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Supplementary Figures
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Supplementary Figure S1: Forward Model. (a) The laser illuminates the surface S
and each point s ∈ S generates a wavefront. The spherical wavefront contributes to
a hyperbola in the space-time streak image, IR. (b) Spherical wavefronts propagating
from a point create a hyperbolic space-time curve in the streak image.
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Supplementary Figure S2: Backprojection. A space time transform on a raw streak
image allows us to convert a 4 segment problem into a sequence of 2 segment problems.
The toy scene is a small 1cm×1cm patch creating a prominent (blurred) hyperbola in
the warped image. Backpropagation creates low frequency residual but simple thresh-
olding recovers the patch geometry.
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Supplementary Figure S3: Fresnel Approximation for convolution operation.
With a near-constant depth assumption of ∆z � z0, the streak image IR is approxi-
mated as a convolution of the warped shape countour image ISW with the hyperboli-
cally shaped kernelK. The warped shape image in turn is the true shape (S), deformed
along the z direction according to laser distance. We assume an opaque object and
hence the contributions are only from the points on the curve (surface) and not from
the area behind the curve.
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Supplementary Figure S4: Stop motion reconstruction. Results of a multi-pose stop
motion animation dataset after filtered backprojection and soft-thresholding. A hidden
model of a man with a ball is captured in various poses. The rendering shows the se-
quence of reconstructions created by our filtered backprojection algorithm and demon-
strates the ability to remove low-frequency artifacts of backprojection. The mislabeled
voxels remain consistent across different poses indicating stability of our capture and
inversion process. Shadows are introduced to aid visualization.
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Supplementary Figure S5: Improving depth and lateral resolution. (a) In a still
camera, the ability to discern displacement of a patch with area (∆x)2 by a distance
∆z is limited by camera sensitivity. (b) Using time resolution, the ability to discern
the same patch is improved and possible within practical camera sensitivity. The pixel
(u, t) receives energy only from inside the ring. For simplicity, the diagrams in this
document show the scene in flat-land and the surfaces are drawn as 2D curves.
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Supplementary Figure S6: Reconstruction attempt with a slow camera. We per-
formed an experiment to demonstrate the challenges in imaging around the corner with
a conventional, low temporal resolution laser and camera. (a) A setup with hidden
mannequin but using a red continuous laser and a Canon 5D camera. (b) An image of
the wall recorded with the Canon 5D camera with the room lights turned off and no
hidden object present. (The recorded light is due to the reflections from walls behind
the laser and camera.) (c) An image recorded with the hidden mannequin present. The
increased light level on the wall is marginal, is low spatial frequency and shows no no-
ticeable high frequency structure. (d) An image of the wall with the hidden mannequin
moved away from the wall by 10 cm. The reduction in light level on the wall has no
visible structure. (e) The difference between image in (b) and (c) using a false color
map. (f) The difference between (b) and (d). (g) The difference between (c) and (d).
(h) The plot of intensities along the centered horizontal scanline of each of the images
(b=red, c=black, d=blue).
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Supplementary Figure S7: Resolution in depth. (a) Distance estimation. Time here
is measured in mm of traveled distance at the speed of light 1 mm≈0.3 ps. (b) Error
is less than 1 mm. (c) Plot of intensity as a small patch is moved perpendicular to the
first surface.
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Supplementary Figure S8: Resolution in lateral dimension. (a) Setup with chirp
pattern (occluder removed in this photo) (b) Raw streak photo from streak camera (c)
The blue curve shows reconstruction of the geometry and indicates that we can recover
features with 0.5 cm in lateral dimensions in the given scenario.
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Supplementary Methods

Modelling Light Pulse Propagation

In this section, we analyze the relationship between the hidden scene geometry and the
observed space time light transport in order to design methods to estimate the shape of
the hidden objects. Consider a scene shown in Supplementary Figure S1. The scene
contains a hidden object (whose surface we are interested in estimating) and a diffuser
wall. A laser beam(B) emits a short light pulse and is pointed towards the diffuser
wall to form a laser spot L. The light reflected by the diffuser wall reaches the hidden
surface, is reflected and returns back to the diffuser wall. The streak camera is also
pointed towards the wall.

For each location of the laser spot L, a 3D image (2 spatial and 1 temporal dimension)
is recorded. The laser spot is moved to multiple locations on the wall (2D). The two
dimensions for laser direction and the three dimensions for recording lead to a 5D light
transport data. The pulse return time at each location on the wall depends upon several
known parameters such as the location of the laser spot and unknown parameters such
as the hidden surface profile. The idea is to exploit the observed 5D light transport data
to infer the hidden surface profile.

For an intuitive understanding, consider the hidden scene to be a single point, as shown
in Supplementary Figure S1. The reflected spherical wavefront propagating from that
hidden scene point reaches the different points on the wall at different times creating
a hyperbolic curve in the space-time streak image (Supplementary Figure S2). When
the hidden scene contains a surface instead of individual and isolated scene points, the
space-time hyperbolas corresponding to the different surface points are added together
to produce the captured streak images and so we need to demultiplex or deconvolve
these signals. In general, we could use a captured 5D light transport data but in our
experiments, we are restricted to a streak camera that has a one spatial dimension.
Thus, our system captures only a four dimensional light transport.

Bounce Reduction

In our setup, the optical path for light travel consists of 4 segments (Supplementary Fig-
ure S1): (1) from the laser B to the spot on the wall L, (2) from L to the scene point s,
(3) from s again to a point on the wall w, and (4) finally from w to the camera C where
it is recorded. However, the first and the fourth segment are directed segments and do
not involve diffuse scattering. This allows us to precalibrate for these segments and
effectively reduce the tertiary scattering problem to a primary (single) scattering prob-
lem. More concretely, suppose the camera records the streak image IC(p, t), where p
is the pixel coordinate and t is time. In IC , t = 0 corresponds to the instant the laser
pulse is emitted from B. Then IC is related to the intensity IR(w, t) of light incident
on the receiver plane by the transformation

IR(w, t) = IC(H(w), t− ||L−B|| − ||C − w||). (S1)
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Here H is the projective transformation (homography) mapping coordinates on R to
camera coordinates. The time shift by the distance from camera to screen, ||C − w||,
varies hyperbolically with the pixel coordinate w. Since the geometry of wall, R, is
known,H , ||L−B|| and ||C−w|| can be computed in advance. Note there is no cos(θ)
factor or 1/r2 fall off in the above formula as the camera integrates over more pixels for
oblique and distant patches. For this to hold, it is also important that R is Lambertian,
as we assume. To summarize, the processing step (S1) reduces the problem to a single
scattering problem, with an unfocused point source at L emitting a pulse at t = 0 and
an unfocused virtual array of receivers on R recording the intensity of the reflected
wavefront, IR(w, t).

Scattering of the light pulse

Generating Streak Images After the homography correction, we can consider a sim-
plified scenarios of just two surfaces, the wall R and the hidden surface S. The surface
S is illuminated by a light source at L. The surface R (receivers) can be assumed to
host a virtual array of ultrafast photodetectors. The virtual photodetectors create an
image IR(w, t) as intensity pattern of the incoming light as a function of time, t, and
the position w. Hence the image, IR(w, t), is the intensity observed at w ∈ R at time
t. Experimentally, the virtual photodetectors are realized by using a Lambertian object
R observed by a streak camera with ps time resolution (Supplementary Figure S1).
Ignoring occlusions, the intensity pattern at R takes the following approximate form

IR(w, t) =
∫
S

∫
τ

1
πr2c

δ(rc − t+ τ)IS(s, τ)dτd2s (S2)

where w ∈ R, s ∈ S, t, τ ∈ R and rc = ||w − s||. Furthermore, IS(s, τ) encodes
the hidden 3D shape S as the intensity of the light emitted by the transmitter at s ∈ S
at time τ . Note that we use units in which the speed of light c = 1. In other words,
we measure time in units of distance. Note also that we make an approximation in
neglecting the dependence on the normals to surfaces R and S. In the situation of
interest to us, the object S is a diffuse (Lambertian) object illuminated by a single point
source at position L ∈ R3. Concretely, this point source is the surface patch the laser
is directed to. Hence, neglecting the normal dependence, IS(s, τ) = Iδ(τ − rl)/(πr2l )
with rl = ||L− s||. Equation (S2) becomes

IR(w, t) =
∫
S

I
1
πr2c

1
πr2l

δ(t− rc − rl)d2s (S3)

The propagation of laser to wall and wall to camera is ignored in IR. Laser to wall
propagation is corrected using an offset value for time. The wall to camera sensor
propagation is inverted by using a homography. In summary, the recorded streak image,
IC , which involves three or more bounces is converted to image, IR, which involves
only one bounce. For simplicity, we will ignore IC and consider IR as the streak image
for rest of the discussion.
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Hyperbolic Contribution For a fixed laser position, L, and sensor location, w, at
a time t, the allowed values of s all lie on an ellipsoid with focal points L and w,
given by the equation t = rc + rl. (More specifically, the locus of s lies on a pro-
late spheroid, i.e., an ellipsoid with two equal equatorial radii, smaller than the third
equatorial radius.)

If we fix L and s this equation describes a two sheeted hyperboloid in (w, t)-space:

t− rl = rc =
√

(x− u)2 + (y − v)2 + z(x, y)2 (S4)

where (u, v) are the two coordinates of w in the plane of the receiver wall. In par-
ticular, each point on the hidden surface S will contribute a hyperboloid to the im-
age IR(u, v, t). The hyperboloids will have different shapes, depending on the depth
z(x, y), and will be shifted along the t-axis. Smaller depth z(x, y) increases eccentric-
ity and leads to higher curvature at the vertex of the hyperboloid .

Modified Fresnel Approximation Suppose that the hidden surface S has a small
depth variation. We can write z(x, y) = z0 + ∆z(x, y), with approximate mean
depth z0 and minor variations ∆z(x, y). Hence, ∆z(x, y) � z0. In this case, we
apply an additional approximation, which is the analog of the Fresnel approximation
in Fourier optics. Note that we are dealing with incoherent and pulsed light, so we
call it the modified Fresnel approximation. Concretely, we expand the square root in
(S4) and assume that z0 � (x − u) or (y − v). The right hand side of (S4) becomes
rc =

√
(x− u)2 + (y − v)2 + z2

0 + ∆z(x, y), or rc = r0 + ∆z(x, y). Using this
approximation in the argument of the delta function in (S3), and neglecting ∆z in the
denominator, we can express IR as a convolution.

IR(u, v, t) ≈
∫
x,y

δ(t− rl −∆z − r0)
π22r2cr2l

dxdy (S5)

=
∫
x,y,τ

δ(t− τ − r0)δ(τ − rl −∆z)
π22r2cr2l

dxdydτ

= (K ∗ ISW )(u, v, t) (S6)

The hidden shape S is expressed using a delta function IS = ∆z(x, y). Supplemen-
tary Figure S3 shows that, after a transform due to laser position, L, we have a new
warped shape approximation ISW (x, y, τ) = δ(τ − rl − ∆z(x, y))/(πr2l ). We split
the delta function inside the intergral above and re-write the equation as a convolu-
tion (in 3-dimensional (u, v, t)-space) of the warped shape approximation ISW . This
warped image ISW “cramps up” information about the shape S in the time domain,
warped by the additional “deformation” rl, given by the distance to the laser. Finally
the convolution kernel K(x, y, t) = δ(t − rk)/(πr2k), with rk =

√
x2 + y2 + z2

0 , is a
hyperboloid, whose eccentricity (or curvature at the vertex) depends on z0.

Note that equation (S6) is highly nonlinear in the unknown depths ∆z, but linear in the
warped shape ISW , from which these depths can be determined. In conclusion, using
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the modified Fresnel approximation, for every depth, we can express the forward prop-
agation as a convolution with a hyperboloid. But for each depth, z0, the curvature and
position of the hyperboloid in space-time streak image, IR, is progressively different.

Algorithms for surface reconstruction

Problem statement as a system of linear equations Let us express the results of the
last section using linear algebra. Let us discretize the bounding box around the hidden
shape and the corresponding 3D Cartesian space into voxels and arrange the voxels
into a vector fS ∈ RN . Here N is the number of voxels in the 3D volume of interest.
The value of fS(i) is set to zero for all the voxels that do not contain a surface point
s ∈ S. The value of fS(i) for voxels that lie on the surface of the objects is the albedo
(or reflectance) of the corresponding surface point. Voxels that are interior to the object
are occluded by voxels on the surface of the object and do not return any signal energy,
so they are also set to zero. Consider now the streak image IR recorded with the laser at
position L1. Vectorize the streak image pixels into a single vector gR,1 ∈ RM , where
M is the total number of spatio-temporal pixels present. The pixel values will depend
linearly on the albedos in fS and hence satisfy a linear equation of the form

gR,1 = A1fS , (S7)

for some M ×N matrix A1. Concretely, the entries of A1 can be read off from equa-
tions (S2) and (S3). If multiple streak images 1, . . . , n are recorded corresponding to
different locations of the laser, then those different streak images are stacked on top of
each other in a vector y, which satisfies the linear equation

gR =


gR,1
gR,2

...
gR,n

 =


A1

A2

...
An

 fS = AfS

Our goal is to analyze and solve the above linear system. The Fresnel approximation of
the last section gives an intuition. The Fresnel approximation allows us to rewrite the
linear system as gR = AF fSW , where AF is a block circulant matrix that represents
the convolution with the hyperbolic kernel K.

Backprojection for surface reconstruction

Each voxel in the 3D world contributes signal energy to only a very small subset of
the spatio-temporal bins (streak camera pixels) that are imaged. The specific spatio-
temporal bins or pixels that contain signal energy are related to the hidden 3D surface.
Further, if a particular pixel in the image contains no signal energy, this means that
every voxel in the 3D world that would have contributed energy to it was empty. Both
these pieces of information can be used to contruct an algorithm for reconstruction. The
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basic intuition behind this algorithm (a backprojection algorithm, similar to algorithms
used tomographic reconstruction) is very simple. Each observed pixel contributes en-
ergy back to all the source voxels that could have contributed energy to this pixel and
the contribution made is proportional to the observed signal energy. Voxels in the world
that were occupied receive contributions from all the pixels in the streak image that they
contributed to and therefore have a large response. This response energy with appro-
priate filtering and thresholding can be used to recover the 3D surface. If the working
volume is shallow (i.e., can be represented with a plane at depth z0 plus minor depth
variations), we can use a single kernel of Frensel approximation leading to a block cir-
culant matrix A. Below, we first explore reconstruction with Frensel approximation.
Then we strive for a more accurate result. We use a different kernel for each depth,
leading to a non-block circulant matrix.

Depth Independent Fresnel Approximation In order to implement the backpropa-
gation algorithm, in practice, it is necessary to model the forward propagation of the
spherical wavefronts from each of the hidden surface voxels. Although approximate,
we first use the Fresnel approximation based forward propagation model described in
the Section ”Scattering of the light pulse” for a better understanding and ability to
easily analyze the invertibility. Under the Fresnel approximation the captured streak
images can be written as a convolution of the unknown surface with the hyperbolic
blur kernel as given by

IR = K ∗ ISW
with K(x, y, t) = δ(t −

√
x2 + y2 + z2

0)/(π(x2 + y2 + z2
0)). The backprojection

kernel, on the other hand, is K̃(x, t) = δ(t+
√
x2 + y2 + z2

0). Hence backprojection
is, up to the distance attenuation prefactor, the adjoint of propagation. If the Fresnel
approximation is valid, the effect of backprojection on the captured streak images can
be described as a convolution with the point spread function psf = K̃ ∗ K. The
function psf can be computed analytically. This function has a large peak at the center,
surrounded by a butterfly shaped low frequency component. This peak implies that
when one performs backprojection peaks will be observed at all the locations where
there is a 3D scene point. The limitations of backprojection are also evident from
the function psf . Since the peak is surrounded by low frequency components, this
approach without any post-processing (filtering) will lead to overly smoothened results.
Rephrasing these observations in the matrix notation introduced at the beginning of this
section, one can say that the backprojection operation is described by the matrix ÃF ,
which is the same as ATF ,up to the distance attenuation factors. The composition of
propagation and backprojection ÃFAF is close to the identity matrix.

Depth Dependent backprojection While it is very useful to use the Fresnel approx-
imation to analyse the effect of backprojection, the approximations made lead to inac-
curacies when (a) the scene has significant depth variation or (b) there are occlusions.
In those cases we need to use the more precise formulas (S2), (S3). Propagation can
then no longer be written as a convolution, since the integral kernel, i.e., the hyperbola,
changes shape with varying depth.

13



Limitations of Backprojection Backprojection suffers from several limitations. The
results of backprojecton are smoother than the original surface and there are still a few
false positive surface points. We also observe that surface slopes beyond 45 degrees
are extremely hard to reconstruct. This can be explained theoretically, at least in the
Fresnel approximation as follows. The Fourier transform of the hyperbolic convolution
kernel falls off gently (by a power law) in the direction orthogonal to the receiver plane,
but falls off exponentially in the parallel direction. Hence features having high parallel
spatial frequencies, such as high slope regions, are very hard to recover. In order to
tackle these limitations it would be necessary to use additional prior information about
the 3D scene being reconstructed.

We use the traditional approach that removes the low frequency artifacts around sharp
features. The method is known as filtered backprojection that involves using a carefully
chosen high pass filter. In our case, a good choice is second derivative in the z direction
of the voxel grid. Supplementary Figure S4 shows the results after such filtering and
applying a soft threshold described in the main paper.

Note that backprojection is a voxel-based technique and does not take into account the
surface-based properties like orientation or reflectance profile. Hence our technique is
expected to work best for nearly Lambertian surfaces, for which the recorded images
do not depend strongly on the surface normals.

Necessity of ultrafast imaging

We consider the achievable resolution and space-time dimension tradeoffs in hidden
shape recovery.

Limits of Traditional Photography

Even with a still camera, one can in principle detect the displacement of a small hid-
den area of a scene as shown in Supplementary Figure S5(a), but the problem is ill-
conditioned. To see this, let us consider for simplicity a near planar scene at depth
z0, illuminated homogeneously by a far away source. The intensity of light incident
at a point r ∈ R that was emitted by a surface patch above r of size ∆x by ∆x is
proportional to I(∆x)2/(z2

0), where I is the total intensity received. Moving the patch
by ∆z � z0 in depth, the contributed intensity will change by ∆I ∝ I(∆x)2∆z/z3

0 .
Hence we conclude that ∆I/I ∝ (∆x)2∆z/z3

0 . As in typical scenario, the spatial
resolutions (∆x,∆z ≈ 5mm, z0 ≈ 20cm, we require intensity resolution, ∆I/I ∼
3× 10−5. This means one has to distinguish intensities of 1 from 1.00003. This is not
possible in practice. Note that the intensities received after tertiary scattering are al-
ready very small, so it is hard to obtain a good signal to noise ratio. We show the limits
of traditional low temporal resolution photography via an example in Supplementary
Figure S6.
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Benefits of Time Resolution

For an ordinary camera, two conditions make the problem ill-conditioned: The relative
intensity contributed by an emitter changes only slightly (∝ ∆z/z0) and this small
change is overwhelmed by the contribution of the background with area A, yielding
the factor (∆x/z0)2. Using a ps accurate high-speed light source and sensors these
problems can be circumvented.

A change in patch position smeans it contributes to a different pixel in the streak photo,
provided ∆z/c > ∆t, where c = speed of light and ∆t is time resolution.

Unlike an ordinary sensor, not all patches on S contribute to a pixel (time bin) in a
streak photo making the mixing easier to invert. The locus of points contributing to a
fixed sensor and time-bin position, (u, t), lie on a ring with radius d =

√
(ct)2 − z2

0

(Supplementary Figure S5(b)). If the time bin has a width of ∆t� t, the width of the
ring is approximately ∆d = c2t∆t/d. Hence the total area of the ring is 2πd∆d =
2πc2t∆t. We want to detect changes in the intensity emitted by a patch of size ∆A =
(∆x)2. Hence the change in total intensity is approximately ∆I/I = ∆A/(2πd∆d) =
(∆x)2/(2πc2t∆t). In our scenario typically ∆x ≈ 3c∆t. Furthermore ct ≈ z0. Hence
∆I/I ≈ 3∆x/(2πz0). Thus the required intensity increment is linearly proportional to
∆x/z0, and not quadratically as before. In our case, this ratio is a reasonable ∼ 10−2.
This gives the guidance on time-resolution. In addition, the time resolution of the light
source should not be worse than that of the sensor.

Performance Validation

We performed a series of tests to estimate the spatial resolution perpendicular and par-
allel to the visible surface, i.e., the wall. We use the FARO Gauge measurement arm to
collect independently verifyable geometric position data (ground truth) and compared
with positions recovered after multiple scattering using our algorithm. In our system,
translation along the direction perpendicular to the diffuser wall can be resolved with
a resolution of 400 µm better than the full width half maximum (FWHM) time resolu-
tion of the imaging system (Supplementary Figure S7, a and b). Lateral resolution in a
plane parallel to the wall is lower and is limited to 0.5–1 cm depending on proximity
to the wall (Supplementary Figure S8).

Choice of resolutions

There are four important parameters for our shape estimation setup: The spatial reso-
lution, i.e., the spacing between sensor pixels, the temporal resolution of sensors and
the laser, the intensity resolution and signal to noise ratio of our sensors (and power
of the light source) and the angular diversity determined by the geometry of the setup.
We saw in Section ”Benefits of Time Resolution” that time resolution is critical and
gives us an approximate lower bound on the resolution of our 3D reconstruction This
is the same as in the case of a direct view traditional time of flight camera. However,
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our situation differs from a direct view time of flight camera. Neither our sensors nor
our light source have any directional resolution into the hidden space after a diffuse
reflection.

Spatial Camera Resolution If we could determine the correspondences, i.e., which
part of the received signal at a sensor was emitted by which transmitter (surface patch),
spatial resolution of a streak camera would actually be unnecessary. Time resolution
will directly determine reconstructed 3D resolution of hidden objects. Despite these
two challenges, finite time resolution of the streak camera and the loss of correspon-
dence, the sufficiently high spatial resolution allows us to exploit the local structure in
streak photo to recover shape without explicitly solving the correspondence problem.
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