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The recovery of objects obscured by scattering is an important goal in imaging and has been 
approached by exploiting, for example, coherence properties, ballistic photons or penetrating 
wavelengths. Common methods use scattered light transmitted through an occluding material, 
although these fail if the occluder is opaque. Light is scattered not only by transmission through 
objects, but also by multiple reflection from diffuse surfaces in a scene. This reflected light 
contains information about the scene that becomes mixed by the diffuse reflections before 
reaching the image sensor. This mixing is difficult to decode using traditional cameras. Here 
we report the combination of a time-of-flight technique and computational reconstruction 
algorithms to untangle image information mixed by diffuse reflection. We demonstrate a 
three-dimensional range camera able to look around a corner using diffusely reflected light  
that achieves sub-millimetre depth precision and centimetre lateral precision over 40 cm× 
40 cm×40 cm of hidden space. 
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The light detected on an image sensor is composed of direct 
light, that travels directly from the light source to an object in 
the line of sight of the sensor, and indirect light that interacts 

with other parts of the scene before striking an object in the line of 
sight. Light from objects outside the line of sight reaches the sensor 
as indirect light, via multiple reflections (or bounces). In conven-
tional imaging, it is difficult to exploit this non-line-of-sight light,  
if the reflections or bounces are diffuse.

Line-of-sight time-of-flight information is commonly used in 
LIDAR (light detection and ranging)1 and two dimensional gated 
viewing2 to determine the object distance, or to reject unwanted 
scattered light. By considering only the early ballistic photons from 
a sample, these methods can image through turbid media or fog3. 
Other methods, like coherent LIDAR4, exploit the coherence of light 
to determine the time of flight. However, light that has undergone 
multiple diffuse reflections has diminished coherence.

Recent methods in computer vision and inverse light transport 
study multiple diffuse reflections in free space. Dual photography5 
shows one can exploit scattered light to recover two-dimensional 
(2D) images of objects illuminated by a structured dynamic light 
source and hidden from the camera. Time-gated viewing using  
mirror reflections allows imaging around corners, for example, 
from a glass window6–8. Three bounce analysis of a time-of-flight 
camera can recover hidden 1–0–1 planar barcodes9,10 but the tech-
nique assumes well-separated, isolated hidden patches with known 
correspondence between hidden patches and recorded pulses.  
Similar to these and other inverse light transport approaches11,  
we use a light source to illuminate one scene spot at a time and 
record the reflected light after its interaction with the scene.

We demonstrate an incoherent ultrafast imaging technique to 
recover three-dimensional (3D) shapes of non-line-of-sight objects 
using this diffusely reflected light. We illuminate the scene with a 
short pulse and use the time of flight of returning light as a means 
to analyse direct and scattered light from the scene. We show that 
the extra temporal dimension of the observations under very high 
temporal sampling rates makes the hidden 3D structure observable. 
With a single or a few isolated hidden patches, pulses recorded after 
reflections are distinct and can be easily used to find 3D positions 
of the hidden patches. However, with multiple hidden scene points, 
the reflected pulses may overlap in both space and time when they 
arrive at the detector. The loss of correspondence between 3D scene 
points and their contributions to the detected pulse stream is the 
main technical challenge. We present a computational algorithm 
based on backprojection to invert this process. Our main contri-
butions are twofold. We introduce the new problem of recovering 
the 3D structure of a hidden object and we show that the 3D infor-
mation is retained in the temporal dimension after multi-bounce 
interactions between visible and occluded parts. We also present an 
experimental realization of the ability to recover the 3D structure 
of a hidden object, thereby demonstrating a 3D range camera able 
to look around a corner. The ability to record 3D shapes beyond 
the line of sight can potentially be applied in industrial inspection, 
endoscopy, disaster relief scenarios, or more generally, in situations 
where direct imaging of a scene is impossible.

Results
Imaging process. The experimental set-up is shown in Fig. 1. Our 
scene consists of a 40-cm high and 25-cm wide wall referred to as 
the diffuser wall. We use an ultrafast laser and a streak camera and 
both are directed at this wall. As a time reference, we also direct 
an attenuated portion of the laser beam into the field of view of 
the streak camera (Fig. 2). The target object is hidden in the scene 
(mannequin in Fig. 1), so that direct light paths between the object 
and the laser or the camera are blocked. Our goal is to produce 3D 
range data of the target object.

The streak camera records a streak image with one spatial 
dimension and one temporal dimension. We focus the camera on 
the dashed line segment on the diffuser wall shown in Fig. 1a. We 
arrange the scanning laser to hit spots on the wall above or below 
this line segment so that single bounce light does not enter the cam-
era. Though the target object is occluded, light from the laser beam 
is diffusely reflected by the wall, reaches the target object, is reflected 
by multiple surface patches, and returns back to the diffuser wall, 
where it is reflected again and captured by the camera. In a tradi-
tional camera, this image would contain little or no information 
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Figure 1 | Experimental set-up. (a) The capture process: we capture a 
series of images by sequentially illuminating a single spot on the wall 
with a pulsed laser and recording an image of the dashed line segment 
on the wall with a streak camera. The laser pulse travels a distance r1 to 
strike the wall at a point L; some of the diffusely scattered light strikes the 
hidden object (for example at s after travelling a distance r2), returns to 
the wall (for example at w, after travelling over r3) and is collected by the 
camera after travelling the final distance r4 from w to the camera centre 
of projection. The position of the laser beam on the wall is changed by a 
set of galvanometer-actuated mirrors. (b) An example of streak images 
sequentially collected. Intensities are normalized against a calibration 
signal. Red corresponds to the maximum, blue to the minimum intensities. 
(c) The 2D projected view of the 3D shape of the hidden object, as 
recovered by the reconstruction algorithm. Here the same colour map 
corresponds to backprojected filtered intensities or confidence values of 
finding an object surface at the corresponding voxel.
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Figure 2 | Streak image with calibration spot. The calibration spot in a 
streak image (highlighted with an arrow). The calibration spot is created by 
an attenuated beam split off the laser beam that strikes the wall in the field 
of view of the camera. It allows monitoring of the long-term stability of the 
system and calibration for drifts in timing synchronization.
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about the occluded target object (Supplementary Figs S5 and S6; 
Supplementary Methods).

In our experimental set-up, the laser emits 50-fs long pulses. The 
camera digitizes information in time intervals of 2 ps. We assume  
the geometry of the directly visible part of the set-up is known. 
Hence, the only unknown distances in the path of the laser pulses are 
those from the diffuser wall to the different points on the occluded 
target object and back (paths r2 and r3 in Fig. 1). The 3D geometry 
of the occluded target is thus encoded in the streak images acquired 
by the camera and decoded using our reconstruction algorithm. 
The recorded streak images lack correspondence information, that 

is, we do not know which pulses received by the camera came from 
which surface point on the target object. Hence, a straightforward 
triangulation or trilateration to determine the hidden geometry is 
not possible.

Consider a simple scenario with a small hidden patch as illus-
trated in Fig. 3a. It provides intuition on how the geometry and 
location of the target object are encoded in the streak images. The 
reflected spherical pulse propagating from the hidden patch arrives 
at the points on the diffuser wall with different time delays and cre-
ates a hyperbolic curve in the space-time streak image. We scan and 
successively change the position of the laser spot on the diffuser 
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Figure 3 | Reconstruction algorithm. An illustrative example of geometric reconstruction using streak camera images. (a) Data capture. The object  
to be recovered consists of a 2 cm×2 cm size square white patch beyond the line of sight (that is, hidden). The patch is mounted in the scene and 
data is collected for different laser positions. The captured streak images corresponding to three different laser positions are displayed in the top row. 
Shapes and timings of the recorded response vary with laser positions and encode the position and shape of the hidden patch. (b) Contributing voxels 
in Cartesian space. For recovery of hidden position, consider the choices of contributing locations. The possible locations in Cartesian space that could 
have contributed intensity to the streak image pixels p, q, r are the ellipses p′, q′, r′ (ellipsoids in 3D). For illustration, these three ellipse sections are also 
shown in (a) bottom left in Cartesian coordinates. If there is a single world point contributing intensity to all 3 pixels, the corresponding ellipses intersect, 
as is the case here. The white bar corresponds to 2 cm in all sub-figures. (c) Backprojection and heatmap. We use a backprojection algorithm that finds 
overlayed ellipses corresponding to all pixels, Here we show summation of elliptical curves from all pixels in the first streak image. (d) Backprojection 
using all pixels in a set of 59 streak images. (e) Filtering. After filtering with a second derivative, the patch location and 2-cm lateral size are recovered.
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wall. The shape and position of the recorded hyperbolic curve var-
ies accordingly. Each pixel in a streak image corresponds to a finite 
area on the wall and a 2-ps time interval, a discretized space-time 
bin. However, the effective time resolution of the system is 15 ps 
owing to a finite temporal-point spread function of the camera. The 
detailed description of image formation is included in the Supple-
mentary Methods.

The inverse process to recover the position of the small hidden 
patch from the streak images is illustrated in Fig. 3b–e. Consider 
three pixels p, q and r in the streak image at which non-zero light 
intensity is measured (Fig. 3a). The possible locations in the world 
that could have contributed to a given pixel lie on an ellipsoid in 

Cartesian space (see also Supplementary Fig. S1). The foci of this 
ellipsoid are the laser spot on the diffuser wall and the point on the 
wall observed by that pixel. For illustration, we draw only a 2D slice 
of the ellipsoid, that is, an ellipse, in Fig. 3b. The individual ellipses 
from each of the three pixels p, q and r intersect at a single point. 
In the absence of noise, the intersection of three ellipses uniquely 
determines the location of the hidden surface patch that contributed 
intensity to the three camera pixels. In practice, we lack correspond-
ence, that is, we do not know whether or not light detected at two 
pixels came from the same 3D surface point.

Therefore, we discretize the Cartesian space into voxels and com-
pute the likelihood of the voxel being on a hidden surface. For each 
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Figure 4 | Complex object reconstruction. (a) Photo of the object. The mannequin is ~20 cm tall and is placed about 25 cm from the diffuser wall.  
(b) Nine of the sixty raw streak images. (c) Heatmap. Visualization of the heatmap after backprojection. The maximum value along the z direction for 
each x–y coordinate in Cartesian space. The hidden shape is barely discernible. (d) Filtering. The second derivative of the heatmap along depth (z) 
projected on the x–y plane reveals the hidden shape contour. (e) Depth map. Colour-encoded depth (distance from the diffuser wall) shows the left leg 
and right arm closer in depth compared with the torso and other leg and arm. (f) Confidence map. A rendered point cloud of confidence values after soft 
threshold. Images (g,h) show the object from different viewpoints after application of a volumetric blurring filter. (i) The stop-motion animation frames 
from multiple poses to demonstrate reproducability. See Supplementary Movie 1 for an animation. Shadows and the ground plane in images (f–i) have 
been added to aid visualization.
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voxel, we determine all streak image pixels that could potentially 
have received contributions of this voxel based on the time-of-flight 
r1 + r2 + r3 + r4 and sum up the measured intensity values in these 
pixels. In effect, we let each pixel vote for all points on the corre-
sponding ellipsoid. The signal energy contributed by each pixel is 
amplified by a factor to compensate for the distance attenuation. If 
the distance attenuation factor were not accounted for, the scene 
points that are far away from the wall would be attenuated by a fac-
tor of (r2r3)2 and would be lost during the reconstruction. There-
fore, we amplify the contribution of each pixel to a particular voxel 
by a factor of (r2r3)α before backprojection. Reconstruction quality 
depends weakly on the value of α. We experimented with various  
values of α and found that α = 1 is a good choice for reduced 

computation time. This process of computing likelihood by sum-
ming up weighted intensities is called backprojection12. We call the 
resulting 3D scalar function on voxels a heatmap.

The summation of weighted intensities from all pixels in a single- 
streak image creates an approximate heatmap for the target patch 
(Fig. 3c). Repeating the process for many laser positions on the dif-
fuser wall, and using pixels from the corresponding streak images 
provides a better approximation (Fig. 3d and Supplementary  
Fig. S2). In practice, we use ~60 laser positions. Traditional 
backprojection requires a high-pass filtering step. We use the  
second derivative of the data along the z direction of the voxel grid 
and approximately perpendicular to the wall as an effective filter 
and recover the hidden surface patch in Fig. 3e. Because values  
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Figure 5 | Depth in reconstructions. Demonstration of the depth and lateral resolution. (a) The hidden objects to be recovered are three letters, I, T, I 
at varying depths. The ‘I’ is 1.5 cm wide and all letters are 8.2 cm high. (b) 9 of 60 images collected by the streak camera. (c) Projection of the heatmap 
created by the back projection algorithm, on the x–y plane. (d) Filtering after computing second derivative along depth (z). The colour in these images 
represents the confidence of finding an object at the pixel position. (e) A rendering of the reconstructed 3D shape. Depth is colour coded and semi-
transparent planes are inserted to indicate the ground truth. The depth axis is scaled to aid visualization of the depth resolution.
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at the voxels in the heatmap are the result of summing a large 
number of streak image pixels, the heatmap contains low noise and 
the noise amplification associated with a second-derivative filter  
is acceptable.

Algorithm. The first step of our imaging algorithm is data acquisi-
tion. We sequentially illuminate a single spot on the diffuser wall 
with a pulsed laser and record an image of the line segment of the 
wall with a streak camera. Then, we estimate an oriented bounding 
box for the working volume to set up a voxel grid in Cartesian space 
(see Methods). In the backprojection, for each voxel, we record the 
summation of weighted intensities of all streak image pixels that 
could potentially have received contributions of this voxel based 
on the time of flight. We store the resulting 3D heatmap of voxels. 
The backprojection is followed by filtering. We compute a second 
derivative of the heatmap along the direction of the voxel grid facing 
away from the wall. In an optional post processing step, we compute 
a confidence value for each voxel by computing local contrast with 
respect to the voxel neighbourhood in the filtered heatmap. To com-
pute contrast, we divide each voxel heatmap value by the maximum 
in the local neighbourhood. For better visualization, we apply a soft 
threshold on the voxel confidence value.

We estimate the oriented bounding box of the object in the  
second step by running the above algorithm at low spatial target 
resolution and with down-sampled input data. Details of the recon-
struction process and the algorithm can be found in the Methods as 
well as in the Supplementary Methods.

Reconstructions. We show results of the 3D reconstruction for 
multipart objects in Figs 4 and 5. The mannequin in Fig. 4 contains  
nonplanar surfaces with variations in depth and occlusions.  
We accurately recover all major geometrical features of the object. 
Figure 4i shows the reconstruction of the same object in slightly  
different poses to demonstrate the reproducibility and stability of 
the method as well as the consistency in the captured data. The 
sporadic inaccuracies in the reconstruction are consistent across  
poses and are confined to the same 3D locations. The stop-motion 
animation in Supplementary Movie 1 shows the local nature of 
the missing or phantom voxels more clearly; another stop motion 
reconstruction is shown in Supplementary Fig. S4. Hence, the 
persistent inaccuracies are not due to signal noise or random mea
surement errors. This is promising as the voxel confidence errors 
are primarily due to limitations in the reconstruction algorithm 
and instrument calibration. These limitations can be overcome 
with more sophistication. Our current method is limited to dif-
fuse reflection from near-Lambertian opaque surfaces. Parts of the 
object that are occluded from the diffuser wall or facing away from 
it are not reconstructed.

Figure 5 shows a reconstruction of multiple planar objects at 
different unknown depths. The object planes and boundaries are 
reproduced accurately to demonstrate depth and lateral resolution.  
For further investigation of resolution see Supplementary Figs S7  
and S8. The reconstruction is affected by several factors such as 
calibration, sensor noise, scene size and time resolution. Below,  
we consider them individually.

The sources of calibration errors are lens distortions on the streak 
camera that lead to a warping of the collected streak image, meas-
urement inaccuracies in the visible geometry, and measurement 
inaccuracies of the centre of projection of the camera and the origin 
of the laser. For larger scenes, the impact of static calibration errors 
would be reduced.

The sensor introduces intensity noise and timing uncertainty, that 
is, jitter. The reconstruction of 3D shapes is more dependent on the 
accuracy of the time of arrival than the signal-to-noise ratio (SNR) 
in received intensity. Jitter correction, as described in the Methods, 
is essential, but does not remove all uncertainties. Improving the 

SNR is desirable because it yields faster capture times. Similar to 
many commercial systems, for example, LIDAR, the SNR could be 
significantly improved by using an amplified laser with more ener-
getic pulses and a repetition rate in the kilohertz range and a trig-
gered camera. The overall light power would not change, but fewer 
measurements for light collection could significantly reduce signal 
independent noise such as background and shot noise.

We could increase the scale of the system for larger distances and 
bigger target objects. By using a longer pulse, with proportionally 
reduced target resolution and increased aperture size, one could 
build systems without any change in the ratio of received and emit-
ted energy, that is, the link budget. When the distance r2 between 
diffuser wall and the hidden object (Fig. 1) is increased without 
increasing the size of the object, the signal strength drops dramati-
cally (∝1/(r2r3)2) and the size of the hidden scene is therefore lim-
ited. A configuration where laser and camera are very far from the 
rest of the scene is, however, plausible. A loss in received energy can 
be reduced in two ways. The laser beam can be kept collimated over 
relatively long distances and the aperture size of the camera can be 
increased to counterbalance a larger distance between camera and 
diffuser wall.

The timing resolution, along with spatial diversity in the posi-
tions of spots illuminated and viewed by the laser, and the camera 
affects the resolution of 3D reconstructions. Extra factors include the 
position of the voxel in Cartesian space and the overall scene com-
plexity. The performance evaluation subsection of the Supplemen-
tary Methods describes depth and lateral resolution. In our system,  
translation along the direction perpendicular to the diffuser wall 
can be resolved with a resolution of 400 µm—better than the full 
width half maximum time resolution of the imaging system. Lateral 
resolution in a plane parallel to the wall is lower and is limited to 
0.5–1 cm depending on proximity to the wall.

Discussion
This paper’s goals are twofold: to introduce the new challeng-
ing problem of recovering the 3D shape of a hidden object and to 
demonstrate the results using a novel co-design of an electro-optic 
hardware platform and a reconstruction algorithm. Designing and 
implementing a prototype for a specific application will provide fur-
ther, more specific data about the performance of our approach in 
real-world scenarios. We have demonstrated the 3D imaging of a 
nontrivial hidden 3D geometry from scattered light in free space. 
We compensate for the loss of information in the spatial light distri-
bution caused by the scattering process by capturing ultrafast time-
of-flight information.

Our reconstruction method assumes that light is only reflected 
once by a discrete surface on the hidden object without inter-reflec-
tions within the object and without subsurface scattering. We fur-
ther assume that light travels in a straight line between reflections. 
Light that does not follow these assumptions will appear as time-
delayed background in our heatmap and will complicate, but not 
necessarily prevent, reconstruction.

The application of imaging beyond the line of sight is of interest 
for sensing in hazardous environments, such as inside machinery 
with moving parts, for monitoring highly contaminated areas such  
as the sites of chemical or radioactive leaks where even robots  
cannot operate or need to be discarded after use13. Disaster response 
and search and rescue planning, as well as autonomous robot navi-
gation, can benefit from the ability to obtain complete information 
about the scene quickly14,15.

A promising theoretical direction is in inference and inversion 
techniques that exploit scene priors, sparsity, rank, meaningful 
transforms, and achieve bounded approximations. Adaptive sam-
pling can decide the next-best laser direction based on a current 
estimate of the 3D shape. Further analysis will include coded sam-
pling using compressive techniques and noise models for SNR and 
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effective bandwidth. Our current demonstration assumes friendly 
reflectance and planarity of the diffuse wall.

The reconstruction of an image from diffusely scattered light is of 
interest in a variety of fields. Change in spatial light distribution due 
to the propagation through a turbid medium is in principle revers-
ible16 and allows imaging through turbid media via computational 
imaging techniques17–19. Careful modulation of light can shape 
or focus pulses in space and time inside a scattering medium20,21. 
Images of objects behind a diffuse screen, such as a shower cur-
tain, can be recovered by exploiting the spatial frequency domain 
properties of direct and global components of scattered light in free 
space22. Our treatment of scattering is different but could be com-
bined with many of these approaches.

In the future, emerging integrated solid-state lasers, new sensors 
and nonlinear optics should provide practical and more sensitive 
imaging devices. Beyond 3D shape, new techniques should allow 
us to recover reflectance, refraction and scattering properties and 
achieve wavelength-resolved spectroscopy beyond the line of sight. 
The formulation could also be extended to shorter wavelengths (for 
example, X-rays) or to ultrasound and sonar frequencies. The new 
goal of hidden 3D shape recovery may inspire new research in the 
design of future ultrafast imaging systems and novel algorithms for 
hidden scene reconstruction.

Methods
Capture set-up. The light source is a Kerr lens mode-locked Ti:sapphire laser. It 
delivers pulses of about 50 fs length at a repetition rate of 75 MHz. Dispersion in 
the optical path of the pulse does not stretch the pulse beyond the resolution of 
the camera of 2 ps and therefore can be neglected. The laser wavelength is centred 
at 795 nm. The main laser beam is focused on the diffuser wall with a 1-m focal 
length lens. The spot created on the wall is about 1 mm in diameter and is scanned 
across the diffuser wall through a system of two galvanometer-actuated mirrors. 
A small portion of the laser beam is split off with a glass plate and is used to syn-
chronize the laser and streak camera as shown in Fig. 1. The diffuser wall is placed 
62 cm from the camera. The mannequin object (Fig. 4) is placed at a distance of 
about 25 cm to the wall, the letters (Fig. 5) are placed at 22.2–25.3 cm.

For time-jitter correction, another portion of the beam is split off, attenuated 
and directed at the wall as the calibration spot. The calibration spot is in the direct 
field of view of the camera and can be seen in Fig. 2. The calibration spot serves 
as a time and intensity reference to compensate for drifts in the synchronization 
between laser and camera as well as changes in laser-output power. It also helps in 
detecting occasional shifts in the laser direction due to, for example, beam pointing 
instabilities in the laser. If a positional shift is detected, the data is discarded and 
the system is re-calibrated. The streak camera’s photocathode tube, much like an 
oscilloscope, has time decayed burn out and local gain variations. We use a  
reference background photo to divide and compensate.

The camera is a Hamamatsu C5680 streak camera that captures one spatial dimen-
sion, that is, a line segment in the scene, with an effective time resolution of 15 ps and 
a quantum efficiency of about 10%. The position and viewing direction of the camera 
are fixed. The diffuser wall is covered with Edmund Optics NT83 diffuse white paint.

Reconstruction technique. We use a set of Matlab routines to implement the 
backprojection-based reconstruction. Geometry information about the visible 
part of the scene, namely diffuser wall, could be collected using our time-of-flight 
system. Reconstructing 3D geometry of a visible scene using time-of-flight data is 
well known2. We omit this step and concentrate on the reconstruction of the hid-
den geometry. We use a FARO Gauge digitizer arm to measure the geometry of the 
visible scene and also to gather data about a sparse set of points on hidden objects 
for comparative verification. The digitizer arm data is used as ground truth for later 
independent verification of the position and shape of hidden objects as shown via 
transparent planes in Fig. 4e. After calibration, we treat the camera and laser as a 
rigid pair with known intrinsic and extrinsic parameters23.

We estimate the oriented bounding box around the hidden object using a lower 
resolution reconstruction. We reduce the spatial resolution to 8 mm per voxel, and 
downsample the input data by a factor of 40. We can scan a 40 cm×40 cm×40 cm 
volume spanning the space in front of the wall in 2–4 s to determine the bounding 
box of a region of interest. The finer voxel grid resolution is 1.7 mm in each dimen-
sion. We can use the coarse reconstruction obtained to set up a finer grid within 
this bounding box. Alternatively, we can set an optimized bounding box from the 
collected ground truth. To minimize reconstruction time, we used this second 
method in most of the published reconstructions. We confirmed that apart from 
the reconstruction time and digitization artefacts, both methods produce the same 
results. We compute the principal axis of this low-resolution approximation, and 
orient the fine voxel grid with these axes.

In the post-processing step, we use a common approach to improve the 
surface visualization. We estimate the local contrast and apply a soft threshold. 
The confidence value for a voxel is V′ = tanh(20(V − V0))V/mloc, where V is the 
original voxel value in filtered heatmap and mloc is a local maximum computed in 
a 20×20×20 voxel sliding window around the voxel under consideration. Division 
by mloc normalizes for local contrast. The value V0 is a global threshold and set to 
0.3 times the global maximum of the filtered heatmap. The tanh function achieves 
a soft threshold.

System SNR. The laser emits a pulse every 13.3 ns (75 MHz) and consequently 
the reflected signal repeats at the same rate. We average 7.5 million such 13.3 ns 
windows in a 100-ms exposure time on our streak tube readout camera. We 
add 50–200 such images to minimize noise from the readout camera. The light 
returned from a single hidden patch is attenuated in the second, third and fourth 
path segments. In our set-ups, this attenuation factor is 10 − 8. Attenuation  
in the fourth path segment can be partially counteracted by increasing the  
camera aperture.

Choice of laser positions on the wall. Recall that we direct the laser to various 
positions on the diffuser wall and capture one streak image for each position. The 
position of a hidden point s (Fig. 1) is determined with highest confidence along 
the normal N to an ellipsoid through s with foci at the laser spot, L, and the wall 
point, w. Large angular diversity through a wide range of angles for N for all such 
pairs to create baselines is important. N is the angle bisector of Lsw.

The location and spacing of the laser positions on the wall can have a big 
impact on reconstruction performance. To obtain good results, one should choose 
the laser positions so as to provide good angular diversity. We use 60 laser positions 
in 3–5 lines perpendicular to the line on the wall observed by our one-dimensional 
streak camera. This configuration yielded significantly better results than putting 
the laser positions on few lines parallel to the camera line.

Scaling the system. Scaling up the distances in the scene is challenging because 
higher resolution and larger distances lead to disproportionately less light being 
transferred through the scene. A less challenging task may be to scale the entire 
experiment including the hidden object, the pulse length, the diffuser wall and the 
camera aperture. The reduction in resolution to be expected in this scaling should 
be equal to the increase in size of the hidden object.

To understand this, consider a hidden square patch in the scene. To resolve it, 
we require discernible light to be reflected back from that patch after reflections 
or bounces off other patches. Excluding the collimated laser beam, there are three 
paths, as described earlier. For each path, light is attenuated by approximately 
d2/(2πr2), where r is the distance between the source and the destination patch and 
d is the side length of the destination patch. For the fourth segment, the destination 
patch is the camera aperture and d denotes the size of this aperture. If r and d are 
scaled together for any path, the contributed energy from the source patch to the 
destination patch does not change. This may allow us to scale the overall system 
to larger scenes without a prohibitively drastic change in performance. However, 
increasing the aperture size is only possible to a certain extent.

Non-Lambertian surfaces. Our reconstruction method is well-suited for Lamber-
tian reflectance of surfaces. Our method is also robust for near-Lambertian sur-
faces, for example, surfaces with a large diffuse component, and they are implicitly 
handled in our current reconstruction algorithm. The surface reflectance profile 
only affects the relative weight of the backprojection ellipses and not their shapes. 
The shape is dictated by the time-of-flight, which is independent of the reflectance 
distribution.

Surfaces that are highly specular, retroreflective or have a low reflectance make 
the hidden shape reconstruction challenging. Highly specular, mirror-like and 
retroreflective surfaces limit the regions illuminated by the subsequent bounces 
and may not reflect enough energy back to the camera. They also could cause 
dynamic range problems. Subsurface scattering or extra inter-reflections extend the 
fall time in reflected time profile of a pulse. But the onset due to reflection from the 
first surface is maintained in the time profile and hence the time delayed reflections 
appear as background noise in our reconstruction. Absorbing low-reflectance 
black materials reduce the SNR but the effect is minor compared with the squared 
attenuation over distances.

Although near-Lambertian surfaces are very common in the proposed applica-
tion areas, reconstruction in the presence of varying reflectance materials is an 
interesting future research topic. 
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