergence of MBPT for several small molecules
using DZP and larger basis sets. These authors concluded that perturbation
theory corrections grow with increasing basis size and that, remarkably, the
inclusion of diffuse functions can cause the perturbation series to diverge even
for well-behaved molecules such as HF.2%2! Qlsen’s algorithm has also been
used to provide benchmark full CI excitation energies for CH*;252 BH, CH,,
and Ne atom;” H,0, N, and C5;37 and H,O1.22

Most full CI studies have focused solely on energies. A few papers, how-
ever, have presented full CI results for other molecular properties. In 1987
Bauschlicher and Taylor presented full CI dipole moments and polarizabilities
for HF, CH,, SiH;, and F~ with a DZP basis.?®® Moreover, Bauschlicher and
Langhoff gave full CI equilibrium geometries, dissociation energies, and har-
monic vibrational frequencies for CH, NH, and OH using flexible ANO basis
sets.?%* The following year, these authors presented full CI and SOCI transi-
tion moments for two transitions in CH, and selected dipole and quadrupole
transitions in BeO,*% and Bauschlicher presented geometries, frequencies, and
the dipole moment for the *® and %A states of TiH.?*6 Later, Bauschlicher and
Taylor also presented full CI transition moments for H, and BH in a compar-
ison of the length and velocity representations for the transition moment,?3
Full CT transition moments and polarizabilities for CHt have been presented
by Olsen and co-workers.?? Koch and Bauschlicher have presented a method
for computing analytically the frequency dependent linear and quadratic re-
sponse functions for full CI wavefunctions; they have considered Be atom in a
9s9p5d basis set and have reported transition energies and dipole moments for
several states, the first polarizability at real and imaginary frequencies, and
the static second hyperpolarizability.”®” Bauschlicher et al. have determined
the full CI isotropic hyperfine coupling constant for the nitrogen atom using
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basis sets as large as 8s4p2d.?*® Spin-orbit coupling has been investigated at
the full CI level for CH; by Vahtras et al.?*® and for LiBe by Marino et al.2°

Researchers have even obtained exact full CI equilibrium geometries for a
few polyatomic systems with a DZP basis: the linear transition state for the
reaction F + Hy — HF + H;*7 the systems Hg, Hf and H{- He;'"26 the
X 2B, and A %A, states of NH;?? BH;;% 262 HF ;%63 and the four lowest-
lying states of methylene??2%4 and NHZ .25 For the latter four molecules, full
CI dipole moments and harmonic vibrational frequencies have been reported
at the full CI equilibrium geometries.?%263-265 The DZP full CI studies of
methylene clearly demonstrate the need to use larger basis sets: predictions
for the singlet-triplet energy gap?36:262:264 are at least 2.5 kcal mol™! too large
compared to experiment.?®* We have recently completed a considerably more
challenging full CI benchmark study of the four lowest states of methylene
using the more reliable TZ2P basis set.26¢

In the past few years, full CI benchmarks have been used to calibrate meth-
ods for systems featuring weak interactions. Woon has obtained the full CI
well-depth, equilibrium separation, and harmonic vibrational frequency for
He, with basis sets as large as augmented correlation-consistent polarized
quadruple-¢ (aug-cc-pVQZ).28" In a subsequent study, van Mourik and van
Lenthe used the full CI program of Harrison and Zarrabian*’ to obtain dimer
energies at two separate geometries using large basis sets including h-type po-
larization functions and bond functions.?® One interesting conclusion of this
study, which could only be determined using highly correlated wavefunctions,
was that the usually-reliable CCSD method is unsuitable for obtaining accu-
rate potential energy curves for Hey. Other recent full CI studies have also
focused on helium dimer,?68-2"! ag well as the dimer of two Hy molecules?®-270
and the He-H, system.?6®26% Such benchmarks have been helpful in examining
the problem of basis set superposition error.?”0

5.2 Second-Order CI

One important conclusion from the full CI benchmark studies of Bauschlicher,
Taylor, Langhoff, and others in the 1980’s is that the MR-CISD method based
on CASSCF orbitals provides potential energy surfaces which accurately par-
allel the full CI surfaces.!415,234,238-240,242,254 Tor eyample, the CASSCF MR-
CISD method predicts singlet-triplet energy separations in CH, and SiH,
within 0.01 kcal mol~! and 0.03 keal mol~, respectively, of the full CI re-
sults.2%6:288 The best results are obtained when no threshold is used for refer-
ence selection: that is, when all CSFs in the CASSCF wavefunction are used
as references. This CAS-ref MR-CISD procedure is intimately related'%” to
second-order configuration interaction (SOCI), which distributes electrons in
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all possible ways as long as no more than two electrons are allowed in exter-
nal orbitals at once (of course, spatial symmetry and spin symmetry may also
be imposed on the final N-electron basis functions). For closed-shell systems
these procedures are identical, but they can differ for open-shell systems. In
cases where all occupied orbitals which are correlated in the SOCI are included
in the active space, one can guarantee that the SOCI space is generated by
using as references all CSFs arising from CASSCF wavefunctions of all possible
spatial symmetries.!®” SOCI wavefunctions are invariant to orbital rotations
within the active space, whereas this is not necessarily the case for CAS-ref
MR-CISD when the references are symmetry-restricted. In cases where there
are “inactive” orbitals (occupied orbitals which are correlated in the SOCI but
not included in the CASSCF), Bauschlicher has recommended that the SOCI
be defined according to the RAS CI scheme, such that one places inactive or-
bitals in RAS I, active orbitals in RAS II, and external orbitals in RAS III;!
this maintains the desired orbital invariance properties. This SOCI can alter-
natively be generated an MR-CISD in which the references are now all CSF's
arising from all CASSCF wavefunctions of every spatial and spin symmetry.

The reliability of SOCI, coupled with its essentially a priori selection of
the CI space, makes it an attractive alternative to full CI. Unfortunately, for
reasonable active spaces the dimension of the SOCI grows very rapidly with
system size and thus the method is applicable only to small molecules. Nev-
ertheless, for quite a few molecules it is possible to use the SOCI method in
conjunction with large one-particle basis sets and hence to obtain wavefunc-
tions very close to the exact nonrelativistic Born-Oppenheimer limit. Below,
we will attempt to give the reader a sense of the types of problems to which
the SOCI method has been applied. Bauschlicher, Langhoff, and Taylor have
already given'® an excellent review of the related CASSCF MR-CISD method,
and we refer the reader to their article for a discussion of additional important
studies.

The SOCI method has been applied primarily to diatomics and triatomics.
Two of the early applications of SOCI were studies of Be, by Blomberg, Sieg-
bahn, and Roos?’? (1980) and by Lengsfield, McLean, Yoshimine, and Liu®
{(1983). With only four active electrons, a SOCI for this system is identical to
the CISD[TQ] method discussed in the following section. The Be, molecule is
challenging to theory because of the near degeneracy of the 1s22s? and 1s?2p®
configurations in the the Be atom and because the bonding in the dimer is
dominated by dispersion forces. The latter study® used a 6s4p3d1f Slater ba-
sis set to yield a SOCI dissociation energy of D, = 1.87 kcal mol™! (2.04 £
0.21 kecal mol~?, including estimates of core correlation and basis set errors),
in contradiction to previous coupled-cluster studies®”® giving D, < 0.2 kcal
mol~!; the experimental value?™ is 2.26 £ 0.09 kcal mol~!, signaling a success



Configuration Interaction Method: Advances in Highly Correlated Approaches 245

of the SOCI method and a failure of coupled-cluster models which neglect con-
nected triple substitutions. A SOCI study of the related Mgy molecule using
large ANO basis sets was reported®™ in 1990 by Partridge et al. Other SOCI
studies on the ground states of diatomic molecules include an investigation of
the potential energy curves of NeN?+ and NeN+ by Koch, Liu, and Frenking,?™
and of N, and O, by Langhoff, Bauschlicher, and Taylor.2”” The latter study
used a 5s4p3d2flg basis and reported equilibrium bond lengths, harmonic vi-
brational frequencies, and dissociation energies of (1.101 A, 2343 cm™!, 9.723
eV) for N, and (1.209 A, 1561 em™!, 5.139 eV) for Oy, in excellent agreement
with experimental values of (1.0977 A, 2358 cm™!, 9.905 eV) and (1.2075 A,
1580 ecm™!, 5.214 eV), respectively. The multi-reference Davidson correction
for size extensivity (section 2.4.6) improves the SOCI dissociation energies but
worsens the predicted bond lengths and vibrational frequencies. A subsequent
study by Almléf et al?”® considered even larger basis sets (including ¢ polar-
ization functions), core-valence correlation, and basis set superposition effects
in an investigation of remaining sources of error in the dissociation energy of
N,; their best theoretical estimate was within about 2 kcal mol=*, or 1% of
the experimental dissociation energy.

Several studies have used the SOCI method to describe excited electronic
states of diatomic molecules. In 1988, Partridge et al.?™ reported SOCI po-
tential energy curves for the A’ °SF and C” °II, states of Ny; these results
had important implications for theories of the N, afterglow and for the first
time allowed an assignment of the Hermann infrared system. Also in 1988,
Bauschlicher et al.?®° reported SOCI spectroscopic constants (r,, Te, and w,)
for several low-lying quartet states of AlC; this study indicated that the SOCI
results based on CASSCF orbitals optimized separately for each state were
nearly identical to SOCI using a common set of state-averaged CASSCF or-
bitals. Balasubramanian has used the SOCI method along with relativistic
pseudopotentials to study diatomics incorporating elements below the second
row of the periodic table. His work has included studies of the low-lying elec-
tronic states of InSb;?! Ga,, Gaz, and Gaj;?? GeH and GeH*;?83 WH;%4
GaH;?®®* TIH and InH;®¢ and GeCL?? Another study by Balasubramanian
considers the low-lying states of the transition metal hydrides YH-CdH.?%

The SOCI method has also been used for a number of triatomics, including
the much-studied?®* methylene molecule (CH,). An early application of the
SOCI method to methylene was presented by Saxe, Schaefer, and Handy,?®®
who used Handy’s 1980 string-based determinant CI program** to obtain an
estimate of T, = 10.5 kcal mol~! for the singlet-triplet energy gap using a
8s5p3d/4s1p basis set. More recently, Bauschlicher, Taylor, and Langhoff have
used the SOCI method in conjunction with a 5s4p3d2flg/4s3p2d ANO ba-
sis set to predict?® optimized geometries for the X 3B, and & 'A; states of
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CH; of (1.079 A, 133.6°) and (1.110 A, 102.0°), which compare to experimen-
tally derived estimates of (1.0753 A, 133.93°) and (1.116 A, 101.8°%), respec-
tively. McLean et al.?! used the SOCI method with a 4s3p2d1f/3s2p basis
to obtain 37 energy points which were fit with a nonrigid bender Hamilto-
nian model to yield v; = 2985 + 20 cm~! and vy = 3205 + 20 cm™?! for the
fundamental stretching frequencies, compared to experimentally derived val-
ues of 2992 and 3213 cm™!. For the singlet-triplet energy splitting (7), the
5s4p3d2flg/4s3p2d ANO SOCI estimate of 9.13 kcal mol~! by Bauschlicher
et al.®® and the TZ3P(2f,2d)+2diff SOCI estimate of 9.02 kcal mol~! by Ya-
maguchi et al® compare very favorably with the best nonrelativistic Born-
Oppenheimer-corrected experimental estimate of 9.372 kcal mol ! 264202294
Yamaguchi et al. also report® SOCI excitation energies for the b ' B; and ¢
1 A, states which will hopefully guide further experimental efforts.

Among the numerous other studies of polyatomic molecules using the SOCI
method, Balasubramanian has reported energies and optimized geometries for
low-lying states of SnHy;!3%2% PbH,;!* GaH,, GaHj, GaHj, and GaHj;?%
YHS and ZrH$;* AsH,, AsH, SbHJ, and BiH3;2%7 GeH,;!3%283 HfH,;2%®
TIH,, TIHS, InHj,, and InHF;* and PH,, PH, and PH;.% Yarkony et
al. have used SOCI wavefunctions as zeroth-order solutions in first-order per-
turbation theory treatments of the full Breit-Pauli spin-orbit Hamiltonian; in
this fashion, these workers have studied the spin-forbidden decay of systems
including X 2IT HS?+ 3% 3 3%} NO*,%! and & ‘£~ CH.3? SOCI has also been
used to assess the quality of the CCSD(T) method for electron affinities,® to
obtain accurate barrier heights for the termolecular reaction of 3H,,%! and to
yield transition moments,!38:2%5

Finally, we note that it may be advantageous to use natural orbitals (NOs)
rather than the CASSCF orbitals usually employed in SOCI studies. Grev and
Schaefer'® have shown for a number of small molecules (NHy, CHj, SiH,, N»)
that a SOCI procedure based on CISD natural orbitals yields energies which
are very close to the CASSCF SOCI energies, even when several bonds are
simultaneously stretched to twice their equilibrium length. Blomberg and Liu
have also observed similar performance of MCSCF orbitals and SOCT natural
orbitals for energies and transition moments of CH and CH™,'3 although we
note that CISD NOs are much less expensive to obtain than SOCI NOs. CISD
NOs are also easier to obtain than CASSCF orbitals, and they are better suited
to orbital truncation; that is, the energy lost by deleting a few of the most
weakly occupied NOs will typically be smaller than that lost by deleting a few
of the highest-lying CASSCF orbitals. This allows for an effective reduction
in the number of determinants included in a SOCI wavefunction with minimal
loss in accuracy. Moreover, the energy lost by deleting these weakly occupied
NOs is primarily due to neglected singly and doubly substituted determinants
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which occupy these orbitals, and not to neglected triples, quadruples, etc.!%17
This suggests a strategy of using a smaller NO basis to treat higher-than-
double substitutions, and this idea has been implemented in the CISD[TQ)]
method described in section 5.4.

5.3 Restricted Active Space CI

As already discussed, many commonly encountered CI spaces can be formu-
lated within the RAS CI scheme. However, at the moment our attention is fo-
cused on CI calculations using the RAS CI program of Olsen and co-workers. 6
Examples of full CI calculations using Olsen’s program have already been dis-
cussed above, so here we limit our attention to truncated CI wavefunctions.

The RAS CI method can be very valuable when used in conjunction with
the multiconfigurational linear response (MCLR) method, which allows calcu-
lation of excitation energies, transition moments, and second-order properties
such as polarizability. In 1989, Olsen and co-workers compared MCLR and
full CI results for CH* and found that for highly accurate results, it is nec-
essary to provide more extensive treatments of electron correlation than the
valence CAS. Furthermore, these authors found that the RAS method provides
an accurate means of reducing the size of the CI space in these MCLR stud-
ies. Jensen et al. were able to show that the RAS MCLR calculations which
include dynamical correlation give very reliable frequency-dependent polariz-
abilities for the nitrogen molecule.?* Sanchez de Merds et al. found that the
polarizabilities of H;O and CO; obtained using the RAS MCLR method with
polarized basis sets were within 5% of experiment.*® More recently, Sundholm
and Olsen have used the RAS approach as part of a finite element multiconfigu-
rational Hartree-Fock method for determining the atomic quadrupole moment
of Ca (3d4s; 1 D) and the electron affinity of the 1S ground state.36:307

5.4 CISDTQ and CISD[TQ]

Few studies have employed configuration interaction with all singles, doubles,
triples, and quadruples (CISDTQ) because the number of triple and quadruple
substitutions grows very rapidly with the number of electrons and basis func-
tions (cf. Table 3). CISDTQ results are most commonly reported in benchmark
full CI studies to indicate the fraction of the basis set correlation energy recov-
ered by triples and quadruples.!?:2%39:80,234,241,26¢ Nevertheless, the CISDTQ
method has occasionally been used for benchmarking in cases where the full
CI was not technically feasible, because the CISDTQ results are expected to
be very close to full CI for small molecules. For systems with eight electrons
or less at their equilibrium geometries, the CISDTQ method recovers more
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than 99.8% of the correlation energy for a DZP basis set (cf. Table 2). One
benchmark study by Lee et al. examined the effects of triple and quadruple
excitations on equilibrium geometries, harmonic vibrational frequencies, and
infrared intensities of several small molecules.?®® A similar study by Scuseria,
Hamilton, and Schaefer3®® used CISDTQ equilibrium geometries and harmonic
vibrational frequencies to evaluate the performance of the CCSDT method for
several diatomic molecules.*

Chemical applications of the CISDTQ method include the 1988 study by
Scuseria and Schaefer3!? on the barrier height for the F + H, — FH + H re-
action, which is very sensitive to the level of theory employed. By truncating
the CI space at quadruples, these authors were able to increase the basis set
from 28 functions (in Bauschlicher and Taylor’s full CI study?*”) to 47 basis
functions and enabled them to consider the effects of correlating the fluorine
2s orbital. Additionally, Tanaka and Nishimoto have used CISDTQ to ex-
amine the reaction mechanism for 1,3 hydrogen transfer in excited states of
formamide,3!! and Du, Hrovat, and Borden®? have used CISDTQ as part of
a study on singlet-triplet gaps in diradicals.

Multireference CISD methods generally offer a more economical treatment
of the dominant effects of triple and quadruple substitutions and allow the
use of larger one-particle basis sets. The primary disadvantage of MR-CISD
compared to CISDTQ is that the choice of references (and truncation, if any,
of the generated singles and doubles space) must be performed carefully so
as not to bias the results. An a priori selection scheme for MR-CISD which
has been investigated in our laboratory is the CISD[TQ] method,'® which se-
lects as references all single and double substitutions in the active space. This
is equivalent to a CISDTQ in which no more than two electrons are allowed
into external orbitals, or to a second-order CI (SOCI) in which greater-than-
quadruple substitutions have been eliminated. This method was used by Saxe
et al. in a 1982 study of ethylene using a DZP basis and the shape-driven
graphical unitary group approach (SD-GUGA) CI program.” The resulting
wavefunction (spanning more than 1 million CSFs) was considered a bench-
mark result. In 1992 study of NH,, CHj, SiH;, C;, and Nj, Grev and Schae-
fer’ found that the CISD[TQ] method provides results which are very close
to SOCI when a single reference function dominates. A subsequent study of
several other small molecules by Fermann et al.}” reinforced these conclusions.
Some results from these studies which indicate the ability of CISD{TQ)] to par-
allel the SOCI and full CI surfaces are presented in Table 11. The CISD[TQ]
and SOCI wavefunctions were based on CISD natural orbitals, which perform
as well as CASSCF orbitals for SOCL.'® Although the savings in the number
of CSFs for CISD[TQ] compared to SOCI in Table 11 is relatively modest,
this savings increases very rapidly with basis set and number of electrons: for
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Table 11: Errors in Total Energies (millihartree) Relative to Full CI for Several
Molecules Using a DZP Basis.®

Method No. CSFs E(r.) E(1.5-r.) E(2.0-r,)
2B1 NH2 (Ref 16)
CISD 898  5.003 23.475 69.168
CISD[TQ)] 18 396  2.897 2.630 4.957
S0OCI 21 687  2.853 2.107 1.703
Full CI 2 435160  0.000 0.000 0.000
2AY CH; (Ref. 16):
CISD 1385 8.384 23.216 70.646
CISD([TQ)] 51818  2.156 2.065 4.910
SOCI 76 660  2.090 1.254 0.889
Full CI 9 591 312 0.000 0.000 0.000
'A; HpO (Ref. 17):
CISD 926 12.851 30.421 75.644
CISDTQ 151 248  0.397 1.547 6.280
CISD[TQ] 32361 1.630 2.537 6.867
SOCI 76 660 1.276 1.058 1.020
Full CI 6 740 280  0.000 0.000 0.000

2CISD[TQ] and SOCI methods employed CISD natural orbitals.
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DZP ethylene, a CISD|TQ)] description requires over 1 million CSF's, whereas
a SOCI requires over 42 million. In addition to these results, Grev and Schae-
fer'® also demonstrate that the CISD[TQ] method yields reliable dissociation
energies for the difficult Ny and C; molecules.

More recent work has explored the quality of CISD[TQ)] equilibrium ge-
ometries and harmonic vibrational frequencies. King et al.*'® have found that
for H,O with a TZ2P basis, the equilibrium geometry predicted by CISD[TQ]
differs from that of CISDTQ by less than 0.0001 A in the bond length and
0.2° in the bond angle. Furthermore, the CISD[TQ] harmonic vibrational fre-
quencies differ from those of the complete CISDTQ by an average of only 5
cm~!. Such agreement is outstanding, particularly in view of the fact that the
CISD[TQ] wavefunction contains 45 times fewer CSFs than CISDTQ. In re-
lated work, Hoffman et al.®'* have found similar results for H,S. Another study
by Leininger and Schaefer3!® considers the ozone molecule, which is challenging
to theory because of the unusual importance of triple and quadruple substitu-
tions. It is not currently feasible to obtain the complete CISDTQ wavefunction
with a DZP basis, but the DZP CISD[TQ] equilibrium geometry differs from
experiment by only 0.009 A, and the harmonic vibrational frequencies differ by
an average of 2.4%, with the treacherous antisymmetric stretching frequency
predicted within 4.5%.

Finally, even though the computational cost of a CISD[TQ] procedure
is substantially reduced compared to CISDTQ, the scaling with system size
(cf. section 2.4.5) remains unfavorable. Hence, it is necessary to seek further
reductions in the CI expansion with a minimal loss in the quality of the wave-
function. One promising strategy was suggested by Grev and Schaefer’s 1992
study'® on the use of CISD natural orbitals (NOs) in the CISD[TQ] and SOCI
methods. This work indicated not only that CISD NOs are as effective as
CASSCF orbitals at providing good correlating orbitals in the active space,
but also that the most weakly occupied NOs contribute almost negligibly to
the energy. Furthermore, the errors in the energy caused by deleting weakly
occupied orbitals are almost entirely due to the neglect of singles and doubles
occupying these orbitals, and not to triples or quadruples. This suggests a more
compact CISD[TQ] wavefunction!” which splits the external orbital space into
two sets. If the unoccupied (virtual) orbitals of the active space are labeled the
primary virtual subspace, then the external orbitals are divided into secondary
and tertiary virtual subspaces, where the tertiary subspace comprises the set of
the most weakly occupied NOs. One may then modify the CISD[TQ] method
to eliminate those triple and quadruple substitutions which place an electron
in one of the most weakly occupied orbitals.":189 In effect, one uses a larger
basis set for the singles and doubles than for the triples and quadruples.

This “split-virtual” CISD[TQ] method has been implemented in our de-
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Table 12: Correlation Energy Recovered (Relative to CISDTQ) by the Split-
Virtual CISD[TQ] Method for H,O in a cc-pVTZ Basis Set.*

Method/ NO Number %SDTQ
Secondary Space Cutoff  of Dets Energy
CISD 15 939 93.1
CISDT 938 679 95.8
CISDTQ 28 085 271 100.
CISD[TQ] w/ primary space 2bs4a;2b;5a;

(18 79 15) none 984 789 98.8
(946 8) 104 320 531 98.6
(3112) 1073 41 261 96.5
(0000) 16 713 94.7

¢CISD[TQ] methods employed CISD natural orbitals (NOs).
The secondary orbital space selects all virtual orbitals with
NO occupation numbers greater than the given cutoff and
is identified according to how many orbitals of each irrep

of Cy, it contains, in the order (a, ag, by, bg). Only
valence electrons are correlated.



252 C. D. Sherrill and H. F. Schaefer Il

terminant based CI program (cf. section 4.8.3), and we have presented some
preliminary results'® for the neon atom and for H,O. Table 12 gives some of
our results for HoO with a cc-pVTZ basis set. We find the NO-based selection
scheme to be effective in obtaining the dominant effects of triple and quadruple
substitutions while using fewer CSFs, and we believe this promising strategy
should be even more effective in the coupled-cluster approach, where the con-
nected triples (T3 operator) could be evaluated using a smaller NO space.
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