Uber das Uberschreiten von Potentialsehwellen bei chemischen
Reaktionen.
Yon
. Wigner.
(Mit 2 Figuren im Text.)

(Bingegangen am 30. 7. 32.)

T wird die Durchlissigkeit einer Potentialschwelle gegenither einem Aom-
strom mit MaxwELLscher (leschwindigkeitsverteilung herechnet fie den Fall, dass
es erlaubt ist, die Quantenkorrektion nur bis zu Gliedern mit der zmweiten Potenz
der Praxckschen Konstante zu beriicksichtigen. Das Resultat wird mit LexARTs
exakter Berechnung der Durchlissigkeit einer bestimmten Potentialschwelle ver-
glichen und auf die Umwandlungsgeschwindigkeit von Parawasserstoff in normalen
Wasserstoff angewandt.

1. Es wurde schon wiederholt auf die Moglichkeit hingewicsen,
dass das unmechanische Uberschreiten von Potentialschwellen bei
chemischen Reaktionen eine Rolle spielt?). Die meisten chemischen
Reaktionen bestehen ja darin, dass ein Atom eine Potentialschwelle
iiberschreitet und so eine neue Konfiguration des Systeims herbeifiihrt.
Die Hohe der Schwelle dussert sich als Aktivierungswarme.

Ts sind hierbei drei Fille zu unterscheiden: Entweder ist dic
Schwelle so dick, dass die Atome sie praktisch gar nicht durchdringen
konnen — dies wird gewohnlich stillschweigend angenommen —, dann
verlauft die Reaktion klassisch. Wenn die Schwelle sehr diinn und
hoch, die Temperatur sehr niedrig ist, so tragen hauptsachlich dic
Atome mit geringen Geschwindigkeiten zur Realktion bei. Es ist wahi-
scheinlich, dass fiir keine his jetzt bekannte Reaktion dieser Ifall vor-
liegt, sie wiirde sich durch nur geringe Temperaturabhingigkeit der
Reaktionsgeschwindigkeit bemerkbar machen. Bei geniigend tiefer
Temperatur muss zwar dieser Mechanismus immer der ausschlag-
gebende sein, aber diese Temperatur ist in den allermeisten Fallen so
niedrig und die zugehorige Reaktionsgeschwindigkeit so klein, dass sie
1) F. Huxp, Z. Physik 43, 805. 1927. J. R. OpPENHEIMER, Physic. Rev. 31, 66.
1928. Bourcrx, Pr. Nat. Acad. Washington 15,357, 1929. R. M. LANGER, Physic.
Rev. 34, 92. 1929. M. Borx und J. Fraxck, Nachr. Gotting. Ges. 1930, 77. S. Ro-
ciwsit und L. Rosexgrwirsci, Z%. physikal. Ch. (13) 10, 47. 1930. 15, 103. 1931
AL Bozy und V. Wrisskorr, Z. physikal. Ch. (B) 12, 206. 1931.
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praktisch tiberhaupt keine Rolle spielt. Der dritte Fall, den wir zu
unterscheiden haben, ist schliesslich der, dass die reagierenden Mole-
kille fast genug Energie haben, um die Schwelle mechanisch iiber-
schreiten zu konnen, dass aber ein endlicher Prozentsatz unter ihnen
doch eine etwas niedrigere Energie hat und durch den obersten Teil
des Berges unmechanisch hindurchgeht. Dieser Effekt wird nur eine
Korrektion fiir die klassisch berechnete Reaktionsgeschwindigkeit be-
deuten, wegen ihrer prinzipiellen Bedeutung soll sie aber im folgenden
doch ausfiihrlich behandelt werden. :

Schon C. ECRART') hat darauf hingewiesen, dass man in diesem
Falle die bekannte WENTZEL-BRILLOUINsche Methode zur Berechnung
der Wahrscheinlichkeit der Schwellenuberschreltung nicht benutzen
kann. Er stellte jedoch ein Potential auf, fiir das man die SCHRG-
DINGER-Gleichung fiir jede Energie exakt losen kann. Wir brauchen
viel weniger, namlich die Durchdringungswahrscheinlichkeit nur fiir
Geschmndlgkelten die nahezu gleich der Geschwindigkeit sind, bei
der das Uberschreiten der Schwelle mechanisch eben noch moglich ist.
Dagegen wollen wir diese Wahrscheinlichkeit fiir eine beliebige Po-
tentialschwelle berechnen. Am Schluss wollen wir unser Resultat auf
die Ecrkarrsche Potentialschwelle anwenden und die Resultate ver-
gleichen.

2. Wir denken uns eine Potentialschwelle V (z) und einen Strom
von Atomen, der von links (negative z) im Temperaturgleichgewicht
auf die Schwelle zustrémt und fragen nach der Zahl derjenigen Atome,
die reflektiert und die durchgelassen werden. Da wir es mit einem
System zu tun haben; das im wesentlichen der klassischern Mechanik
gehorchen soll, und bei dem die Quanteneffekte eine nur geringere
Rolle spielen sollen, kénnen wir versuchen, mit der Wahrscheinlich-
keitsfunktion P (x, p) zu rechnen. Diese Wahrscheinlichkeitsfunktion
entsteht aus der statistischen Matrix2) U (z, ') des Systems durch die

Transformation 3) - 2ipy

P,p) = [Ur+yx—ye » dy e

— 0

und ihre Verdnderung mit der Zeit ist durch

OP@p) _ _p P _ dVIP _ (h)\*1 BV®P  (h\*1 3V 5P 5
T et~ (3) 310w o (“)5—?567, @)

‘ 1) C. EcrarT, Physic. Rev. 35,1303. 1930. 2) L LANDAU Z. Phys1k 45,
430. 1927. H. WevrL, Z. Physik 46, 1. 1927. J.v. Neumany, Nachr. Gotting. Ges.
246, 245. 1927, 3) E. WiGNER, Physic. Rev. 40, 749. 1932.
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gegeben (h ist dabei die Prancksche Konstante dividiert durch 2 7).
Wir interessieren uns fiir eine Losung dieser Gleichung, die stationir
ist, fiir sehr grosse negative 2 und

positive p gleich e~ #P2" wird, fiir
sehr grosse positive » und nega-
tive p dagegen Null ist. Die erste » Viz)

Bedingung bedeutet, dass wir es
/’;

mit einem stationdren Zustand zu
tun haben, die zweite, dass die auf
die Schwelle zustromenden Atome-
im Temperaturgleichgewicht sind

\\

. 1. .
undihre Temperatur 7'= 73 ist, die

J

dritte Bedingung besagt schliess-
lich, dass von rechts keine Atome
auf die Schwelle zustromen. Fiir
den klassischen Fall sind die Stro-
mungslinien der Atome im . p-
Raum (Phasenraum) in Fig. 1 ein- Fig. 1.
gezeichnet.

L

Eigentlich interessieren wir uns nicht fir das ganze Stromungs-

bild, sondern nur fiir den Gesamtstrom | pP,p)dp fir sehr grosse .
0

Es liegt daher nahe, (2) von 0 bis co zu integrieren (die linke Seite

kann gleich Null gesetzt werden)

(3)

Oy f h\2n 1 P P, 0)
) 271,_{_7])! ba;:Zm-i-l N OI)Zn

1) ¢
—m MJ p P, p)ydp = 2’(21

0 nw=20

—

Diese Formel erlaubt es uns, den Strom mit Hilfe der Werte der
Wahrscheinlichkeitsfunktion an der Stelle p =0 zu berechnen.

Da ein unmechanisches Uberschreiten der Schwelle nur fir Ge-
schwindigkeiten in Frage kommt, die ganz in der Nihe der kritischen

Geschwindigkeit o :]/27;’ liegen (V; ist die Hohe der Schwelle), wird
die Wahrscheinlichkeitsfunktion, abgesehen von der Umgebung der
Stellen % + V(z) =V, genau so wie im vollstindigen thermodynami-

schen Gleichgewicht aussehen. Fiir P(z, p) in der Mitte des schraffierten
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Teils der Fig. 1 konnen wir daher die Werte fiir das thermodynamische
Gleichgewicht einsetzen?)

0

i
. e 14 h2R2 32V h2a3 [0 V)2 },,2133 hLR %4
Plw,p)=e ®me (“@i‘m m( ) mp2axz+“')'

(4)

Ebenso konnen wir fiir den inneren Teil des Gebietes, in dem in
Fig. 1 P(z, p) =0 ist, auch jetzt P (z, p)=0 annehmen. Nur fiur das
Trennungsgebiet des schraffierten Teiles vom unschraffierten miissen

e wir eine etwas genauere Uberlegung

1 anstellen, die Bahnen werden dort

etwa so verlaufen, wie es in Fig. 2

angedeutet ist. Dies wird durch die

hoheren Glieder von (2) bewirkt, die

den in derklassischen Wahrscheinlich-

keitsfunktion vorhandenen Sprung
auszuglatten bestrebt sind.

Wir wollen zunichst annehmen,
dass die Verteilung fiir das thermo-
dynamische Gleichgewicht (4) inner-
halb des ganzen schraffierten Teiles

Fig. 2. von Fig. 1 gilt, also insbesondere fiir

p=0 bis =0, und dass die Wahr-

scheinlichkeitsfunktion ausserhalb des schraffierten Bereichs wirklich

Null ist. Berechnen wir den Strom unter dieser Voraussetzung mit

Hilfe von (3), so haben wir nur noch in der Umgebung von z=0,

p=0 die Gleichung (2) streng zu losen.und in dem Teil von (3), in

dem wir die falschen Werte fiir P (%, p) benutzt haben, diese durch die
richtigen Werte zu ersetzen.

3. Setzen wir (4) fiir <0 in (3) ein, setzen wir dagegen fiir x>0
das P (z, 0) =0, so erhalten wir bei Vernachlissigung von Gliedern mit
hoherer als der zweiten Potenz von A fiir x=0

0

.ﬁ : . .—{S'V(oc) _1__ h2g 0* V() ﬁz_ EYE)_ *
frrepin =" e ) | ©

0

1) Die Normierung ist dabei so, dass an den Stellen vollen thermodynamischen

Gleichgewichts l/ 27;7”'

bei x =— 00 sind V% nach rechts laufende Atome.

Atome pro Zentimeter sind, oder, was dasselbe bedeutet,
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und fiir =0

¢ ¢ P ! 0?3 -
J 7'?:{ P(x>p)d7) = j m P(O, p)d?) = l (;‘? T %dm 1"72) N (U 3)
0 0
2 . . o .
wo V,= 0 OI;,(;O) wie im folgenden allgemein V= (—(\V—([O) gein  woll.
= &

Bereits (5a) gibt einen guten Naherungswert fiir die Durchlissigkeit
der Potentialschwelle gegeniiber einem Atomstrom von der Tempe-

1
ratur Tk
Schreiben wir namlich (2) fiir  ~ 0 und eine symmetrische Schwelle

auf o « 24t
P OP Ny ke 1 LotrTip .
m bx_'_% (2@’ @2n 4 1)! Vaus o dp2atl =0 (©)
n=
und behalten wir fiir den Augenblick nur zwei Glieder der Sumine.
Dann koénnen wir durch eine Substitution x =«ay, p=«’g alle numeri-
schen Koeffizienten gleich machen, so dass (6) in

0P 03P X
— 4, " Yag Y =0 (6a)
.. .. 5/ BV . . .
tibergeht. Dabei ist ¢ = 2&” ‘I‘,z, und dies wird daher auch die unge-

fahre Grosse des Ubergangsgebietes der Fig. 2 sein, in dem P von e™# '
auf Null herabféllt. Ineinem Gebiet dieser Grossenordnung haben wir
daher in (3) ein falsches P verwendet. Der fiir den Strom hierdurch

verursachte Fehler ist von der Grossenordnung e™#'0-70mt . Obwohl

nun dies auch mit der zweiten Potenz von A geht, ist es doch viel kleiner
als das andere Korrektionsglied, das in (5a) steht, das Verhialtnis der

beiden ist von der Grossenordnung ;II‘,‘:_Z'NT%;
praktisch in Frage kommenden Ten@erlxtureﬁ sehr klein.

4. Im folgenden sei das zuletzt besprochene Korrektionsglied ein-
gehender betrachtet, d.h. sein genauer Koeffizient berechnet'). Wit
beschranken uns dabei auf eine symmetrische Potentialschwelle. Es
muss das Ubergangsgebiet in P(x, p) in der Umgebung der Stelle
=0, p=0 genauer untersucht werden.

Die Uberlegung am Schlusse des vorigen Abschnitts gibt uns die

24V, - .
v, Daher

Das ist aber fiir alle

. 0 . .. . o1
Grossenordnung von Ay in diesem Bereich, sie ist = = —i/
(4
1) Da das Glied, dessen Koeffizient in dicsem Punkt berechnet werden soll,
in den praktisch wichtigen Féllen sehr klein ist, ist dic Kenntnis von 4 fir das
spétere nicht notig.
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ist in dem fraglichen Gebiet jedes Glied von (2) von gleicher Grossen-
ordnung, und wir diirfen die Reihe (6) nicht abbrechen, wie wir das
in der provisorischen Betrachtung in (6a) getan haben. Wir miissen

eine Losung von (6) finden, die ausserhalb des Ubergangsgebietes
v,

(eines Gebietes von der Grosse « = SAm in der z-Richtung und
_— 2
der Grosse ¢'= V— g 41;,4 in der p-Richtung) sich so verhalt, dass es
2

mit wachsendem Abstand vom Nullpunkt zu e~ PV (eigentlich zu
¢ BVo(1+4h2...), aber die Glieder mit 52 konnen wir in diesem Korrek-
tionsglied vernachléssigen) geht, wenn wir uns auf einer Geraden vom
Nullpunkt wegbewegen, deren Richtung in das schraffierte Gebiet
der Fig. 1 weist, die also einen Winkel zwischen p und ¢+ 7 mit der
+-Achse einschliesst, wo tg p = V—mV, ist. Entfernt man sich dagegen
auf einer Geraden vom Nullpunkt, die einen Winkel zwischen ¢—x
und p mit der z-Achse einschliesst, so soll die Losung zu Null gehen.

An Stelle dieser Losung konnen wir auch eine Losung betrachten,

.- . . 1 . .
die im ersten Winkelbereich zu 5 ¢~F70, im zweiten zu % e~ £V geht.

Wenn wir zu dieser Losung noch die triviale Losung eV von (6)
addieren, erhalten wir die Losung, die die vorerwihnten Grenzbedin-
gungen befriedigt.

" Nun ist (6) linear sowohl in z, wie auch in p. Durch eine LAPLACE-
Transformation in beiden Argumenten

©

Pl,p) = [[Qy, pe—i@v—2dydg )

o

konnen wir sie daher zu einer partiellen Differentialgleichung ersten
Grades machen (die in sehr naher Beziehung zur gewohnlichen SCHRO-
pINGER-Gleichung steht)

m ¢ 7L—7L=0(27L+1)' 2 oy ®)
yoQ_ 2 V'(h_q\) @ _g
mog h 2oy

Die Reihe der ersten Zeile ist ja die Tavror-Reihe fiir die Ab-
leitung von V an der Stelle %. Die allgemeine Losung dieser Gleichung

Jautet Q) =1~ W), o
wo f eine beliebige Funktion ist und zur Abkiirzung

8 [k '

wa =5 (v~ 7 () )

gesetzt ist.
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Um die Grenzbedingungen zu befriedigen verfahren wir folgender-
massen?): Zunidchst bleibt (6) invariant, wenn man darin « durch —z
und p durch — p ersetzt. Mit (7) ist daher auch [[Q(y,g)e'@v-r0dydq
oder auch o ©

Pr,p) = | Qg sin(xy—pqg)dydyg (7a)

0
eine Losung; (7a) hat gleichzeitig die erwiinschte Eigenschaft an der
Stelle —x, —p entgegengesetzt gleich wie an der Stelle «, p zu sein.
Nunmehr setzen wir versuchsweise

Qly,q) = C-(y°— Wi(g) (10)
mit der Diracschen J-Funktion. Es ergibt sich nach einer einfachen
Umformung, indem man fiir 2=z einsetzt und die Integration iiber z
ausfithrt o o
Vv, er— BT% /’ sin (pq 1]/@) dq. )

aye V()

Fiir die Konstante €' wurde dabei ein bestimmter Wert genommen,
um die Grenzbedingung zu erfiillen. Es bedeutet wiederum

W, — b’;f/ (0) .
q

P,p)=

Man tiberzeugt sich leicht, dass (11) die Differentialgleichung (6)
befriedigt, das folgt auch aus seiner Herleitung. Da indessen (11) nicht
absolut konvergiert, ersetzen wir es durch

P(x,p) = @E/‘Sm (M—@,V@ e~idg (11a)
a) 2 ; VW)

und lassen nachtriglich @ gegen Null gehen. Im folgenden wollen wir
mit (11a) rechnen. Um noch die Randbedingungen zu verifizieren,
nehmen wir an, dass x sehr gross ist. Dann wird das Integrations-
gebiet mit endlich grossem ¢ nichts zum Integral beitragen, weil der
Integrand in diesem Gebiet sinusférmige sehr rasche Schwankungen
ausfithrt. Nur das Gebiet um ¢=0 wird einen endlichen Beitrag
liefern, weil der Nenner fiir ¢ =0 verschwindet. In diesem Gebiet

. 1 . . .
konnen wir W durch - W,q2 ersetzen und dann bis oo integrieren
q 2 2q g >

da das Integral doch gut konvergent ist. Nach bekannten Formeln
wird dann fiir x =00, p= o0

1) Fir seine freundliche Hilfe bei der Bestimmung der richtigen Losung von (6)
sei Herrn JJ. v. NEUMANX auch an dieser Stelle bestens gedankt.
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YW / (0 —=V7:P)g) ,
P, dz) = T o

[%e—(”’o fiir —5> 1/W2/2=V—mV2

l—;«e—(”’o fiir §< VW, /2=V—-m7,

wie wir es gewiinscht haben. Die gesamte Wahrscheinlichkeitsfunk-
tion in der Nahe von x=0, p=0 erhalten wir, indem wir zu (11a)

1 .
noch 5e” 7o addieren.

Nun miissen wir mit Hilfe der eben gewonnenen Wahrscheinlich-
keitsfunktion die Zunahme des Stromes in der Nihe des Nullpunktes
nach (3) berechnen und daraus die bisher filschlicherweise ange-
nommene Zunahme (V,ze f% bis =0, von dort ab Null; wir sind
ja immer in der Ndhe des Nullpunktes, und Korrektionsglieder kénnen
wir in diesem Korrektionsglied vernachlissigen) abziehen. Zun#chst
haben wir fir (3)

[ h\2n 1 d2n+1 V(x) aznp(x’ 0)
201(2_1,) @n+1)! yg2nti dp?®
n=

zu berechnen. Es ergibt sich dafiir fir kleine #, wenn wir fiir P (z, p)
(11a) benutzen

V—WTZ —B% i 2 V2n+2x MQ)) 2% p—a
V2 ;(22) (2n+1) 5’ ) (tg)me—idq

—@e—rﬂ JV/(hq)smeW(q (12)
nh QV—

Hierzu wére noch wegen des zu (11a) hinzukommenden Gliedes

e~ “qdq
0

le—P Yo die Glosse V xe— BV zu addleren und dann, um die bisher
2

" falschlicherweise angenommene Zunahme Wleder abzuziehen, bis =0
* der Betrag V,ze™ "7 zu subtrahieren. Im ganzen bleibt zu (12)

1 .
5 signz-zV,e=f7

zu addieren, wo sign x= -+ 1 fiir x>0 und =-—1 fiir w<0 ist. Wir
konnen fiir dieses Glied auch

AL ————Sinxqvwz/z—dq : (12a)
T q
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schreiben. Zum Schluss wire die Summe von (12) und (12a) in der
Umgebung von @=0 iiber 2 zu integrieren, um das restliche Korrek-
tionsglied fiir (5a) zu erhalten. Die Integration iiber » kann man
aber auch von —oo bis oo erstrecken, da der Integrand nach beiden
Seiten vom Nullpunkt sehr stark abfiallt. Da der Integrand eine gerade
Funktion von z ist, kann man dies auch durch das doppelte von 0 bis co
genommene Integral ersetzen. Um weiterhin die Integrationsreihen-
folge umkehren und zuerst iiber 2 integrieren zu kénnen, versehen wir
den Integranden mit einem Faktor e~"”, wobei wir spéiter b zu Null
machen werden. Nach Austithrung der Integration iiber x erhalten wir

VEW, L W@b Wb
am ¢ _’ (q(bz-{HW(q))‘i (bz—FQZWz"?,’Z) dq. (13)

0

Dies muss noch nach ¢ von Null bis oo integriert werden. Da b
am Schlusse zu Null gehen soll, ist es klar, das nur das Gebiet um
¢ =0 etwas zum Integral beitragen wird — fiir endliche ¢ und kleine b
verschwindet der Integrand. Man iiberzeugt sich leicht, dass es
gentigt im ersten Glied 1 (g) und W' (g) bis zum zweiten Glied in eine
Reihe zu entwickeln, das nichste Glied wiirde im Resultat schon mit
einem Faktor b behaftet sein. Dadurch geht (13) in das Integral einer
rationalen gebrochenen Funktion iiber, das man entweder elementar
oder auf komplexem Wege auswerten kann. Man erhilt so

2UmW, = 9%m V,
als letztes Korrektionsglied fiir den Strom durch die Schwelle, so dass
sich dieser nach (5a) zu

Wee=3Vo  py,e 8% (14)

B2 2 7
23 5 I3 T4) (142)

T 24m 2T 96m UV,

J?Oﬁ‘P(oo, p)dp = e~ #To (i’
0

ergibt.

Wir haben schon gesehen, dass (14) in den meisten Fallen, die
praktisch von Interesse sind, sehr klein gegen das erste Korrektions-
glied ist. Es ist aber sehr storend. zu sehen, dass es iiber alle Grenzen
steigt, wenn V, zu Null geht. Es ist nicht leicht zu sehen, ob diesem
Verhalten von (14) ein tatséichlicher Effekt zugrunde liegt, oder ob
es nur im verwendeten Néaherungsverfahren seine Begriindung hat.
Bs ist ja klar, dass zwischen den verschiedenen Ableitungen von ¥
Beziehungen bestehen miissen, wenn es die Form einer einfachen
Schwelle haben soll. Andererseits ist aber auch unsere Rechnung wegen
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Konvergenzschwierigkeiten mathematisch keineswegs streng, so z. B.
divergiert (11) fir p=0.

5. In der klassischen statistischen Mechanik kann man die Wahr-
scheinlichkeit der Uberschreitung einer Schwelle sehr einfach folgendex-
massen berechnen: Man betrachtet den Fall vollstandigen thermo-
dynamischen Gleichgewichts. Dann ist die Anzahl der Atome mit dem
Impuls p auf der Schwelle = e~ Ve~ #7%m ynd folglich die Gesamt-
zahl der Atome, die die Schwelle pro Zeiteinheit nach der einen Rich-
tung hin passieren

[ee]

P S
/ﬁe—lﬂoe Z"de=~{g—e—(”V0. - (15)
0

Nun kann man annehmen, dass dies auch die Zahl der Atome
ist, die die Schwelle dann passieren, wenn diese von einem Strom von
Atomen im Temperaturgleichgewicht nur von der einen Seite
getroffen wird. Man sieht ja, dass im Falle einer einfachen Schwelle
alle Atome, die die Schwelle nach rechts passieren, von der linken
Seite stammen, und ihre Zahl wird gleich sein, unabhingig davon, ob
von der rechten Seite Atome kommen oder nicht.

Diese Uberlegung kann man in dieser Form in die Quanten-
mechanik nicht iibertragen, weil man iiberhaupt nicht von der Wahr-
scheinlichkeit von Atomen reden darf, die an einer bestimmten Stelle
sind und dabei eine vorgeschriebene Geschwindigkeit haben. Doch
kann man immerhin versuchen, die ‘der klassischen entsprechende
Grosse mit Hilfe der Wahrscheinlichkeitsfunktion (4) zu berechnen.
Man erhalt so

[ee]

gr?

/%e—ﬁVo e en(1-R2y, 4+ 27 V) dp = e~ % (%—ﬁ’;—i 7.) (5a)
0

also tatsichlich das richtige erste und damit wichtigste Korrektions-

glied von (14a).

Dies erlaubt es einem, zu erraten, was die Wahrscheinlichkeit
der Schwelleniiberschreitung im mehrdimensionalen Falle ist. An sich
konnte man die Rechnung genau so wie im eindimensionalen Fall aus-
fithren, nur erscheint sie noch etwas miihevoller. Es sei auch be-
merkt, dass die in 3. verwendete vereinfachte Uberlegung genau zu
unserem Resultat (17) fiihrt.

Im Falle mehrerer Dimensionen handelt es sich nicht so sehr um
die Uberschreitung einer Schwelle, als um die eines Grates, wie sie
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aus der Theorie der einfachsten chemischen Reaktionen hinlinglich
bekannt ist. Es spielen dabei zwei Effekte eine Rolle, die sich gegen-
seitig zu kompensieren versuchen: der bisher betrachtete Tunneleffekt,
der die Wahrscheinlichkeit der Gratiiberschreitung erhoht, und die
Nullpunktsenergie, die eine grossere Energie fiir die Uberschreitung
eines engen Passes erheischt, als dem untersten Punkte des Passes
entsprechen wiirde. Wir legen das Koordinatensystem so, dass das
Potential in der Nihe des Passes die Gestalt

V(xl - xn) = .VO —+ —“]);—(Alx% +A2z§ + -+ Allezz) (16)

habe. Dabei ist 4, negativ, alle anderen Koeffizienten positiv. Die
Wabhrscheinlichkeitsfunktion lautet lings des Grates (z; = 0)

4 3
~— (p}+- - +p2) — - (de@d+ -+ 40P
P(x1”'xn;p1"'pn)=e 2 VL Me—3Vog 2

h2g B3

=S At A+ Az 4 A2a) (16 )
h2 133
+ 24 m2 (p?Az +oee +pi22An)}
und mit % multipliziert und tiber a,, a3, ..., z, und alle Momente

integriert, ergibt dies fiir den Strom iiber den Grat
dmba+l)gn—1 =3V [, kg
(23n+1 VA, 4,4, U 2m
Es muss jedoch bemerkt werden, dass hierbei Zusatzglieder, wie
(14) konsequent weggelassen worden sind. Diese treten hier namlich
nicht nur aus demselben Grunde wie im eindimensionalen Fall auf,
sondern eigentlich schon bei der Integration von (16a), wenn man fiir V
auch hohere Glieder als in (16) angegeben mitbenutzt. Dies ist iibrigens
schon im klassischen Teil der Formel der Fall. Ausserdem muss be-
merkt werden, dass die ganze Uberlegung, die zu (153) fihrt, im mehr-
dimensionalen Fall auch in der klassischen Statistik nicht mehr ohne
weiteres berechtigt ist, weil es nicht mehr immer wahr ist, dass die
Atome, die den Grat von links iiberschreiten, von links stammen. Sie
stammen, wenn das Potentialbild etwas kompliziert ist, zum Teil von
rechts, gingen dann bereits nach links hiniiber und passieren die
Schwelle nun wieder nach rechts. Doch spielt dieser Effekt wohl in
den meisten Fillen eine nur untergeordnete Rolle.
6. Es sei nunmehr (14a) auf die Eckarrsche Potentialschwelle
angewandt und mit dem Eckarrschen Resultat verglichen. Der
symmetrische Teil des EckarTschen Potentials lautet

(Al—f—---—f—A,,L)}. (17)
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4V,
(L +e) 1+ ™)’ ‘
und seine Durchlissigkeit fiir eine Welle mit der Energie E berechnet

(18)

EckarT zu .
b
Cosh n‘l/—d —1
l—po= (19)
Cosh z V V o ‘
2
wo O =32—7:nﬁ ist. Die Durchléssigkeit einem Atomstrom in Tempe-

raturverteilung gegeniiber ist daher

(20)

f(l—e)e—ﬁEdE’Ne—ﬂV( ud ) ’”)

3 +48mb2 Bmp2)’

Die rechte Seite ergibt sich durch Integration, ist- aber nur bis
auf Glieder mit A2 richtig. Formel (14a) ergibt
1 h2pV, h?
e—.{m(ﬂ + s 48mb2)
also ein mit (20) identisches Resultat. Der Vergleich unserer Formel
in diesem Spezialfall mit der EcrarTschen mag wegen des bereits
betonten Umstandes nicht iiberfliissig erscheinen, dass die Ableltung
von (14a) mathematisch nicht streng ist.

7. Zumn Schluss sei die Quantenkorrektion fiir die Umwandlungs-
geschwindigkeit des Parawasserstoffs in normalen Wasserstoff be-
rechnet. Da die Ubereinstimmung zwischen den experimentellen
Werten?) und den ohne Quantenkorrektion berechneten ?) bereits sehr
gut ist, kann es sich nur darum handeln, nachzusehen, ob die Uber-
einstimmung durch die Quantenkorrektion nicht zerstort wird, wie
dies zunichst vermutet werden konnte 2).

In der Tat zeigt es sich, dass die Quantenkorrektion sehr betracht-
liche Werte hat, und man kann gar nicht schematisch nach (17) rechnen,
weil die Naherung mit der zweiten Potenz von % nicht ausreicht.
Gliicklicherweise konnen die Glieder in zwei Gruppen eingeteilt werden :
solche, bei denen man mit (17) sehr wohl auskommt und solche, bei
denen man noch ganz im Quantengebiet ist, so dass man die Existenz
der hoheren Schwingungen ganz vernachlissigen kann. Da die Rech-
nung etwas langwierig ist, sei sie hier nur skizzenhaft dargestellt.

(20a)

1) A. FARKAS Z. physikal. Ch. (B) 10, 419. 1930. H. Gz und P. HARTECK,
Z.physikal. Ch., BoDENSTEIN-Festband, 849. 1931.  2) H. Prr2ER und E. WIGNER,
Z. physikal. Ch. (B) 15, 445. 1932, :
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Die Rechnung wurde (loc. cit.) auch mit Hilfe der Wahrschein-
lichkeitsfunktion ausgefiihrt, es wurde aber die klassische Wahrschein-
lichkeitsfunktion verwandt. Dies erleichtert das Anbringen der
Quantenkorrektionen, da die entsprechenden Ausdriicke immer nur
mit einem Faktor (14 A2...) multipliziert bzw. dividiert werden
miissen.

Die erste Korrektion betrifft die N ormierung der Wahrscheinlich-
keitsfunktion. An Stelle des Integrals iiber die klassische Wahrschein-
lichkeitsfunktion des H, sollte das iiber die korrigierte Wahrschein-
lichkeitsfunktion treten, die sich von ersterem durch den Faktor
h*3

— (21)

1_24

unterscheidet, wo o die 2xfache Frequenz des Hy-Molekiils ist. Nun
zeigt ein Vergleich der Grossenordnungen der beiden Glieder in (21),
dass in diesem Fall die Naherung mit A2 zweifellos noch nicht hin-
reichend ist. In diesem Fall ist es aber leicht, fiir (21) die genaue
Zustandssumme o—phof2

Bho (214a)

1—¢~rha
zu berechnen. Der Faktor e ~#“*2 trigt nur zur Aktivierungswirme
etwas bei, fiir den Rest kann man bei allen in Betracht kommenden

6500 . . .. . .
Temperaturen —— schreiben. In die Formel fiir die Reaktions-

geschwindigkeit geht das Reziproke hiervon ein.

Die Korrektion fiir die eigentliche Gratiiberschreitung konnen wir
durch den Faktor [vgl. (17)]

(1_ B 3

/ h2’32
24 mAl) ( T 24m

T 2%4m

h? 32
24 m

4,)(1 4,01 4,) (22)
berticksichtigen. Dabei berechnen sich die 4 zu —0'44 - 105 ; 214105,
0789 -10°; 0°89 -10°. Bei dem ersten Faktor konnen wir die Form (22)
beibehalten, die anderen drei beziehen sich auf die Zustandswahrschein-
lichkeit auf dem Grat (nicht auf die Uberschreitung), bei ihnen ist
die in (22) auftretende Naherung nicht zuldissig, sie werden analog
zu (21) durch

2700 €180 1109 e~ 0T 1190 ¢—3%0 T

e - bY
T 1—e—2000)T T § _,—100,T 7T 1 —e—1100 7 (22a)

ersetzt. Der erste Faktor kann wiederum fiir alle in Betracht kommen-

2700 .
den Temperaturen ~— geschrieben werden.
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Die numerische Berechnung ergibt folgende Tabelle:

r ) ks I Caig Cheu
283 86.10¢ | 2.106 2.106
373 27.106 | 25.106 3.106
873 12.109 2.108 3.106

11023 19.109 | 15.108 2.108

In der ersten Spalte stehen die Temperaturen, in der zweiten
die von GErB und HARTECK bzw. von A. Farkas beobachteten Ge-
schwindigkeitskonstanten in Liter/Mol in der dritten Spalte die von

3

PELzER und WieNER aus diesen berechnete Grosse C="Fk,T 2eWlRT
(mit Wy = 6600 cal) in der letzten schliesslich diese Zahlen dividiert
noch mit der Quantenkorrektion, und mit W, =5600 anstatt mit
Wy == 6600 cal berechnetl). Der theoretische Wert?) fiir die letzte
Spalte wire 1'0-108, Wir sehen, dass durch die Quantenkorrektion die
UbereinStimmung zwischen den aus den Versuchen berechneten ¢ und
seinem theoretischen Wert etwas verschlechtert wurde. Sie war aber,
wie dies schon (loc. cit.) betont wurde, vor Anbringung der Quanten-
korrektion sehr weitgehend zufallig, wihrend das jetzt nicht mehr
wesentlich der Fall sein diirfte.

Zum Schluss mdchte ich es nicht versiumen, Herrn H. Prrzer fiir
seine liebenswiirdige Hilfe zu danken, mit der er mich bei der Aus-
fiihrung dieser Arbeit unterstiitzt hat.

1) Wegen der von (21a) und (22a) weggelassenen Faktoren berechnet sich hieraus
die Héhe des Grates itber dem tiefsten Punkt des Tales zu 9400 cal. 2) Der
theoretische Wert war von Prrzer und WIGNER wegen eines Fehlers in ihrer
Formel (22) zweifach zu hoch angegeben worden.



