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Green’s function techniques for studying nonequilibrium quantum processes are discussed.
Perturbation expansions and Green's function equations of motion are developed for
noncorrelated and correlated initial states of a system. A transition, from the Kadanoff-Baym
Green’s function equations of motion to the Boltzmann equation, and specifications of the
respective limit, are examined in detail.

1. INTRODUCTION

Nonequilibrium Green’s function techniques, initiated by Schwinger [1] and
Kadanoff and Baym [2], have received much attention in the past, in particular in
connection with plasma, laser, and chemical reactions problems. This study has been
motivated by an application of the techniques to high-energy nuclear collisions. While
some of the results obtained here have been derived before, a coherent and systematic
presentation of the subject has been lacking up to this time. This paper is intended to
be a self-contained introduction to the nonequilibrium Green’s function techniques.
Several new formal derivations and results are presented for the first time.

The nonequilibrium Green’s function methods allow one to study a time evolution
of a many-particle quantum system, and a particular numerical example will be
presented in a following paper of the series. We solve there equations of motion with
self-energies for 1-particle Green’s functions in an idealized nuclear system, and
compare the results with a classical Markovian dynamics from the Boltzmann
equation. Knowing the 1-particle Green’s functions one may evaluate 1-particle quan-
tities in a given system. The many-particle information about the system is cast into
self-energies in the Green’s function equations of motion. Guided by the perturbation
expansion for the Green’s functions, one may attempt approximations to the self-
energies.

In Section 2 of the present paper we introduce a generalized Green’s function for a
nonstationary quantum state of a system. In the case of a noncorrelated initial state
of a system, the Green’s function possesses a perturbation expansion analogous to a

* This work was supported by the Director, Office of Energy Research, Division of High Energy and
Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098,
* On leave of absence from Institute of Theoretical Physics, Warsaw University, Warsaw, Poland.

239
' 0003-4916/84 $7.50



240 P. DANIELEWICZ

ground state perturbation expansion of a chronological Green’s function. The
introduced Green’s function coincides, in particular ranges of variation of ifs
arguments, with conventional 1-particle Green’s functions. In Appendices A, B, and
C, related to Section 2, we discuss respectively the Wick decomposition, a variational
derivation of the perturbation expansion, and the modified rules of the perturbation
theory. In Section 3 the equations of motion for Green’s functions, self-energies,
lowest-order approximations to the self-energy, and conservation laws are discussed.
In Appendix D it is shown that the self-energy for the generalized Green’s function
may be introduced, and its properties may be studied, without a direct reference to
the perturbation expansion. In Appendix E we study, basing on the equations of
motion and the self-energy perturbation expansion, the properties of Green’s functions
in a state of thermodynamic equilibrium. In Appendix F, a T-matrix approximation
to the self-energy is discussed.

From the equations of motion for the Green’s functions, the so-called Kadanoff-
Baym equations, the Boltzmann equation may be obtained, at an assumption of slow
time and space variations in a system. The transition to the Boltzmann equation is
presented in Section 4. For the Boltzmann equation to be of use in describing the
system’s dynamics, the dynamics given by the Boltzmann equation must be insen-
sitive to uncertainties in particle energies and momenta. In Appendix G the
conditions for the transition to the Boltzmann equation are analyzed for a system in
thermodynamic equilibrium in the Boltzmann statistics limit, with self-energies in the
Born approximation.

In Section 5 of the paper, we present the Green’s function techniques for a
correlated initial state of a system, prepared through the imaginary-time evolution. In
Appendix H, we discuss a perturbation expansion and equations of motion for
Green’s functions for a general correlated initial state.

2. GREEN’S FUNCTIONS AND THE PERTURBATION EXPANSION

We shall consider a nonrelativistic system of fermions or bosons with a
Hamiltonian

A= dx ') (—f—m) 50 + [ dx [ dy 900 97 Vs =) 9) 9 2.1)

The field operators satisfy the commutation relations

w(x) 9 (y) + ' (y) Px) = (x — y), (2.2a)
V(x) ¥(y) + ¥(y) ¥(x) =0. (2.2b)

The upper signs refer to fermions, while the lower to bosons. Spin and isospin of
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particles will be ignored. The reader familiar with the ground-state Green’s function
methods, e.g. [3], will be able to introduce particle spin and isospin indices at any
stage of the consideration.

We are interested in an evolution of a system, which is specified at an initial time
t, with a density operator 5. A quantity in which the evolution may be studied is a 1-
particle Green’s function

FIG<(x,, b1, Xys 1) = (W (Xy0 1) Wi(x,, 1)), (2.3)

The symbol (-) denotes an expectation value with respect to the initial state,
Tr(p -)/Tr(p), and the field operators in (2.3) are in the Heisenberg picture. For
t, =t,, the r.h.s. of Eq. (2.3) is the 1-particle density matrix. For example, the spatial
density of particles is

n(x, 4) = Aux), 1)) = FiG~(x,, t,, x,, t,). (2.4)

The 1-particle density matrix, Fourier-transformed in relative variables, constitutes
the so-called Wigner function

S@:R, T)= [ dr e ™(P(R —1/2, T) pu(R +1/2,T)). (2.5)

The Wigner function is an expectation value of the operator that corresponds,
according to the Weyl [4] postulate of quantum mechanics, to a classical momentum
and space particle density. Let us expand the initial density operator in a basis of
momentum and energy eigenstates {¥,}

p= ;_;I Pan [ X |- (2.6)

Upon introduction of (2.6) into (2.5) and insertion of the unity-operator expansion in
between the field operators in (2.5), it can be shown that

SOR D)= 0 3 10 (25 8o — (B2 + Po)/2— P)

AL
X (Vo | 9uR, T) [, (V)| (R, T) | ¥,). 2.7

The Green’s function (2.3), Fourier-transformed in all its relative (microscopic)
variables r =x, —x,, t =t —¢,, at fixed macroscopic variables R = (x, + x,)/2, T =
(t; +1,)/2, may be considered a generalization of the Wigner function to a
distribution not only in momentum and space but also in energy
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FiG<(p, w; R, n:jdrjdze-“"“w'(;i) G<(r,t;R, T)

- %(m 5 par 2’ 6p— (B +P,)/2=Py)
X 2nd(w — ((E,+E;)2—E))
X (¥, GHR T) | EXH GulR, T) [, (28)
Here
G, , R, T)=G<(x,,1,,%,, 1,),

and such a simplified notation will be frequently employed in the future. We have

f(p; R, T)=f‘;—:(¥i) G<(p,w;R, T). (2.9)

The Green’s function

iG>(x19 L Xy ) = (X, 1) WXy, 1)) (2.10)

may be seen as corresponding to a density for an addition of a particle to a system (a
density of holes)

~

— N
Tr(6) iz
X 2n6(w — (E, — (E; + E,.)/2))

X (¥ [ 9, T) ¥ X [ Gu(R, T) | ¥y). (2.11)

iG”(p,w;R, T)= pu'(2”)3 dp—(P,~ (P, +P,)/2))

From the commutation relations it follows that

i(G” —G)(x,, t, x5, 1) = 0(x, — X;,), (2.12)
and consequently
cdo
ngc (p, w;R, T)=1F f(p;R, T). (2.13)

The consideration of the Wigner function and the Fourier-transformed Green’s
functions (2.8) and (2.11) as densities must be done with care because the functions
are generally not positive definite. They are, however, always real.

When working with a ground state of a system, one usually deals with a
chronological Green’s function

IG(Xy5 1y, Xy, 1) = (T [Fy(x1, ¢)) Pi(xy0 1)) (2.14)
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where T¢ is the chronological-ordering operator. There holds
G(Xy, 8, X0, 1) = 0(t, — 1,) G (X, £, X,, £5)
+0(, — 1) G (x,.1,.%,5, 1) (2.15)
with
(=1, for t>0,
=0, for 1<0,

and the I-particle density matrix may be obtained from (2.14) in the limit ¢, =¢] =
t,+ ¢ The hermitian conjugate of (2.14) yields the antichronological Green’s
function

IG* (X, 8, Xy, 1)) = <Ta[(ﬁH(xl, t1) U’}:{(xz, tz)]>ﬂ (2.16)
G*(Xy, by Xg 1) = 0(t, — 1) G (X, 1), X, 1)
+0(t,— 1) G~ (X4 8,5 X5 L) 2.17)

The spectrally decomposed chronological and antichronological Green’s functions
possess propagator forms. .

We shall now consider an expectation value of an operator with one time argument
(04(t)). As a consequence of that consideration we shall introduce, for a
nonstationary state of a system, a Green’s function possessing a perturbation
expansion analogous to the ground-state chronological Green’s function perturbation-
expansion. In particular ranges of variation of its arguments, the introduced Green’s
function will coincide with the Green’s functions (2.3), (2.10), (2.14), and (2.16).

We have

O0u(t) = U(t,, 1) 0,(r) U1, 1,), (2.18)

where O, is in the interaction picture and U is the interaction picture evolution
operator. For ¢ > ¢,

[18

0.1 = ¥ ST | [L e [y B B

0

=T [exp (—iJ’t dr' ﬁ}(t')) J (2.19)

ty

=
il

with H1(¢) the interaction Hamiltonian in the interaction picture. For ¢ > ¢,
" to .
Uty, £)=T° [exp (—i j d’ H;(ﬂ)) ] (2.20)
t

Let us see how one obtains the conventional Feynman diagrams for a ground state
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of a system. The Heisenberg and the interaction pictures coincide in that case at time
t=0. The operator H}(t) gets a factor exp(—e |¢|), which switches the interaction on
and off at = +o0o. The noninteracting ground state | ®) is assigned to the system at
t = —o0, and the interacting ground state is obtained on the basis of the Gell-Mann
and Low theorem: | ¥) = U(0, —c0) | ). For the expectation value of an operator we
have

(¥ Ou(t) | ¥) = (@] U(=00,0) 0,(1) U0, —0) | ®)
=(®| U(—o0, 0) U(0, t) O,(t) U(t, 0) U(0, —c0) | &)
= (@] U(=0, 1) 0,(t) U(t, —0) | )
= (@ U(—w, +0) U+w, 1) 0,) U(t, —0) | @),  (2.21)

where in the last equalities we exploit a group property of the U operators. For a
nondegenerate state | ¥), the state U(+00, —a0)|®) is up to an (infinite) phase factor
equal to |@), and into the last expression of (2.21) one can insert a projection
operator on |P)

(¥ 0u(t) | #) = (| U(—c0, +0) | #)(@| U(+00, 1) O,(r) U(t, ~c0) | #)

_ (2| U(+0,1) 0,(1) U(t, —0) | ®)
- (@] U+ 0, —0) | ®)

_ (@ T*[exp(—i [%, dt’ H{(t")) 0,(0)] |®)

@I T exp( 1 [Z,, & FL0)] @) 22
On obtaining the second equality we exploit the fact that
1=(P|®)=(P| U(—0, +0) U(+00, ~0) | P)
={®| U(~0, +0) |®XP| U(+ o0, —0) | D), (2.23)

and we obtain the last equality in (2.22) by introducing the expansion (2.19). For the
chronological Green’s function we have in analogy to (2.22)

G (X, 0, Xy, 1) = (P T [Pu(xy, 1)) WXy, 85)] | P)

_ (@I T [exp(=i [*, dt' Hi(t")) ¥a(x,, 1) ¥i(x5, 15)] [ D)
(DI T[exp(—i [ 2, dt' Hi(t'))] | D)

(2.24)

Upon application of the Wick decomposition to (2.24) (also to (2.22)), one obtains
the usual Feynman rules; the denominator cancels the disconnected diagrams.

The above scheme, however, cannot be applied to the nonstationary state expec-
tation values. The basic reason for that is the fact that, in general, within the
evolution, no state of a system in future may be identified with any of states in the
past.
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Let us return to the expectation value of an operator with respect to a state
specified at ¢,,

<OH(t)> = <l7(to’ t) Ol(t) 0(ta t0)>

_ <Ta [exp (—~i j dr H}(t')) ] 0, T° [exp (*"Jjﬂ‘”' F”l(’/)) J >
(2.25)

The perturbative evaluation of (2.25) may be put in a form analogous to the usual
Feynman diagrams, when one joins the exponential functions from the left and right
of the O-operator, and one introduces a time-ordering operator T that recognizes
whether the field operators belong to the chronological or antichronological parts of
the product. Accordingly we introduce a contour running along the time axis (Fig. 1)
and a T operator ordering along the contour. (In connection with future applications,
the contour may be imagined as lying in the complex time plane.) We assign the time
arguments of the field operators to the contour. The T operator, reduced to the part
of the contour running forward or backward in time, will become the chronological
or antichronological ordering operator, respectively. The parts of the contour will be
named the chronological and antichronological branches, respectively. The T
operator will order all operators, from the antichronological branch, to the left of
operators from the chronological branch. We can rewrite Eq. (2.25) in the form

(O4(t)) = <T [exp (-z{: de’ H:(ﬂ)> O,(z)] > (2.26)

where {fg stands for the integral along the contour, further denoted by f. By inserting
extra U operators into (2.25), one may elongate the contour, so that it would run
beyond the time ¢ (one may also deform the contour).

We define a Green’s function on the contour, i.e., with the time arguments from the
contour,

G(Xy5 1), Xys 1)) = (T Fu(x,, 1)) u;II(XZ’ 1)) (2.27)

and we have
16001 13,1 = (T [exp (<if d 810)) 9,10 0001 ). 228)
with the contour running above the largest argument of the Green’s function. With

fo

.__—’—_———\
S

t

Fig. 1. Contour along the time axis for an evaluation of the operator expectation value.
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Eq. (2.28), the Green’s function will possess a perturbation expansion analogous to
the ground-state expansion. The Green’s function (2.27) equals

G(x,,t,,x,, 8,) = 0(¢,, t) G>(x1, ts Xy, 1)+ 05, ) G<(x,, ts Xy, 1), (2.29)

with the function (¢,, ¢,) defined on a contour:

ot t,) =1, if £, is later on a contour than #,,

=0, if earlier.

On restricting the variation of the arguments of the introduced generalized Green’s
function to the separate branches of the contour, one gets the conventional Green’s
functions: chronological, antichronological, and the functions with a fixed order of v/
and ¥, G< and G~

About the initial state specified at ¢,, we assume that its density operator
commutes with the particle-number operator. Furthermore, we assume that the initial
state admits the Wick decomposition (is noncorrelated). The density operators of
such states are generally of the form j§ = exp(.’), with .« being a 1-particle operator.
The vacuum and for fermions the Hartree—Fock states, arising from applications to
the vacuum of sets of 1-particle creation operators, correspond to the limiting cases
of such density operators. The Wick decomposition is discussed in Appendix A.

The Feynman rules, which results from an application of the Wick decomposition
to (2.28), are similar to the conventional ground-state Feynman rules. The difference
is such that all the time integrations do not run from —oo to 400, but along the
contour. The top of the contour must be above or equal to the largest time argument
of the evaluated Green’s function. More precisely, within a chosen part of a diagram,
the internal time integrations must run to the largest external time in that part of a
diagram. The disconnected diagrams vanish, because there the integration contours
may be reduced to f,. (1 + disconnected diagrams) is an expansion of

1=(1)= <T [exp (—i/fdz' ﬁ,‘(z')) J >

When the kinetic energy operator is taken as a 1-particle Hamiltonian defining the
interaction picture, then the Feynman rules for evaluating iG(x,,¢,,%,.t,) are the
following:

1. Draw all topologically distinct connected and directed diagrams. Particle
lines run continuously; one sequence of lines runs from (x,, #,) to (x,. ;).

2. A particle line running from (x’,’) to (x, ) represents a noninteracting
Green’s function

iG°(x, £, %', 1) = (T[¥,(x, 1) Yy (%', 1)]) (2.30)

3. To an interaction line there corresponds a factor —iV(x —x') (¢, ¢'). The
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function d(t, ¢') is defined on a contour: it is equal to d(¢ — ¢’} on the chronological
branch and to —d(¢ — t') on the antichronological branch.

4. To a single particle line that forms a closed loop or is linked by the same
interaction line, there corresponds a function iG°<.

5. For fermions attribute to the diagram a factor (—1)", where F is the number
of particle loops.

6. Integrate all internal vertices over a whole space and in time over a directed
contour from ¢, to f,.

One of the possible variational derivations of Feynman diagrams is discussed in
Appendix B.

When evaluating a particular type of a Green’s function iG<, iG?, or iG*, it may be
convenient to divide the contour into the two branches in the perturbation theory
rules. The resulting rules are presented in Appendix C.

3. GREEN’S FUNCTION EQUATIONS OF MOTION

3.1. Equations of Motion and the Self-Energies

Using the perturbation expansion, one can define the self-energy X as an
irreducible part of the Green’s function. In Appendix D we introduce the self-energy
in a formal manner and analyze its properties without direct reference to the
diagrams. The self-energy may also in principle be introduced variationally. The
Green’s function satisfies equations of motion with self-energy

PR

(1—5§+—)G(1 1)=6(1, 1) +/d2 2(1,2) G, 1"), 3.1)
e Vv

( E+ﬁ>6(l 1) =d(1, 1) +£ d2G(1,2) £(2, 1), (3.2)

which correspond to the Dyson equations

G(1, 1) = G°(1, 1') +,fd2,fd3 G°(1,2) £(2,3) G@3, 1), (3.3)

G(1, 1) =G(1, 1) +,fd2/fd3 G(1,2) £(2,3) G°3, 1). (3.4)

We use here the notations 1= (x,,t,), fdl=fdr [dx,, 6(1,1)=3d(x, —x,.)
o(t,, t,.). The self-energy has a form analogous to (2.29)
(L, 2)=2%1,2)+ 0(t,, t,) > (1,2) + B(t,, ) £<(1, 2), (3.5)

with £° being a singular part of Z on the contour.
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On fixing the time arguments of the Green’s function in Egs. (3.1) and (3.2) at
opposite sides of the contour, one finds, with (2.29) and (3.5), the equations

d vi Gz 5 ,
(18_I,+m) G<(1, l’):J’dXZEHF(xl,xz;tl)G<(x2,t,, 1)

+ft' 4257 (1,2) — £<(1,2)) G2, 1')
—J"’dz IX1,2)(G7 (2, 1) = G<(2, 1),  (3.6)

o Vi
(— E-‘_T) G¥(1,1") = J'a'x2 (1, %y, 8,) Zyp(Xy, X5 8,)

+j" d2(G>(1,2) — G<(1,2)) £3(2, 1)

£

—J d2 GX(1,2)(Z>(2, 1) —Z<(2, 1)).  (3.7)
fo
The function Xy, exhibited here, corresponds to the singular part of the self-energy,
which may in principle be found diagrammatically. The time integrations in (3.6) and
(3.7) run along the time axis and the limits are explicitly indicated. Equations (3.7)
are actually the hermitian conjugates of Eqgs. (3.6). Equations (3.6) and (3.7) are
known as the Kadanoff-Baym equations.
With the use of the advanced and retarded functions (see Appendix D)

FE(1,2)=F°(1,2) £ 6(£(t, — ,))(F>(1,2) — F<(1,2)), (3.8)
Egs. (3.6) and (3.7) may be written as

( ai i%) GX(1, 1)

=j°° @2E(1,2)GX2 10+ [ d25¥1,2)67(2, 1), (3.9)
to to

2 v2

=j°° d2 G%(1,2) (2, 1') +f°° d2G*(1,2) X2, 1'). (3.10)
to to

On subtracting Eq. (3.9) for G* from Eq. (3.9) for G”, one finds the equation
satisfied by the retarded and advanced functions.

<z§+v—m)c;*(1 1) — J d2Z*(1,2)G*(2,1))=6(1—-1").  (3.11)



QUANTUM NONEQUILIBRIUM THEORY, I 249

Analogously, from Eqgs. (3.10) one finds

0 e 1 e
( 3t1 +—)G(11) J d2G*(1,2)2%(2,1)=6(1—-1"). (3.12)

With Egs. (3.11) and (3.12), a general solution of Egs. (3.9) and (3.10) may be
written as

0 [ee] 5
G(1, 1'):£ d2£ d3G*(1,2)2%2,3) G~ (3, 1)
0 0
+fdx2jdx3 G* (1, %y, 1) G3(Xy, by, X5, 1) G~ (x5, 15, 1), (3.13)

where the second term accounts for the initial conditions. Equation (3.13) may be
considered a generalized fluctuation-dissipation theorem, as will be seen below.
Let us consider the field-operator equation of motion

"ait,%“) = [§4(1). A). (3.14)

On evaluating the commutator one finds

(, 2 o ) (1) = j dxy V(%) = X3) Ui(Xs, 1) Pa(X, 1) F(1)

o,
Ju(1). (3.15)

On taking the side-by-side time-ordered product of Eq. (3.15) with its hermitian
conjugate, making use of Egs. (3.1), (3.2), and the definition of the Green’s function,
one is able to show that

(TTFa(D) JRD]) + i, 1 X a1 ¥3(17)) )

=iZ(1, 1) + i,fdz,fam 2(1,2) G(2,3) 23, 1), (3.16)

where |-, -], stands for the anticommutator in the fermion case and the commutator
in the boson case. From Eq. (3.16) we can identify the singular part of the self-energy

25(1’ 1) = d(t,, tl‘)<[jH(1)9 Vulx,., tl)]:t>
=0(t;, b X [Wn(1)s Su(xy 1)) 4 ), (3.17)
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where the last equality follows from the differentiation of the equal-time field-operator
commutation relation. On inserting the value of the current f}; into (3.17), we find

231, 1) = 8(t,,1,.) [5(x1 _ xl,)jdxz V(x, —x,)
X (%o, 1) Pu(Xys 1)) F V(x, —X,)
X (DtRs 1) B, 1)|
=0(t),1,) Egp(Xy, X3 1)) (3.18)

The self-energy (3.18) is the Hartree—Fock self-energy, with the first term being a
direct (Hartree) term and the second the exchange term. For the self-energies X%, it
follows from (3.16) that these are the irreducible parts of the current-product expec-
tation values

FE(1 1) = FH) Fal)ireas (3.19)
i (1, 1) = (Fa(1) FH1 Direa: (3.20)

Irreducibility means here that one excludes from the expectation values those
diagrams that can be cut in between the end-points in such a way that the cut passes
only through a single particle line. If we define the expectation values in the presence
of an external current J coupled to the field operators

. T[0y Sy
<0H>J=—=—-—< <[T[SH]>]> ; (3.21)
with
S =exp (—i{ d1GHR)IQ) +I*2) @) (322)
and J being a Grassman current in the fermion case, then
0
6*(1,1) = (5505 @nl)) . (3.23)
and
6~ (1,1) = (Frey WHO) (3.24)

The variational derivatives in (3.23) and (3.24) are carried out as if the current were
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the same on both branches of the contour. With Eqs. (3.23), (3.24), and (3.19), we
can rewrite Eq. (3.13) for G< (similarly for G”) into the form

Wh(1) ¥a(1))

o 81,

oWy J f ]
(1)), ] <JL(2)JH(3)>""edW

0 5‘]*(2) J=0 J=0
(1)), . . (1)),
+ [ d, [ dxg ;J‘Z((z’)i) - 0<w*(x2,to)w(x3,ro>>§z—;% -0

With f,, and ji, being the sources of the fields i, and 1. expressions (3.19) and
(3.20), similar to the definitions of the functions G?, suggest that FiX< and &~
correspond respectively to the particle production (scattering-in) and absorption
(scattering-out or hole production) rates. The condition of irreducibility may be
considered as a removal of the effect of the repeated interactions in the medium. We
have in fact, respectively, for ¢, on the contour earlier and later than ¢#{,

{dz,fds 2(1,2) G(2, 3) 23, 1')=f°° dzfo d32%1,2)G(2,3) 23, 1)
+j°° dzjw 32 (1,2)GH2, ) Z (3, 1)

+j°° dsz B3 Z(1,2)G*(2,3) 533, 1),
t f
(3.26)

cf. Eq. (3.16). On taking the expectation value of Eq. (3.15) in the presence of the
external current, and making a variation with respect to the current, one finds

vi 5(u(1))y
(i£+§—r;)G+(l,1’)———————<J 1))

ar, S0 =4(1, 1), (3.27)

J=0

and from comparison with Eq. (3.11)

6<fH(1)>.I — @ + + ’
S J:O'Jto 2 (1,2)G*(2,17)
*® 5 AH 2 J
:jt d2E+(1,2)—<5WJ—((1,§—> ) (3.28)
From the above follows
+ _ o(Ju(1)),
g (1’2)_5@7“(2)% j=0 (329
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Similarly one has

© sty
jt 42 G‘(1,2)E‘(2,1’)=i<gj;—£(ll—;>—’ K (3.30)
and
_ 5/(2)),
F D= F6TO) Lo (31

The functions with which we are dealing in this section obtain simple forms in a
uniform system in equilibrium. Results, following from the Green’s function equations
of motion, for a system achieving a uniform equilibrium are discussed in Appendix E.
Before reading the appendix, we advise the reader to get acquainted with Appendix C
and the next subsection.

The Green’s function equations of motion, Egs. (3.6) and (3.7), were first obtained
by Kadanoff and Baym [2], by means of an analytic continuation of equations
satisfied by temperature Green’s functions in the imaginary time corresponding to the
temperature. A contour method has been applied by Schwinger [1] to study the
equations of motion of a quantum oscillator in an external field. Schwinger employed
a matrix notation for functions and their multiplications on the contour. The
Kadanoff-Baym equations have been independently derived with a contour method
by Keldysh [5] and by Fujita [6,7]. Other papers concerning Green’s function
equations of motion under different Hamiltonians, transition from the equations to
kinetic equations (Section 4 of the present paper), application of Green’s function
methods to various problems, are Refs. [8-17].

3.2. Perturbative Evaluation of Self-Energies

The two lowest-order diagrams for the self-energy are presented in Fig. 2. The
perturbation theory rules give for these diagrams

B0 1) =810 |80 = x,) [ Vx, =)
X (F1) GO<(xy, 1y, X5, 1) + VX, — x;.)

XiG°<(x1,t1,x1,,t1)J. (3.32)

Ay A

¥

Fi1G. 2. Lowest-order diagrams for the self-energy.
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The approximation to the self-energy, relying on the noninteracting Green’s functions,
may seem reasonable only for times close to the initial time¢,. On replacing the
functions G° by G in (3.32), one sums a whole class of diagrams, and one obtains the
expression for the self-consistent Hartee—Fock energy, Eq. (3.18).

Next-order self-energy diagrams (Fig. 3) are named the Born diagrams, direct and
exchange. The direct diagram gives the following contributions to the self-energies:

D51 1) = 2 [ dx, [ dxy, Vix, — x;) Vixy —x,) G 1)

X G¥(Rys by, Xyes 1) G5 (Ryer t13 Xy 1))y (3.33)

while the exchange diagram contributions are
I3, 1) = —J deJ dx,. V(x, —x,) V(x, — x,.) G(1,X,., 1,.)

X G2(x,y, £, 1) G35(x,., t,., X5, 1)), (3.34)

where we already use the functions G instead of G°. The self-energies (3.33) and
(3.34) correspond to the lowest-order scattering with particles of the medium.

A self-energy approximation, in which diagrams of all orders in a 2-body
scattering with particles of the medium are summed, is called the T-matrix approx-
imation. This approximation is presented in Appendix F.

The RPA approximation, which will not be discussed in detail, consists in the
summation of bubble diagrams in the interaction. Besides the particle Green's
function equations, one deals with equations of motion of a polarization insertion that
describes phonons (density fluctuations). The physical picture is such that the
particles induce an emission and absorption of phonons.

3.3. Conservation Laws

In many physical processes, an essential role is played by conservation laws. When
approximating the Green’s function equations of motion, on choosing diagrams for
the self-energy, one may obtain equations that violate conservation laws. The problem
of conservation laws, in a system of particles with a potential interaction, has been
considered by Baym and Kadanoff [18]. We shall summarize here the results of these
authors, by presenting the approximations to the equations of motion that yield the
conservation laws for particle number, momentum, and energy.

1 2 1 2

1 27 1 2

Fic. 3. Born diagrams for the self-energy.
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From Eq. (3.15) there follows an equation for the Green’s function on a contour

.o Vi ,
<ta—t1+ﬁ) G(1,1")=4(1,1)F ljdx2 V(x; —x,) Go(1, x5, 8,5 17, %,, £]),

(3.35)

where the 2-particle Green’s function is
i2Gy(1, 251, 2°) = (T{w(1) #(2) 91(2") Wi (11)]), (3.36)

and ¢, denotes a time infinitesimally later on a contour than ¢,. The hermitian
conjugate of Eq. (3.15) yields another equation

2

o Vi -
(—l‘?-\‘-—z—’l;) G(L, 1)=6(1, 1) F iJ dx, Go(1, x5, 8,5 1, x5, 1) VX, — X))
y
(3.37)
From the definition of the function G, it follows that
G,(1,2;1%,2%)=G,(2,1;2%,1%). (3.38)

If the approximate Green’s function obeys both an equation of the form (3.35) and an
equation of the form (3.37), and the approximate function G, satisfies the condition
(3.38), then the conservation laws are satisfied.

For the density of particles (2.4), one finds from (3.35) and (3.37)

o . \
or <nH(1)>+V] ' QH(1)>:0’ (3-39)
1
where the particle flux is

Gu(1)) == 5= (V, = VL)) G=(1, 1) (3.40)

1'=1

Momentum and energy conservation laws cannot strictly be written in a local form.
For the total momentum

Butt) =[x, () O -VEDGA) [ L @4

one finds from (3.35), (3.37), and (3.38), d{P,(¢))/dt =0. By using the Green’s
function equations of motion (3.35) and (3.37), the expectation value of Hamiltonian
(2.1) may be expressed in terms of the 1-particle Green’s function

Ao = [ | (15— 15-) — 5 O3+ D) @D 61, 1)
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For the Hamiltonian expectation value (3.42), one finds from (3.35), (3.37), and
(3.38), d(Hy(#))/dt =0.

What conclusions, concerning self-energy, can one draw from Egs. (3.35), (3.37),
and (3.38)? One may confront the equations with self-energy (3.1) and (3.2) with
Eqgs. (3.35) and (3.37). In order that the conservation laws be satisfied, X' must be
such that a term G can be written as FiVG, and GX as FiG, V, with the same G, in
both cases. G, must satisfy the condition (3.38). Typical approximations to the self-
energy, like Hartree, Hartree-Fock, Born, T matrix, and RPA, yield the conservation
laws [18,2]. However, when one includes an arbitrary diagram in the self-energy,
then the conditions (3.35), (3.37), and (3.38), generate a number of other graphs of
the same order and similar topological structure, which must be simultaneously
included to comply with the conservation laws. It may be worth mentioning that the
conservation laws enforce the use of the full Green’s functions G in the construction
of self-energy. (One takes into account skeleton diagrams, irreducible with respect to
the self-energy, in the construction.)

4. BoLTZMANN EQUATION

4.1. Boltzmann Equation

Under proper conditions, the Boltzmann equation for the Wigner function can be
derived from the Kadanoff-Baym equations. We shall assume that the temporal and
spatial changes in a system are small, and the evolution does not differ much from a
free evolution of a uniform system.

On subtracting Eq. (3.7) from Eq. (3.6) for G<, with ¢, =¢,, =T, and on taking a
Fourier transform in spatial microscopic variables, we find an equation

/8 <
(3T+ VR)G (R, T)

=fdr e"'"'fdr' Ty —1t;R+1'/2, TG (t';R = (r—71')/2, T)
—jdre~ivfj dr' Syt —t'sR—1'/2, T) G<(t'; R + (r —1)/2, T)

0
+Jdre“""J dt’Jdr’Z>(r—r’,—z’;R+r’/2,T+t’/2)
XG<@,t;R—(—r')/2,T+1/2)
+fdre-”"f S ar jdr Z2@—r,—t;R—r'/2, T—1')2)

XG(',t';R+ (e —1')/2, T—-1/2)
— (- ZC G ), (4.1)
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where we have introduced relative variables in the functions and we have adopted
t,— —o0o. The omission of the fourth microscopic variable in the Lh.s. Green’s
function is an abbreviation for

G<(p;R, T)Ef;_(:;?(p,w;& T)=G=(p.t=0;R, T).

We have not written explicitly the last two terms at the r.h.s. of (4.1), which enter the
r.h.s. with a “—” sign, have the same structure as the third and fourth r.h.s. terms, but
contain £< and G~ instead of X~ and G <. In a freely evolving uniform system the
functions have no dependence on macroscopic variables, and the Green’s functions

G3(p, w) = 278(w — w?) G3(p) with wy= p*/2m.

We shall evaluate the r.h.s. of Eq. (4.1), which makes the evolution different from a
free one, on ignoring the dependence of the functions on macroscopic variables, with
the Green’s functions as for a freely evolving uniform system GZX(p,w)=
219(w — w)) G%(p; R, 7). In that case the terms with X, cancel out. The third and
fourth terms may be combined, similarly the fifth and the sixth, and the r.h.s. of Eq.
(4.1) takes a form

Jdr e"'"'Jio dt’fdr’ Z7(r—r',—t';R, T)f (6215;3 G<(p';R,T)

L, , . ) Nse) .
X eP'r miwyt —J dr e""'J dt’J ' X<(c—rv',—t;R,T)

— oo

dp' o't —iw® ¢!
G> /;R, ip'r 7“"’;7"_ 4.2
x| Gy & @R De (42)

Upon completion of the integrations over microscopic coordinates and times in (4.2),
we obtain an equation

.0 p <
—_—t+—- R, T
’<9T+m V“)G(p )

=57, 0% R TG (p; R, T)—Z°(p, w;; R, T) G (;;R. 7). (4.3)

With (2.9) and (2.13), Eq. (4.3) becomes

(%Jr;l;—-Vn)f(p;R,ﬂ

=(F)Z<P, )R, A F f(P:;R, 7)) —iZ”(p, w,; R, T) f(p; R, T),  (4.4)

which is just the Boltzmann equation.
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In the Fourier-transformed variables the sum of Born diagrams for seif-energy,
Egs. (3.33) and (3.34), gives

dp’ dw,  dp’ dw' [ dp;dw;

(2n)* j (2n)* j (2n)*

X (2n)*d(p +p,—p' — P 00 + w, — ' —w))
X[(Vp—p ) FVe—p) Ve —p)l

X G3(p,, w,; R, T) GXp', w"; R, T) G¥{p}. w!: R, T). (4.5)

Eﬁ(p,w;R,ﬂzij

Upon introduction of the Wigner functions we find

0 d 1 d ' d 1 4 ' ’
FiZi (e 03 R T) = [ [0 [ (s (2 -+ B~ = p)

1
X 0e; + w;, — w0y — wp) = (Vo —p') ¥ Vip—p)))’

X(LF f(p,: R, T) fp"sR, T) f(pi: R, T), (4.6)

and

S 0. _ dp, dp’ dp, 4 P
IEB (p’ wp’R’ T)—J (27[)3 J' (27[)3 J (27[)3 (27[) 5(p+p1 p pl)

1
X 8w + wp, —wp —wp) = (Vp—p) F VP —p))’

XS R, DA F RN F f(pis R, 1)) (4.7)

A convective derivative of the distribution function constitutes the Lh.s. of Eq.
(4.4), and the r.h.s. of the equation accounts for changes in the distribution caused by
interactions. With iZ~ a scattering-out rate and f a density of initial states, the
second r.h.s. term in (4.4) accounts for scattering-out from p; with FiX'< scattering-
in rate and (1 F f) a density of final states, the first term accounts for scattering-in.
Equation (4.7) for iX” sums over 2-body scattering processes, a symmetrized cross
section is in a Born approximation, the J functions correspond to momentum and
energy conservation in collisions. With respective densities of states, integrations run
over particles with which scattering occurs and over final states. i~ is a collision
frequency of a particle with momentum p. Equation (4.6) describes inverse processes
with respect to those in (4.7), in which particles of the medium scatter and one of
them emerges with a momentum p. See also the form of self-energy in the T-matrix
approximation Eq. (F.25).

In the equilibrium the r.h.s. of the Boltzmann equation must vanish, and a detailed
balance equation is satisfied

FiZ=(p, w )1 F f(p)) = iZ” (p, ) f(P). (4.8)
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If we disturb the equilibrium by adding or removing particles of momentum p, we
have for the associated disturbance df(p; R, T) an equation

8
(?’ff + % : VR) o (s R, T) = —I(p, w,) &f (p; R, T) (4.9)

with I'=(iX”> + (Fi)Z<)=i(X> — Z<). For a disturbance independent of R, from
(4.9) follows

o (p; T)=8f (p; T=0) e~ "®d7, (4.10)
and this equation Fourier-transformed in macroscopic times reads

o (p; T=0)

5f(p;9)=m. (4.11)

The function I sets the rate at which equilibrium is reached.

When a local equilibrium is established in a system, i.e., Eq. (4.8) is approximately
satisfied at every (R, T) (cf. r.h.s. of Eq. (4.4)), then the rate of changes of a local
distribution f may be arbitrarily small. The time-rate will depend on the scale of
spatial inhomogeneities L, 2 ~ v/L, where v is a characteristic particle velocity. A
system in a local equilibrium can be described with a set of hydrodynamic equations,
local conservation laws of particle number, momentum, and energy.

Before we proceed further let us note the following. On using the function I, a
formal solution to the Boltzmann equation (4.4) in a homogeous system may be
written as

S®: D)= T=0)exp (— [ ar g, 0} T)
+ L’ AT (i) < (p. w0 T') exp (-LT dT" I(p, w; T”)). (4.12)

In the low-density limit iX~ > FiX'< and I'~ iZ~. At high occupations of states, the
quantities £~ and FiZ“ may be comparable. For bosons, when iX< is larger than
iX~, the function I is negative (from Eq. (4.8) it follows that this may not occur at
equilibrium). From Eq. (4.12) it follows that in case of a negative I" function, the
occupation of a state increases exponentially; we may call this a laser effect.

An assumption leading to the Boltzmann equation was the slow variation of the
functions with the macroscopic variables. If it were possible to obtain the Boltzmann
equation, variation in macroscopic variables away from equilibrium would be set by
magnitude of the function 7. When we pass from Eq. (4.1) to (4.2}, the variations in
macroscopic variables must be compared with variations in microscopic variables:
the latter are determined by energies and momenta in the system.
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Upon sketching the transition to the Boltzmann equation, we shall now rederive the
equation in a more formal manner, so that the approximations involved will become
explicit.

4.2. Derivation of the Boltzmann Equation Reassessed

We start with the Kadanoff-Baym equations in forms (3.9) and (3.10), which can
be written as

jw 2(G-")*(1,2) GH2, 1) =j°o 2 2%1,2)G-(2, 1), (4.13)
jw d2GX(1, (G (2, 1) :fo d2G*(1,2) 232, 1). (4.14)

We take a limit ¢, » —oo, and in a moment it will become clear how this limit should
be understood. Each side in the above equations is of the form

[ dxaf e, %) uey, x,), (4.15)

and upon introducing x =x, —x,., X =(x; + x,.)/2, x' =x, —x,,, we may rewrite
(4.15) into

jd“x’f(x—x’;X—{-x’/Z) u(x's X + (x' — x)/2). (4.16)

We shall Fourier transform the sides of Eqs. (4.13) and (4.14), and we shall average
the results over a certain range of frequencies; i.e., we evaluate expressions of the
form

- dw iwt, —ipr ’ ’

J—EF(w)jdtfdre e jd: jdr
Xfle—t',t—t";R+v'/2, T+ 1/2)
Xu(', t'; R+ (¢ —1)/2, T+ (t' —1)/2), 4.17)

where F is a function used for the averaging. We take the width of the function F
small in comparison with characteristic energies in the system and sufficiently large
that

dw fwt

is sharply peaked around =0 in comparison with the variation of the functions f
and u in macroscopic times. (In connection with the spatial variables, an extra
averaging over momenta in (4.17) may be indispensable in a low-temperature
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system.) We shall assume that the properties of the functions f and u are such that
the dominant contribution to the integral (4.17) comes from small values of r,
(r—r'), and ¢/, small in comparison with the variation of the functions / and u with

the macroscopic variables. We provide a certain analysis of the function properties in
Appendix G. Under the above assumptions we may expand the functions

f(x—x’;X+x’/2)z(l %x ——)f(x x’; X).

W' X+ (=) (14 (=) ) s )

Upon expansion of the functions f and « in (4.17) and introduction of the Fourier
transforms of the functions, we find for (4.17)

; d’ _ e d o
( d4xetpxjd4xrJ(z_:)lie—lpl(x—x) (271;)24 o= ina¥

1 J
[f(pl,X) W(prs X) + 5 x 0oy XY ulpy: )

0 =0 S K)o (pz,X>j “.18)

where for a while we omit the averaging function over frequencies. Use of an identity

o .
=j—e 'P¥

ap

—ipx

integration by parts, and integrations over x and x' lead to the expression

o ki

S U X) + o (2 (i) 5 (i ) =0 (i) 52 (9 D). (@419)

In connection with (4.19) we define a generalized Poisson bracket

[f’“]zaa‘x"ga?@' (4.20)

Upon application of the above procedure to each side of Eqgs. (4.13) and (4.14) and
subtraction of the equations from one another, one finds a so-called generalized
Boltzmann equation (see the properties of the functions, Appendix D)

[Re(G~")*,iGZ] — [iZ%, Re Gt | =G“X> -G~ Z~. (4.21)

For the sake of clarity we have omitted the variables (p; X). Implicitly, to each side
of (4.21) an averaging is applied over a range of frequencies large in comparison with
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the rate of change of the functions. However, the range of averaging in frequencies
must be small in comparison with characteristic energies in the system, so the
equation can be closed. A connection between (4.21) and (4.3) may be seen when one
notices that

Re(G D' (p,w; R, T)=w— p’/2m —Re £ (p, w; R, T), (4.22)

and applies (4.20) to the first term at the r.h.s. of (4.21).

In the above derivation, we have obtained the generalized Boltzmann equation by
retaining the lowest terms in a certain expansion. The role of a small parameter in the
expansion is played by (characteristic time of variations) '/e, where e corresponds
to characteristic energies. When a system is away from equilibrium, or when we ask
about deviations from equilibrium, the rate of variations from the Boltzmann
equation is of the order of I. (The magnitude of I may even be considered a lower
bound for the rate of temporal changes, because nonhomogeneity of the system or the
presence of an external potential in the self-energy may enforce higher rates.) A
different situation occurs when we consider the evolution of a local equilibrium, but
we postpone the discussion of that case until the end of the subsection.! According to
the above, on obtaining the generalized Boltzmann equation, terms of second order in
I'/fe are omitted. Consequently one can disregard such terms in Eq. (4.21), which
otherwise consists of the first-order terms. Of second order is the second term at the
Lh.s. of (4.21). Further, the Green’s functions appearing in Eq. (4.21) and used in
construction of self-energies can be taken in the zeroth order. When establishing a
zeroth order, one should cautiously deal with Re 2 there occur situations when
ReZ* > T, eg., for long-range interactions (problem considered in the T-matrix
approximation at the end of Appendix F), further when Re 2t contains an external
potential or for fermions close to zero temperature. For a strong short-range
potential, when special effects due to Pauli principle are absent, we may expect
Re Xt ~ I In the latter case, the zeroth-order equation for the Green’s function is
(from (4.13) and (4.19))

(w — p*/2m) G¥(p, w; R, T) =0, (4.23)
which together with (2.13) and (2.9) gives

iG” (p, w3 R, T) = 218(w — w,)(1 ¥ f(p: R, T)), (4.242)
FiG~(p, s R, T)=2nd(w — w,) f(ps R, T), (4.24b)

with o, = p*/2m. Upon insertion of the functions (4.24) into Eg. (4.21) and
integration over w, one finds Eq. (4.4).

' The author is grateful to Professor G. Baym for pointing out the two cases.
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If ReZ* > I, it may be necessary to retain Re Z* in the zeroth-order equation for
Green’s functions

(@ = p*/2m —Re Z* (p, w; R, T)) G(p, w; R, T) = 0. (4.25)

If one can ignore the dependence of ReX* on w, ReX'(p,w;R,T)=
Re Z*(p; R, T), then from (4.25) follow the forms of Green’s functions (4.24) with
w, = p?/2m + Re Z* (p; R, T). Upon insertion of the functions into (4.21), one finds

o p ¢ OReZ*(p;R,T) ¢ OReZ'"(p;R,7T) 0 B
(3T+m'aR op "R 2R '%)f("’R’n

=F)ZP w;; RTN(LF f(p;R, 7)) —iZ” (p, w,; R, T) f(p; R, T).  (4.26)

An equation of this form, written for fermions close to zero temperature, for momenta
close to the Fermi surface, is known as a Landau-Silin equation. A Vlasov equation
emerges from (4.26), when one neglects the r.h.s., and for the self-energy takes the
Hartree term, independent of p.

In the case when it is not possible to ignore the dependence of ReZ* on w, but I'
is small around Re(G ')* =0, we may introduce an occupation number
corresponding to the zero of Re(G~')*, and obtain a kinetic equation for the
number. We parametrize the behaviour of G% in w, around a solution w, of
Re(G™")* =0, with

FiG<(p, w; R, T) = 2n6(Re(G ") " (p, w; R, T)) n(p; R, T)
=Z(p; R, T) 2n6(w — w,) n(p; R, T), (4.27)
and
iG> (p, w; R, T) = Z(p; R, T) 2n6(w — w,)(1 F n(p; R, T)), (4.28)

where
OReZ"(p,w; R, T)

Z 'R, T)=1—
(P ) o

(4.29)
(A)i(AJp
We rely in this parametrization on the equality G” —G<=G*" — G~ (see
Appendix D) and the forms of G* following from (3.11) and (4.19) in the zeroth
order with respect to I'/e

1

G*p,w; R, T) = .
P, @ ) w—p’/2m—ReZ*(p,w; R, T) + ie

(4.30)

We insert the function G into (4.21), in the form given by the first of equalities in
(4.27), so the J-function can be removed from under the Poisson bracket. In subse-
quent steps we exploit the fact that with

e(p,w; R, T)= p’/2m+ Re Z*(p, w; R, T),
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and x =p, R, 7, we have

oe(p, w;R, T) _ de(p, w,; R, T) ow, oe(p, w; R, T)
dx o ox dx éw oo
P P
ow
=z ',
ox

Upon integration over frequencies we find the equation

(i+£._f9_ OReZ*(pwy;R,T) & OReZ’(p,wy;R,T) __a_)
o  m ©6R op R oR ap
X n(p; R, T)
=Z([P;R, T) (Fi) Z<(p, w,; R, T)(1 ¥ n(p; R, 7))
—Z(p; R, T)iZ” (p, w,; R, T) n(p; R, T)). (4.31)

Let us now turn to the evolution of local equilibrium. The rates of temporal
variations of the Green’s functions will be set by a scale of nonhomogeneities in a
system and may be arbitrarily small. The Fourier-transformed Eqgs. (4.13), (4.14),
(3.11), expanded according to Eq. (4.19), provide us (Eq. (4.21)) with the conditions
for a local equilibrium and the form of the functions (see Appendix E). Apart from
the limitations on the rate of temporal variations inherent to the ordinary Boltzmann
equation (next subsection and Appendix G), it follows that the rate must be much
smaller than I. (Note that since I" now does not fix the rates of macroscopic
variations, there is no need for I" being small.) Depending on the smoothness of the
expected equilibrium functions and the rates of macroscopic variations, the averaging
in (4.17) may be lifted. As far as the evolution is concerned, the following occurs.
The forms of the local equilibrium functions depend on a few parameters, which can
be determined from the local particle, momentum, and energy densities. Although the
evolution can be studied by using the kinetic equations, it is more convenient to use
the local conservation laws, the hydrodynamic equations. These equations may be
deduced from Eqs. (3.35) and (3.37), and in the momentum and energy cases the
derivation involves an expansion of G, over the interaction range (cf. Refs. [18, 19]).
The G, in the equations (in the pressure) can then be perturbatively expressed in
terms of the l-particle equilibrium Green’s functions. Apart from the case of the
ordinary Boltzmann equation, the derivation of the conservation laws from a kinetic
equation may be quite involved, especially in case of a full generalized Boltzmann
equation (4.21). One has to trace down the correspondence between Egs. (4.13),
(4.14), and (3.35), (3.37), in the procedure leading to the kinetic equation. The effort
is not necessarily rewarding, because in general the part of the pressure explicitly
depending on the interaction cannot be directly expressed in terms of the actual G
and 2.
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4.3. Conditions Leading to the Boltzmann Equation

From the derivation of the Boltzmann equation and analysis of the rejected terms,
it follows that use of the Boltzmann equation in a homogeneous medium is
conditioned by a weak sensitivity of the Boltzmann equation dynamics to uncer-
tainties in energies of the order of I'. In a nonhomogeneous medium, with I setting
also the rates of spatial variations, use of the Boltzmann equation would be
additionally conditioned by weak sensitivity of the dynamics to uncertainties in
momenta of the order of I'm/p.

The Boltzmann equation limit can be directly seen when considering a disturbance
of an equilibrium, by an addition or removal of particles of a momentum p. For a
uniform disturbance, it follows from the Kadanoff-Baym equations that

FidG<(p; 6, ) =G (p;t —0)f(p; T=0) G (p;0—¢'). (4.32)

Equation (4.32) Fourier-transformed in microscopic and macroscopic times reads
(see (E.4))

FioG < (p, w; 2)
=df(p;T=0)G" (p,w + 2/2) G~ (p, w — 2/2)
= (s T=0)G~(p, » — /2) — G* (p. © + 2/2))
1
T o+ 22)—(G) o o—272)

1
w~—02/2—p*/2m—Re ZH(p, w — 2/2) — il (p, v — £2/2)/2

=df(p; T=0) <

l
W+ 82— p2m—ReE*(p,w + 2/2) + il (p, w +.Q/2)/2)
% 1
Q—-ReZ (p,w+2/2)+ReZ¥(p,w—02/2)

(4.33)

+i(l(p, @ + 2/2) + I(p, @ — 2/2))/2

If details in the w-dependence of 6G < within the range of I' are not important, and

the self-energies vary weakly within that range, we can approximate the r.h.s. of
(4.33) with

5f(p5 T= 0)
Ip,w,)—iZ '(p)Q°

Z(p) 27d(w — w,) (4.34)

in the most involved case of Re £*. Equation (4.34) occurs to represent a solution to
the kinetic equation (4.31) (with an adequate boundary condition). For the simpler
cases of Re X, proper approximations to (4.33) represent solutions to Eqgs. (4.26) or
(4.4).
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If I' is comparable with particle energies in a given system, the dynamics may not
be described with the Boltzmann equation. This is to be attributed to the time-energy
uncertainty principle because of the appearance of # in the comparison of particle
energies with the time of variations in a system. A situation like that occurs in high-
energy nuclear collisions which are the topic of a following paper of the series. Let us
mention that in the low-density limit I'=iX> and #I'"' constitutes a mean time
between successive particle—particle collisions. In the Born or T-matrix approx-
imations to the self-energies, A" is of the order of 1/(nov), where n is a density of
particles; g, an average total particle—particle cross section; and v, an average particle
velocity.

In judging the applicability of the Boltzmann equation to a given system, one has
not only to take into account the magnitude of particle energies. The possibility of
describing a system with the Boltzmann equation can be further limited by the
properties of an interaction. In Appendix G we examine values of microscopic
variables that give dominant contributions to integrals (4.17) of Green’s functions
with self-energies. The values of variables correspond to energy and momentum
dependence of self-energies. The values of variables correspond to energy and
momentum dependence of self-energies. The analysis of Appendix G is performed for
a system in thermodynamic equilibrium with self-energies in the Born approximation.
Below, we analyze the equation of motion for the Wigner function, Fourier-
transformed in macroscopic time.

Equation (4.1), with the self-energies in the Born approximation, Fourier-
transformed in the macroscopic time, yields the following equation for the momentum
distribution in a homogeneous system:

. i B i
—l.Qf(p,.Q)_J 2n (w+.Q/2+i8 w—!)/2—z‘€)
dp, ( dp’ [ dp; .
XJ' (27[)3 J (27[)3 (27[)3 (27[)3 5(p +p1 i _pl)
X[(Vp—p))F V(e—p) V(p—p))]
X F(p,p,p's P> w; 2). (4.35)

with the auxiliary function

F,pi-p, 0, N=G"(p,; T)G”(p,, 5 T) G<(p}, —; T) G<(p}, —1; T)
-G, 5 T)G(p,, 6, ) G”(p}, —1; T) G~ (p}, —1; T).
(4.36)

Proceeding toward the Boltzmann equation we approximate the function F with

F(p,p;, p's P> w5 T) = 218(w — de) F(p, p, p', pi; 7). (4.37)
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where
Fp.pip'sps D)= F fps DA T fpos T S T) f(p3: T)
=@ ) S T F fp's T F f(pi: T)), (4.38)

and

de=wy+ w, ~ wy — w,. (4.39)
We shall look under what circumstances we can ignore the £2/2 terms in the
denominators at the r.h.s. of (4.35), and replace the respective expression in the
bracket with 27é(w). (The r.h.s. of (4.35) corresponds then to the r.h.s. of Eq. (4.21);
the first-order terms in the £2s from denominators correspond to the terms at the Lh.s.
of (4.21).) With 2 ~ I, the accuracy of the approximation will reveal the accuracy of
the Boltzmann equation (the frequency structure of the function F, Eq. (4.37), will be
valid with an accuracy of the order I'). With (4.37) we may rewrite the r.h.s. of (4.35)
into

dp, (_dp’ _dpi i !
J (2n)’° f (2n)? J (2n)} (Ae +0/2+ic de—0)2— ie)
X (2n) o +p,—p —p)((Vp—p ) FV—p)V(—p)
X F(p,p;»p',p1; Q). (4.40)

The dependence of the remaining part of (4.40) on de will be decisive in replacing the
difference in the bracket by 2nd(de). The dependence will be set by properties of the
particle distribution and properties of the potential. From (4.40), it follows that for
the Boltzmann equation we must have pdp/m > I', with p a characteristic particle
momentum and Ap a scale of variation of the particle distribution in momentum. The
same condition must also be satisfied when 4p is taken as the scale of variation of the
potential with the momentum transfer. For a potential with a spatial range #, the
condition reduces to p/mm>I. The condition states that the interaction time,
evaluated as the time of flight through the potential range, must be much smaller than
the time between the collisions. The condition related to the potential is classical, as
opposed to the condition related to the particle distribution.

In Appendix F we present an analysis similar to the above, for self-energies in the
T-matrix approximation. Conditions for the Boltzmann equation, related to the
interaction, read pAp/m > I' and dw > I, with dp and Aw scales of variation of the
scattering matrix with momentum transfer and energy, respectively.

5. DYNAMICS FOR A CORRELATED INITIAL STATE
The perturbation expansion and Green’s function equations of motion, outlined in

Sections 2 and 3, apply to initial states that admit a Wick decomposition. This is a
considerable limitation when the evolution starts at a finite time. If one wanted, e.g.,
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to include a strong repulsion in the nuclear interaction at small distances, then the
thus far obtained results would be of a little use. In Appendix H we present a pertur-
bation expansion and Green’s function equations of motion for a completely general
initial state. Below we shall discuss a practical method of switching on the
correlations in the initial state.

A correlated initial state may be prepared from a noncorrelated state through an
imaginary-time evolution. The technique is applicable when the initial state can be
defined as a lowest eigenvalue state of certain operator .# (also when the initial state
is defined with the equilibrium density operator). In contrast to the perturbation
expansion of Appendix H, the resulting perturbation expansion will not contain
correlation matrices G§. It should be noted that, when the noncorrelated state is a
nondegenerate lowest eigenvalue state of an operator -#°, and when the imaginary-
time evolution lasts infinitely long, then the Goldstone expansion may be obtained for
the correlated state. Implementation of the imaginary-time evolution into the none-
quilibrium Green’s function method has been suggested in Ref. [20]; see also
Ref. [21].

Let us take a certain state |®) and expand it in a basis of eigenstates {¥,} of an
operatory‘f/

®)=2>a,|¥,) (5.1)

Then

e @) Zaae Y,
lim = lim -2 T |y, 5.2
S TR e [, e, e T 2

where {¢,} are the eigenvalues of #, and | ¥) is the normalized projection of |®)
onto the lowest eigenvalue subspace onto which the projection does not vanish.
According to (5.2), a projecting out of the lowest eigenvalue state corresponds to an
imaginary-time evolution from it = ico to it = 0. On assigning the resulting state to a
system at a time f, we put it =¢—t,. When evaluating an expectation value at a
time ¢,

" (Dle " Oe D)

<W|é|‘[’>=llw <¢I€_r"y€_1',!@> s

T

(5.3)

we deal with an evolution running along a contour from Fig. 4. When evaluating
expectation values of Heisenberg picture operators at ¢, > ¢,, we deal with the
evolution contour extended along the real time axis (Fig. 5). If the pure state expec-
tation values at the r.h.s. of (5.3) are replaced by those with respect to a general
density operator, then the imaginary-time evolution occurs to project out, similarly as
for a pure state, a part of the density operator within a subspace of a lowest ¢,. An
initial state of a real evolution, specified with an equilibrium density operator of a
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Im t

\J

FiG. 4. Contour in the complex time plane corresponding to the evaluation of an operator expec-
tation value with respect to a state of a lowest¢,,.

temperature T = (k, )~', corresponds to an imaginary evolution that starts from a
unity operator 1

6 Tr(e %70) (5.4)
0)= g7y :

Because of a cyclic property of the trace, it is not important how the imaginary
evolution interval is positioned with respect to the real time axis; contours
corresponding to (5.4) and to an expectation value of a Heisenberg picture operator
are presented in Fig. 6. In the zero-temperature limit §— co, one obtains, starting
from the operator 1, a projection operator onto the .# lowest eigenvalue subspace.
This procedure is more slowly convergent than starting with an imaginary evolution
from an adequately chosen state, e.g., a lowest eigenvalue state of a 1-particle
operator #°. In the numerical calculation of the next paper of the series we start

Im t4k

Fic. 5. Contour corresponding to the evaluation of an expectation value of a Heisenberg picture
operator at {; > #,.
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FiG. 6. Contours corresponding to the evaluation of expectation values with respect to the

equilibrium density operator.

from such a state, and the imaginary evolution lasts a finite time. The contours from

Fig. 7 correspond to the finite time imaginary evolution.

We shall now find a Green’s function perturbation expansion. We begin with a
consideration of the expectation value of an operator with one time argument. The
operator expectation value, with respect to a state obtained at ¢, through an

imaginary evolution, will be denoted by {Oy(t)). We have
€Ou(1)) = (Us(t, 1) O Us(t, ),
where the Schrédinger picture evolution operator
Og(t, ') = e~ -0,
From the method of preparation of the state at ¢,, it follows that

<Us(t0 — iTy, 1y) 05([0’ t)OOS(t9 ty) 05(’09 ty t+it,))

é t = X A
<< H( )>> <Us([0 _ ”_0’ tO + if0)>
Im‘(A tg*itp ImtA to*iTy
RE’T RET
Y
tg-iTg to-1tg
a b

(5.5)

(5.6)

(5.7)

Fic. 7. Contours corresponding to the evaluation of the operator expectation values, for a finite

time of the imaginary evolution.

595/152/2-3
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(one might eventually introduce at once the limit r,— oco0). The evolution operator for
imaginary times is
Uy, 1) = HFU-0, (5.8)

The expectation values (-) in (5.7) are taken with respect to a state from which the
imaginary evolution starts. With a notation

H(t)=-#  for imaginary times,

- (5.9)
=H for real times,
the evolution operator on a contour from Fig. 7b is
-~ t -~
Us(t,t") =T [exp (—i/f dt, H(t,)) ], (5.10)
¢

with the integral running along the contour interval from ¢ to ¢. The expectation

value (5.7) may be written as

<T[0s(t0 — ity, ty + ity) és(t)]>
(Uslty — itg, 1o + iTy))

K00y = (5.11)

We write the index S at the O operator to stress that this is a Schrodinger picture
operator—most often independent of time. The time argument of the operator
determines the position in the operator product, where the operator is to be placed by
the time-ordering operator on the contour. We may generalize the expectation value
of an O operator at a time ¢, {O(¢)), to imaginary times, by defining the expectation
value with a r.h.s. of (5.11).

We shall assume a partition of H(¢)

H(t)=H°(t) + H'(1), (5.12)
with H°(f) a l-particle operator. The free evolution operator is
-~ { -~
U(t,e)=T [exp (—i/f dt, Ho(t,)\) } {5.13)
.
There holds
-~ - ! -~
Ust,t')=T [UO(t, t') exp (—i/f de, Hé(tl)) ]
2y

-~ t ~ ~ ~
= 0%t )+ (=)f de, 0% 1) B' (1) 0°(0,, 1)
,

<t ity R R . R R
+ (*i)z/j/ dtl/j/ dtz Uo(t’ tl)Hl(tl) Uo(tls tz) Hl(tz) Uo(tza t’) +
t t
(5.14)



QUANTUM NONEQUILIBRIUM THEORY, I 271

Equation (5.14) may be verified by ascertaining that the r.h.s. of (5.14) satisfies the
same differential equation on a contour as (5.10), with the same boundary condition
at ¢=1t'. Accordingly we have, for an expectation value defined with the r.h.s. of
(5.11),

A _ <T[00(t0 — ity by + i7y) exp(——i)"dtl H;(tl)) Os(t))]>
OO = =T 0%, — ey 1y + ina) exp( i dt, X))

(5.15)

We shall assume that the operator # and a density operator of the initial state of
the imaginary evolution both commute with a particle-number operator. Further, we
shall assume that the initial state of the imaginary evolution admits the Wick decom-
position; i.e., we shall assume that noninteracting many-particle Green’s functions
(defined by expectation values of the type () with H'(f)=0) factorize into 1-
particle Green’s functions

iG°(1, 1) = (TTw() ' (1")])°

_ <T[00(to — Ty, ty + ito) Ys(1) Ys(1')])
B (0%(ty — ity, 1, + i) '

(5.16)

The problem of the Wick decomposition within the imaginary-time evolution is
discussed in Appendix A.

If both #' and H' are the same 2-body potential interaction, and the difference
between the evolution generators in real and imaginary times lies only in the 1-
particle parts of the generators, then the Feynman rules for evaluating the Green’s
function

iG(1, 1) = (T[p(1) §"(1)])

_ <T[Us(to — Ty, ty + itg) Ws(1) Ws(1)])
B <Us(to —itg, 1y + i7y))

(5.17)

are such as in Section 2. The time integrals are carried along the contour from
Fig. 7b. The contour must extend above the largest of the real times of the evaluated
Green’s function. A reduction of a contour may occur only for real times, and a
minimal contour is the one from Fig. 7a. The disconnected diagrams do not now
vanish, but are cancelled by the denominator in (5.17). With

A1) = [ dx, [ dx,, 97x,) h(xy x05.0) 9K, ), (5.18)
and the function A for real times

VZ
h@“M40=—5$&m—xJ, (5.19)
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the Green’s function equations of motion on the contour have a form

9
za—th(lf 1’)—de2 h(x,, %5 8,) G(Xy, 11, 17)
= (1, 1’)+/fd22(1,2) G(2, 1), (5.20a)

é
—i— G(l, 1')—jdx2 G(1, Xy t,) h(Xq X051, )
at,.

= (1, 1')+,fd2 G(1,2) 52, 1). (5.20b)

The function &(1, 1) =(¢,, t,.) d(x, — x,.), and the function (¢,, ¢,.) is defined on a
contour in the complex time plane

fdz,,a(z,, t,) F(t,) = F(t,). (5.21)

For real times, the Kadanoff-Baym equations have forms similar to those of (3.6)
and (3.7), but they contain extra contributions from imaginary parts of a contour. An
equation for G<(1, 1'), where ¢, is real, has, e.g., the form

.0 Vi
(1?—!-—2—”1;) G<(1, 1'):fdx22HF(xl,x2;t,)G<(xz,tl, 1)
i

ty
+ d257(1,2)G<(2, 1)

totity

£y
+j d22<(1,2)G<(2, 1)
4

tg—it .
+f° "R I°(1,2)G7(2, 1"). (5.22)
t

In Ref. [2] the Kadanoff-Baym equations have been derived for an initial state of
a real evolution specified with an equilibrium density operator (Fig. 6). A nontrivial
evolution for the real times has been achieved by disturbing the system with an
external potential.

6. FINAL REMARK

The investigation of the Green’s function methods in this paper has lead to several
new results. We have clarified the transition from the Green’s function equations to
the kinetic equations, and the analysis of the thermodynamic equilibrium on the basis
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of the Green’s function equations of motion. We developed the Green’s function
methods on a contour in the complex time plane, and the perturbation expansion and
Green’s function equations for a general initial state. The results should be of use in
problems of nuclear physics, as well as in other branches of physics.

APPENDIX A: Wick DECOMPOSITION

The consideration will be confined to initial states specified by density operators
commuting with a particle-number operator. For such states, an expectation value of
a field-operator product vanishes, if the product contains a different number of the
operators from a number of .

A state admitting the Wick decomposition is a state for which expectation values
of products of the interaction-picture field-operators (many-particle Green’s
functions) factorize into expectation values of pairs of operators (l-particle Green’s
functions)

(AB - ¥2y=A'B - Y2 4 AB V24

= sum over all possible contracted products, (A.1)
where the contraction
A B =(AB). (A.2)

For the fermion operators, when one rearranges the order of the operators in a given
term of (A.l), with intention to bring a contracted pair of operators next to one
another, the term is to be multiplied by the sign of the performed permutation. In
Eq. (A.2) the operators are in the same order as they appear in (A.1). When deriving
Feynman diagrams, one applies the Wick decomposition to operators which are in a
specific time-order at the Lh.s. of (A.1).

We shall show that states specified by density operators of the form

[5 = exp(cg;)a (A’3)

with .»/ being a 1-particle operator, admit the Wick decomposition. The 1.h.s. of Egq.
(A.1) will satisfy the same differential evolution equations in every field-operator
argument, as the r.h.s. Therefore the consideration of the factorization (A.1) may be
limited to a one set of times, e.g., when all the interaction-picture operators are taken
at the initial time ¢,.

We have

y’zzﬂ/jd.“. (A4)
J

with 7, real and é} being creation operators of the 1-particle basis, that
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diagonalizes /. Let us expand § in a basis of the Hartree-Fock states |{n,}), the
states that arise from applications to the vacuum of sets of 1-particle creation

operators

1

g}y = ([J] @) 10

We have
At A1 E) = Oy gy €XP (Z uu/jn,), (A5)
and
p=2 exp (2 "“/j”j> [{m; ) {{n . (A.6)
() 7

In the boson case, in order that the state gives a finite particle-number expectation
value, we must have ./ <0. Let us note that an unoccupied 1-particle state j,
corresponds to J{joﬁ —o0. The vacuum corresponds to all .«/; » —oo. For fermions, a
projection operator onto the Hartree-Fock state may be obtained from j/Tr(/) in the
limit of »/; > —oo for the unoccupied states j, and ./, —» +o0 for the occupied states.
For fermions

p/Tr(p) =[] [4;]) d,4] + (]4,) d]d,).
)

with (]d;)= (™ + 1)~".
We shall prove that for a density operator (A.3) and a set of annihilation and
creation operators d,, dy,..., 4, d,, there holds

A

Tr(ﬁda &b éy &z) _ Tr(ﬁda éb) Tr(ﬁdc dya:)
Tr(3) ™G | ()
Tr(5d,8,) Te(pdyd, - 4,4,)
Tr(p) Tr(4)
Tr(ﬁéa &z) Tr(ﬁ&bdc dy)
Tr(h) Tr(p)

+ .-

(A.7)

The subsequent applications of (A.7) lead to Eq. (A.1) for the annihilation and
creation operators. The latter implies Eq. (A.1) for the field operators, since these are
linear combinations of annihilation and creation operators. We have

Gy = Labl, (A.8)

where {, = €74, ifd,=4d,, and {,=e~ "< if G, =d,.
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Let us take

Tr(ﬁdadb &y Az)9
and for fermions let us anticommute, and for bosons commute, the operator d, to the
right. Upon application of (A.8) we find

A

Tr(péadb aydz) [da’ Ab}i Tr(ﬁdc aAya:)
Tr(p) 14¢, Tr(p)

¥ [éav Ac]i Tr(ﬁAbaAd .,. &yai) ¥
1+¢, Tr(f)

[&a’ éz]i Tr(ﬁdb &y)
1+, Tr(p)

where [-,-], denotes an anticommutator, and [-,-|_, a commutator. For two
operators (A.9) takes form

(A.9)

Tr(pd,d,) _ [d,, G5 .
Tr(p) 1+¢,

(A.10)

A combination of (A.9) and (A.10) yields (A.7).

Upon arriving at (A.1) or (A.7), one may take limits of ;- —o0, and in the
fermion case ;- 400, proving thereby the Wick decomposition for the limiting
forms of §/Tr(4). It should be pointed out, however, that for the vacuum state, or the
fermion Hartree—Fock states, a more direct proof of the Wick decomposition may be
obtained through the introduction of an operator normal-product and an application
of the Wick’s theorem [3]. ]

Now we shall show that all states which admit the Wick decomposition are
described by the density operators of the form (A.3), involving eventually the limiting
forms of §/Tr(p) with &/, > too. Let us take a state that admits the Wick decom-
position and is described by a density operator §’. We want to show that there exists
a density operator of the form (A.3) such that

p'[Te(g") = p/Tr(p). (A.11)

When taking expectation values of arbitrary field-operator products from the sides of
Eq. (A.11), we have by assumption the Wick decompositions for the both sides. In
order to prove (A.11) it is sufficient to show that there exists an operator j, of the
form (A.3), such that the expectation values of pairs of the operators agree with those
from §’. The l-particle density matrix (§'(x')¥(x)) = Tr(5'¥ (x') y(x))/Tr(f") is
hermitian and may be diagonalized. Generally

@)oY =N @40k x") p(x), (A.12)

i
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where d; are annihilation operators of a basis of states with wavefunctions ¢,(x). For
a basis that diagonalizes (A.12), (4}.d,) = (d]d;) 6;;. For fermions (44, < 1, which
holds for any state of the system and any l-particle state, as can be seen by
expanding the density operator in a Hartree—Fock basis. We construct the operator
7, Egs. (A.3) and (A.4), using the operators of the basis that diagonalizes (A.12),
with

1

et

The case of (d;-‘dj> =0 is to be understood as .+/; » —o0, and (4 fdj) = | for fermions
as ;- +oo. With Eq. (A.13), the expectation values of the pairs of the field
operators, obtained from f, agree with those from p’, and this completes the proof.
Let us now discuss a Wick decomposition in connection with an imaginary-time
evolution (Section 5). In that case a Wick decomposition will stand for a
factorization of a noninteracting expectation value of a field-operator product:

(B V2) =¥ 2 + A B V2 4
= sum over all possible contracted products (A.14)
with the contradiction
A'B = (AB)". (A.15)

The operators at the Lh.s. of (A.14) are to be ordered according to the time-
arguments from a counter in the complex time plane. The contour may be arbitrarily
deformed along the real axis (but not along the imaginary axis), running back and
forth, as is, in fact, generally occurring with an evolution contour appropriate for the
Lh.s. of Eq. (A.1). When all operators have real time-arguments, then Eqgs. (A.14)
and (A.15) reduce to Egs. (A.1) and (A.2). Expectation values in (A.1) and (A.2) are
to be taken with respect to the density operator

p=e*Fpe ", (A.16)

where #° is the generator and 7 the duration of the imaginary evolution, and p
specifies the initial state of the imaginary evolution. The real-evolution part of an
operator U° from (A.14) and (A.l5), remaining upon extraction of the imaginary
part into (A.16), corresponds to the interaction picture of the operators in (A.1) and
(A.2).

The Lh.s. of Eq. (A.14) will satisfy the same differential evolution equations on a
contour, in every field-operator argument as the r.h.s. A consideration of the
factorization may therefore be limited to one set of times, and we shall take for
convenience all operators at an initial time of the real evolution ¢,. From the previous
discussion it follows that the density operator (A.16) must be of the form (A.3) with
(A.4). Equation (A.16) and the Baker—Campbell-Hausdorff (BCH) formula [22],
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imply then that p must also be of the form (A. 3) With (A.16) and (A.3) for §, the
BCH formula will express. the den31ty operator § as an exponential of an infinite
series of commutators of .+ and #°. With .&/ and #° being 1-particle operators, the
series will consist of 1-particle operators. Let
p=exp(@),  f=exp(),
with
? = V AN

and in a basis that diagonalizes #°

o =N o brb,, A =Nh,bb

mn m

and

Then, on studying matrix elements of § between 1-particle states, one finds that the
matrix = equals

# =log (e ( TR N a,ma*eg’)
1

The logarithm of a matrix in the bracket is well-defined, because the matrix is
hermitian and positive definite.

APPENDIX B: VARIATIONAL DERIVATION OF THE
PERTURBATION EXPANSION

We introduce a Green’s function in the presence of an external potential

(T1¥u(1) g’ ) Sul)
(TI84]) ’

iG(1, 1), = (B.1)

where
Su=exp (~if a1" V") (1) 11"). (B.2)

Here 1=(x,,t,), fdl=/fdt [dx,. When a given expression will be varied with
respect to the potential U, we shall assume that U is different on each branch of the
contour. In the final results the potential U is to be put equal to 0.
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It can be shown (see Eqgs. (3.14), (3.15), (3.35), and (3.36)) that the Green’s
function (B.1) satisfies the equation

o v
( ?az_l+—m' U(l)) G(1,1),=6(1,1') ¥ i,fdz V(1,2) Gy(1,2: 1,2 )y, (B.3)

with the 2-particle Green’s function

<T[WH(1)WH(2) (2/) V};H(II)S‘H]>.

i’G,(1,2; 17,2 B.4
Here (1, 1) =d(x, — x,.)0(¢,, t,.), V(1, 1) =V(x, —x,.) 8(¢,, ¢, ).
Next we introduce a noninteracting Green’s function
T{y(1) ¢ (1’)§[]>
iG'(1,1"), = {T1¥, , (B.5)
o (T($,])
where
S, =exp (—i,fdl" U y},(1")u7§(1")>, (B.6)
The noninteracting Green’s function satisfies the equation
0 Vi
—U() ) G°(1, 1), =4(1, I B.7
(1 + gy — VD) (1, 1y = 000,17, (B.7)

Equations (B.3), (B.7), and the identity

5@ O 1o =F(Ga1, 21,27, —G(1, 1), G(2,2%)), (B.8)

imply an equation for the Green’s function

G(1,1"),=G(1,1"), + i/fdlﬂ,fdz G°(1, 1), V(1" 2

6 " "
((5U(2) G(1",1), F G(1", 1), G(2,2%), ) (B.9)

From (B.9) a perturbation expansion for G may be obtained. The first-order terms
arise from replacement of G on r.h.s. with G°. The second-order terms emerge from
insertion of the first-order terms into the r.h.s., and the procedure may be continued.
In the first step a knowledge of G°/dU is necessary. Commonly one would conclude,
from an equation following from (B.7)

L9 Vi 6 o N
(13_t1+ﬁ_ U(1)> 5o ¢ L =806 100s - (B.10)
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and Eq. (B.7), that

—6 0 ! — 0 0 f
50y ¢ B 1e=07(1,2), G2, 1), (B.11)

The subsequent insertions into Eq. (B.9) and use of Eq. (B.11) yield the perturbation
expansion known from Section 2.

Since we never referred to the properties of an initial state, the above would
indicate that the perturbation expansion relies always on the noninteracting 1-particle
Green’s functions G°, independent of the properties. In fact an eventual error arises
when one concludes Eq. (B.11) from Eq. (B.10), and one ignores the possibility of
adding a solution of the homogeneous differential equation. The presence of a
homogenous equation solution is set by the initial conditions at f,. From the
definition (B.5) it follows that

o
5U(2)' GO(I, II)U = ?(Gg(l, 2; 1/’ 2+)U - GO(I, II)U GO(2’ 2+)L')’ (B,12)

and the higher variational derivatives of G° introduce the higher noninteracting
many-particle Green’s functions into the expansion. The adoption of (B.11), instead
of the more general (B.12), corresponds to the assumption of the factorization of all
initial many-particle Green’s functions. (The reading of Appendix H may clarify this
aspect of the problem.)

APPENDIX C: PERTURBATION THEORY RULES UPON SEPARATION
OF THE CONTOUR INTO BRANCHES

The rules serve for the evaluation of a specific Green’s function type: iG<, iG>,
iG*, or iG“. (The rules may also be employed in evaluation of a specific type of self-
energy or other functions.)

1. Draw a line dividing the plane into two parts that will correspond to the two
time-branches—chronological and antichronological. Place the points, corresponding
to the function arguments, at one branch or the opposite branches, according to the
type of the evaluated function. Draw all topologically distinct connected and directed
diagrams. The diagrams, which are differently cut by the division line, are distinct.
The division line may not pass through the potential.

2. A particle line represents iG"<, iG°>, iG", or iG", depending on the line
start and end positions.

3. To an interaction line there corresponds a factor —iV'(x, — x,) 8(t, — t,).

4. To an interaction line at the antichronological branch there corresponds a
factor (—1).
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F1G. 8. Diagrams that yield expressions which cancel with one another.

5. To a single particle-line, that forms a closed loop or is linked by the same
interaction line, there corresponds a function iG°<.

6. For fermions attribute to a diagram a factor (—1)", where F is the number
of particle loops.

7. Integrate all internal vertices over a whole space, and in time from ¢, to the
maximum argument of the evaluated function.

8. To every antichronological-side time-integration there corresponds a factor
(=1).

Jointly the rules 4 and 8 give a factor (—1) for every antichronological-branch
interaction which gets both vertices integrated. Rule 7 necessitates a complement. Let
the division line into branches be a dashed line and let us introduce a vertical time-
axis (see Fig. 8). Then the diagrams from Fig. 8 give expressions that differ only with
a sign. Generally it is sufficient to carry the internal time-integrations in a given part
of a diagram up to the maximum external time, because jointly the integrations above
that time cancel out.

APPENDIX D: FUNCTIONS ON A CONTOUR

Let us take a contour with a top at a time ¢,, (see Fig. 9). The Green’s function
on a contour possesses the following symmetry property: when ¢, >, then
G(X,, t;s Xy, t,) = G(x,, t], X,, 1,), where ¢] has the same time-axis value as ¢, but
lies at the opposite side of the contour ((!])" =¢,). The same occurs for the second
argument of the Green’s function, when ¢, > ¢,. We shall use below the following
notation: 1= (x,,,), 17=(x,,¢7), fdl =fdr, [dx,, 81, 1")=6(x, —x,.) 6(¢,. t,.).
If the functions F and C, that have no singularities for equal time-variables on the
contour, possess the above symmetry, then the function

E(1,1)=fd2 F(1,2) C(2,1") (D.1)
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Fic. 9. Contour along the time axis.

also possesses the symmetry. Only the time-integration is relevant here. Let, e.g.,
t,>1t,., then for t, > t;, F(1,2)C(2,1")=F(1,27)C(2", 1), and the sides of this
equality enter the integral with opposite signs. The integration above ¢, cancels out.
With F having no singularity, only the values of F for ¢, < ¢, enter the integral, and
from the symmetry of F follows the symmetry of E int . The value of E depends
only on values of F and C for ¢ < ¢,. Let us consider a possibility of singularities in F
or C for equal time-variables on the contour. In order that E possesses the symmetry,
the effect of a singularity must not depend on the side of the contour at which the
singularity must not depend on the side of the contour at which the singularity is
placed. Generally such singularities are of the form

(5%)" 8, 1,). (D.2)

If both F and C possess singularities of this type, then the singularity of E is also the
type (D.2). From the symmetry property of the functions, it follows that the
considered functions are of the form

F(,2)=F(L,2) +6(t;, t,) F>(1,2) + O(t,, £,) F< (1, 2). (D.3)

with F? the singular part of the function (of the type (D.2)), and with the functions
FZ defined on the time-axis.

The space of the functions having the symmetry property, and supplemented with
the form (D.2) of singularities, is closed with respect to the operation defined by
(D.1). We assume that G has an inverse in that space

/fdz G™'(1,2) G2 1) :,fdz G(1,2) G (2, 1) = &(1, '), (D.4)

From (D.4) and the symmetry of the functions, it follows that G~' does not depend
on the choice of contour (i.e., f,,,, Fig.9) and that G~' with time-arguments <¢
depends only on G with time-arguments <¢.

The inverse of G°, Eq. (2.30), is

VZ
00_1(1,2): (ji+ 1

5 %) 5(1,2), (D.5)
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which follows from the equations of motion of the interaction-picture field-operators,
and Eqs. (2.29) and (2.12). The (proper) self-energy will be defined by

Z(1,2)=G""'(1,2) = G~'(1,2). (D.6)

From Eq. (2.27), it follows that under complex conjugation we have [iG(l, 2)]* =
iG(27,17), and further

[iG(1, 2)]" =iG(17, 27). (D.7)
For the functions iG%, Eqgs. (2.3) and (2.10), we have [iG3(1,2)]"=iG%(1,2), ie.,

the functions G% are hermitian. Let us study the properties of G~ under conjugation.
Upon taking hermitian conjugates of the sides of Eq. (D.4), we find, with (D.7),

/de (—) GAT,2N)[G'(2, 11)] = 8(1", 1).

We change the sequence of integration of the sides of the contour, ie., in the
functions we change the argument 2 into 27, and simultaneously we change the
overall sign,

{dz G(17,2)[G'Q", 1)) =8(1", ).

Changing 1 and 1’ into 17 and 1’7 and using
(1, 1) =8(1", 1) = —3(17, 1'), (D.8)

we find
{dz G(1,2)[-G (27, ')t = 8(1, 17),

which implies
[(iG~'(1,2)]" =iG~'(17,27), (D.9)

cf. (D.7).
We shall consider functions of the form (D.3), for which

[iF(1,2)]" =iF(17, 27). (D.10)

To this class belong the functions G°, G, G*™!, G', Z, and other functions with
which we shall deal in this series. From Egs. (D.10), (D.3), (D.2), (D.8), and the
equality 8(¢,, ¢,) = 0(¢], £1), it follows that

[F(1,2)]" = F2(1,2), [iF¥(1,2)]'=iF¥1, 2). (D.11)
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We shall define, on the time-axis, the retarded and advanced functions

FH(1,2)=F3(1,2) + (F> (1, 2) — F<(1, 2)) 6(¢, — 1,), (D.12a)
F~(1,2)=F%1,2)— (F>(1,2) = F<(1,2)) 6(t, — 1,), (D.12b)

where the singular part is taken such as on the chronological branch. We have the
relations

F*(1,2)—F (1,2)=F>(1,2)— F<(1, 2), (D.13)
and
IFHL, ) =F(1,2) (D.14)

We may define the hermitian functions
ReF*(1,2)= —21— F*(1,2)+F(1,2)
:F'5(1,2)+%6(t,—tz)(F>(1,2)—F<(1,2)), (D.15)
ImF*(1,2)= —217 (F*(1,2)—F~(1, 2))=3117 (F7(1,2)—F<(L1,2)), (D.l6)
where e(t, —t,) =6(t, — t,) — 0(t, — t,). We have

Re F*(1,2) = F%(1,2) + ie(t, — ,) Im F*(1, 2). (D.17)

We shall show that a Fourier-transform in relative variables, of a hermitian
function, is real (see Egs. (2.5), (2.8), (2.11)). We use a 4-dimensional notation

H(p; X) = j d*x e H(X + x/2, X ~ x/2). (D.18)
We have
H*(p: X) = j d'x e PH*(X + x/2, X — x/2)
= j d*x e P H'(X — x/2, X + x/2)

= [ d*x e *H(X — x/2, X + x/2) = H(p; X). (D.19)
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For the further purposes of the paper, we shall define the hermitian functions

A(1,2)==21Im G*(1,2) = i(G>(1,2)— G<(1, 2)), (D.20)
r(1,2)==2ImZ"(1,2) =i(Z>(1,2) — £<(1, 2)). (D.21)

From (2.12) follows
d
j%A(p, w;R, T) = 1. (D.22)

According to (D.15), upon identification of the singular part of the self-energy
(Section 3),

do' I'lp,w’;R, T)
2n w—-w

Re Z*(p, 3R, T)=Zye(p; R 1) 4+ | (D.23)

APPENDIX E: THERMODYNAMIC EQUILIBRIUM

We shall discuss a system that has achieved a uniform equilibrium. The functions
G and X will depend only on differences of the arguments, and we may introduce
Fourier transforms

~dp dw

F(x——x’,t—t’)zJ 1)

P X)) g —iw(t=1) F(p, w). (E.1)

We write the Fourier-transformed functions G< in the following way
FiG<(p, w) = f(p, w) A(p, w), (E.2a)
iG> (p, w) = (1 F f(p, 0)) 4(p, ), (E.2b)

with A =i(G~ — G<) (Eq. (D.20)), and we define with Eqgs. (E.2) the function f. For
a freely evolving system

A%(p, w) = 2r8(w — p*/2m). (E.3)
From the Fourier-transformed Eq. (3.11) (¢, » —o0) we obtain

1
w—p2m—Z*(p,w)’

G*(p,w) = (E.4)

and we find that 4 has a Lorentzian shape

I'(p, w)

Alp. @)= (w— p*/2m —Re Z* (p, w))* + (I'(p, w)/2)*

(E.5)
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(see the end of Appendix D). We have?

[%2 4. =1, (E6)

and
do' I'ip,w’)

ReZ+(p,w)=2HF(p)+,?J’ Sl (E.7)

The function A(p, w), the so-called spectral function, may be interpreted as a function
weighting the frequencies w for a given momentum p. The total weight of 4 is equal
to 1. With ¥/G < (p, w) and iG~ (p, w) respectively distributions of particles and holes
in momenta and energies, the function f(p, w) obtains an interpretation of the
occupation of states (p, w).

A sum of the Born diagrams for the self-energy, Egs. (3.33) and (3.34), gives in a
stationary uniform system

(2n)*d(p+p,—p' —p))

, dp,dw,  dp’ dw’  dp|dw;
< _
“EB("’“’)J ) f @2r) J 27)°

1
X Ot e —o —w) = (Mp—p') ¥ Vp—p))’

X A(p,» 0,) A(p’s 0") A(p}, @)1 F f(py, @) f(p', ") [P}, w).
(E.8a)

iZg(pw)=- f(p,, 0 )(1 ¥ f(p', 0))(1 F f(p], w})) (E.8b)

In (E.8b) we do not write explicitly that part of the r.h.s. which is the same as in Eq.
(E.8a). The expression (E.8a) accounts for scattering of particles (p',w’) and
(p{, wy) into states (p, w) and (p,, w,), with a Born-approximation scattering cross
section. The function FiXj(p, ) is seen as a scattering-in rate into (p, ) due to
these processes. Equation (E.8b) accounts for the inverse processes, and describes the
scattering-out rate from (p, ®). See also the forms of self-energies in the T-matrix
approximation, Eq. (F.22).

On Fourier-transforming Eqgs. (3.9) and (3.10), and subtracting the resulting
equations from one another, one finds the detailed balance equation

25(p, 0) G7(p, w)=Z7 (p, ) G~ (p, ). (E.9)

?In connection with convergence problems encountered in a nuclear application of the Green's
function method in Ref. [23], we would like to mention that there exists a normalization condition for
the function I'. The condition can be deduced from Eqs. (3.19) and (3.20), and the form of the current.
The condition, relating the width-function I to the bare interaction and the particle—hole fluctuation-
function, has a form [ (dw/2n) I'(p, w) = P, ¥ P,(p). We shall quote here only the direct term, which
may be written as P, = [ (dp'/(2n)")(¥(p"))* D(p’) = [ (dp/(27)") | (deww' 2m)(V(p"))* D{p’. ' ). where
D(1,2) = (Ay(1) 42}, and A(1) = A(1) — (A(1)). (Compare with Eq. (2.11) of Ref. |24].)

595/152/2-4
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Equation (E.9) expresses the equilibrium between the scattering-in of particles into
(p, w) and the scattering-out from (p, w). The detailed balance equation will allow us
to find a form of the function f(p, w). We shall present below an argumentation
which generalizes an argumentation given sometimes in considerations of the
Boltzmann equation.

The self-energy X' may be expressed solely in terms of the Green’s functions G, on
using skeleton (irreducible) diagrams; see Ref. [25]. Examples of such diagrams are
the Hartree-Fock and Born diagrams. Diagrams for —iZ3, obtained according to
Appendix C in the space-time representation, possess the following, important for the
subsequent discussion, properties in the Fourier-transformed variables (the top of the
contour is pulled to +oo before introducing the transforms): energy and momentum
are conserved in the vertices, an interaction line corresponds to —iV(p), at an
antichronological branch we have for a particle line iG*(p, w), for every interaction a
factor (—1), for every internal interaction-vertex a factor (—1) (jointly a factor (—1)
for every internal interaction), at a chronological branch a particle line corresponds
to iG°(p, w), particle lines crossing the division line correspond to iG%(p, w), all
independent momenta and energies are to be integrated over. From the relation
[iG°(1,1)]"=iG(1,1"), follows  [iG‘(p, w)|* = iG*(p,w), according to
Appendix D.

Let us take a certain diagram that gives a contribution to —iZ <. From the fact that
—iZ< is real (Appendix D), it follows that some other diagram gives to —iZ< a
conjugate contribution, which differs from the previous in a replacement of all iG*
with iG€, iG° with iG% and —iV with iV, without affecting iG< and iG”. Let us
analyze a conversion of —iZ< into —iX¥~. In a given contribution the conversion
consists in replacement of all iG* with iG® and iG° with iG%, in change of signs in
potentials (in principle excluding the extreme potentials, but there are exactly two of
those in every diagram of —iX 2), and in replacement of all iG< with iG~, and iG~
with (G <.

In every term of —iX'<, the number of iG< is larger by one than the number of
iG”, and an opposite holds in —iZ”. The total momentum and energy carried
through the division line are equal to (p, ) in every term of —iX3(p, w). Let us
assume that we insert the expressions for the self-energies into the microscopic-
balance equation. We shall have terms originating from various diagrams, differing in
structure. However, it follows from the above discussion, that for each Lh.s. term we
shall have a respective r.h.s. term, that will differ only in the replacement of G=
with G5, It seems natural that the equality should hold separately in every
corresponding pair, and that a certain relation between G~ and G < should be respon-
sible for the equality. Upon separating-out integrations and factors containing G¢, G¢,
and V, the postulated equalities have the forms

G>(p5 w)G>(p1,a)1) G>(p,,,cu,,)G<(p’,w’) G<(p;’wi) G<(p,’,,w,’,)

=G(p,w) G(p;, w;) - G (p,, w,) G (p', ") G~ (p}, w}) --- G (p;, w})s
(E.10)
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while
P=p +pPi+t - +p,— P+ + P
w:w’+wi+... +w"'_(wl+ Ve +a)"),
ie.,
p'+pit - +P,=P+P P
' : (E.11)

w o+ to,=wtw + o,

From (E.10) it follows that G~ and G< should be related by a factor, and with the
conservation laws (E.11) the most general form of the factor is

eﬁ(w —Vp— u)’
where we readily use a conventional notation. From
G (p, w) = 2@ "W G<(p, w) (E.12)

we find for the occupation

!
exp(flw—vp—u) 1~

Slp, )= (E.13)

Results of the present appendix refer to a system whose noncorrelated initial state
has been specified at t;— —oo. For an equilibrium system, specified with a density
operator j = exp(—f(H — vP —uN)), the form (E.13) of the f function follows
directly from the Green’s function definitions. The remaining resuits of the appendix
may be obtained for such a system with an evolution-contour method in the complex
time plane (Section 5).

At the end, we would like to mention that a uniform equilibrium may not exist
within the constraints put on the system. One encounters such a situation when one
finds singularities in the retarded or advanced functions in regions where the
functions should be analytic according to their definitions.

APPENDIX F: T-MATRIX APPROXIMATION

We shall formulate the T-matrix approximation to the self-energy starting from
Eqgs. (3.35), (3.36). On comparing (3.35) with (3.1), we find a relation

izl 1) = x/fdz,fdl"(—f) V(1,2) 2Gy(1,2; 17,27 )(—) G~ (17, 17), (F.1)

where V(1,2) = V(x, — x,) 8(¢,, ;).
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FiG. 10. Ladder diagrams for the 2-particle Green's function.

The rules for evaluating i>G, are essentially the same as the rules for iG. One needs
only to make a sign change of the diagram in cases when the lines running between
the end-points of a diagram cross. In the 7-matrix approximation we sum for i’G, the
ladder diagrams which correspond to repeated interactions between particles
(Fig. 10). We define the T-matrix with the diagrams presented in Fig. 11

—i(1,2|T|17,2")
= —iV(1,2) 8(1, 1') 5(2,2") +,fd1"fd2"(—i) (1, 2)
X iG(1, 1) iG(2, 2")(—i)(1". 2"| T|1", 2")
— —iV(1,2)8(1,1') 6(2, 2")

+/fd1"/fd2"(—i)<l, 20 T|17,27YiG(1", 1')iG(2", 2')(—i) V(1', 2"),
(F.2)

7 =W+[:::;]+EE§]+

¥

Fic. 11. Diagrams defining the T-matrix.
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where we use the notation as in [2]. Then

i’G,(1,2;1',2")
=iG(1, 1')iG(2,2") F iG(1,2") iG(2, 1")

+/fd1”/fd2”fd1”’/de”’(iG(l, 1")iG(2,2") F iG(1,2")iG(2, 1))
X (=)(17, 2" T 17, 2"y iG(1™, 1) iG(2", 2"), (F.3)
and from (F.1) we find
(1,17 :/de/de’ G2, 2)L 2| T2, 1y F(1,2| T|1',2)), (F.4)
cf. (3.18).

The time arguments of the scattering matrix pairwise coincide for a potential
interaction

L2 T2y =8(t,, 8,) 6(t, ., 6 ) X5 X, | T Xy, X500 (F.5)
With the notation
KXo | DAt 1) X Xy = IG(1, 1) G(xy, £y, Xy 1), (F.6)
we have from (F.2)
Xy X T(ty s 8 %05 X50)

=V(x, —x,) [5(!1, t) O(x; — x,;.) 8(x, — x,.)

+/fd1”/fdx2,,(xl,x2| Tty b)) | Xpus Xy )X poy Xou| T(Ey 0y £,) X0, x2,>J
= [5([1, t)o(x, —x,.) 0(x, — x,.)

+/fd1 "jdxz,,<xl, X, T(t1s £,0) X1 X0

X (X yry Xgu| Gty 1) %40, x,)] V(x, —X,5). (F.7)
With the definition

(X1, X Ft, 1) %,y xz'>]f: (X105 Xo0 | Fty 5 8)) 1%, X0 ] %, (F.8)
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we have from (F.6) and (D.7)

[i(x,, X, Z (2, 2,) X0 er>l*= Xy, X,| (], 1)) %y, X3 (F.9)
and from (F.7)

(%) %, | T(Eys 80) %05 X2'>V: (X1, X, | T(tlra t{/) [X5X50) (F.10)

From (F.4) and (F.5) follows

=, 1')=jdx2fdx2, iG(Xyy b1y Xgs 1)
X (X X | T(ty5 ) 1%y X000 F (X0 X | Tt £0) X005 %00)), (F.11)

and further

(1, 1')=jdx2jdx2, IG5 (Xy, £y Xy, 1)
X (x5 X, Tz(ll’ L)Xy X)) F (X, x| Tz(tl’ t)1x, %)) (F.12)

Proceeding similarly as in the case of the I-particle Green’s function equations of
motion (Subsection 3.1), one finds from (F.7) the equations

Xy Xy | T 1) X005 %,0)
[v¢]
=V(x, —x dl” | dx,.
) ar fax,

Xy Xy X Xpos Xl Tt 1) X000 Xg)

Tt t) %05 %00 (F.13)

XXy, X, | T (2, 80)

+ (X X R0 0) X X)X X

schematically 73 = V¥ * T2 + V¥ 3T, and
XX TH(ty, 1) X0 Xa0)

= V(x, —x,) [a(t, —1,) (x, — X,.) 6(X, — X,/) +f d1” j @,
to

X Ky Xy | Z (0 £10) X0 Xao )Xy Xyl T (80 81) X0 x2f>],
(F.14)
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schematically T* = V + V€ *T*. From (F.13) and (F.14) it follows that T< may be
written in the form of a generalized optical theorem T:=T*Z3T,ie.,

<x1’x2|Tz(tl’tl’)‘xl”x2’>
[e¢] o

=\ dl"{dx,.| d1” | dx,.

J, | an o,

X (Xyy Xo| Tt 110) Xy XXXty Xgn| F 2y By} | Xy Xg)

X (Xyms Xy T (s 13.) |y, Xp0)n (F.15)
If we inserted (F.15) into (F.12), then with (F.6) we would obtain an expression for
X% similar to the sum of Eqgs. (3.33) and (3.34) with the matrices T* instead of the
respective potentials V.

In below we shall use the Fourier-transformed 2-particle functions, which we
introduce in the following way

(q|F(P,w; R, T)|q")

:J’ d(t — 1’y et
a0y 50— (5 ma P 0e

X J d(x, —x,) e xi-w j d(x, —x,/)e v x)
X (61, 53] FUE ) [y %31, (F.16)

where R = (x, + %, + x,, +x,.)/4, and T= (t + t’)/.2. From (F.10) it follows for the
Fourier-transformed T-matrices that

liq] T3(P, s R, T)|q")]* = i(q’| T*(P, w; R, T)|q), (F.17)
and also

[l T* (P, w;R, T)|q")]*=(q'| T™ (P, w; R, T)|q). (F.18)

Let us see what form the T-matrix approximation results take in a uniform
equilibrium. For the self-energies, Eq. (F.12), we find
P—P
2

Tz(p+p1,w+w])‘ pl_p>). (F.19)

T3p +py. 0 + w,)

2 dp, dw, < (/P—P
£4p.0) =% [ UL G w1 (252

¢<p—p1

2 2
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From (F.17) and the symmetry under the interchange of particles, it follows that the
symmetrized matrices i7< in (F.19) are real. Equation (F.19) may be understood in
the following way. In the 2-particle Green’s function equation, the function 7 plays a
somewhat similar role to X in the I-particle Green’s function equation. We may
expect that iT< in (F.19) constitute scattering-out and -in rates into noncorrelated 2-
particle states. Then the integral and a Green’s function in (F.19) are the summation
over initial or final states of a remaining particle. The generalized optical theorem,
Eq. (F.15), takes in the momentum-energy representation a form

> 3 dl " +
@I TP 0) ) = [ s S Bl T (o) o)
X (01 Z3(P,0) DG T~ (. ) [P, (F20)

For the symmetrized matrices T occurring in (F.19), one finds from the optical
theorem, with (F.6),

2 2 2 ?
dpz;i)w Jdl()zigf:)i Qn)* 6(p +p, —p' —P)) O + w, — w0 —w})
o
F (20 1 po o) [P P)] 6%n 0 Gt 00, (R

which confirms the conjecture concerning i7< From (F.21) and (F.19), with (E.2),
FiZ<(p, w)

(2n)*d(p +p,—p’ —p})

_ [ dp,dw, J dp' dw' J dp) dw;
_J em* J (@2n) (2n)*

ppl

T*(p+py, 0+,

X 0w+ w, —w’ —w)—‘ p;p1>

2

P (2SR T e pno o) | PR G 0) 40" @) AL o)
X (15 /1, 0)) (', ') S0, 03 (F.220)
5 (uw) = - Sy @) T @, 0N T S e))  (F22b)

of. (E.8).
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The T* matrices satisfy in an equilibrium system the equations, from (F.14),

dl - dp,
Pl T*(B.0)[p) = Vo ~0) + [ 35 | G ViD= p)
X @i %P0 p)E T @) p)  (F23)

Upon omitting the self-energies in the l-particle Green’s function in ¥, Eqgs. (F.23)
become

Bl T*(B.) [0y = Vo —p) + [ -2 pp—p,)

(2n )3
1Ff(P/2+p)Ff(P/2~p,)

w— P/4m — pHm + it | T*(P,w)|p'). (F.24)

Equation (F.24), with a factor 1 F £ ¥ f=(1F f)(1 ¥ f)— ff, is in principle more
general than the Bloch—-de Dominicis equation [26] with a respective factor
(IF ) F ), by allowing for both intermediate particle—particle and hole—hole
excitations. In the fermion zero-temperature limit Eq. (F.24) corresponds to the
Galitskii  [27] equation, while the Bloch-de Dominicis equation to the
Bethe—Goldstone [28] equation. Differences between the equations have been
discussed to an extent in the literature [29].

Let us now discuss the T-matrix approximation in connection with the Boltzmann
equation. In the 7T-matrix approximation, the scattering-in rate in the Boltzmann
equation would have a form

- dp, dp; 4
PR D) = [ o o @) v oy ()20 40 =)

X d(wy + w) — wy, — o))

Py

1 — _
X—2—‘<p 2[’1 ‘ T (p+p,, 0 +wp,R T)‘p p1>

e )

2
X (¥ flp:: R, 1)) f(p": R, T) f(pi; R, T), (F.25)

T+(p+pl,wg+wgl;R, T) i P

and the scattering-out rate an analogous form to (F.25). In the Boltzmann equation
limit, we would demand that the scattering matrix T* satisfies Eq. (F.24), with all
functions in the equation referring to an (R, T) location in macroscopic variables. Let
us see what must be the properties of the T-matrix, in order that the Kadanoff-Baym
equations can be approximated with the Boltzmann equation. We take for simplicity
a homogenous system, and proceed in an analogous manner to Subsection 4.3,
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Equation (4.1), and Egs. (F.12), (F.15) (¢, —o0), yield an equation for the
distribution function

. d . [
—zﬂf(p;!?):f% (w+!)l/2+i6_w_9/2_i£>

407 aor - der dglV
2n 27 27 2n

2R — ' — 0" — Q" — _le)

dp] dp’ [ dp; 3 ! !
XJ (27:)3J (27:)3J Q) (2n)} é(p+p,—p —p))

dw, P—0 + 1 " v . " p’ _ pi
ij—ﬂ<—-§—‘T ®+p 0 +(Q"+02Y)2;0 )‘ . >

» <p’—pi

P Ty, 0 — (@74 27)2:.0")

P— P P — P
X(‘ 2 >¥‘ 2 >)
X (F” (0 9y, 0 + 03 ) F<(p/, plow’ + (2" — Q7)/2:27)
CF(pp, 0+ 0 Q) F (0, pl, @ + (2" — 27)/2;27)), (F.26)

with the auxiliary functions
Fz(pv ply I T) = _GZ(p’ M T) Gz(pls t T)’
for which we shall use
F3(p,p,, w; T)=F3(p, p,s T) 2nd(w — wy — w} ),
with
FP,p: D=01F fp: D)AF f(p,3: 7))
Fp,p; D) =fp: 1) f(p,: 7).

The Boltzmann equation follows from (F.26), when one ignores all the macroscopic-
frequency contributions to the microscopic frequencies. The similar occurs for Eq.
(F.24) and Eq. (F.14) written in the Fourier-transformed variables. The approx-
imations are possible when pAp/m > I' holds both for Ap being a scale of variations
of particle distribution in momentum, and for 4p being a scale of variation of T in a
momentum transfer. Also dw > I’ must hold, where dw, a scale of variation of a T
matrix in frequency, following from Eq. (F.24). These are the conditions for the
Boltzmann equation, within the T-matrix approximation.

On deriving the kinetic equations, we have considered the cases Re Z* ~Im X~
and ReXZ* > ImZ*. We shall now examine Re X* and Im X" in the T-matrix
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approximation, in the low-density limit. From Eq. (F.16) written schematically as
I2=TFiG5T% follows ReZ*=FiG<ReT* TiReG'T<, and ImZI*=
FiG<ImT* +ilm G*T<. In the low-density limit G< ~n, T< ~ n?, and the T*
matrix becomes a free-scattering matrix. We shall discard the exchange term of the
scattering matrix. On evaluating X, we take a forward element of T matrix, which we
shall denote in a simplified way as T(0). Taking the scattering matrix for a certain
characteristic relative momentum p, we get the estimates in the low-density limit
ReX*"~nReT*(0) and Im £* =~ nIm T*(0). Parametrizing the scattering matrix
with a gaussian in the momentum transfer g

T @ =T ) e,
we find from the optical theorem a condition for |[Re 7% (0)] > |Im 7" (0)| in the form

m

1
>87z

1 + _ ,—2np?
ﬁlT O (1—e )- (F.27)

The parameter # has a meaning of an interaction range, and |7*(0)| of a full
interaction strength. For a weak longrange interaction satisfying (F.27),
ReZ*»>ImZX".

APPENDIX G: THERMODYNAMIC EQUILIBRIUM ANALYSIS OF
CONDITIONS FOR THE BOLTZMANN EQUATION

The conditions for passing from the Kadanoff-Baym equations to the Boltzmann
equation can be analyzed in some detail in a state of equilibrium, in the Boltzmann-
statistics limit. As in Subsection 4.1 we shall assume well-defined free energies for
particles. We shall examine the values of the microscopic variables entering the
integrals of the self-energies < with the Green’s functions in Eq. (4.1) (see also
(4.17)). The values of the microscopic variables, as compared with the scales of
macroscopic variations in a system, determine the order of magnitude of the terms
neglected in the Boltzmann equation.

The equilibrium distribution function is of the form f(p) = exp(—8(p?/2m — u)),
where 4 is the chemical potential, and §= 7', with T the temperature (k, = 1). The
conditions for the Boltzmann equation which we shall find will be valid for
distributions whose behaviour with momentum does not depart much from that of the
equilibrium distribution. We shall use the direct Born approximation to the self-
energies, in which approximation it is possible to obtain analytic expression for the
self-energies. We have

FiG<(p, 1) = e B /2m-w—itptiamy, (G.1)
iG”(p, t) = e~ 1P/2m)1, (G.2)
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For a gaussian potential V(r) = V, exp(—r?/n?), one finds in the direct Born approx-
imation

m2774 ]3/2

q:l'E;d(p’ )= V(z) [4(ﬂm2 _|..IB2 + tz)

p? 2B + BPmy’ + it(Bmy’ — 7 + 17)
X exp [Z,By kT prn 1 B O ], (G.3)
. - m2’74 3/2
2P, )=V, [4(/}m172 +12+ 2itﬁ)]
pt B(Bmn® + t*) + it + (Bmn® + 1))
X exp [ﬂ ~9m (B + ). + 47 J (G4)

Let us at first assume that the integrations over space coordinates are already
completed in the integrals of the self-energies with Green’s functions in (4.1), and
only the integrations over the microscopic times ¢’ remain. Our task will be the deter-
mination of the values of ¢’ that enter the ¢’ integrations of Z%(p, —t') G3(p, t'). The
values of ¢’ entering the integrations correspond to the frequency dependence of the
self-energies, close to the energy shell, and simultaneously the values of ¢’ define the
time in which the energy conservation is being realized in particle interactions.

We have

1
(,Bm'lz + t/2 _ 2”15)3/2

Zga(p.—1') G (p, 1) x

Bp* t'*(Bmn* + t') + 2ift"’
X exp [ 2m (Brn® + 070) + 4B } (G)
1
Zaap, —t') G~ (p, ') oC Brnt + B2+ 15"
Bp* 2t'* 4 Bmn’ + 2it'B
_ =7 G.6
xexpl 2m Pmn* + B+t } (G.6)

For momenta p < (m/f)"/?, the main contribution to the ¢’ integrals, both of (G.5)
and (G.6), will come from the times |¢'| < (Bmn® + °)'2. The quantity n(fm)"/*
corresponds to an average interaction time defined as a time of flight through an
interaction range. The mean momentum in the system equals approximately
(3/2)(m/B)'/*. (The mean Kkinetic energy equals 3/28.) In the high-temperature limit
defined with fmn® > B%, for momenta p 2 (m/B)"/? (in case of (G.6) p < nm/p), the
main contribution to the ¢’ integrals will come from the times |¢'| < #m/p. In the
opposite limit of temperatures, the analysis of the ¢’ integrations of (G.5) and (G.6) is
hindered for large momenta by the oscillatory factors in (G.5) and (G.6). Upon
putting fmn? =0, the author has performed an analysis of the integrals in the
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complex time plane. One can estimate that for momenta 2/7 > p > (m/B)"/* the main
contribution to the ¢’ integral of (G.5) will come from the times |¢'| < 2m/p?, and for
momenta p > 2y from the times |#'| < #m/p. In the case of (G.6), for momenta p >
(m/B)'"?, one finds that the times |¢'| < B will always contribute to the integral. The
analysis of the integrals of (G.5) and (G.6) may be summarized with a statement that
the condition for the Boltzmann equation is a slow variation of the functions in
macroscopic times, as compared with #(8m)"/* and 8 (more specifically as compared
with (Bmn® + f%)').

We may next study the values of microscopic spatial coordinates that enter the
integrals of self-energies with Green’s functions. It is necessary to find the values of
r —r' and r’ that enter the integrals

J. dr e"""Jdr’EEd(r-r’, —t"YG(r', 1), (G.7)

for the times ¢, which we have determined earlier. The variables r —r’ entering the
integral correspond to the momentum dependence of the self-energies, and the
variables define the range in which the momentum conservation is being realized in
particle interactions. The variables r’ entering the integrals correspond to the depen-
dence of distribution functions on momentum, and indirectly also correspond to the
dependence of self-energies on frequency. (To the variables r’ a meaning can be
attributed, of a range in which a particle feels interaction.) The analysis of {(G.7) is
simplified by the fact that Green’s functions and self-energies, possessing gaussian
forms in momentum, (G.1)}-(G.4), posses also gaussian forms in spatial coordinates

iG” (x, 1) = [3%]3/2 exp [— ”2’:; ] (G.9)
w50V e ey | (©0
o [ =75 : 2% +BZ£’:;7 +thﬂn_zt7t— )
Zgalt, )=V [ 8n(—pr? +";:('Zmnz + %) ]3/2
ol LB

In the limit fmn’> fi°, one finds that for momenta p2 (m/B)? the main
contribution to the integrals (G.7) comes from variables <y, while for small
momenta (m/B)"* 2 p2n~" from variables Snp(B/m)'/%. In the limit §2 > fmn?, the
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main contribution to the integrals, for momenta p < (m/B)"?, will come from
variables <(B/m)'/. For large momenta p > (m/f)"?, the main contribution to the
integral (G.7) of functions < and G~ will come from the variables < pf/m. In case
of the integral of £> and G <, the main contribution for momenta p > (m/B)"* will
come from values of the variables |r'| < pB/m and |r —r'| < p~'. From the above
analysis it follows that condition for the Boltzmann equation is the slow variation of
the functions in macroscopic spatial coordinates, as compared with » and pf/m,
where p corresponds to particle momenta in consideration (for p < (m/8)"* a
quantity (8/m)'/* should be taken for comparison).

The conditions, of small #n(fm)'/* and 7 in comparison with macroscopic
variations in a system, are classical, because these conditions do not involve #. The
conditions will determine the possibility of describing the dynamics of a system with
the Boltzmann equation in the limit fmn* > 2, which is the limit of small interaction
time and range inverses in comparison with variation of a particle distribution in
momentum. The conditions, of small f and p8/m in comparison with macroscopic
variations in a system, are purely quantum. The quantities # and pf/m are related
solely to the particle distribution.

The conditions of small § and pf/m would have emerged independently of the
approximation used for the self-energy. The value § of a macroscopic time must
appear in thermodynamic equilibrium for an arbitrary momentum, irrespective of the
particle statistics, irrespective whether a problem is nonrelativistic or relativistic,
whether particle production and annihilation is taken into consideration. This is a
consequence of the relations between self-energies and Green’s functions in a state of
thermodynamic equilibrium (see Appendix E: also a third paper of the series). Due to
these relations the expressions corresponding to scattering-in and -out from a given
momentum (such as (G.5) and (G.6)) are shifted in the complex time plane by if.
The first moments of the expressions would differ by i8. The statement concerning the
value of a macroscopic time is subject to the fact that one of the processes can be
ignored: e.g., scattering-in for large momenta, for fermions close to zero-
temperature—the scattering-out below the Fermi surface, and scattering-in above the
surface.

APPENDIX H:
PERTURBATION EXPANSION AND GREEN’S FUNCTION EQUATIONS
OF MOTION FOR A GENERAL INITIAL STATE

Perturbation theory rules for a general initial state have been outlined, without a
full derivation, by Fujita in two papers {14, 15]. The Green’s function equations of
motion that follow from the Fujita’s perturbation expansion are different from the
equations derived in the present appendix, and they are in contradiction with the
general equation (3.35) for the Green’s functions (irrespective of the bulk limit
assumed in Fuyjita’s derivation). Although the rules of Fujita utilize the same
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functions as the rules derived below, a detailed exposition of the differences appears
unwarranted in view of the vagueness of the presentation in Refs. [14, 15].

About the initial state we shall only assume that its density operator commutes
with a particle number operator. For the Green’s function on a contour we have an
equality (2.28). We define a time-ordered contraction of two operators 4 and B by

A'B  =T(AB)— N(4B), (H.1)

where a normal operator-product N(-) is defined with respect to the vacuum. Upon
writing an exponential in (2.28) in a form of a series, we apply the Wick theorem to
every term of the series.

We have
T(ABC --- XYZ) = N(ABC ... XYZ)+ NA B C ... XY2) + NA BC" ... XYZ)
+o A NABC B9 4

If we were taking a vacuum expectation value of the time-ordered product, then only
a sum over all combinations of contractions, of the fully contracted products, would
remain at the r.h.s. of (H.2). If we take an expectation value with respect to a certain
initial state, then the expectation values of noncontracted operators in the normal
products may be expressed through many-particle Green’s functions

G (L ks 1 k) = (F DA K'Y - 971 9, (1) - @y(k)). (H.3)

For a k-particle Green’s function we adopt a decomposition into products of 1-
particle Green’s functions and correlation matrices

Gy =SIIG’< + G3NG*< + - + GY). (H4)

S is an operator symmetrizing Green’s function arguments according to particle
statistics, and Eq. (H.4) defines a k-particle correlation matrix G%. For a 2-particle
Green’s function, Eq. (H.4) has, e.g., a form

GI°(1,2:1,2)=G°<(1, I') G*<(2,2') F G°<(1,2') G°< (1", 2)
+GY(1,2:17,2). (H.5)

Upon applying the Wick’s theorem to every term of the series from (2.28), we express
expectation values of noncontracted operators through functions /*G%<, and to the
functions we apply (H.4). In the resulting decomposition, to every term in which a
pair of operators \J, and ! is contracted according to (H.1), there corresponds a
term, in which a function iG°< with this pair of operators replaces the contraction. If
we sum the corresponding terms with one another, we get a function iG°, Eq. (2.30),
for the pair of operators. Upon consequent application of the procedure to all terms
of the series, the only 1-particle functions remaining in the decomposition are the
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FiG. 12. First-order diagrams for a l-particle Green's function.

functions iG°. We may say that we dress the vacuum functions with a medium. The
Feynman rules that follow are such as in Section 2—an additional rule reads:

Each k vertices (k > 2), into which previously particle lines were running in, may
be connected with k vertices, from which particle lines were running out, through a .-
particle correlation matrix i*G2. For fermions, upon assigning specific correlation-
matrix arguments to interaction vertices in a diagram, assign to the diagram a factor
(—1)F, where F—a number of particle loops in the diagram. The number of loops
evaluate by joining the correlation-matrix arguments with functions iG° i.e., on
having i*G,(1, 2,..., k3 1, 2'...., k') join 1’ with 1, 2’ with 2,..., k’ with k.

The connected 1-order diagrams for iG(l, 1’) are now of the form presented in
Fig. 12. The function i’GY is denoted by a bubble with directed lines. Let us
mention, that correlation matrices may not be directly connected with one another.
From a way in which correlation matrices were defined, a value of a matrix does not
depend on an assignment of the time-arguments to the branches of a contour. Due to
this, when determining a maximum time for internal time-integrations in a
subdiagram, there is no need to take into account arguments of correlations matrices
connected to a subdiagram. Further if certain subdiagram is connected solely to
correlation matrices, as in Figs. 12e or f, then the whole diagram vanishes, because
internal time-integrations in a subdiagram may be reduced to ¢,.’ If a diagram may
be cut between the end-points in such a way that the cut passes only through
correlation matrices, then the diagram does not depend upon assignment of the end-
points to the branches of a contour.

% Let us mention, that for that reason, on reffering to “l-particle correlation-matrices” iG" . a
cancellation occurs for the f* terms in the Boltzmann collision integral. Analogous cancellations occur
in collision integrals for emission and absorption of bosons—third paper of this series.
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In the above expansion we need to know the correlation matrices for all times
larger than ¢;. There holds

¥i(x. 1) ZJ dy Py )1(x, 1) §7(y) + () ¥ (x, 1), (H.6)

which follows from the fact that the r.h.s. satisfies the same differential equation as
the Lh.s., with the same boundary condition at ¢ = ¢,. Equation (H.6) may be written
as

Vi(x, 1) = J dy Y(y)(iG*” (x, 1, y, 1o) — iG°“ (. 1, . 1y)). (H.7)
The hermitian conjugation of (H.7) yields
910, 1) = [ dy §9)G" (v 1y, %, 1) = G (¥, 15, %, ). (H.8)

From (H.5), (H.7) and (H.8), there follows

PGy 2 1 2')=fdxjdyjdx'jdy' (G — G )(1, x, 1,)

X i(GO> -G )2, ¥s to) izg(z)(x’ 1, ¥ tos X'y b6, ¥/ 1)
X i(G* — G*)x', £y, 1) i(G*” — G )y', 1,, 2"), (H.9)

and analogous identities hold for higher correlation matrices. The correlation
matrices in the existing rules may be replaced by the correlation matrices at ¢, and
the iG°% lines running to the correlation-matrix arguments at f,. A rule referring to
correlation matrices may be now modified in the following way:

Draw two horizontal marginal lines 5 and t;, which correspond to the two ends
of a time contour. At these lines mark the correlation matrices occuring in a diagram.
Each matrix occurs simultaneously at ¢5 and at ;. To particle lines running to t5
and from ¢; there correspond functions iG’<, and to lines running in the opposite
direction functions iG®>. To a line running downward, iG°<, there corresponds an
extra factor (—1).

A diagram from Fig. 12d decomposes now into 2* diagrams, some of which are
presented in Fig. 13. Changing the order of summation of diagrams we may dress the
lines iG° running to and from t5. We have a possibility of introducing a self-energy.

A self-energy will be defined diagrammatically as an irreducible part of the Green’s
function. We single out a self-energy X, which begins with a correlation matrix and
ends with a potential. The function ¢ begins with a potential and ends with a
correlation, while 2 begins and ends with a potential. There exists no self-energy that

595/152/2-5
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FiG. 13. Some of the diagrams corresponding to the diagram from Fig. 12d, upon modification of
the additional perturbation theory rule.

would begin and end with a correlation, because respective diagrams vanish. A
Dyson equation for the Green’s function is of the form

G=G"+G2°G+G°2G + G°2.G, (H.10)
and we have on a contour
Zc(1,2) = Zc(1, x)(8(tg s 1) — (5, 1))
=—-2(1,x,) 8(t, — 1,), (H.11)
and
ZL2) = (01, t5) — O(ty, 15)) Z€(x,, 2)
=0(t, — ty) Z°(x,, 2). (H.12)
Upon applying G°~! to both sides of (H.10) and exploiting G°~'G°3 =0, we get
G 'G=1+2G+Z.G. (H.13)

On restricting, at the Lh.s. of (H.13), the variation of the function arguments to
opposite branches of a contour, we obtain the following generalized Kadanoff-Baym
equations

. 8 Vz > 2 !
(15{1—+j) G3(1, 1')=f dx, Lyur(Xy, Xy3 1)) G3(x,, 8y, 1)

+f' 4227 — 2)(1,2) G2, 1")
—jt"czz(,r2 (1, 2)(G” — G2, 17). (H.14)

Let us mention, that from the Green’s functions in the last terms of Egs. (H.10),
(H.13), and (H.14), one should in principle exclude the parts of the functions that end
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with a correlation. However, respective contributions from the functions at ¢; and ¢g
cancel out. A procedure analogous to the above leads to a second pair of equations

. 0 +fo>Gz(1 1')—de GZ(1, %y, 1) EnplXys Xp3 1,)
( l@tl, 2m >l 2 s Xos byr) agplXys Xyra by

a6 — GOV 2)(EE+ 592 1)

to

—j"'dz G(1,2)(Z> — Z°)(2, 1'). (H.15)

In the Kadanoff-Baym equations (3.6) and (3.7), for ¢, =¢,.=1,, the
Hartree-Fock energy yields a sole contribution to the Green’s function evolution. The
correlations (scattering) built up only with time. In Egs. (H.14) and (H.15), at ¢, =
{,. = t,, the extra r.h.s. contributions come respectively from 2. and Z€. At an initial
moment, from diagrams,

Ze(xys tgs X) = FiV(x, —X,) Gg(xl’ Lys X9, Lo3 Xy s Loy g5 £y)s (H.16)

which inserted into (H.14) yields a result that agrees with (3.35), as it should.
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