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the selected-space eigenvectors ck as zeroth-order solutions: 

213 

The set of all configurations I with IAEFI > 77 is added to the reference space, 
and the new Hamiltonian is diagonalized; this process is repeated until no 
new important configurations are found. The reference selection is thus self- 
consistent, and Harrison noteszz3 that typically only two iterations are re- 
quired. The sum of the estimated energy lowerings (136) provides a perturba- 
tive correction for excluded configurations, and the total energy (variational 
energy plus perturbative correction) is an approximation to the full CI energy. 
An increasingly accurate sequence of wavefunctions is generated by repeating 
this whole process for a series of thresholds 77 with decreasing values. Note, 
however, that those configurations which do not interact directly with any 
reference function are completely neglected. Although the individual contri- 
butions of such configurations should be very small, there are a large number 
of them. Harrison finds that the CI+PT method approaches the full CI en- 
ergy from above, suggesting that the error due to the neglect of noninteracting 
configurations is greater than the error due to the perturbative estimates of 
configurations which are interacting but not included in the reference space 
(the latter correction, being nonvariational, could conceivably lead to energies 
below the full CI limit). Harrison's approach is similar to the original two- 
class CIPSI algorithm,g2 but it selects references based on their contributions 
to the energy rather than to the first-order wavefunction; Harrison notes that 
for properties other than the energy, this might not be the optimal 
An advantage of his program was that it could handle larger variational spaces 
than the versions of the CIPSI and MRD-CI programs available at  that time 
(recent improvements in these programs are described above). Results for HzO, 
0, and 0- were compared to  full CI and indicate that the perturbation theory 
energy correction rapidly accelerates convergence to the full CI energy. For 
example, the full CI energy for H20 at three different geometries was obtained 
within 0.1 kcal mol-' with a variational reference space and perturbative in- 
teracting space spanning less than 0.23% and 25%, respectively, of the full CI 
space (these results correspond to a selection threshold of 77 = 4 x loM7). 

The wavefunction operator (WFO) approach of Luzanov, Wulfov, and 
Krouglov ( 1992)224 seems to be the same as Harrison's CI+PT approach, al- 
though it is formulated differently and implemented using determinants. This 
method appears to  involve the same amount of work as other determinant- 
based sparse CI methods,z15~220~z21 but it uses rather different intermediate 
arrays. Explicit algorithms for the WFO method were presented in 1996 by 
W ~ l f o v , ~ ~ ~  who obtained results for HF dimer in a 4s3pld/2slp basis using a 
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personal computer (PC) equipped with only 16 megabytes (MB) of RAM and 
50 MB of disk space. The largest computation, with threshold 77 = con- 
sidered 65,751 determinants variationally and treated an unreported number 
of interacting determinants perturbatively. 

Perturbation theory corrections to variational energies have also been con- 
sidered recently by Mitrushenkov and Dmitriev (1995),2'6 who express the 
second-order energy correction as 

= (cO,I?Ac), (137) 

where co is the current CI vector and Aco is the correction vector. The term 
H z ( I a ,  Ip) is the diagonal element of the Hamiltonian for determinant I l a l p ) ,  
and the subscript sa indicates an average over all determinants with the same 
spatial orbital configuration (cf. section 3.2.1). This correction is essentially 
the same used by Harrison223 and others. Rather than employ this expression 
exactly as it is, Mitrushenkov and Drnitriev note216 that for a converged full 
CI vector c = co + Ac, the full CI energy can be expressed as: 

Mitrushenkov and Dmitriev designate this the norm-consistent zero threshold 
full CI estimate. When Ac is orthogonal to c, this is the second-order per- 
turbation theory estimate (137). However, since selection in the dynamic CI 
occurs during the subspace iteration process, Ac and c are not orthogonal. Of 
course the exact 00 and Ac must be used in the evaluation of (138); these are 
evaluated for fixed Ip as described above. Mitrushenkov and Dmitriev demon- 
strated this zero threshold energy (ZTE) estimate for Ne, NHS, Mg, and HzO; 
for Ne, comparisons with full CI indicate that the ZTE estimates approach 
the correct energy much faster than the variational energies with respect to 
decreasing threshold, but the approach is not monotonic and can occur from 
below. Very recently, Mitrushenkov has extended this approach to perform 
the dynamic CI+ZTE in the active space and to treat the external space using 
only second-order perturbation theory.226 

In order to compare some of these selected CI methods, we present results 
for DZP NH3 in Table 5. These results were obtained in point group C, with 
the la' core orbital frozen (i.e., constrained to remain doubly occupied). The 
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Table 5: Selected and Full Configuration Interaction Benchmarks for NH3 with 
an  A N 0  DZP Basis Set.a 

&I- NPT ECI+PT- 
Threshold Ncr E C I  EFCI x106 ECI+PT EFCI 
Knowles and Handy, Ref. 218:* 
2.0 x lop4 171 867 -56.4219 0.0021 n /a  -56.4220 0.0020 
1.0 x lop4 393 666 -56.4229 0.0011 n /a  -56.4230 0.0010 
5.0 x 450 763 -56.4232 0.0008 n/a -56.4234 0.0006 
4.0 x lop5 665 247 -56.4235 0.0005 n/a -56.4236 0.0004 

Harrison, Ref. 223:' 
1.0 x 10-4 786 -56.390631 0.033376 0.61 -56.422854 0.001153 
1.3 x 10-5 1 889 -56.411996 0.012011 1.04 -56.423766 0.000241 
1.6 x lop6 5 814 -56.417497 0.006510 2.93 -56.423748 0.000259 
3.9 x lo-' 18 921 -56.420203 0.003804 5.92 -56.423719 0.000288 
2.0 x lo-' 32 288 -56.421211 0.002796 7.68 -56.423737 0.000270 

Povill et al., Ref. 123:' 
6.0 x lop6 1.00 x lo6 -56.423659 0.000348 2.49 -56.423681 0.000326 
0.4 x 1.17 x lo6 -56.423785 0.000222 6.55 -56.423824 0.000183 
0.1 x 1.25 x lo6 -56.423825 0.000182 15.10 -56.423875 0.000132 

Mitrushenkov and Dmitriev, Refs. 183, 216:b>e 
1.0 x 10-3 2 000 -56.4085 0.0155 n /a  -56.42397 0.00004 
1.0 x lop4 34 000 -56.4195 0.0045 n/a -56.42392 0.00009 
1.0 x 590 000 -56.4235 0.0005 n/a -56.42400 0.00001 
'Bmis set and geometry of Ref. 218. Only valence electrons are correlated. Ncr 
denotes the size of the variational space, and NPT denotes the size of the 
interacting space treated by second-order perturbation theory. All energies are 
given in hartree. 
*Number of nonzero elements in final CI vector. 
'Dimensions are given in CSFs instead of determinants. 
'The CIPSI algorithm uses two thresholds, q and 7. q is given, and 7 = 10-l'. 
eMitrushenkov reports the number of nonzero elements in the CI vector as a 
percentage of the full CI space (209 626 425 determinants); the NCI values given 
are thus only approximate. 
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first highly accurate NH3 benchmark using a basis set this large was that 
of Knowles and Handy in their 1989 demonstration of their new selected CI 
method.21s Hence, most subsequent selected CI benchmarks on this system 
have used their geometry and atomic natural orbital basis set. An exception is 
the wavefunction operator (WFO) benchmark,224 which employed a different 
basis set; that method is therefore excluded from the table. The exact full 
CI energy of NH3 with this basis set was unavailable when these selected CI 
benchmarks were published, and the Knowles-Handy218 extrapolated selected 
CI estimate of -56.4236 hartree has sometimes been used in place of the full 
CI value. The apparent convergence of this estimate led Knowles and Handy 
to propose error bars of f O . O O O 1  hartree. However, in 1994 Povill et al.lZ3 
used the 3-class CIPSI methodg3 to select the most important 1.25 million 
determinants and obtained a variational energy of -56.423825 hartree using 
the DISCIUS algorithm.215 This energy is lower than the lowest estimate of 
Knowles and Handy, including the error bar. This difficulty was cleared up 
in 1995 by Evangelisti et u ~ . , ~ O  who used the full CI program of Bendazzoli 
and E v a n g e l i ~ t i ~ ~ 9 ~ ~  to obtain an energy of -56.424007 hartree (this same value 
was obtained independently by OlsensO). This demonstrates that the energy 
of Knowles and Handy was not converged as tightly as expected, and that 
it is easy to underestimate the importance of a large number of neglected 
determinants. 

The data in Table 5 show that the perturbation theory corrected energies 
are better approximations to the full CI energy than the purely variational 
results, and that the full CI energy is always approached from above; these 
conclusions are in general agreement with previous benchmarks for smaller 
s y ~ t e m ~ . ~ ~ ~ ~ ’ ~ ~ ~ ~ ~ ~ ~ ~ ~  However, we note that the perturbation theory corrections 
become less effective for large variational spaces, and conversely, the CI+PT 
energies are slowly convergent (and not monotonic) with the relatively small 
CI spaces used in Harrison’s studyzz3 (note, however, that Harrison’s Ncr 
values are in CSFs rather than determinants, making his variational space 
look smaller than it actually is). The norm-consistent zero threshold energies 
of Mitrushenkov and Dmitriev216 appear particularly effective, although they 
do not approach the full CI energy monotonically. 

Table 5 demonstrates that it is difficult to establish the convergence of the 
energy for selected CI methods. Another problem which has received rela- 
tively little attention is the convergence of properties other than the energy. It 
would be expected that other properties should not converge as quickly with 
respect to the size of the CI space as the energy (cf. section 2.2), particularly 
for selected CI methods which use an energy selection criterion rather than a 
coefficient criterion. However, a 1992 study by Cave, Xantheas, and Feller227 
used a selected CI method which is similar to the two-class CIPSIg2 method but 
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uses energy-based selection. These authors came to the remarkable conclusion 
that most one-electron properties considered in their study (including isotropic 
hyperfine values and dipole and quadrupole moments) converged even more 
rapidly than the energy.227 Additionally, WulfovZz8 has recently considered 
the convergence of the equilibrium geometries and harmonic vibrational fre- 
quencies of several diatomic molecules as a function of the selection threshold 
value.224i225 The convergence of these properties could not be firmly estab- 
lished due to the lack of corresponding exact full CI values; however, a recent 
full CI benchmark study by our groupzz9 on C2 and CN’ finds only very small 
errors in Wulfov’s best CISPT geometries and frequencies (less than 0.001 A 
and 4.0 cm-’, respectively). 

4.8 Restricted Active Space CI 

Rather than select individual determinants based on computational estimates 
of their importance, one might instead select entire classes of determinants 
which are expected a priori to be important based on their partitioning of 
electrons among various orbital subspaces. This is the motivation behind the 
truncation of the CI space according to “excitation level” (how many electrons 
are placed in the virtual subspace) and the second-order CI (SOCI),13 which 
includes all determinants with at most two electrons in the external subspace. 
Such CI selection schemes were described in general terms by S h a ~ i t t , ~ ~  who 
defined the full class CI as one which partitions the orbitals into an arbi- 
trary number of orthogonal subsets and includes all or none of the N-electron 
functions which have a given partitioning of electrons among the subspaces. 
As Shavitt points out, a full-class CI wavefunction is invariant to separate, 
nonsingular linear transformations within any of the orbital subspaces. 

A benefit of such class selection schemes is that the CI space exhibits a 
regular structure which can be used to advantage in computational implemen- 
tations. Additionally, it appears to be easier to gauge the general reliability of 
wavefunctions obtained using class selection schemes as opposed to individual 
selection. However, class selection methods will invariably include some less 
important determinants and therefore cannot yield wavefunctions as compact 
as those from an individual selection method. 

A specialization of the full class CI which uses only three orbital subspaces 
is the Restricted Active Space (RAS) CI approach introduced by Olsen et 
al.46 in 1988 along with the string-based full CI algorithm already discussed 
(section 4.4). The three subspaces are labeled I, 11, and 111, and the CI space 
is limited by requiring a minimum of p electrons in RAS I and a maximum of 
q electrons in RAS 111 (cf. Figure 14). There are no restrictions on the number 
of electrons in RAS 11, and thus it is analogous to the complete active space 
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(CAS). There may be an additional frozen core subspace in which each orbital 
is constrained to remain doubly occupied; these core electrons and orbitals 
need not be treated explicitly in the RAS procedure (cf. section 2.4.7). The 
full CI space may be obtained as the maximum limit of the RAS space. The 
focus of Olsen’s paper was on the utility of the RAS method in limiting the 
size of CI calculations, but thus far its maximum impact has been on the 
development of determinant-based full CI  algorithm^.^^^ lE3 

Figure 14: Orbital partitioning and configuration selection in the Restricted 
Active Space Configuration Interaction method. The CI space includes all 
determinants in which at least p electrons are in RAS I and at  most q electrons 
are in RAS 111. 

RAS I11 

RAS I1 

max q electrons 

Any CI space truncated according to excitation level may be formulated 
within the RAS CI framework the occupied orbitals are placed in RAS I, 
and the unoccupied orbitals are placed in RAS 111, and the RAS I1 subspace 
is absent. The maximum number of electrons in RAS I11 is set equal to the 
maximum excitation level, and the minimum number of electrons in RAS I is 
simply the total number of electrons N minus the maximum excitation level. 
A full CI can be obtained by applying trivial restrictions, such as a minimum 
of zero electrons in RAS I and a maximum of N electrons in RAS 111. 

One may also formulate excitation class selected MR-CI spaces within the 
RAS framework. A SOCI can be obtained by setting RAS I equal to the active 
space, deleting RAS 11, allowing a maximum of two electrons in RAS 111, and 
requiring a minimum of N - 2 electrons in RAS I. Alternatively, this same CI 
space may be constructed by placing the virtual orbitals of the active space 
in RAS 11, allowing a maximum of two electrons in RAS 111, and requiring 
zero electrons in RAS I. To obtain the CISD[TQ] wavefunction mentioned in 
section 2.4.2, one places occupied orbitals in RAS I and virtual active space 
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Figure 15: Two formulations of the SOCI wavefunction within the RAS CI 
method. 

I11 

I 

max 2 

min N - 2 

max 2 

min 0 

orbitals in RAS 11. A maximum of two electrons are allowed in RAS 111, and 
a minimum of N - 4 electrons are required in RAS I (cf. Figure 16). Some 
possibilities of extending the RAS selection scheme are discussed in section 
4.8.3. 

Figure 16: 
method. 

Formulation of the CISD[TQ] wavefunction within the RAS 

I1 

I 

The RAS CI algorithm of Olsen et relies on Handy’s separation of de- 
terminants into alpha and beta strings (cf. section 4.2). As in other determinant- 
based CI methods, the determinants are restricted to those having a given value 
of Ms. Since the number of electrons N is also fixed, this means that the alpha 
and beta strings always have constant lengths of N,  and N p ,  respectively. For 
a full CI, one forms all possible alpha and beta strings for a given N, and Np, 
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and the determinants employed are all possible combinations of these alpha 
and beta strings. In a RAS CI wavefunction, the CI space is restricted in 
two ways: first, not all alpha and beta strings are allowed, and secondly, not 
all combinations of alpha and beta strings to form determinants are accepted. 
This is best understood from an example: consider the case of 6 orbitals, with 
N,  = Np = 3. If orbitals 4, 5, and 6 constitute RAS 111, with a maximum 
of 2 electrons allowed, then clearly alpha strings such as aa,ai,ai, are not al- 
lowed. Similarly, even though afuaaaaea and ~ , ~ a , ~ a , ~  are allowed alpha and 
beta strings, these strings cannot be combined with each other because the 
resulting determinant would place four electrons in RAS 111. 

If the CI coefficient vector is viewed as a matrix, c(I,, I p ) ,  then these re- 
strictions, as well as those due to point-group symmetry, can be implemented 
by allowing only certain blocks of c to be nonzero. If strings with the same 
irreducible representation are numbered consecutively, then only those blocks 
of the CI coefficient matrix with the correct overall symmetry (determined as 
the direct product of the alpha and beta string irreducible representations) 
are allowed to  be nonzero. For the RAS restrictions, it is convenient to assign 
a particular code to each alpha and beta string which represents the distri- 
bution of electrons among the RAS orbital subspaces. This means that the 
allowed combinations of strings may be determined directly from their respec- 
tive codes. In Olsen’s nornenclat~re ,~~ these codes correspond to different 
string graphs; string representation and addressing is discussed further in sec- 
tion 4.9. If strings with a given code (or within a given graph) are numbered 
consecutively, then the allowed combinations of strings become allowed sub- 
blocks of the symmetry blocks in the CI coefficient matrix. These are referred 
to henceforth as the RAS subblocks. For a full CI, one can group all strings 
belonging to the same irreducible representation in the same graph, so that 
the RAS subblocks are the same as the symmetry blocks. 

t t t  

4.8.1 RAS CI (T Equations 

The products of shift operators in equations (113) and (114) mean that some 
alpha/beta strings can contribute to the B vector even if they are not necessary 
to describe the CI space. Therefore the string lists must include all valid 
strings and all the singly substituted strings derived from them. For a full CI, 
all possible strings for a given number of alpha/beta electrons are allowed, so 
all singly substituted strings are automatically present. For a restricted CI, 
however, including all singly substituted strings is an inefficient procedure. 

Olsen e t  al. showed46 how to eliminate the contributions from these “out- 
of-space” strings for the case of a RAS CI wavefunction. Since the equation for 
(53 (115) contains no products of shift operators, only cr1 and (52 can contain 
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contributions from out-of-space strings. Moreover, since 02 is analogous to 
01 (and can be derived from it for M,  = 0 cases), it is sufficient to focus on 
01. Olsen’s approach is to change the sum over i, j ,  k ,  I into a restricted sum, 
(ij) 2 ( k l ) ,  where (ij) and (kl) are canonical indices defined as 

(ij) = in + j ,  (139) 

if there are n orbitals and the numbering starts from zero. Consider the term 

c c (P( J P )  I k!j 2il IP(4) ) (ij I k l ) c ( L  1 513). (140) 
Jo ( i j ) ? ( k l )  

An out-of-space string Kp can only contribute if it is produced by k[l lp(Ip)) ,  
and if E t  transforms it back into an allowed string (Jp). But if the orbitals 
are numbered consecutively within each RAS space, and if equation (139) is 
used to define the canonical index (ij), such contributions are impossible. For 
example, consider the case where a maximum of two electrons are allowed in 
RAS 111. If string Ip already contains two electrons in RAS 111, then a single 
replacement kfll/3(Ip)) which promotes a third electron to RAS I11 will yield 
an out-of-space string. The shift operator E; could produce an allowed string 
again if it moves any of the three electrons in RAS I11 back down into RAS I 
or RAS 11. However, if the summation over orbitals is restricted to (ij) 2 ( k l ) ,  
this is impossible, since k > i. 

Using the commutation relationship 

(141) [Eij, ^ P  E,,] - 0  = t 5 k j E i  - Silk&, 

one can rewrite (113) to employ this restriction. The result46 is: 

O l ( L  43) = c X(P(JP) I ~ i l I P ( ~ P ) ) g k l C ( L  J P )  (142) 

+ c c (P (Jp ) l k t2 i l lP (~~) ) ( i j l k l ) c (~~ ,  JP)(1+ b ( i j ) , ( k l ) ) - l ,  

Jo kl 

Ja ( i j ) 2 ( k l )  

where g is an asymmetric matrix defined as 

4.8.2 Algorithms for Computing 0 

The full CI algorithms must be modified to treat the more general RAS case. 
Most significantly, the o1 and 02 equations for RAS CI spaces differ from 
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the full CI equations: (142) requires that the summation over orbitals obey 
( i j )  2 (kl) (recall that introducing this restriction into the full CI algorithm is 
one way to reduce effort when M, = 0). The other required modification is that 
the innermost loops must sum over allowed .combinations of alpha and beta 
strings only. For instance, the loop over I ,  near the end of the a1 algorithm 
in Figure 7 must be split into two loops: one over alpha string graphs, and 
another over strings within each graph. This allows for the sum over Jp to run 
over only those beta strings which are allowed to combine with strings from 
the current alpha string graph. Similar modifications must be made to the a2 
and a3 algorithms. 

It is perhaps not entirely obvious what is the most efficient way to adapt 
Olsen’s algorithms to account for point group symmetry and RAS restrictions. 
Although it is a relatively simple matter to introduce a loop over graphs in 
the multiplication of F by c or c‘, it is also necessary to introduce loops over 
graphs in earlier parts of the algorithm; otherwise, F can contain irrelevant 
entries. When the CI vector is processed a symmetry block at a time or a RAS 
subblock at  a time, it seems best to place these loops over graphs within the 01, 
0 2 ,  and a3 routines. However, when the CI vector is processed a RAS subblock 
at a time, these loops over graphs may be placed outside the o subroutines. 
Further details are presented in section 4.9. 

4.8.3 

Although many useful CI spaces can be obtained in the RAS CI method, it 
may nevertheless be beneficial to employ more complex CI spaces. Olsen has 
begun to investigate CI spaces formed as the union of two RAS spaces,8O while 
we have considered the addition of another orbital subspace.l’ As first pointed 
out by Grev and Schaefer,“ the most weakly occupied CISD natural orbitals 
contribute almost exclusively to singly and doubly substituted configurations, 
rather than to triples, quadruples, etc. This suggests the utility of extending 
the RAS method to include another orbital subspace, formed from the most 
weakly occupied natural orbitals. Labeling this new orbital set as “RAS IV” 
may be somewhat misleading, in the sense that the orbital index restriction 
(ij) 2 (kl) is no longer sufficient to remove out-of-space contributions from 
(142): we have alternatively referred to this new orbital set as the “tertiary 
virtual subspace” .la 

Let us assume that the occupied orbitals are collected in RAS I, and that 
if an electron occupies RAS IV, the determinant must represent a single or 
double substitution of the reference determinant. Out-of-space contributions 
arise if one electron occupies RAS IV and another electron occupies RAS I1 
or RAS 111: such strings are allowed, but the promotion of another electron 

Beyond RAS: More Flexible a priori  CI Space Selection 
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from RAS I results in a disallowed string Ip(Kp)) = kfllp(Ip)). Application of 
the other shift operator in the 01 equation, E:, can result in an allowed string 
Ip(Jp) )  with (ij) 2 ( k l )  if the electron in RAS IV is moved into one of the lower 
RAS subspaces, as long as it occupies an orbital i > k. Thus it is necessary 
to include in the string space all allowed strings, plus the disallowed strings 
which have one electron in RAS IV and two electrons in (RAS I1 + RAS 111). 
Once these strings are included, the RAS u equations can be used for 01 and 
02 .  As in the standard RAS method, no out-of-space strings can contribute 
to u3. By definition, the out-of-space strings are not allowed to combine with 
other strings to form RAS subblocks of the c or u matrices. Alternatively, in 
some cases these out-of-space contributions might be dealt with by employing 
the ( N  - 2)-electron reduced space of Zarrabian et aZ.471217 (cf. section 4.5). 

4.9 Implementation of Determinant-Based Algorithms 

In this section we discuss some of the practical issues relevant to the actual 
implementation of the determinant-based CI algorithms. We also describe our 
experience with our own fully direct CI program, DETCI, which is capable of 
evaluating any CI wavefunction which can be formulated as a RAS CI, subject 
to memory and disk limitations. This program is based in part on the alpha 
and beta string formalism of Handy44 and the algorithms of Olsen et a1.46983 
It has been modified to  allow more complex CI spaces, as described in sections 
4.8.3 and 5.4. 

Our program requires at least two memory buffers for CI vectors, where 
a buffer can be either the length of the entire vector, or a spatial symmetry 
block, or a RAS subblock. Using the fastest algorithm, the program also re- 
quires a smaller memory buffer to hold a portion of the CI coefficients in a 
given RAS subblock. An additional buffer the size of the largest RAS sub- 
block may also be required for taking transposes of the c subblocks if Ms = 0 
symmetry is employed (this is determined by the core memory option, and if 
possible the same buffer is used for transposes and gathered CI coefficients). 
For diagonalizing the Hamiltonian, we have implemented many of the iterative 
methods described in section 3.2. 

4.9.1 Graphical Representation of Alpha and Beta Strings 

As discussed in the previous section, it is necessary to have a method for 
numbering the alpha and beta strings and a reasonable way of grouping these 
strings together so that allowed combinations of strings can be determined a 
group at a time. Olsen et al. use a graphical method to compute string ad- 
dresses, and they group strings together by placing them on the same graph.46 
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We have employed a similar method. 
The present approach is based on the work of Duch, who has describedz3’ 

the graphical representation of CI spaces in considerable detail. First, we 
consider the simple two-slope directed graphs (“digraphs”) which represent 
alpha or beta strings without consideration of point group symmetry. Figure 17 
presents a digraph representing all strings with five electrons in seven orbitals. 
Each string is represented by a “walk” on the graph, from the head (at e = o = 
0) to the tail (at e = Na/p, o = n). Moving straight down from vertex (e ,o)  
to  vertex (e, o + 1) indicates that orbital o + 1 is unoccupied in the current 
string, while moving down diagonally from vertex (e, 0) to vertex (e + 1, o + 1) 
indicates that orbital o + 1 is occupied. Each vertex on the graph is assigned a 
weight x (e ,  o), and each arc connecting two vertices is assigned an arc weight 
Y(e, 0) for the arc leaving vertex (e, 0). Since, in general, two different arcs can 
leave a given vertex, we write Yo(e, 0) for the arc originating from vertex ( e ,  0) 
which leaves orbital o + 1 unoccupied, and &(e,  0) for the arc which occupies 
orbital o + 1.t The index or address of a string or walk is obtained by adding 
weights for each arc contained in the walk, i.e., 

i = O  

where Li is the occupation (0 or 1) of the ith arc, and (ei, i) are the coordinates 
of the vertices crossed by La. The term X ( L a )  gives the offset of a given graph, 
if more than one graph is employed. The relative index for a determinant in a 
block may be given by I ( L a ,  Lp) = Ia(La)Sp+Ip(Lp), where Sp is the number 
of beta strings in the block. 

There are several different methods for assigning the arc weights by which 
one evaluates the index of a string according to equation (144). Under the 
lexical ordering scheme, the tail (No,  n) of an alpha string graph is assigned a 
weight z = 1. Other vertex weights are computed according to the recursive 
formula 

Using lexical ordering, typically all arc weights Yo(e, 0) are set equal to zero, 
and the arc weights Yl ( e ,  0) are determined according to 

x ( e ,  0) = z ( e  + 1, o + 1) + x (e ,  o + 1). (145) 

Yl (e ,  0) = x (e  + 1, o + 1) + z ( e  + 1,o) + . . . i- x ( e  + 1, e + 1). (146) 

Figure 17a features vertex and arc weights computed in this manner. A result 
of the lexical ordering scheme is that paths with a fixed upper part and an 

*This differs somewhat from D u c ~ , ~ ~ ’  who sometimes uses Y ( e , o )  to denote the arc 
entering vertex (e, o) in reverse-lexical addressing. 
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Figure 17: Alpha string graph for no = 5,n = 7. Vertex weights are de- 
termined according to lexical ordering, and arc weights are given so that the 
rightmost path has index zero. (a) All unoccupied arc weights Yo(e ,o)  are 
zero. (b) All occupied arc weights Yl ( e ,  o) are zero. 
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arbitrary lower part have consecutive indices. The particular choice of Y values 
above is appropriate if the rightmost path is to have an index of zero. The 
same effects can be achieved using 

Yl(e ,o)  = 0 

Yo(e, 0) = x(e  + 1, o + I), 

as illustrated in Figure 17b. An walk has the same index in Figures 17a and 
17b. For instance, the walk ai,a{,a!,a?,a$, has an index of 5+4+3+2+2 = 16 
(equation 144) from Figure 17a, and an index of 15 + 1 = 16 from Figure 17b. 

In the so-called “reverse-lexical” ordering scheme, all upper paths for a 
fixed lower path have consecutive indices. Vertex weights are now determined 
as 

a(e,  0) = ji(e, o - 1) + z (e  - 1, o - I), (149) 

where the overbar indicates reversed-lexical ordering. Figure 18a depicts a 
reversed-lexical graph with all non-occupied orbital arcs set to zero. The oc- 
cupied orbital arcs are computed as 

Yl(e,  0) = %(e + I,.). 
Figure 18b is the same except that now all occupied arcs have weights of zero. 
The non-occupied arc weights are 

%(e, 0) = j i (  e,  0) + 3(e + 1, o + 1) + + . + 3 ( N  - 1, o + N - e - 1). (151) 

Note that string indices for reverse-lexical ordering are not necessarily the 
same as indices for lexical ordering. For the string af,af,a~,a~,a~, considered 
previously, the index is calculated as 1 + 1 + 1 + 1 + 6 = 10 from Figure 18a, 
or as 5 + 5 = 10 from Figure 18b. 

The arc weights given in Figures 17 and 18 cause the rightmost path to 
have an index I(&) = 0. If we change the arc weights so that the leftmost 
path has index I(&) = 0, we obtain four more addressing schemes. The two 
simplest schemes for I(&) = 0 are 

Yo(e, 0) = 0 Yl(e,  0) = z(e, o + 1) 

Fl(e, o) = o Yo(e, 0) = 3 ( e  - 1,o) 
(152) 
(153) 

where the overbars indicate that reversed-lexical vertex weights have been 
used. Alpha strings for 5 electrons in 7 orbitals employing these addressing 
schemes are depicted in Figure 19. 

If we add another coordinate I’ to each vertex, we can extend these simple 
digraphs to include point group symmetry. However, this procedure is not 
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Figure 18: Alpha string graph for n, = 5 , n  = 7. Vertex weights are deter- 
mined according to reverse-lexical ordering, and arc weights are given so that 
the rightmost path has index zero. (a) All unoccupied arc weights &(e, 0) are 
zero. (b) Occupied arc weights Yl(e, o) are set to zero. 
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Figure 19: Alpha string graph for n, = 5, n = 7, with arc weights determined 
so that the leftmost path has index zero. (a) Vertex weights for lexical ordering, 
and arc weights according to Yo(e,o) = 0, Yl(e ,o)  = z(e,o + 1). (b) Vertex 
weights according to reverse-lexical ordering, and arc weights according to 
Fl(e, 0) = 0, %(e, 0) = 3(e - I,.). 
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really necessary as long as strings with different irreps are placed on different 
graphs. These two-slope digraphs are actually simpler versions of the four-slope 
digraphs first used by Shavitt to compute the addresses of configuration state 
functions (CSFs) in the graphical unitary group appr~ach .~‘  The indexing 
scheme used by DETCI is the reverse-lexical ordering with all unoccupied arc 
weights set to zero, as depicted in Figure 18a. Olsen et a1.46 use the lexical 
ordering of Figure 17a. 

In order to  make the CI coefficient matrix block diagonal according to 
irreducible representation, it is necessary to number the strings consecutively 
within each irrep. This is accomplished by grouping strings with the same 
irrep into the same graph. For RAS CI spaces, it is also useful to  number the 
strings such that only certain subblocks of each symmetry block are nonzero. 
This is accomplished by forming a different string graph for each different 
distribution of electrons among the RAS subspaces; for example, all strings 
with irrep al having four electrons in RAS I and two electrons in RAS I11 are 
grouped together, whereas strings with irrep a1 but five electrons in RAS I and 
one electron in RAS I11 are grouped together in a separate graph. In this way, 
the allowed combinations of strings become allowed combinations of graphs, 
and each allowed pair of alpha and beta graphs becomes a RAS subblock. 

4.9.2 

In their full CI program, Bendazzoli and E ~ a n g e l i s t i ~ ~ ? ~ ’  dispense with the 
graphs entirely and compute string addresses directly from their bit patterns, 
with one bit for each orbital; set bits (ones) represent occupied orbitals. Strings 
of N, ones and n- N, zeroes are a common representation of the combinations 
of n objects taken N, at a time, and there exist standard numerical methods 
of computing lexical addresses for such bit  pattern^.'^' 

Knowles and Handy present an explicit formula for computing a string’s 
address from a list of its occupied  orbital^.'^' They employ an auxiliary array 
defined according to 

Nongraphical Methods for String Addressing 

n - N + k > l >  k ; k <  N - 1  

Z ( k , l )  = l + l - N  n > l z N ; k = N - l  (154) 

where k labels electrons, 1 labels orbitals, n is the number of orbitals, and N 
is the number of electrons (we have modified the equation so that electron and 
orbital numbering starts from zero). The address of a string is then computed 
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according to: 
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(155) 
i=O 

Unfortunately, generalizing this formula to assign consecutive indices to strings 
with the same irrep becomes complicated. Bendazzoli et al. note that, since 
their strings are generated in the desired order, they can write the string's 
address to intermediate arrays and thus obviate the need to compute string 
addresses on-the-fly. Such considerations are also true of Olsen's program and 
of ours, However, storing all strings with their single replacement information 
can require a very large amount of memory, as discussed in section 4.9.4. In 
this case, it becomes useful to compute string addresses on-the-fly as rapidly 
as possible. 

If only occupied orbitals are assigned arc weights in the graphical procedure, 
it is possible to obtain an equation similar to (155), but using the graphical 
numbering scheme instead of the Knowles-Handy numbering. This is easily 
seen by comparing equation (155) to equation (144) when only occupied arcs 
have nonzero weights: 

N,-1 

I&,) = X ( L " )  + c Y(2, q$). 
i=O 

This method of evaluation can be very efficient if the matrix Y (with dimen- 
sion N,  x n) is stored for each of the string graphs. The memory requirement 
for this approach will generally be manageable, and far preferable to storing 
the string replacement lists or Bendazzoli and Evangelisti's OV and OOVV 
 list^.^^^^^ In the worst case, each excited string would then require N,  matrix 
lookups and (N ,  - 1) additions to determine its address. However, note that a 
single excitation changes the occupancy of perhaps one and at  most two RAS 
subspaces. It can be seen from eq. (156) that the contribution of unchanged 
RAS spaces to the string address are constant and need only be computed 
once. Graphically, this means that certain RAS spaces are traversed by the 
same segment of a walk. Finally, unless fast access to the arc weights is re- 
quired, it is preferable to keep the arc weights and other graph information in 
a compact form which stores only allowed vertices. 

4.9.3 Example of CI Vector and String Addressing 

This section applies the CI vector and string addressing methods just discussed 
to the specific case of a CISD for H20 in a minimal basis. Assume that the 
calculation is performed in CzV symmetry, and that the core orbital has been 
frozen. The orbitals are then ordered according to Figure 20. Note that the 
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Figure 20: Orbital ordering for minimum basis CISD HzO in CZ, symmetry. 

Table 6: Allowed strings for minimum basis CISD HzO in Cz, symmetry. 

Graph r NIIl Strings 
0 al 1 (0 1 3  5) 
1 al 2 (0 3 4 5), (1 3 4 5) 
2 a2 0 (0 1 2  3) 
3 a2 1 (0 2 3 4), (1 2 3 4), (0 1 2  5) 
4 az 2 ( 0 2 4 5 ) , ( 1 2 4 5 )  
5 bl 1 (0 1 2 4), (0  2 3 5),  (1 2 3 5) 
6 bl 2 ( 2 3 4 5 )  
7 bz 1 (0 1 3  4) 
8 bz 2 (0 1 4  5) 

frozen core orbital is not assigned a number by DETCI because the frozen core 
electrons are treated implicitly (cf. section 2.4.7). 

The distribution of electrons among RAS subspaces can be determined 
simply from the number of electrons in RAS 111, since there are only two RAS 
subspaces in this particular example. For a given string, there can be 0, 1, or 
2 electrons in RAS 111, and since there are four irreps in Cz,, there can be up 
to twelve string graphs. For this closed-shell case, the same set of graphs can 
be used to represent both alpha and beta strings. Table 6 lists all 15 allowed 
strings. Note that some strings transform as a2 even though there are no a2 
orbitals; as a general rule for larger cases, strings are almost evenly distributed 
among irreps. The strings in Table 6 are listed in increasing index order. For 
the few graphs containing more than one string, it is straightforward to  verify 
using the techniques of section 4.9.1 that the relative addresses within the 
graph are in the order shown if reverse-lexical ordering is used. 
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Table 7: Single replacement list for the first string in minimum basis CISD 
HzO. Jg is the graph of the target string and J is the target string’s relative 
index. 

i j Jg J Sgn 
0 0  0 0  + 
1 1  0 0  + 
3 3  0 0  + 
5 5  0 0  + 
4 0  1 1  + 
4 1  1 0  - 

2 5  2 0  - 

2 3  3 2  + 
2 0  5 2  - 

2 1  5 1  + 
4 5  7 0  + 
4 3  a o  + 

As discussed later in section 4.9.4, it is necessary to compute lists of all 
singly excitations from each string. These excitations can be written in the 
form la (Ja) )  = sgn(ij)&$la(Ia)), and for each string la, the lists need to 
contain the address of Ja, the sign, and the pair of orbitals zj. The string 
replacement lists for string 0 are given in Table 7. 

Finally, it is helpful to show how this string ordering determines the ad- 
dressing of the CI vector. There are two restrictions on the pairing of alpha 
strings with beta strings: first, the direct product of the two string irreps must 
be the irrep of the electronic state of interest ( a l ) ;  second, the total number 
of electrons in RAS I11 must be two or less. Due to the arrangement of the 
graphs, these restrictions can be satisfied for pairs of graphs rather than for 
pairs of strings. Each allowed pair of graphs becomes a RAS subblock. Table 
8 lists the allowed RAS subblocks. An interesting feature of this unusually 
small CI space is that not all allowed strings contribute to allowed determi- 
nants: there are no beta strings which can be combined with alpha strings 
from graphs 1, 6, or 8 which give allowed determinants. 

4.9.4 String Replacement Lists 

One of the first steps in implementing Olsen’s algorithm is the construction of 
string lists which hold the information needed to generate all single replace- 
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Table 8: Allowed RAS subblocks for minimum basis CISD HzO. 

Block a Graph p Graph Dets 
0 0 0 1 
1 2 2 1 
2 2 3 3 
3 2 4 2 
4 3 2 3 
5 3 3 9 
6 4 2 2 
7 5 5 9 
8 7 7 1 

ments for each string; for example, Ip(Jp)) = sgn(ij)k{l/3(lp)) in Figure 9. 
For each excited string, one needs i, j ,  (or a composite index ij), the string 
address Jp ,  and sgn(ij), which tells whether E{ sends p ( I p )  into plus or minus 
@(.lo). The sign is most easily derived using the rules of second quantization, 
recalling that the phase convention is defined by always listing alpha/beta 
strings according to increasing orbital number (cf. section 4.2). Note that the 
equations require the inclusion of operators Eij ,  which might not normally be 
considered “single substitutions.’’ 

In the innermost loop of Olsen’s v3 algorithm, V ( I )  = CJ, F ( J p ) d ( l ,  J p ) ,  
the summation should be restricted to only allowed pairs of strings (I, Jp). 
If loops over graphs are introduced, then one loops over J, belonging to a 
given alpha string graph (J,”) and Jp belonging to a given beta string graph 
(J;), where (Jt,J;) is an allowed combination of graphs. Now the problem of 
summing over all substituted strings becomes one of summing over all substi- 
tuted strings belonging to a given graph. Thus DETCI divides the list of single 
replacements into multiple lists, one for each target graph. A counter array 
is used to store how many singly substituted strings there are for each graph. 
For a large number of graphs (there can be several hundred), this method of 
storage can be very memory intensive, since the number of pointers for each 
string is proportional to the number of graphs; however, this method also pro- 
vides very fast access to the relevant replacement information in the innermost 
loops. 

It is important to point out that the string lists can become very large if 
there are more than a few thousand strings. For a full CI, the number of strings 
is approximately equal to the square root of the number of determinants, so 
quite large full CI spaces can be described using only a small number of strings. 
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Table 9: Number of strings and determinants for selected CI problems. 

CI problem Fzc Strings Dets Str/Det 
cc-pVDZ+ Ne full CI" 0 8 568 9 185 280 9.3 x lop4 

DZ H2O full CI 1 715 128829 5 . 5 ~  
DZP H20 CISDTQ 1 10626 558 823 1 . 9 ~  

DZP H20 CISDT 1 5 781 50 187 1.2 x lo-' 

DZ H2O full CI o 2 002 1002 708 2.0 x 10-3 

DZP H2O CISDITQlb 1 4 326 78 895 5.5 x lop2 

DZP HzO CISD 1 1221  2 349 5.2 x lo-' 
aUsing the basis set of Koch et a1.' 
bThe RAS I1 space consists of the 2b2,4a1,2bl, and 5al orbitals, 

However, it is perhaps not well appreciated that for RAS CI spaces, the number 
of strings can grow much faster with the number of determinants: this is 
illustrated in Table 9. Such considerations indicate that any method of storing 
the string replacement lists whose memory requirements are proportional to 
the number of strings (with a large coefficient, no less) is unmanageable for 
large-scale RAS CI procedures. 

If the number of determinants remains much larger than the number of 
strings for a given case, one might consider storing the string lists to disk and 
loading them as needed. Indeed, such an approach would probably work in 
conjunction with the n 3  algorithm. However, this strategy is not amenable 
to the 01 algorithm as implemented by Olsen et ~ l . , ~ ~  because one must con- 
sider single replacements from all graphs which can be reached from the graph 
containing the strings 1,. It seems preferable to form the string replacement 
information on-the-fly. A prototype method for doing this exists in DETCI, but 
it is inefficient: walking down graphs to add up arc weights is rather slow with 
our current storage scheme for the graphs. However, if the arc weights are 
stored in a slightly different format, it is possible to compute string addresses 
much more quickly; indeed, it is possible to compute addresses a RAS space at  
a time, meaning that arc weight contributions from RAS spaces with fixed or- 
bital occupancies are constant. This strategy was discussed in section 4.9.2 and 
is currently being implemented in DETCI. Another option is to use an entirely 
different implementation for restricted CI where storage of string replacement 
information becomes a problem. Malmqvist et al.56 have implemented RAS CI 
using a split-graph unitary group approach, and this algorithm may be more 
efficient for CI spaces which are not close to the full CI. 
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4.9.5 

Assuming that the string replacement lists are available in-core, the algorithms 
used by our program for computing az and a3 (simplified somewhat for clarity) 
are presented in Figures 21 and 22 for the case in which a is computed a RAS 
subblock at a time, where the loops over combinations of strings allowed by 
symmetry and CI space restrictions are placed outside the 02 and a3 subrou- 
tines. The symbol y in Fig. 22 represents an irreducible representation of the 
molecular point group. These are the same algorithms used by our program 
for full CI; if enough memory is available to hold a symmetry block of c and a 
in core, then the RAS subblocks are the same as the symmetry blocks for a full 
CI. Otherwise, one can use a larger number of string graphs and smaller sub- 
blocks. For M ,  = 0 cases, it is possible to compute only the lower (or upper) 
triangle of a, according to (119). Thus only one of each pair of off-diagonal 
subblocks is determined explicitly. For diagonal blocks, (119) is used to im- 
pose the restriction (ij) 2 (k l )  in the evaluation of a3 (cf. section 4.4.2). In 
FORTRAN, presumably it is best to eliminate redundant subblocks from the 
upper triangle, since blocks with only a few rows will typically be found in the 
upper triangle (assuming that larger indices are assigned to strings with more 
electrons in RAS 111): these blocks do not vectorize well due to short vector 
lengths. In C, exactly the opposite holds: it is presumably most efficient to 
eliminate the lower triangle subblocks. However, it is also true that longer 
vector lengths require more time to set up the lists L,  R, and Sgn. 

The signs are actually taken care of by very fast bitwise logic operations. 
02 is computed instead of a1 because the preferred direction of vectorization 
is reversed in c as compared to FORTRAN. In the present context, this means 
that the step [02(Ia,I0) = az(I,,Ip)+F(J,)*c(J,,Ip)] is performed with unit- 
stride access to 0 2  and c. Note that this is in fact a DAXPY operation, which 
could be performed by calling the daxpy function from the BLAS library. For 
the IBM RS/SOOO POWER2 implementation, calling the BLAS library from 
the a2 or a3 routines resulted in no real savings. In fact, this slowed down 
the 0 3  subroutine, presumably due to the overhead of placing the function call 
within nested loops. 

Note that the a2 routine is actually quite close to Olsen’s 01 routine (swap 
ping alphas for betas, of course), except that the adaptation to point group 
symmetry and RAS restrictions is now explicit. The o3 routine is also similar 
to Olsen’s (with alphas swapped for betas), although the intermediate vector 
F has been eliminated (see below). Note that this particular version of the a3 
routine takes advantage of the (ij) 2 (Icl) simplification possible for M, = 0 
cases; this restriction cannot be used for off-diagonal RAS subblocks if only 
unique subblocks of 0 are computed. 

Algorithms for 02 and a3 Used by DETCI 
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Figure 21: DETCI algorithm for uz. 

Enter subroutine for block (I:, 1;) of o2 and block ( J i ,  I;) of c 
loop I, = 1, number of strings in I, graph I: 

zero F(Jp)  
loop over alpha string graphs KZ 

Kcnt = cnt(I,, KZ) 
Kidx = id~(I,, KZ) 
Kij  = ij(I,, K:) 
loop K = 1, Kcnt 

K, = Kidx(K) 
S1 = sign associated with K, 
if (K: = J i )  

Jcnt = cnt(K,, J:) 
Jidx = Zh(K,, J t )  
J i j  = Zj(K,, JZ) 

kZ = K i j ( K )  

F(K,) = F(K,) + s1 * h(k l )  

loop J = 1, Jcnt 
J, = Jidx ( J )  
S2 = (sign associated with J,) * 5’1 
ij = J i j ( J )  
F(J,) = F(J,) + 0.5 * (ijlkl) * S2 

end loop over J 
end loop over K 

end loop over KZ 
loop J, = 1, number of alpha strings in J t  

if (F(J,) = 0) skip to next J, 
loop 10 = 1, number of beta strings in I, graph 1; 

end loop over I, 
4,, I,) = m.fIa, 47)  + F(J,) * c(J*, 1,) 

end loop over J, 
end loop over I, 
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Figure 22: DETCI algorithm for cr3. 

Enter subroutine for block (I:, 1;) of 0 3  and block (J:, J;) of c 
loop over ij 

if (y(i) 8 y(j)@ y(J;)8 ~(1;)  # 0) skip to next ij 
jlen = formlist(I;, J;, ij, L, R, Sgn) 
if ( j l e n  = 0 )  skip to next ij 
loop I ,  = 1, number of alpha strings in 1: 

loop J = 1, j l e n  

end loop over J 
c ’ ( L  J )  = C ( L ,  L ( J ) )  * S9n(J) 

end loop over I ,  

loop Ia = 1, number of strings in graph 1: 
Jacnt = cnt(I,, J:) 
Jaidx = Zdx(Ia, J:) 
Ja i j  = ij (I,, JZ) 
zero V 
loop J a  = 1, Jacnt AND ( ( k l  = J a i j ( J a ) )  <= ij) 

J,  = Jaidx( J a )  
Sl =sign associated with J ,  

loop Jb  = 1, j l e n  

end loop over Jb  

V S  = 0.5 * dij,,, * (ijlkl) * S1 

V ( J b )  = V ( J b ) + V S * c ‘ ( J , ,  Jb) 

end loop over J a  

loop Jb  = 1,jlen 

end loop over J b  
Q ( & , R ( J ~ ) )  =a3(fa,R(Jb)) + V f J b )  

end loop over I, 
end loop over ij 
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The figures clearly indicate that an efficient algorithm should take advan- 
tage of the sparsity of F in both the u2 and u3 routines. Although it is possible 
to  ignore this sparsity in order to  obtain more highly vectorized algorithms, 
this results in a slower code due to the large number of multiplications by zero. 
Attempts to formulate the a3 algorithm as a standard matrix multiplication 
resulted in a program which was slower by a factor of at least four (and usually 
more) on the IBM RS/SOOO model 3CT. The reader may wonder whether fur- 
ther reductions in the overall operation count might increase efficiency: after 
all, formulating the innermost loop as a DAXPY requires a certain amount 
of overhead work (namely, the gather and scatter operations). Indeed, a very 
simple algorithm which performs the minimum number of operations has al- 
ready been presented in Fig. 8. However, there are a number of reasons to 
think that this algorithm should be less efficient than that in Figure 22 for 
workstation computers. One reason is that indirect addressing in the inner- 
most loop causes cache misses and thus longer waits for elements of c. Another 
is that the simple algorithm takes no advantage of the pipelining features of 
current workstations, discussed in section 4.3. For DZ H 2 0  full CI (1 million 
determinants), using the algorithm in Fig. 22 instead of the simple algorithm 
in Fig. 8 results in a speedup by a factor of five on the IBM 3CT. However, 
it is also important to  point out that the smaller block sizes in a RAS CI (as 
opposed to a full CI) mean that the payoff for vectorization is less. 

A few remaining comments should be made about our 03 algorithm in 
Fig. 22. First, note that the intermediate vector F has been eliminated. Stor- 
age to and retrieval from this array requires several extra operations, yet the 
efficiency of the DAXPY operation is not enhanced by the use of F ,  since F is 
sparse (the only work saved is for excitations which map a string into itself). 
Second, writing the innermost loop of this routine (and also of the o1 rou- 
tine) as a DAXPY is particularly efficient on the RS/6000 architecture, which 
performs each pair of floating point multiplications and additions in the same 
machine instruction, the floating point multiply-add (FMA). 

In order to gauge the efficiency of our new determinant-based CI program, 
several timing comparisons have been made between DETCI and the standard 
Schaefer group CI program GUGACI. Table 10 presents averaged CPU and 
total times for several full CI test cases. Both programs used the standard 
Davidson method, keeping on disk the c and u vectors for every iteration; 
this lead to noticeable 1/0 delays for some of the larger test cases. Our new 
program is also capable of using iteration methods which require fewer vectors 
on disk (cf. section 3.2). Although we do not have access to Olsen’s code, he 
has reported that his program takes about 40s per iteration for the 1 million 
determinant DZ H2O full CI ~alculat ion,2~~ whereas DETCI requires 30s per 
iteration on the same model workstation (IBM RS/SOOO model 590). 
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Table 10: CPU and total times per iteration to evaluate several benchmark 
full CI wavefunctions using the IBM RS/SOOO model 3CT. Fzc/Fzv denote the 
number of frozen core/frozen virtual orbitals. 

Time/Iter (seconds) 
GUGACI DETCI 

Molecule Fzc/Fzv CSFs Dets CPU Tot CPU Tot 

DZ H2O O / O  256 473 1002 708 1430 1465 28 33 
cc-pVDZ+ Nea 0/0 2 083 968 9 185 280 13788 14007 282 532 
DZP C2 2/2 6 571 116 27 944 940 32489 34831 1329 3160 
Wsing the basis set of Koch et 

DZ H20 1/0 37353 128 829 77 79 3 3  

5 Applications of Highly Correlated CI 
Most studies limit the CI space to single and double substitutions from a 
single reference (CISD). Occasionally, when one reference does not provide a 
sufficient zeroth-order wavefunction, the multi-reference CISD method will be 
employed. The applications of such methods are too numerous to discuss here; 
their general performance has already been described in section 2. We consider 
studies which go beyond CISD for one or a few references; such highly corre- 
lated wavefunctions are useful when very accurate results are desired or when 
several electron configurations are needed for a qualitatively correct reference 
wavefunction (such as when multiple bonds are broken). We will limit our 
attention to methods which select the CI space in an a priori fashion based on 
the distribution of electrons among various orbital subspaces. 

5.1 Full CI 

The most highly correlated configuration interaction method is of course full 
CI, which solves the Schrodinger equation exactly within the space spanned 
by the single-particle basis set (section 2.1). Unfortunately, as explained in 
section 2.4.1, the full CI space grows factorially with the number of electrons 
or single-particle basis functions; currently, full CI is limited to very small 
molecules (one or two heavy atoms with a few hydrogen atoms) described by 
a basis set of doub1e-C or perhaps trip1e-C quality. Furthermore, errors due 
to the incompleteness of the single-particle basis set are generally more severe 
than those introduced by the neglect of triple, quadruple, etc., substitutions 
in the treatment of electron correlation. Hence full CI is useful primarily as 



240 C. D. Sherrill and H. F. Schaefer 111 

a benchmark method for evaluating approximate treatments of correlation. 
Given their extreme computational requirements, it is perhaps surprising how 
many full CI benchmarks have been reported. Here we will focus primarily on 
the more noteworthy or more recent benchmarks, and on systems containing 
more than four electrons. 

The early (1980) full CI algorithm of Handy44 enabled Saxe, Schaefer, and 
Handy to obtain the exact variational solution for the ground state of H20 
within a modest doub1e-C (DZ) basis set; this represented the first CI wave- 
function to include more than one million determinants.'13 In 1983, Harrison 
and Handy used this same algorithm, along with the loop-driven graphical uni- 
tary group approach CI (LD-GUGACI) program of Brooks and S ~ h a e f e r , ~ ~  to 
report full CI results for H2O and NH3 with a DZ basis and for BH and HF in a 
double-C plus polarization (DZP) basis.38 These two studies, which also gave 
results for the CISD, CISDT, and CISDTQ methods, clearly demonstrated 
that triply and quadruply substituted configurations account for nearly all of 
the error in the CISD correlation energy (cf. Table 2). Moreover, by comparing 
to Harrison and Handy's results for H20, Bartlett, Sekino, and Purvis demon- 
strated that fourth-order many-body perturbation theory [MBPT(4)] performs 
poorly when both 0-H bonds are ~tretched, '~ even though it partially accounts 
for quadruple excitations. This occurs because the restricted Hartree-Fock de- 
terminant provides an inadequate zeroth-order wavefunction as the bonds are 
stretched too far from their equilibrium lengths, and it emphasizes the need 
for multireference approaches. 

The subsequent (1984) vectorized full CI algorithmlog of Knowles and 
Handy allowed Bauschlicher, Taylor, LanghoE, and others to carry out a se- 
ries of important benchmark calculations. In 1986, these authors, along with 
Partridge, presented full CI results for the Ne atom using a triple-C plus dou- 
ble polarization (TZ2P) basis set.233 Once again, the CISDTQ wavefunction 
yielded more than 99% of the basis set correlation energy; furthermore, the 
contribution of quintuple and higher substitutions decreased with increasing 
basis set size. Subsequent benchmark results using a DZP basis were pre- 
sented for HF and NH:!;234 H20, F, and F-;235 the ' A I - ~ B ~  separation in 
CH2;236 the barrier height to the reaction F + HZ + HF + H;237 the lAl ,  
'B1, and 3B1 states of S ~ H Z ; ' ~ ~  the 2 'A1 states of CHZ and SiH2 and the 2A1 
and 2Bz states of CHg;239 the low-lying states of Cz;240 Nz, NO, and 02;241 
the CH3 and Be3.243 Bauschlicher and co-workers have also inves- 
tigated transition metals. They estimated the 5D-5F energy separation for 
the Fe atom using a 5s4p2dlf basis set,244 excitation energies and oscillator 
strengths for the 'D Rydberg series in the A1 atom with a 7s6p4d3f AN0 ba- 
s ~ s , ' ~ ~  the 3F-5F separation for the Ti atom, and the 4@-2A separation for 
TiH in a 5s4p3dlf/2s basis set.246 Illas, Rubio, Ricart, and Bagus used the 
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Knowles-Handy program to obtain full CI energies for the first row atoms and 
their hydrides in 4s3pld/2slp basis sets; these benchmarks were used to eval- 
uate the CIPSI method219 and the performance of A N 0  basis sets versus more 
traditional segmented basis sets.247 Casanovas, Rubio, and Illas have also per- 
formed full CI studies on the interaction of H atom with Cu5 and Ag5 cluster 
models to investigate the transferability of the correlation contribution to the 
chemisorption bond for different pseudo potential^.^^^ 

Several of these studies considered molecules at three geometries, with 
equivalent bonds simultaneously stretched to 1.0, 1.5, and 2.0 times their 
equilibrium lengths; hence, approximate methods could be judged not only 
by what fraction of the correlation energy they recovered, but also by how well 
they paralleled the full GI potential energy surface. The MR-CISD method 
was found to parallel full CI very well, particularly when CASSCF orbitals 
are used and all configurations present in the CASSCF are used as references. 
More recently, these authors have used large basis set full CI benchmarks 
to examine core-core and core-valence correlation effects249 and to calibrate 
more approximate MR-CISD approaches for the dissociation energy of BH.250 
Many of these results are summarized in a 1990 review article by Bauschlicher, 
Langhoff, and Taylor." 

Most of the full CI studies just discussed involved GI spaces spanning tens 
of millions of determinants. More recent full GI algorithms, which follow 
Olsen e t  al. in sacrificing some degree of vectorization for reduced opera- 
tion C O U ~ ~ S , ~ ~ ~ ~ ~ ~ ~ ~  have allowed for CI spaces including hundreds of millions of 
determinants. Indeed, Olsen, Jmrgensen, and Simons reported a full GI calcu- 
lation on the Mg atom using a 5s3p2dlf A N 0  basis and requiring more than 
one billion determinants; unfortunately, it was not possible to fully converge 
the wavefunction due to the extreme amount of CPU time required.83 The first 
converged full GI benchmark requiring more than one billion determinants was 
reported recently by Evangelisti, Bendazzoli, Ansaloni, Duri, and Rossi, who 
presented an out-of-core adaptation of their full CI program for distributed- 
memory parallel computers and used it to obtain the full GI energy of Be2, 
with all electrons correlated, in a 4s2pld AN0 basis set partially uncontracted 
to 9 ~ 2 p l d . ~ ~  

In 1995, these workers used an in-core version of this algorithm to resolve 
an uncertainty concerning the full GI energy of NH3 with an AN0 DZP basis 
set.50 Knowles and Handy had in 1989 presented an energy of -56.4236 f 
0.0001 hartree using their approximate full GI method which truncates the o 
vector; 665,247 of 209,626,425 determinants were treated variationally, and the 
convergence limit was estimated perturbatively.218 This value underestimates 
the importance of the large number of neglected determinants, as was first 
demonstrated by Povill, Rubio, Caballol, and Ma1rie11.l~~ The true full CI 
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energy was shown to be -56.424007 hartree.50i80 The program of Bendazzoli 
and Evangelisti4' has also been applied to DZ Ha and N249 and to C18H18 using 
a simple Pariser-Parr-Pople (PPP) Hami l t~n ian .~~  

In 1996, Olsen, J~rgensen, Koch, BalkovB, and Bartlett presented DZP full 
CI results for H 2 0  at  three geometries, where all ten electrons were correlated. 
Although the basis set was not designed to describe core correlation, these 
results are valuable in that they are fully invariant to orbital rotations, whereas 
they would not have been if the 1s-like orbital on oxygen were frozen.22 As 
shown by Handy and co-workers,20 it is fairly straightforward (and valuable) 
to generalize a full CI program to produce many-body perturbation theory 
(MBPT) energies order by order. considered MBPT 
through 15th order and examined the convergence of the series as the two OH 
bonds are simultaneously stretched, causing the zeroth-order wavefunction to 
become progressively worse. In another 1996 study, Olsen, Christiansen, Koch, 
and Jprrgensen examined the convergence of MBPT for several small molecules 
using DZP and larger basis sets. These authors concluded that perturbation 
theory corrections grow with increasing basis size and that, remarkably, the 
inclusion of diffuse functions can cause the perturbation series to diverge even 
for well-behaved molecules such as HF.237251 Olsen's algorithm has also been 
used to provide benchmark full CI excitation energies for CH+;252 BH, CH2, 
and Ne atom;? H20,  Nz, and C2;37 and H20+.22 

Most full CI studies have focused solely on energies. A few papers, how- 
ever, have presented full CI results for other molecular properties. In 1987 
Bauschlicher and Taylor presented full CI dipole moments and polarizabilities 
for HF, CH2, SiH2, and F- with a DZP basis.253 Moreover, Bauschlicher and 
Langhoff gave full CI equilibrium geometries, dissociation energies, and har- 
monic vibrational frequencies for CH, NH, and OH using flexible AN0 basis 
sets.254 The following year, these authors presented full CI and SOCI transi- 
tion moments for two transitions in CH2 and selected dipole and quadrupole 
transitions in Be0,255 and Bauschlicher presented geometries, frequencies, and 
the dipole moment for the '@ and 2A states of TiH.246 Later, Bauschlicher and 
Taylor also presented full CI transition moments for H2 and BH in a compar- 
ison of the length and velocity representations for the transition moment ,256 

Full CI transition moments and polarizabilities for CH+ have been presented 
by Olsen and c o - ~ o r k e r s . ~ ~ ~  Koch and Bauschlicher have presented a method 
for computing analytically the frequency dependent linear and quadratic re- 
sponse functions for full CI wavefunctions; they have considered Be atom in a 
9s9p5d basis set and have reported transition energies and dipole moments for 
several states, the first polarizability at  real and imaginary frequencies, and 
the static second hyperp~larizabili ty.~~~ Bauschlicher et al. have determined 
the full CI isotropic hyperfine coupling constant for the nitrogen atom using 

Hence, Olsen et al. 
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basis sets as large as 8 ~ 4 p 2 d . ' ~ ~  Spin-orbit coupling has been investigated at 
the full CI level for CH2 by Vahtras et ul.259 and for LiBe by Marino et dz6' 

Researchers have even obtained exact full CI equilibrium geometries for a 
few polyatomic systems with a DZP basis: the linear transition state for the 
reaction F + H2 + HF + H;237 the systems H6, H$ and H$. He;179261 the 
X 'B1 and A 'A1 states of NHz;'~' BH 3; 391262 Hz;263 and the four lowest- 
lying states of methylenez62*z64 and NH$.265 For the latter four molecules, full 
CI dipole moments and harmonic vibrational frequencies have been reported 
at  the full CI equilibrium The DZP full CI studies of 
methylene clearly demonstrate the need to use larger basis sets: predictions 
for the singlet-triplet energy gap236yz62*z64 are at least 2.5 kcal mol-' too large 
compared to experiment.z64 We have recently completed a considerably more 
challenging full CI benchmark study of the four lowest states of methylene 
using the more reliable TZ2P basis set.266 

In the past few years, full CI benchmarks have been used to calibrate meth- 
ods for systems featuring weak interactions. Woon has obtained the full CI 
well-depth, equilibrium separation, and harmonic vibrational frequency for 
Hez with basis sets as large as augmented correlation-consistent polarized 
quadruple-[ (aug-~c-pVQZ).'~~ In a subsequent study, van Mourik and van 
Lenthe used the full CI program of Harrison and Zarrabian47 to obtain dimer 
energies at two separate geometries using large basis sets including h-type po- 
larization functions and bond  function^.^^ One interesting conclusion of this 
study, which could only be determined using highly correlated wavefunctions, 
was that the usually-reliable CCSD method is unsuitable for obtaining accu- 
rate potential energy curves for He2. Other recent full CI studies have also 
focused on helium dimer,268-271 as well as the dimer of two H2 molecules268~270 
and the He-H2 system.268i269 Such benchmarks have been helpful in examining 
the problem of basis set superposition error.z7o 

5.2 Second-Order CI 

One important conclusion from the full CI benchmark studies of Bauschlicher, 
Taylor, Langhoff, and others in the 1980's is that the MR-CISD method based 
on CASSCF orbitals provides potential energy surfaces which accurately par- 
allel the full CI  surface^.'^^ 15,2341238-240,242,254 For example, the CASSCF MR- 
CISD method predicts singlet-triplet energy separations in CH2 and SiHz 
within 0.01 kcal mol-l and 0.03 kcal mol-', respectively, of the full CI re- 
s u l t ~ . ~ ~ ~ ~ ~ ~ ~  The best results are obtained when no threshold is used for refer- 
ence selection: that is, when all CSFs in the CASSCF wavefunction are used 
as references. This CAS-ref MR-CISD procedure is intimately related1O7 to 
second-order configuration interaction (SOCI), which distributes electrons in 
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all possible ways as long as no more than two electrons are allowed in exter- 
nal orbitals at once (of course, spatial symmetry and spin symmetry may also 
be imposed on the final N-electron basis functions). For closed-shell systems 
these procedures are identical, but they can differ for open-shell systems. In 
cases where all occupied orbitals which are correlated in the SOCI are included 
in the active space, one can guarantee that the SOCI space is generated by 
using as references all CSFs arising from CASSCF wavefunctions of all possible 
spatial syrnmetrie~.'~' SOCI wavefunctions are invariant to orbital rotations 
within the active space, whereas this is not necessarily the case for CAS-ref 
MR-CISD when the references are symmetry-restricted. In cases where there 
are "inactive" orbitals (occupied orbitals which are correlated in the SOCI but 
not included in the CASSCF), Bauschlicher has recommended that the SOCI 
be defined according to the RAS CI scheme, such that one places inactive or- 
bitals in RAS I, active orbitals in RAS 11, and external orbitals in RAS III;15 
this maintains the desired orbital invariance properties. This SOCI can alter- 
natively be generated an MR-CISD in which the references are now all CSFs 
arising from all CASSCF wavefunctions of every spatial and spin symmetry. 

The reliability of SOCI, coupled with its essentially a priori selection of 
the CI space, makes it an attractive alternative to full CI. Unfortunately, for 
reasonable active spaces the dimension of the SOCI grows very rapidly with 
system size and thus the method is applicable only to small molecules. Nev- 
ertheless, for quite a few molecules it is possible to use the SOCI method in 
conjunction with large one-particle basis sets and hence to obtain wavefunc- 
tions very close to the exact nonrelativistic Born-Oppenheimer limit. Below, 
we will attempt to give the reader a sense of the types of problems to which 
the SOCI method has been applied. Bauschlicher, Langhoff, and Taylor have 
already given15 an excellent review of the related CASSCF MR-CISD method, 
and we refer the reader to their article for a discussion of additional important 
studies. 

The SOCI method has been applied primarily to diatomics and triatomics. 
Two of the early applications of SOCI were studies of Be2 by Blomberg, Sieg- 
bahn, and ROOS~ '~  (1980) and by Lengsfield, McLean, Yoshimine, and Liuag 
(1983). With only four active electrons, a SOCI for this system is identical to 
the CISD[TQ] method discussed in the following section. The Be2 molecule is 
challenging to theory because of the near degeneracy of the ls22s2 and ls22p2 
configurations in the the Be atom and because the bonding in the dimer is 
dominated by dispersion forces. The latter studyag used a 6s4p3dlf Slater ba- 
sis set to yield a SOCI dissociation energy of D, = 1.87 kcal mol-' (2.04 f 
0.21 kcal mol-l, including estimates of core correlation and basis set errors), 
in contradiction to previous coupled-cluster s t~d ie s"~  giving D, 5 0.2 kcal 
mol-'; the experimental value274 is 2.26 f 0.09 kcal mol-', signaling a success 
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of the SOCI method and a failure of coupled-cluster models which neglect con- 
nected triple substitutions. A SOCI study of the related Mgz molecule using 
large AN0 basis sets was reported275 in 1990 by Partridge et aZ. Other SOCI 
studies on the ground states of diatomic molecules include an investigation of 
the potential energy curves of NeN2+ and NeN+ by Koch, Liu, and Frenking,276 
and of Nz and 0 2  by Langhoff, Bauschlicher, and Taylor.277 The latter study 
used a 5s4p3d2flg basis and reported equilibrium bond lengths, harmonic vi- 
brational frequencies, and dissociation energies of (1.101 A, 2343 cm-’, 9.723 
eV) for Nz and (1.209 A, 1561 cm-’, 5.139 eV) for 0 2 ,  in excellent agreement 
with experimental values of (1.0977 A, 2358 cm-’, 9.905 eV) and (1.2075 A, 
1580 cm-’ , 5.214 eV), respectively. The multi-reference Davidson correction 
for size extensivity (section 2.4.6) improves the SOCI dissociation energies but 
worsens the predicted bond lengths and vibrational frequencies. A subsequent 
study by Almlof et aZ.278 considered even larger basis sets (including i polar- 
ization functions), core-valence correlation, and basis set superposition effects 
in an investigation of remaining sources of error in the dissociation energy of 
Nz;  their best theoretical estimate was within about 2 kcal mol-l, or 1% of 
the experimental dissociation energy. 

Several studies have used the SOCI method to describe excited electronic 
states of diatomic molecules. In 1988, Partridge et aLZ7’ reported SOCI po- 
tential energy curves for the A’ 5Ez and C” 511,, states of Nz; these results 
had important implications for theories of the N2 afterglow and for the first 
time allowed an assignment of the Hermann infrared system. Also in 1988, 
Bauschlicher et  aZ.280 reported SOCI spectroscopic constants (re ,  T,, and we) 
for several low-lying quartet states of AlC; this study indicated that the SOCI 
results based on CASSCF orbitals optimized separately for each state were 
nearly identical to SOCI using a common set of state-averaged CASSCF or- 
bitals. Balasubramanian has used the SOCI method along with relativistic 
pseudopotentials to study diatomics incorporating elements below the second 
row of the periodic table. His work has included studies of the low-lying elec- 
tronic states of InSb;281 Ga2, Ga;, and Ga$;282 GeH and GeH+;283 WH;284 
GaH;285 TIH and InH;286 and GeCl.287 Another study by Balasubramanian 
considers the low-lying states of the transition metal hydrides YH-CdH.288 

The SOCI method has also been used for a number of triatomics, including 
the mu~h-studied’~~ methylene molecule (CHz). An early application of the 
SOCI method to methylene was presented by Saxe, Schaefer, and Handy,28g 
who used Handy’s 1980 string-based determinant CI program44 to obtain an 
estimate of T, = 10.5 kcal mol-’ for the singlet-triplet energy gap using a 
8s5p3d/4slp basis set. More recently, Bauschlicher, Taylor, and Langhoff have 
used the SOCI method in conjunction with a 5~4p3d2flg/4~3p2d AN0 ba- 
sis set to predictzg0 optimized geometries for the X 3B1 and ii ‘A1 states of 
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CH2 of (1.079 A, 133.6') and (1.110 A, 102.0°), which compare to experimen- 
tally derived estimates of (1.0753 A, 133.93O) and (1.116 A, 101.8O), respec- 
tively. McLean et dZg1 used the SOCI method with a 4s3p2dlf/3s2p basis 
to obtain 37 energy points which were fit with a nonrigid bender Hamilto- 
nian model to yield y = 2985 f 20 cm-' and v3 = 3205 f 20 cm-' for the 
fundamental stretching frequencies, compared to experimentally derived val- 
ues of 2992 and 3213 cm-'. For the singlet-triplet energy splitting (Te), the 
5~4p3d2flg/4~3p2d AN0 SOCI estimate of 9.13 kcal mol-' by Bauschlicher 
et al.290 and the TZ3P(2f,2d)+2diff SOCI estimate of 9.02 kcal mol-' by Ya- 
maguchi et ~ 1 . ~ ~  compare very favorably with the best nonrelativistic Born- 
Oppenheimer-corrected experimental estimate of 9.372 kcal mol-'.264,292-294 
Yamaguchi et al. also reporta6 SOCI excitation energies for the 6 'B1 and i; 
lA1 states which will hopefully guide further experimental efforts. 

Among the numerous other studies of polyatomic molecules using the SOCI 
method, Balasubramanian has reported energies and optimized geometries for 
low-lying states of SnH2;'39,295 PbH2;139 GaH2, GaH;, GaH3, and GaH$;285 
YH; and ZrH$;296 ASH 2 ,  ASH;, SbH;, and BiHzf;297 GeH2;139g283 HM 2, .298 

TlH2, TlH;, InH2, and InH$;286 and PH2, PH;, and PH;.299 Yarkony et 
al. have used SOCI wavefunctions as zeroth-order solutions in first-order per- 
turbation theory treatments of the full Breit-Pauli spin-orbit Hamiltonian; in 
this fashion, these workers have studied the spin-forbidden decay of systems 
including 2 211 HS2+,300 6 3Z: NO+,301 and zi 4Z- CH.302 SOCI has also been 
used to assess the quality of the CCSD(T) method for electron affinities,303 to 
obtain accurate barrier heights for the termolecular reaction of 3H2,261 and to 
yield transition 

Finally, we note that it may be advantageous to use natural orbitals (NOS) 
rather than the CASSCF orbitals usually employed in SOCI studies. Grev and 
SchaefeP have shown for a number of small molecules (NH2, CH3, SiH2, N2) 
that a SOCI procedure based on CISD natural orbitals yields energies which 
are very close to the CASSCF SOCI energies, even when several bonds are 
simultaneously stretched to twice their equilibrium length. Blomberg and Liu 
have also observed similar performance of MCSCF orbitals and SOCI natural 
orbitals for energies and transition moments of CH and CH+,138 although we 
note that CISD NOS are much less expensive to  obtain than SOCI NOS. CISD 
NOS are also easier to obtain than CASSCF orbitals, and they are better suited 
to orbital truncation; that is, the energy lost by deleting a few of the most 
weakly occupied NOS will typically be smaller than that lost by deleting a few 
of the highest-lying CASSCF orbitals. This allows for an effective reduction 
in the number of determinants included in a SOCI wavefunction with minimal 
loss in accuracy. Moreover, the energy lost by deleting these weakly occupied 
NOS is primarily due to neglected singly and doubly substituted determinants 
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which occupy these orbitals, and not to neglected triples, quadruples, etc.l6> l7 

This suggests a strategy of using a smaller NO basis to treat higher-than- 
double substitutions, and this idea has been implemented in the CISD[TQ] 
method described in section 5.4. 

5.3 Restricted Active Space CI 

As already discussed, many commonly encountered CI spaces can be formu- 
lated within the RAS CI scheme. However, at the moment our attention is fo- 
cused on CI calculations using the RAS CI program of Olsen and c o - ~ o r k e r s . ~ ~  
Examples of full CI calculations using Olsen's program have already been dis- 
cussed above, so here we limit our attention to truncated CI wavefunctions. 

The RAS CI method can be very valuable when used in conjunction with 
the multiconfigurational linear response (MCLR) method, which allows calcu- 
lation of excitation energies, transition moments, and second-order properties 
such as polarizability. In 1989, Olsen and co-workers compared MCLR and 
full CI results for CHf and found that for highly accurate results, it is nec- 
essary to provide more extensive treatments of electron correlation than the 
valence CAS. Furthermore, these authors found that the RAS method provides 
an accurate means of reducing the size of the CI space in these MCLR stud- 
ies. Jensen et al. were able to show that the RAS MCLR calculations which 
include dynamical correlation give very reliable frequency-dependent polariz- 
abilities for the nitrogen molecule.304 Sanchez de Merds et al. found that the 
polarizabilities of H20 and COZ obtained using the RAS MCLR method with 
polarized basis sets were within 5% of experiment.305 More recently, Sundholm 
and Olsen have used the RAS approach as part of a finite element multiconfigu- 
rational Hartree-Fock method for determining the atomic quadrupole moment 
of Ca (3d4s; 'D) and the electron affinity of the lS ground 

5.4 CISDTQ and CISD[TQ] 
Few studies have employed configuration interaction with all singles, doubles, 
triples, and quadruples (CISDTQ) because the number of triple and quadruple 
substitutions grows very rapidly with the number of electrons and basis func- 
tions (cf. Table 3). CISDTQ results are most commonly reported in benchmark 
full CI studies to  indicate the fraction of the basis set correlation energy recov- 
ered by triples and quadruples.'7*22~39~80~234~241~264 Nevertheless, the CISDTQ 
method has occasionally been used for benchmarking in cases where the full 
CI was not technically feasible, because the CISDTQ results are expected to 
be very close to full CI for small molecules. For systems with eight electrons 
or less at their equilibrium geometries, the CISDTQ method recovers more 
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than 99.8% of the correlation energy for a DZP basis set (cf. Table 2). One 
benchmark study by Lee et al. examined the effects of triple and quadruple 
excitations on equilibrium geometries, harmonic vibrational frequencies, and 
infrared intensities of several small molecules.308 A similar study by Scuseria, 
Hamilton, and Schaefer309 used CISDTQ equilibrium geometries and harmonic 
vibrational frequencies to evaluate the performance of the CCSDT method for 
several diatomic molec~les.~ 

Chemical applications of the CISDTQ method include the 1988 study by 
Scuseria and Schaefer310 on the barrier height for the F + Hz + FH + H re- 
action, which is very sensitive to the level of theory employed. By truncating 
the CI space at  quadruples, these authors were able to increase the basis set 
from 28 functions (in Bauschlicher and Taylor's full CI to 47 basis 
functions and enabled them to consider the effects of correlating the fluorine 
2s orbital. Additionally, Tanaka and Nishimoto have used CISDTQ to ex- 
amine the reaction mechanism for 1,3 hydrogen transfer in excited states of 
f ~ r m a m i d e , ~ ~ ~  and Du, Hrovat, and Borden312 have used CISDTQ as part of 
a study on singlet-triplet gaps in diradicals. 

Multireference CISD methods generally offer a more economical treatment 
of the dominant effects of triple and quadruple substitutions and allow the 
use of larger one-particle basis sets. The primary disadvantage of MR-CISD 
compared to CISDTQ is that the choice of references (and truncation, if any, 
of the generated singles and doubles space) must be performed carefully so 
as not to bias the results. An a priori selection scheme for MR-CISD which 
has been investigated in our laboratory is the CISD[TQ] method,16 which se- 
lects as references all single and double substitutions in the active space. This 
is equivalent to a CISDTQ in which no more than two electrons are allowed 
into external orbitals, or to a second-order CI (SOCI) in which greater-than- 
quadruple substitutions have been eliminated. This method was used by Saxe 
et al. in a 1982 study of ethylene using a DZP basis and the shape-driven 
graphical unitary group approach (SD-GUGA) CI program.g1 The resulting 
wavefunction (spanning more than 1 million CSFs) was considered a bench- 
mark result. In 1992 study of NHz, CH3, SiHz, CZ, and Nz, Grev and Schae- 
fer16 found that the CISD[TQ] method provides results which are very close 
to SOCI when a single reference function dominates. A subsequent study of 
several other small molecules by Fermann et a1.17 reinforced these conclusions. 
Some results from these studies which indicate the ability of CISD[TQ] to par- 
allel the SOCI and full CI surfaces are presented in Table 11. The CISD[TQ] 
and SOCI wavefunctions were based on CISD natural orbitals, which perform 
as well as CASSCF orbitals for SOCI." Although the savings in the number 
of CSFs for CISD[TQ] compared to SOCI in Table 11 is relatively modest, 
this savings increases very rapidly with basis set and number of electrons: for 
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Table 11: Errors in Total Energies (millihartree) Relative to Full CI for Several 
Molecules Using a DZP Basis." 

Method NO. CSFS E(re) E(1.5 *re) E(2.0 T,) 
2B1 NH2 (Ref. 16): 
CISD 898 9.003 23.475 69.168 

SOCI 21 687 2.853 2.107 1.703 
Full CI 2 435 160 0.000 0.000 0.000 

CISD [TQ] 18 396 2.897 2.630 4.957 

2A; CHB (Ref. 16): 
CISD 1385 8.384 23.216 70.646 
CISD[TQ] 51 818 2.156 2.065 4.910 
SOCI 76 660 2.090 1.254 0.889 
Full CI 9 591 312 0.000 0.000 0.000 

'Al H20 (Ref. 17): 
CISD 926 12.851 30.421 75.644 
CISDTQ 151 248 0.397 1.547 6.280 
CISD[TQ] 32 361 1.630 2.537 6.867 
SOCI 76 660 1.276 1.058 1.020 
Full CI 6 740 280 0.000 0.000 0.000 

VISD[TQ] and SOCI methods employed CISD natural orbitals. 
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DZP ethylene, a CISD[TQ] description requires over 1 million CSFs, whereas 
a SOCI requires over 42 million. In addition to these results, Grev and Schae- 
fer16 also demonstrate that the CISD[TQ] method yields reliable dissociation 
energies for the difficult N2 and C2 molecules. 

More recent work has explored the quality of CISD[TQ] equilibrium ge- 
ometries and harmonic vibrational frequencies. King et d313 have found that 
for HzO with a TZ2P basis, the equilibrium geometry predicted by CISD[TQ] 
differs from that of CISDTQ by less than 0.0001 A in the bond length and 
0.2O in the bond angle. Furthermore, the CISD[TQ] harmonic vibrational fre- 
quencies differ from those of the complete CISDTQ by an average of only 5 
cm-l. Such agreement is outstanding, particularly in view of the fact that the 
CISD[TQ] wavefunction contains 45 times fewer CSFs than CISDTQ. In re- 
lated work, Hoffman et aL314 have found similar results for H2S. Another study 
by Leininger and Schaefer315 considers the ozone molecule, which is challenging 
to theory because of the unusual importance of triple and quadruple substitu- 
tions. It is not currently feasible to obtain the complete CISDTQ wavefunction 
with a DZP basis, but the DZP CISD[TQ] equilibrium geometry differs from 
experiment by only 0.009 A, and the harmonic vibrational frequencies differ by 
an average of 2.4%, with the treacherous antisymmetric stretching frequency 
predicted within 4.5%. 

Finally, even though the computational cost of a CISD[TQ] procedure 
is substantially reduced compared to CISDTQ, the scaling with system size 
(cf. section 2.4.5) remains unfavorable. Hence, it is necessary to seek further 
reductions in the CI expansion with a minimal loss in the quality of the wave- 
function. One promising strategy was suggested by Grev and Schaefer’s 1992 
study16 on the use of CISD natural orbitals (NOS) in the CISD[TQ] and SOCI 
methods. This work indicated not only that CISD NOS are as effective as 
CASSCF orbitals at providing good correlating orbitals in the active space, 
but also that the most weakly occupied NOS contribute almost negligibly to 
the energy. Furthermore, the errors in the energy caused by deleting weakly 
occupied orbitals are almost entirely due to the neglect of singles and doubles 
occupying these orbitals, and not to triples or quadruples. This suggests a more 
compact CISD[TQ] wavefunction” which splits the external orbital space into 
two sets. If the unoccupied (virtual) orbitals of the active space are labeled the 
primary virtual subspace, then the external orbitals are divided into secondary 
and tertiary virtual subspaces, where the tertiary subspace comprises the set of 
the most weakly occupied NOS. One may then modify the CISD[TQ] method 
to eliminate those triple and quadruple substitutions which place an electron 
in one of the most weakly occupied o r b i t a l ~ . l ~ ~ ~ ~ * ~ ~  In effect, one uses a larger 
basis set for the singles and doubles than for the triples and quadruples. 

This “split-virtual” CISD[TQ] method has been implemented in our de- 
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Table 12: Correlation Energy Recovered (Relative to CISDTQ) by the Split- 
Virtual CISD[TQ] Method for HzO in a cc-pVTZ Basis Set." 

Method/ NO Number %SDTQ 
Secondary Space Cutoff of Dets Energy 
CISD 15 939 93.1 
CISDT 938 679 95.8 
CISDTQ 28 085 271 100. 
CISD[TQ] wf primary space 2bz4a12b15al 
(18 7 9 15) none 984 789 98.8 
(9 4 6 8) 320 531 98.6 
(3 1 1 2 )  10-3 41 261 96.5 

"CISD[TQ] methods employed CISD natural orbitals (NOS). 
The secondary orbital space selects all virtual orbitals with 
NO occupation numbers greater than the given cutoff and 
is identified according to how many orbitals of each irrep 
of CZ, it contains, in the order (al, ag, bl, bz). Only 
valence electrons are correlated. 

(0 0 0 0) 16 713 94.7 
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terminant based CI program (cf. section 4.8.3), and we have presented some 
preliminary resultsl8 for the neon atom and for HzO. Table 1 2  gives some of 
our results for H20 with a cc-pVTZ basis set. We find the NO-based selection 
scheme to be effective in obtaining the dominant effects of triple and quadruple 
substitutions while using fewer CSFs, and we believe this promising strategy 
should be even more effective in the coupled-cluster approach, where the con- 
nected triples (?3 operator) could be evaluated using a smaller NO space. 
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