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A Two-Dimensional Analog VLSI Circuit for
Detecting Discontinuities in Early Vision

JOHN G. HARIus, CHRISTOF KOCH,* JIN Luo

A large number of computer vision algorithms for finding intensity edges, computing
motion, depth, and color, and recovering the three-dimensional shape of objects have
been developed within the framework ofminimng an associated "energy" or "cost"
functional. Particularly successful has been the introduction ofbinary variables coding
for discontinuities in intensity, optical flow field, depth, and other variables, allowing
image segmentation to occur in these modalities. The associated nonconvex variational
functionals can be mapped onto analog, resistive networks, such that the stationary
voltage distribution in the network corresponds to a minimum of the functional. The
performance of an experimental analog very-large-scale integration (VLSI) circuit
implementing the nonlinear resistive network for the problem of two-dimensional
surface interpolation in the presence of discontinuities is demonstrated; this circuit is
implemented in complementary metal oxide semiconductor technology.

Constraints, such that discontinuities occur
along continuous contours and rarely inter-
sect, can be incorporated into this formal-
ism. The functional is minimized by stochas-
tic optimization techniques, such as simulat-
ed annealing. Various deterministic approxi-
mations, based on continuation methods or
a mean field theory approach, yield next-to-
optimal solutions (6, 7).

In this report, we discuss a nonlinear
resistive network implementing surface
smoothing as well as segmentation, an im-
portant problem in computer vision (2). In
the one-dimensional (1-D) case (the 2-D
generalization is straightforward), the sparse
and noisy depth data di are given on a
discrete grid. Associated with each lattice
point is the value of the recovered surfacefi
and a binary line discontinuity (,. When the
surface is expected to be smooth (with a
first-order, membrane-type stabilizer) ex-
cept at isolated discontinuities, the fimction-
al to be minimized is given by:

JCf) = xLj+1 f)2(l - ei)
ALARGE CLASS OF VISION ALGO-

rithms is based on uinimizing an
associated "cost functional." Such a

variational formalism is attractive because it
allows a priori constraints to be explicitly
stated. The single most important constraint
is that the physical processes underlying
image formation, such as depth, orientation,
and surface reflectance, change slowly in
space. For instance, the depths of neighbor-
ing points on a surface are usually similar.
Standard regularization algorithms embody
this smoothness constraint and lead to qua-
dratic variational functionals with a unique,
global maximum (1, 2). These quadratic
functionals can be mapped onto linear resis-
tive networks, such that the stationary volt-
age distribution, corresponding to the state
of least power dissipation, is equivalent to
the solution ofthe variational functional (3).
The data consist ofcurrents injected into the
appropriate nodes.
Smoothness breaks down, however, at

discontinuities caused by occlusions or by
differences in the physical processes underly-
ing image formation (such as different sur-
face reflectance properties). Detecting these
discontinuities becomes crucial, not only
because otherwise smoothness is incorrectly
applied but also because the locations of
discontinuities are often required for further
image analysis and understanding (for exam-
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ple, one can often reliably find the outline of
a moving object by detecting discontinuities
in the optical flow field). Geman and Geman
(4) first introduced a class of stochastic
algorithms, based on Markov random fields,
that explicitly encodes the absence or pres-
ence of discontinuities by means of binary
variables. Their approach was extended and
modified to account for discontinuities in
depth, texture, optical flow, and color (5).
Using Bayes's theorem, we can compute the
maximum a posteriori probability distribu-
tion by minimizing a nonconvex functional.

+ i-(dr2 -)2 + a>LtI (1)

where cr2 is the variance of the additive
Gaussian noise process assumed to corrupt
the data di, and X and a are free parameters
(8). The first term on the right implements
the piecewise smooth constraint: if all varia-
bles, with the exception offi, f+i, and e ,
are held fixed and X(fi+1 -fj)2 < a, then it
is "cheaper" to pay the price X(f+1-)f)2
and to set ei = 0 than to pay the larger price
a; if the gradient becomes too steep, e!i = 1,
and the surface is segmented at that location.

Fig. 1. (A) Schematic diagram for our 20 by 20 A
pixel surface interpolation and smoothing chip. A c°I
rectangular mesh of resistive fuse elements c E -
(shown as rectangles) provides the smoothing and
segmentation ability of the network. The data are
given as battery values du with the conductance
G connecting the battery to the grid set to
G = 1/2cr2, where C2 is the variance of the addi- G=
tive Gaussian noise assumed to corrupt the data. -c= -- .
If no data are available, G = 0. The output is the °C
voltagefu at each node. Parasitic capacitances (notL
shown) provide the dynamics. We usually assume
a zero slope boundary condition along the bound-
ary. Data are read in or out by means ofadditional
scanning circuitry (not shown). This circuit con- B 300.
verges to a minimum ofthe functional J ofEq. 1.
(B) Measured I-V relation for different settings of
the resistive fuse. We can continuously vary the -_
I- V curve from the hyperbolic tangent of Mead's < - V
saturating resistor (HRES) to that of an analog 0 T C_!
fuse. The I-V curve of a binary fuse is also ~ VT
ilustratedashed line). For a voltage of less than
VT= Vo/x across this two-terminal device, the
circuit acts as a resistor with conductance X.
Above VT, the current is either abruptly set to -3005
zero (binary fuse) or smoothly goes to zero -0V (V)
(analog fuse). Independent voltage control lines A V (V)
allow us to change both X (over four orders of magnitude) and VT (from 50 to 500 mV).
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The second term, with the sum including
only those locations i where data exist,
forces the surface f to be close to the mea-
sured data d. How close depends on the
estimated magnitude of the noise, in this
case, on o2. The final surfacefis the one that
best satisfies the conflicting demands of
piecewise smoothness and fidelity to the
measured data.

Instead of resorting to stochastic search
techniques to find the global minimum of
the 2-D generalization of Eq. 1, we use a
deterministic approximation and map the
functionalJ onto the circuit shown in Fig.
lA. The stationary voltage at every grid
point then corresponds tofu. If data exist at
location i, j, a battery is set to dij, and the
conductance between the battery and the
grid is set to G = 1/(2or2). If no data exist,
G = 0. In the absence of any discontinuities
(all e = 0), smoothness is implemented via a
conductance of value X connecting neigh-
boring grid points; that is, the elongated
rectangles in Fig. 1 can simply be considered
resistors. The cost functional J can then be
interpreted as the power dissipated by the
circuit. If parasitic capacitors are added to
the circuit, J acts as a Lyapunov function of
the system and the stationary voltage distri-
bution corresponds to the smooth surface
(9).
We designed a two-terminal nonlinear

device, which we call a "resistive fuse," to
implement piecewise smoothness (Fig. iB).
If the magnitude of the voltage drop across
the device is less than VT = (ot/I) 1/2, the
current through the device is proportional
to the voltage, with a conductance of X. This
implements smoothness. If VT is exceeded,
the fuse breaks and the current goes to zero.
The operation of the fuse is fully reversible.
We use an "analog fuse" with the current-
voltage (I- V) curve shown in Fig. IB, imple-
menting a continuous version of the binary
line discontinuities. Its exact form can be
derived from mean field theory (6, 10, 11). If
the internal dynamics of the resistive fuse
can be neglected, then it can be proven that
the network will not oscillate but rather will
settle into a local minimum. The associated
Lyapunov function is the electrical co-con-
tent (12).
We built a 20 by 20 pixel very-large-scale

integration (VLSI) chip, using the subcir-
cuit types and design practices developed by
Mead (13). The slope X and the voltage
threshold (aIX)"12 of all fuses can be set by
off-chip voltage inputs. Furthermore, the
I-V curve of a fuse can be continuously
varied from that of a saturating resistor to
that ofan "analog fuse" (Fig. IB), effectively
implementing a continuation method for
minimizing the nonconvex functional (14).
Figure 2 shows experimental data from our

A B C Fig. 2. Experimental
data from our chip. We
use as input data a tower
(corresponding to dV =
3.0 V) rising from a
plane (corresponding to
2.0 V) with superim-
posed Gaussian noise.
(A) The input with the
variance of the noise set

3.5 D 3.5 E S.5F to 0.2 V. (B) The volt-
age output with the fuse

S.0 3.0 3.0 configured as a saturat-

>_2.5 >25 t > 2. ing resistance. (C) The
%/ ..4* _ 1. , voltage output when the

2.0 2.0 2.0 I-V curve of the fuse has

1.5 1.5 1. been changed from the
, .. . ~~~~~~~saturating resistance to

0 4 8 12 16 20 4 8 12 16 20 0 4 8 12 16 20 g resancegtothat of the analog fuse
Node number Node number Node number (following the arrow in

Fig. 1B) while at the
same time the conductance X has been increased. (D-F) The same behavior along a horizontal slice
across the chip for a2 = 0.4 V. The smoothing and segmentation abilities of the fuses are obvious. The
amplitude of the noise in the last case (40% ofthe amplitude of the voltage step) is so large that a single
filtering step on the input (D) will fail to detect the tower. Cooperativity and hysteresis are required for
optimal performance. Notice the "bad" pixel in the middle of the tower [in (C)]. Its effect is localized,
however, to a single element.

chip. The input data correspond to a central
tower on a flat plane corrupted by Gaussian
noise (Fig. 2, A and D). Figure 2, B and E,
illustrates the resultant voltage distribution
if the "fuses" are set to act as saturating
resistors. The tower merges into the plane,
because there are no discontinuities to pre-
vent smoothing from occurring. Figure 2, C
and F, shows that changing the I-V curve
from that of a saturating resistor to that of
an analog fuse (Fig. lB) enables the network
to clearly segment the tower from the back-
ground. Numerical analysis as well as our
empirical studies have shown that the
smoothing abilities of resistive networks are
robust to variations (caused by process vari-
ations) in the value of the resistances across
the chip (15). Furthermore, point defects,
such as the one shown in Fig. 2C, induce
line processes to break, thereby preventing
the error from propagating.
Computer simulations have shown that a

resistive network with such fuses can recover
the optical flow in the presence of motion
discontinuities (16). We are currently build-
ing a variety of such resistive networks for
finding edges and computing depth and
optical flow in the presence of discontinui-
ties. These circuits are robust and accurate
enough to allow for simple navigation tasks
such as following edges or tracking moving
light sources when mounted onto toy cars
operating in a laboratory environment (17).
We have now successfully demonstrated all
the circuit elements necessary to perform
on-chip image acquisition and processing-
photoreceptors, resistive grids, and resistive
fuses. It appears that real-time, small, pow-
er-lean (18) and robust analog computers
are making a limited comeback in the form

of highly dedicated, smart vision chips (19).
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Structural and Electronic Role of Lead in
(PbBi)2Sr2CaCu208 Superconductors by STM

XIAN LIANG WU, ZHE ZHANG, YUE Li WANG, CHARLES M. LIEBER*

The structural and electronic effects of lead substitution in the high-temperature
superconducting materials PbxBi2zxSr2CaCu208 have been characterized by scanning
tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Large-area
STM images of the Bi(Pb)-O layers show that lead substitution distorts and disor-
ders the one-dimensional superlattice found in these materials. Atomic-resolution
images indicate that extra oxygen atoms are present in the Bi(Pb)-O layers. STS data
show that the electronic structure of the Bi(Pb)-0 layers is insensitive to lead
substitution within ±+0.5 electron volt of the Fermi level; however, a systematic
decrease in the density of states is observed at 1 electron volt above the Fermi level.
Because the superconducting transition temperatures are independent of x(Pb) (x c
0.7), these microscopic STM and STS data suggest that the lead-induced electronic and
structural changes in the Bi(Pb)-O layer do not perturb the electronic states critical to
forming the superconducting state in this system.

S UBSTITUTION OF METALS IN THE RE-

cently discovered high-temperature
superconductors has been used exten-

sively both to probe factors that determine
superconductivity and to prepare new mate-
rials (1). A case in point is Pb substitution
in the Bi-O layers of Bi-Sr-Ca-Cu oxide
materials (Fig. 1). Since Sunshine and
co-workers first reported that the substitu-
tion of Pb enhances the superconducting
onset temperature from 85 to 107 K in
multiphase ceramic samples (2), numerous
investigations of this chemical modification
have been reported (3-13). In polycrystal-
line (PbBi)2Sr2Can_ 1Cun02n+4 materials,
Pb substitution has been found to favor

the formation of the 110 K, n = 3 (2223)
phase versus the 85 K, n = 2 (2212) phase
(8, 9). In addition, diffraction studies have
shown that the prominent one-dimensional
incommensurate superstructure observed in
Bi2Sr2CaCu208 changes upon substitution
of Pb, although the details of these changes
appear to be sample-dependent (3-7).
Hence, it is not yet known how Pb substitu-
tion affects the intrinsic superconducting
properties of these materials.
To probe directly the structural and elec-

tronic effects of Pb substitution, we studied
high-quality, single-crystal PbxBi2-,Sr2Ca-
Cu208 (x = 0, 0.3, or 0.7) materials by
scanning tunneling microscopy (STM) and
scanning tunneling spectroscopy (STS).
STM and STS are ideal techniques for char-
acterizing the structural and electronic ef-
fects ofPb substitution because Pb primarily
replaces Bi in the Bi-O layers (10, 11) and

Pb Bi 0

O Bi 0 Bi 0
0

-_
Cleav,e

Bi 0 PbO Bi 0 PbO
N

tBiPb)SrCaCu

Fig. 1. Schematic view of Pb,Bi2-,Sr2CaCu208
showing the Bi(Pb)-O double layer and the
surface STM geometry in these experiments. The
bulk structure consists of a repeating sequence of
Bi(Pb)-O, Sr-O, Cu-O, Ca, Cu-O, Sr-O, and
Bi(Pb)-O layers as described by Sunshine et al.
(2).

the PbxBi2-,Sr2CaCu208 crystals can be
cleaved to expose a Bi(Pb)-O layer at the
surface (Fig. 1).

Single-crystal samples with the nominal
composition PbxBi2-xSr2CaCu2O8 (x = 0,
0.3, or 0.7) were grown from melts rich in
CuO. Briefly, a homogeneous mixture of
PbO, Bi2O3, SrCO3, CaCO3, and CuO
powders was heated at 980°C for 10 hours,
cooled at 2°C per hour to 800°C, and then
furnace-cooled to room temperature. Bulk
and surface analyses demonstrated that Pb
was incorporated into these crystals at close
to the Pb/Bi stoichiometry of the melts,
although the Sr and Ca concentrations were

slightly deficient with respect to the ideal
2212 formula. Single-crystal x-ray diffrac-
tion studies further showed that the crystal
structures of the x(Pb) = 0 to 0.7 materials
are the same (14); these data are in agree-
ment with the results of earlier reports (4, 8,
9). The values of the superconducting tran-

sition temperature T, (zero resistance) de-
termined from dc resistivity measurements
on at least five crystals are (T, ± 1 SD)
85 + 4, 88 ± 3, and 85 ± 2 K for the x =

0, 0.3, and 0.7 compositions, respectively.
The sharp transitions observed for our mate-
rials [AT(90 to 10%) = 3 to 4 K] are

indicative ofhigh-quality materials. Further-
more, magnetic measurements (Meissner ef-
fect) demonstrate that the x(Pb) = 0, 0.3,
and 0.7 crystals have similar bulk supercon-

ducting fractions. These structural, electri-
cal, and magnetic data indicate that our

crvstals have reproducible macroscopic
properties and hence are ideal for high-
resolution STM studies.

All of the STM and STS studies of the
PbxBi2-xSr2CaCu208 materials were per-
formed in an Ar-filled glove box equipped
with a purification system that reduced the
concentrations of H20 and 02 to below 1

ppm. The glove box environment,
P02- 10-3 torr, was used to reduce the
possibility of02 loss from the surface of the
materials that may occur in ultrahigh vacu-

um (12, 15), at P02 = 10-10 to 10-" torr.
The modified tunneling microscopes used in
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