
ANNALS OF PHYSICS 152. 239-304 (1984) 

Quantum Theory of Nonequilibrium Processes, I* 

P. DANIELEWICZ’ 

Nuclear Science Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720 

Received December 28. 1982: revised July 5, 1983 

Green’s function techniques for studying nonequilibrium quantum processes are discussed. 
Perturbation expansions and Green’s function equations of motion are developed for 
noncorrelated and correlated initial states of a system. A transition, from the Kadanoff-Baym 
Green’s function equations of motion to the Boltzmann equation, and specifications of the 
respective limit, are examined in detail. 

1. INTRODUCTION 

Nonequilibrium Green’s function techniques, initiated by Schwinger [ 1 ] and 
Kadanoff and Baym [2], have received much attention in the past, in particular in 
connection with plasma, laser, and chemical reactions problems. This study has been 
motivated by an application of the techniques to high-energy nuclear collisions. While 
some of the results obtained here have been derived before, a coherent and systematic 
presentation of the subject has been lacking up to this time. This paper is intended to 
be a self-contained introduction to the nonequilibrium Green’s function techniques. 
Several new formal derivations and results are presented for the first time. 

The nonequilibrium Green’s function methods allow one to study a time evolution 
of a many-particle quantum system, and a particular numerical example will be 
presented in a following paper of the series. We solve there equations of motion with 
self-energies for l-particle Green’s functions in an idealized nuclear system, and 
compare the results with a classical Markovian dynamics from the Boltzmann 
equation. Knowing the l-particle Green’s functions one may evaluate l-particle quan- 
tities in a given system. The many-particle information about the system is cast into 
self-energies in the Green’s function equations of motion. Guided by the perturbation 
expansion for the Green’s functions, one may attempt approximations to the self- 
energies. 

In Section 2 of the present paper we introduce a generalized Green’s function for a 
nonstationary quantum state of a system. In the case of a noncorrelated initial state 
of a system, the Green’s function possesses a perturbation expansion analogous to a 
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ground state perturbation expansion of a chronological Green’s function. The 
introduced Green’s function coincides, in particular ranges of variation of its 
arguments, with conventional l-particle Green’s functions. In Appendices A, B, and 
C, related to Section 2, we discuss respectively the Wick decomposition, a variational 
derivation of the perturbation expansion, and the modified rules of the perturbation 
theory. In Section 3 the equations of motion for Green’s functions, self-energies, 
lowest-order approximations to the self-energy, and conservation laws are discussed. 
In Appendix D it is shown that the self-energy for the generalized Green’s function 
may be introduced, and its properties may be studied, without a direct reference to 
the perturbation expansion. In Appendix E we study, basing on the equations of 
motion and the self-energy perturbation expansion, the properties of Green’s functions 
in a state of thermodynamic equilibrium. In Appendix F, a T-matrix approximation 
to the self-energy is discussed. 

From the equations of motion for the Green’s functions, the so-called Kadanoff- 
Baym equations, the Boltzmann equation may be obtained, at an assumption of slow 
time and space variations in a system. The transition to the Boltzmann equation is 
presented in Section 4. For the Boltzmann equation to be of use in describing the 
system’s dynamics, the dynamics given by the Boltzmann equation must be insen- 
sitive to uncertainties in particle energies and momenta. In Appendix G the 
conditions for the transition to the Boltzmann equation are analyzed for a system in 
thermodynamic equilibrium in the Boltzmann statistics limit, with self-energies in the 
Born approximation. 

In Section 5 of the paper, we present the Green’s function techniques for a 
correlated initial state of a system, prepared through the imaginary-time evolution. In 
Appendix H, we discuss a perturbation expansion and equations of motion for 
Green’s functions for a general correlated initial state. 

2. GREEN'S FUNCTIONS AND THE PERTURBATION EXPANSION 

We shall consider a nonrelativistic system of fermions or bosons with a 
Hamiltonian 

fi = 1 dx 3+(x> (- &) 3(x) + +j dx 1 dY $+(x) 9+(Y) vx - Y> O(Y) 9(x)* (2.1) 

The field operators satisfy the commutation relations 

d(x) G+(Y) f  Q+(Y) 3(x> = 4x - Y>5 

3(x> 3(Y) f G(Y) vxx> = 0. 

(2.2a) 

(2.2b) 

The upper signs refer to fermions, while the lower to bosons. Spin and isospin of 
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particles will be ignored. The reader familiar with the ground-state Green’s function 
methods, e.g. [3], will be able to introduce particle spin and isospin indices at any 
stage of the consideration. 

We are interested in an evolution of a system, which is specified at an initial time 
t, with a density operator p^. A quantity in which the evolution may be studied is a I- 
particle Green’s function 

~iG<(x,, t,, x2, fJ = (d:(x,, tz> @&,r t,>). 

The symbol (.) denotes an expectation value with respect to the initial state, 
Tr(p^ .)/Tr(p^), and the field operators in (2.3) are in the Heisenberg picture. For 
t, = t, , the r.h.s. of Eq. (2.3) is the l-particle density matrix. For example, the spatial 
density of particles is 

4x,, td= (n^,(x,, t,))== ~iG<(x,, tl,xl, t,). (2.4) 

The l-particle density matrix, Fourier-transformed in relative variables, constitutes 
the so-called Wigner function 

f(p;R, T)= jdre -‘P’(S&(R -r/2, T) @JR + r/2, ZJ). (2.5) 

The Wigner function is an expectation value of the operator that corresponds, 
according to the Weyl [4] postulate of quantum mechanics, to a classical momentum 
and space particle density. Let us expand the initial density operator in a basis of 
momentum and energy eigenstates { ul,} 

(2.6) 

Upon introduction of (2.6) into (2.5) and insertion of the unity-operator expansion in 
between the field operators in (2.9, it can be shown that 

f(P;R, T)= ’ - c PwW3 S(P - ((PA f PnO/2 - Pl)) 
W) AA’/ 

The Green’s function (2.3), Fourier-transformed in all its relative (microscopic) 
variables P = x, - x2, t = t, - t, , at fixed macroscopic variables R = (x, + x,)/2, T = 
0, + t&L may be considered a generalization of the Wigner function to a 
distribution not only in momentum and space but also in energy 
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1 
= - -T P,w@71)3 S(P - ((PA + P*,)/2 - P,)) 

W) A$! 

Here 

x 2xd(o - ((E, t E, ,)/2 - E,)) 
x (Y,t,I hi(R, r> I ul,>W,l h(R r> I YJ (2.8) 

and such a simplified notation will be frequently employed in the future. We have 

f(p;R,T)=ig(fi)G’(p,w;R.T). (2.9) 

The Green’s function 

iG>(x,, f, 3 x2, t2> = (3,(x,, t,) 3$,, t2>> (2.10) 

may be seen as corresponding to a density for an addition of a particle to a system (a 
density of holes) 

1 
iG>(p,w;R,T)=- \‘ 

Tr(p^) Ai/ 
PnnGw3 S(P - (PI - (PA f P.L,)/2)) 

x 27r~5(o - (E, - (E, + E,,)/2)) 

x (Y,u,,l VW, T> I Y,>(Y,l 3% T) I Y,J. (2.11) 

From the commutation relations it follows that 

i(G > -G’)(x,,~,x,,~)=~(x,-x2), (2.12) 

and consequently 

I . $ iG > (p, w; R, T) = 1 F f(p; R, 7). (2.13) 

The consideration of the Wigner function and the Fourier-transformed Green’s 
functions (2.8) and (2.11) as densities must be done with care because the functions 
are generally not positive definite. They are, however, always real. 

When working with a ground state of a system, one usually deals with a 
chronological Green’s function 

i@(x,, f,, x2, f,> = (~[&,(x,, t,> &%x2, t,)]), (2.14) 
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where T is the chronological-ordering operator. There holds 

@(xl, t,, x2, b) = W, - &) G>(x,, t,, xz, f2) 

+ O(t, - t,) G<(x, 3 t,, ~2, f,> 

with 

(2.15) 

e(t) = 1, 
= 0, 

for t > 0, 

for t < 0, 

and the l-particle density matrix may be obtained from (2.14) in the limit tz = t: = 
t, + E. The hermitian conjugate of (2.14) yields the antichronological Green’s 
function 

iG%,, t,, x2, f2)= (Ta[$&,, fl) 3b2, f2,1>3 (2.16) 

Ga(x,,~,,x2,~,)=e(t,-t,>G’(~,,t,r~2rf2) 

+ B(t, - t,) G>(x,, t,, x2, tJ. (2.17) 

The spectrally decomposed chronological and antichronological Green’s functions 
possess propagator forms. 

We shall now consider an expectation value of an operator with one time argument 
(d,(t)). As a consequence of that consideration we shall introduce, for a 
nonstationary state of a system, a Green’s function possessing a perturbation 
expansion analogous to the ground-state chronological Green’s function perturbation- 
expansion. In particular ranges of variation of its arguments, the introduced Green’s 
function will coincide with the Green’s functions (2.3), (2.10), (2.14), and (2.16). 

We have 

6,(t) = qt,, t) b,(t) O(t, f,). (2.18) 

where 6, is in the interaction picture and l.? is the interaction picture evolution 
operator. For t > t, 

-I dt’ f?;(P) , (2.19) 
10 

with A:(t) the interaction Hamiltonian in the interaction picture. For t > t, 

. (2.20) 

Let us see how one obtains the conventional Feynman diagrams for a ground state 
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of a system. The Heisenberg and the interaction pictures coincide in that case at time 
t = 0. The operator I?:(t) gets a factor exp(-s 1 tl), which switches the interaction on 
and off at t = *co. The noninteracting ground state 1 Cp) is assigned to the system at 
t = -co, and the interacting ground state is obtained on the basis of the Gell-Mann 
and Low theorem: 1 !P) = @O, --co) I@). For the expectation value of an operator we 
have 

(YI 6,(t) 1 Y) = (@I 0(-m, 0) 6,(t) qo, -co) I @) 
= (@I 0(-a& 0) qo, t) 6,(t) qt, 0) Qo, -al) I@) 
= (@I 0(-a& t) O,(t) O(t, -al) (CD) 
= (@I O(-co, +oo) O(+ 00, t> G(t) qt, -a) I @>, (2.2 1) 

where in the last equalities we exploit a group property of the 0 operators. For a 
nondegenerate state 1 Y), the state o(+co, -co) I @) is up to an (infinite) phase factor 
equal to I @), and into the last expression of (2.21) one can insert a projection 
operator on I@) 

(Yl 6,(t) I Y> = (@I q-co, +a> 1 @)(@I O(+co, t) d,(t) qt, -00) I @) 

= (@I ri(+=b 0 G(t) ir(t, --co) I@) 
(@I q+a, -m> I @> 

= (@I T[exp(-iI?‘, df’ f?:(f)) 6,(t)] I @) 
(@I T[exp(-i J”‘?, dt’ Z+?:(f))] I @) ’ 

(2.22) 

On obtaining the second equality we exploit the fact that 

I= (@ ) @) = (@I q-00, +co) O(+co, -co) / @) 

= (@I q-(-co, +oo) 1 @)(@I O(+m, -co) I@), (2.23) 

and we obtain the last equality in (2.22) by introducing the expansion (2.19). For the 
chronological Green’s function we have in analogy to (2.22) 

= (@I p[exp(--i I’?‘, df’ fiB’>) 31(x19 tl> 9k~~ Gl I @> . 
(@I T” [exp(-i ST, dt’ Ai(f I @> 

c2 24j 

Upon application of the Wick decomposition to (2.24) (also to (2.22)), one obtains 
the usual Feynman rules; the denominator cancels the disconnected diagrams. 

The above scheme, however, cannot be applied to the nonstationary state expec- 
tation values. The basic reason for that is the fact that, in general, within the 
evolution, no state of a system in future may be identified with any of states in the 
past. 
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Let us return to the expectation value of an operator with respect to a state 
specified at t,, 

= (P [exp [--i,:I” dt’ki(l’)) ] b,(t) P [exp (-ijIodi’ A:(t’)) I). 

(2.25) 

The perturbative evaluation of (2.25) may be put in a form analogous to the usual 
Feynman diagrams, when one joins the exponential functions from the left and right 
of the d-operator, and one introduces a time-ordering operator T that recognizes 
whether the field operators belong to the chronological or antichronological parts of 
the product. Accordingly we introduce a contour running along the time axis (Fig. 1) 
and a T operator ordering along the contour. (In connection with future applications, 
the contour may be imagined as lying in the complex time plane.) We assign the time 
arguments of the field operators to the contour. The T operator, reduced to the part 
of the contour running forward or backward in time, will become the chronological 
or antichronological ordering operator, respectively. The parts of the contour will be 
named the chronological and antichronological branches, respectively. The T 
operator will order all operators, from the antichronological branch, to the left of 
operators from the chronological branch. We can rewrite Eq. (2.25) in the form 

(6,(t)) = (T [ exp (-i[:dt’ W:(t’)) 6,(t)]), (2.26) 

where iz stands for the integral along the contour, further denoted by 4. By inserting 
extra U operators into (2.25), one may elongate the contour, so that it would run 
beyond the time t (one may also deform the contour). 

We define a Green’s function on the contour, i.e., with the time arguments from the 
contour, 

and we have 

iG(x,, t,, x2, b) = V[kdx,, tI> 9$,, fdlh (2.27) 

W19~I~x2,~2)= (T[exp (-ifdf’fi:(t’)) 0,(x,,l,)g:(x2,t2)]), (2.28) 

with the contour running above the largest argument of the Green’s function. With 

FIG. 1. Contour along the time axis for an evaluation of the operator expectation value. 
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Eq. (2.28), the Green’s function will possess a perturbation expansion analogous to 
the ground-state expansion. The Green’s function (2.27) equals 

@XI 3 1,~ X2> h) = e(f,, &> G>(x,, t,, x2, t2) + e(t,, t,) G< (x,, t,, x2, t2), (2.29) 

with the function B(t,, t2) defined on a contour: 

&, , &> = 1, if t, is later on a contour than t,, 

= 0, if earlier. 

On restricting the variation of the arguments of the introduced generalized Green’s 
function to the separate branches of the contour, one gets the conventional Green’s 
functions: chronological, antichronological, and the functions with a fixed order of tjI 
and Gt, G’ and G>. 

About the initial state specified at t,, we assume that its density operator 
commutes with the particle-number operator. Furthermore, we assume that the initial 
state admits the Wick decomposition (is noncorrelated). The density operators of 
such states are generally of the form p^ = exp(d), with JV? being a l-particle operator. 
The vacuum and for fermions the Hartree-Fock states, arising from applications to 
the vacuum of sets of l-particle creation operators, correspond to the limiting cases 
of such density operators. The Wick decomposition is discussed in Appendix A. 

The Feynman rules, which results from an application of the Wick decomposition 
to (2.28), are similar to the conventional ground-state Feynman rules. The difference 
is such that all the time integrations do not run from --03 to +co, but along the 
contour. The top of the contour must be above or equal to the largest time argument 
of the evaluated Green’s function. More precisely, within a chosen part of a diagram, 
the internal time integrations must run to the largest external time in that part of a 
diagram. The disconnected diagrams vanish, because there the integration contours 
may be reduced to t,. (1 + disconnected diagrams) is an expansion of 

When the kinetic energy operator is taken as a l-particle Hamiltonian defining the 
interaction picture, then the Feynman rules for evaluating iG(x,, t,, x2, t2) are the 
following: 

1. Draw all topologically distinct connected and directed diagrams. Particle 
lines run continuously; one sequence of lines runs from (x,, t2) to (x1, tl). 

2. A particle line running from (x’, t’) to (x, t) represents a noninteracting 
Green’s function 

iG’(x, t, x’, t’) = (T[$*(x, t) @:(x’, t’)]) (2.30) 

3. To an interaction line there corresponds a factor -iV(x -x’) d(t, t’). The 
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function s(t, t’) is defined on a contour: it is equal to s(t - t’) on the chronological 
branch and to -8(t - t’) on the antichronological branch. 

4. To a single particle line that forms a closed loop or is linked by the same 
interaction line, there corresponds a function iGo<. 

5. For fermions attribute to the diagram a factor (-l)“, where F is the number 
of particle loops. 

6. Integrate all internal vertices over a whole space and in time over a directed 
contour from to to to. 

One of the possible variational derivations of Feynman diagrams is discussed in 
Appendix B. 

When evaluating a particular type of a Green’s function iG?, iG”, or iGc, it may be 
convenient to divide the contour into the two branches in the perturbation theory 
rules. The resulting rules are presented in Appendix C. 

3. GREEN’S FUNCTION EQUATIONS OF MOTION 

3.1. Equations of Motion and the Self-Energies 

Using the perturbation expansion, one can define the self-energy Z as an 
irreducible part of the Green’s function. In Appendix D we introduce the self-energy 
in a formal manner and analyze its properties without direct reference to the 
diagrams. The self-energy may also in principle be introduced variationally. The 
Green’s function satisfies equations of motion with self-energy 

(i++$]G(l, 1’)=6(1, l’)+fd2C(I,2)G(2, 1’) 
1 

4; + g) G(1, 1’) = 6(1, 1’) +,fd2 G(l, 2)Z(2, 1’) 
1’ 

(3.1) 

which correspond to the Dyson equations 

G(1, 1’) = G’(1, 1’) +fd2,fd3 G”(1,2)C(2, 3) G(3, 1’) (3.3) 

G(L I’)= Go& 1’) +fd2,fd3 G(l,2)Z(2, 3) G’(3, 1’). (3.4) 

We use here the notations l=(x,,t,), jdl=,fdt,J’dx,, 6(1,1’)=6(x,--x,,) 

s(t,, t, ,). The self-energy has a form analogous to (2.29) 

~(l,2)=~S(1,2)+e(t,,t,)~~(l,2)+e(t,,t,)C~(1,2), (3.5) 

with Z” being a singular part of Z on the contour. 
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On fixing the time arguments of the Green’s function in Eqs. (3.1) and (3.2) at 
opposite sides of the contour, one finds, with (2.29) and (3.5), the equations 

(++;) G”(L I’)= jdx,~,,(x,,x,;l,)G:(x,,r,, I') 
1 

+ 
I 

f1d2(C’(1,2)-C<(1,2))G:(2, 1’) 
to 

- “‘d2Cz(l, 2)(G>(2, 1’) - G<(2, I’)), i 
(3.6) 

10 

[-i$+g)G:(l, l’)=~dx,G~(l,x,,t,.)~~~(x,,x,,t,.) 
I’ 

+ “d2(G>(l, 2)- G<(l, 2))2’<(2, 1’) 
i to 

- 
i’ 

” d2 Gg(1, 2)(C>(2, 1’) -C<(2, 1’)). (3.7) 
*cl 

The function CHF, exhibited here, corresponds to the singular part of the self-energy, 
which may in principle be found diagrammatically. The time integrations in (3.6) and 
(3.7) run along the time axis and the limits are explicitly indicated. Equations (3.7) 
are actually the hermitian conjugates of Eqs. (3.6). Equations (3.6) and (3.7) are 
known as the Kadanoff-Baym equations. 

With the use of the advanced and retarded functions (see Appendix D) 

F*(l, 2) =P(l, 2) f &*(t, - f2))(P(l, 2) -F<(l, 2)), (3.8) 

Eqs. (3.6) and (3.7) may be written as 

j++; Gz(1, 1’) 
1 

= j”d2~t(L2)GP(2, 1’)+jmd2Z:(l,2)G-(2, 1’), 
to *cl 

(3.9) 

= jmd2Gz(1,2)Z-(2, 1’)+j’md2G+(l,2)ZS(2, 1’). 
fo fo 

(3.10) 

On subtracting Eq. (3.9) for G< from Eq. (3.9) for G>, one finds the equation 
satisfied by the retarded and advanced functions. 

j&+g)G*(l, I’)--jmd2Z*(l,2)G*(2, l’)=s(l - 1’). (3.11) 
1 Ill 
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Analogously, from Eqs. (3.10) one finds 

i 
-i$-+g)G*(l, l’)-~md2Gi(l,2)2i(2, l’)=S(l - 1’). (3.12) 

1’ to 

With Eqs. (3.11) and (3.12), a general solution of Eqs. (3.9) and (3.10) may be 
written as 

@(1, 1’) =jm d21rn d3 G+(l, 2)Cp(2,3) G-(3, 1’) 
to to 

+ I I dx, dx, G+(L ~2, t,,) @(x2, t,, x3, r,) G-(x,, t,, I’), (3.13) 

where the second term accounts for the initial conditions. Equation (3.13) may be 
considered a generalized fluctuation-dissipation theorem, as will be seen below. 

Let us consider the field-operator equation of motion 

(3.14) 

On evaluating the commutator one finds 

On taking the side-by-side time-ordered product of Eq. (3.15) with its hermitian 
conjugate, making use of Eqs. (3.1), (3.2), and the definition of the Green’s function, 
one is able to show that 

= iC(1, 1’) + i 
ff 

d2 d3 X(1, 2) G(2, 3) C(3, 1’) (3.16) 

where [., -1, stands for the anticommutator in the fermion case and the commutator 
in the boson case. From Eq. (3.16) we can identify the singular part of the self-energy 
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where the last equality follows from the differentiation of the equal-time field-operator 
commutation relation. On inserting the value of the current j, into (3.17) we find 

C”(1, l’>=s(t,,t,,) G(x,-x,.)jdx, V(x,-x,) 
L 

x <4%h Cl> kdxz, t1>> T VXl -x1,) 

x <&I<x 1’3 Cl> 4w1, [I>) 
I 

=~(t,,t,,)~,,(x,,x,,;t,). (3.18) 

The self-energy (3.18) is the Hartree-Fock self-energy, with the first term being a 
direct (Hartree) term and the second the exchange term. For the self-energies ZS, it 
follows from (3.16) that these are the irreducible parts of the current-product expec- 
tation values 

Tiz<(l, l’>=(~~(l’)j,(l))irred, (3.19) 

iz>(17 “I= UEl(l) .G(l’))irred* (3.20) 

Irreducibility means here that one excludes from the expectation values those 
diagrams that can be cut in between the end-points in such a way that the cut passes 
only through a single particle line. If we define the expectation values in the presence 
of an external current J coupled to the field operators 

(6 > = mH%l) HJ (T[S,I) ’ 
with 

and J being a Grassman current in the fermion case, then 

G+(l, 1’) = &(9”(l)),) 3 
J=O 

and 

G-(1, 1’) = 

(3.21) 

(3.22) 

(3.24) 

The variational derivatives in (3.23) and (3.24) are carried out as if the current were 
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the same on both branches of the contour. With Eqs. (3.23), (3.24), and (3.19), we 
can rewrite Eq. (3.13) for G< (similarly for G>) into the form 

o&l’) 3,(l)) 

= i ! m d2 -O” d3 
10 to 

(3.25) 

With j’, and J”, being the sources of the tields I$, and I$:. expressions (3.19) and 
(3.20), similar to the definitions of the functions Gs, suggest that F~C< and iC> 
correspond respectively to the particle production (scattering-in) and absorption 
(scattering-out or hole production) rates. The condition of irreducibility may be 
considered as a removal of the effect of the repeated interactions in the medium. We 
have in fact, respectively, for t, on the contour earlier and later than t;, 

/fd2,fd3Z(l, 2)G(2,3)Z(3, l’)=jmd2jmd3Z:(1, 2)G-(2,3)X-(3, 1’) 
10 fo 

+jmd2jmd3St(l,2)G~(2,3)Z-(3, 1’) 
to to 

+ 
i i 

md2 O” d3 Z+(l, 2) G+(2, 3)0(3, 1’) 
10 *cl 

(3.26) 

cf. Eq. (3.16). On taking the expectation value of Eq. (3.15) in the presence of the 
external current, and making a variation with respect to the current, one finds 

i-&+2 G’(1, l’)- W”(l)>, 
SJ(1’) 

= S(1, 1’) (3.27) 
1 .I=0 

and from comparison with Eq. (3.11) 

d2C+(1,2)Gt(2, 1’) 

I m d2Z’(l, 2) &9&))./ ZZ 
fo dJ(1’) J=o. 

From the above follows 

Wdl>>J 
z+(ly 2, = 6(9,(2)), J=. . 

(3.28) 

(3.29) 
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Similarly one has 

I md2G-(l,2)Z-(2, l’)= Wiw>), 
to dJ*(l) .I=0 ’ 

and 

(3.30) 

(3.3 1) 

The functions with which we are dealing in this section obtain simple forms in a 
uniform system in equilibrium. Results, following from the Green’s function equations 
of motion, for a system achieving a uniform equilibrium are discussed in Appendix E. 
Before reading the appendix, we advise the reader to get acquainted with Appendix C 
and the next subsection. 

The Green’s function equations of motion, Eqs. (3.6) and (3.7), were first obtained 
by Kadanoff and Baym [2], by means of an analytic continuation of equations 
satisfied by temperature Green’s functions in the imaginary time corresponding to the 
temperature. A contour method has been applied by Schwinger [ 1 ] to study the 
equations of motion of a quantum oscillator in an external field. Schwinger employed 
a matrix notation for functions and their multiplications on the contour. The 
Kadanoff-Baym equations have been independently derived with a contour method 
by Keldysh [5] and by Fujita [6, 71. Other papers concerning Green’s function 
equations of motion under different Hamiltonians, transition from the equations to 
kinetic equations (Section 4 of the present paper), application of Green’s function 
methods to various problems, are Refs. [8-l 71. 

3.2. Perturbative Evaluation of Self-Energies 

The two lowest-order diagrams for the self-energy are presented in Fig. 2. The 
perturbation theory rules give for these diagrams 

‘w, 1’) =6(t1, t1,) I 
6(x, - x,,) j dx, Y(x, -x1) 

X (fi) G’<(x,, t,, x2, t,) + V(X, -x,,) 

X iGO<(x,, t,, x1,, t,) 1 . (3.32) 

FIG. 2. Lowest-order diagrams for the self-energy. 
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The approximation to the self-energy, relying on the noninteracting Green’s functions, 
may seem reasonable only for times close to the initial time t,. On replacing the 
functions Go by G in (3.32), one sums a whole class of diagrams, and one obtains the 
expression for the self-consistent Hartee-Fock energy, Eq. (3.18). 

Next-order self-energy diagrams (Fig. 3) are named the Born diagrams, direct and 
exchange. The direct diagram gives the following contributions to the self-energies: 

C&,(1, I’)=+ \& V(x,-x,) V(x,,-x,,)G~(l, 1’) 

x @(x2, t,, x2,, t,,) G& t,,, x2, t,), (3.33) 

while the exchange diagram contributions are 

Z&(1, l’)=-)‘dx,jdx,> V(x,-x,) V(x2,-x,,)Gt(l,x,..t,,) 

X G%,, f,, 1’) G&, f,,, ~2, fl), (3.34) 

where we already use the functions G instead of Go. The self-energies (3.33) and 
(3.34) correspond to the lowest-order scattering with particles of the medium. 

A self-energy approximation, in which diagrams of all orders in a 2-body 
scattering with particles of the medium are summed, is called the T-matrix approx- 
imation. This approximation is presented in Appendix F. 

The RPA approximation, which will not be discussed in detail, consists in the 
summation of bubble diagrams in the interaction. Besides the particle Green’s 
function equations, one deals with equations of motion of a polarization insertion that 
describes phonons (density fluctuations). The physical picture is such that the 
particles induce an emission and absorption of phonons. 

3.3. Conservation Laws 

In many physical processes, an essential role is played by conservation laws. When 
approximating the Green’s function equations of motion, on choosing diagrams for 
the self-energy, one may obtain equations that violate conservation laws, The problem 
of conservation laws, in a system of particles with a potential interaction, has been 
considered by Baym and Kadanoff [ 181. We shall summarize here the results of these 
authors, by presenting the approximations to the equations of motion that yield the 
conservation laws for particle number, momentum, and energy. 

‘iIb 23i 
1' 2’ 1' 2’ 

FIG. 3. Born diagrams for the self-energy. 
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From Eq. (3.15) there follows an equation for the Green’s function on a contour 

i$+~)G(l,l’)=6(1;l~)i~~~x~Y(x,-x,)G,(l,x,,t,; 1’3 x2, r:,, 
1 

(3.35) 

where the 2-particle Green’s function is 

i*G,(L 2; 1’9 2’) = (~[$,(l) 3&) 9@‘) 9,%1’)1>, (3.36) 

and tf denotes a time infinitesimally later on a contour than t,. The hermitian 
conjugate of Eq. (3.15) yields another equation 

-i$+$)G(l, 1’)=6(1, l’)~i~dx,G,(l,x,,t,,; l’, x2, t:,) V(x, - xrt). 
1’ 

(3.37) 

From the definition of the function G, it follows that 

G,(1,2; 1+,2+)=G,(2, 1;2+, I+). (3.38) 

If the approximate Green’s function obeys both an equation of the form (3.35) and an 
equation of the form (3.37), and the approximate function G, satisfies the condition 
(3.38), then the conservation laws are satisfied. 

For the density of particles (2.4), one finds from (3.35) and (3.37) 

(3.39) 

where the particle flux is 

G,(l))=-&(V-V,.)(Ti)G’(l, 1’) 1 . 
I’=1 

Momentum and energy conservation laws cannot strictly be written in a local form. 
For the total momentum 

(V, - V,,)(fi) G<(l, 1’) , 
,‘=I 

one finds from (3.35), (3.37), and (3.38), d@,(t))/& = 0. By using the Green’s 
function equations of motion (3.35) and (3.37), the expectation value of Hamiltonian 
(2.1) may be expressed in terms of the l-particle Green’s function 

@,(W=fjh [j+#)-&V:+“:.)] (WGI(lJ’)~,,=; 
(3.42) 
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For the Hamiltonian expectation value (3.42), one finds from (3.35), (3.37), and 
(3.38), d(fi,(t))/dt = 0. 

What conclusions, concerning self-energy, can one draw from Eqs. (3.35), (3.37) 
and (3.38)? One may confront the equations with self-energy (3.1) and (3.2) with 
Eqs. (3.35) and (3.37). In order that the conservation laws be satisfied, Z must be 
such that a term ZG can be written as T I’VG, and GZ as 7 iG, V, with the same G, in 
both cases. G, must satisfy the condition (3.38). Typical approximations to the self- 
energy, like Hartree, Hartree-Fock, Born, T matrix, and RPA, yield the conservation 
laws [ 18, 21. However, when one includes an arbitrary diagram in the self-energy, 
then the conditions (3.35), (3.37), and (3.38) generate a number of other graphs of 
the same order and similar topological structure, which must be simultaneously 
included to comply with the conservation laws. It may be worth mentioning that the 
conservation laws enforce the use of the full Green’s functions G in the construction 
of self-energy. (One takes into account skeleton diagrams, irreducible with respect to 
the self-energy, in the construction.) 

4. BOLTZMANN EQUATION 

4.1. Boltzmann Equation 

Under proper conditions, the Boltzmann equation for the Wigner function can be 
derived from the Kadanoff-Baym equations. We shall assume that the temporal and 
spatial changes in a system are small, and the evolution does not differ much from a 
free evolution of a uniform system. 

On subtracting Eq. (3.7) from Eq. (3.6) for G<, with t, = t,, = T, and on taking a 
Fourier transform in spatial microscopic variables, we find an equation 

+&“j dr’ Z,,(r -r’; R + r’/2, T) G<(r’; R - (r -r/)/2, T) 

--Idre-‘P’Id~,~“F(r-rl; R - r’/2, T) G<(r’; R + (r - r’)/2, T) 

+~dreeiprj~_dt’jdr’T)(r-r’,t’;R+r1/2,T+tf/2) 

XG<(r’,t’;R-(r-r’)/2,T+t’/2) 

+~dre~ipr~o’mdt’~dr’E’(r-r’,-t~;R-r’/2,T-t’/2) 

X G<(r’, t’; R + (r - r’)/2, T- C/2) 

-(...C’...G> . ..). (4.1) 
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where we have introduced relative variables in the functions and we have adopted 
I,, + -co. The omission of the fourth microscopic variable in the 1.h.s. Green’s 
function is an abbreviation for 

G<(p;R,T)- $!-G<(p,o;R, T)=G<(p,t=O;R, T). 
i 

We have not written explicitly the last two terms at the r.h.s. of (4.1), which enter the 
r.h.s. with a “-” sign, have the same structure as the third and fourth r.h.s. terms, but 
contain CC and G> instead of Z> and G<. In a freely evolving uniform system the 
functions have no dependence on macroscopic variables, and the Green’s functions 

G?(p, co) = 2n6(w - co;) G?(p) with co; = py2m. 

We shall evaluate the r.h.s. of Eq. (4.1), which makes the evolution different from a 
free one, on ignoring the dependence of the functions on macroscopic variables, with 
the Green’s functions as for a freely evolving uniform system Gg(p, w) = 
2n6(w - wi) Gg(p; R, 7). In that case the terms with C,, cancel out. The third and 
fourth terms may be combined, similarly the fifth and the sixth, and the r.h.s. of Eq. 
(4.1) takes a form 

(4.2) 

Upon completion of the integrations over microscopic coordinates and times in (4.2), 
we obtain an equation 

=C’(p,o~;R,T)G’(p;R,T)-C’(p,w~;R,T)G’(p;R,T). (4.3) 

With (2.9) and (2.13), Eq. (4.3) becomes 

= (Ti) C’(P, 0;; R, T)(l F f(p; R, T)> - iz>(p, wi; R, T)f(p; R, T), (4.4) 

which is just the Boltzmann equation. 
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In the Fourier-transformed variables the sum of Born diagrams for self-energy, 
Eqs. (3.33) and (3.34), gives 

x pQ4 S(p + p1- p’ -pi) 6(w + WI - w’ - w;> 

x I(V(P - P’))’ ‘f V(P - P’) V(P .- Pi)1 

x Gz(p,, w1 ; R, T) Gs(p’, w’; R, T) Gg(p;, co; ; R, T). (4.5) 

Upon introduction of the Wigner functions we find 

cw4 S(P + PI - P’ - Pi) 

x s(u; + u;, - UjJ - fg;) + (UP - P’) f VP - Pi))* 

x (1 F f(p,; R, T))f(p’; R, T)f(p; ;R, 0, (4.6) 

and 

g=j& (:;3 Lf!L (2x)4 6(p + p1 - p’ - PI) 

x 6(u; + u;, -co;, -Q$;)+v(P-Pw v(P-Pl))* 

xf(~,:R,T)(l rf(p’;R,T))(l *.f(p;;R,Q). (4.7) 

A convective derivative of the distribution function constitutes the 1.h.s. of Eq. 
(4.4), and the r.h.s. of the equation accounts for changes in the distribution caused by 
interactions. With iC> a scattering-out rate and f a density of initial states, the 
second r.h.s. term in (4.4) accounts for scattering-out from p; with TLZ< scattering- 
in rate and (I T f) a density of final states, the first term accounts for scattering-in. 
Equation (4.7) for iC> sums over 2-body scattering processes, a symmetrized cross 
section is in a Born approximation, the 6 functions correspond to momentum and 
energy conservation in collisions. With respective densities of states, integrations run 
over particles with which scattering occurs and over final states. iC> is a collision 
frequency of a particle with momentum p. Equation (4.6) describes inverse processes 
with respect to those in (4.7), in which particles of the medium scatter and one of 
them emerges with a momentum p. See also the form of self-energy in the T-matrix 
approximation Eq. (F.2.5). 

In the equilibrium the r.h.s. of the Boltzmann equation must vanish, and a detailed 
balance equation is satisfied 

+i~<(p, wji)(l f f(p)) = iz>(p, wi>f(p). (4.8) 
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If we disturb the equilibrium by adding or removing particles of momentum p, we 
have for the associated disturbance 6f(p; R. 7’) an equation 

& + : * VR @(Pi R, r> = -T(p, co;) 6f(p; R, 7’) (4.9) 

with r = (L?Y> f (f i) C’) = i(Z> - XC). For a disturbance independent of R, from 
(4.9) follows 

6f(p; T) = 6f(p; T= 0) c~(~,~:)‘, (4.10) 

and this equation Fourier-transformed in macroscopic times reads 

4,,(P; Q) = 
&-(P; T= 0) 

T(p, Lo;> - if2 * 
(4.11) 

The function r sets the rate at which equilibrium is reached. 
When a local equilibrium is established in a system, i.e., Eq. (4.8) is approximately 

satisfied at every (R, r> (cf. r.h.s. of Eq. (4.4)), then the rate of changes of a local 
distribution f may be arbitrarily small. The time-rate will depend on the scale of 
spatial inhomogeneities L, l2 - v/L, w h ere v is a characteristic particle velocity. A 
system in a local equilibrium can be described with a set of hydrodynamic equations, 
local conservation laws of particle number, momentum, and energy. 

Before we proceed further let us note the following. On using the function r, a 
formal solution to the Boltzmann equation (4.4) in a homogeous system may be 
written as 

.f(p;T)=f(p;T=O)exp -,fo’dT’T(p,w~;T’)~ 
i 

+ ‘dT’(~i)C<(p, co:; T’) exp J 
dT” T(p, I$ ; T”) . (4.12) 

0 

In the low-density limit i.Z’ s f iZ’ and r x iC>. At high occupations of states, the 
quantities iZ> and TiZ’ may be comparable. For bosons, when i2T’ is larger than 
i.Z>, the function I- is negative (from Eq. (4.8) it follows that this may not occur at 
equilibrium). From Eq. (4.12) it follows that in case of a negative r function, the 
occupation of a state increases exponentially; we may call this a laser effect. 

An assumption leading to the Boltzmann equation was the slow variation of the 
functions with the macroscopic variables. If it were possible to obtain the Boltzmann 
equation, variation in macroscopic variables away from equilibrium would be set by 
magnitude of the function r. When we pass from Eq. (4.1) to (4.2), the variations in 
macroscopic variables must be compared with variations in microscopic variables: 
the latter are determined by energies and momenta in the system. 
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Upon sketching the transition to the Boltzmann equation, we shall now rederive the 
equation in a more formal manner, so that the approximations involved will become 
explicit. 

4.2. Derivation of the Boltzmann Equation Reassessed 

We start with the Kadanoff-Baym equations in forms (3.9) and (3.10). which can 
be written as 

lrn d2(G-‘)+(l, 2) Gs(2, l’)=I”‘d2Zs(l, 2)G-(2, l’), (4.13) 
*a ‘0 

jad2G;(l,2)(G-‘-(2, l’)=j~d2G+(1,2)Z:(2, I’). (4.14) 
10 ‘0 

We take a limit t, + -co, and in a moment it will become clear how this limit should 
be understood. Each side in the above equations is of the form 

I d4x,f(x,, ~2) 4x,, x, 81, (4.15) 

and upon introducing x = x, - x, ,, X = (x, + x1 ,)/2, x’ = x2 - x1,, we may rewrite 
(4.15) into 

d4x’f(x - x’; X + x’/2) u(x’; X + (x’ - x)/2). (4.16) 

We shall Fourier transform the sides of Eqs. (4.13) and (4.14), and we shall average 
the results over a certain range of frequencies; i.e., we evaluate expressions of the 
form 

I .~F(w)jdt!‘dre’“‘e-“‘Cdt’jdr’ 

Xf(r-r’,t-t’;R+r’/2,T+t’/2) 

X u(r’, t’; R + (r’ - r)/2, T+ (t’ - t)/2), (4.17) 

where F is a function used for the averaging. We take the width of the function F 
small in comparison with characteristic energies in the system and sufficiently large 
that 

f 
$ F(o) 8”’ 

is sharply peaked around t = 0 in comparison with the variation of the functions f 
and u in macroscopic times. (In connection with the spatial variables, an extra 
averaging over momenta in (4.17) may be indispensable in a low-temperature 
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system.) We shall assume that the properties of the functions f and u are such that 
the dominant contribution to the integral (4.17) comes from small values of r, 
(r - r’), and t’, small in comparison with the variation of the functions f and u with 
the macroscopic variables. We provide a certain analysis of the function properties in 
Appendix G. Under the above assumptions we may expand the functions 

j-(x - x’; x + x’/2) z 
i 

1 +*x’g j-(x-x’;X). 
1 

u(x’; x + (x’ - x)/2) x ( 1 ++x)& 
1 

u(x’;X). 

Upon expansion of the functions f and u in (4.17) and introduction of the Fourier 
transforms of the functions, we find for (4.17) 

x f(p,;X)u(p*;X)+~x’~(p,;X)u(p,;X) 
I 

(4.18) 

where for a while we omit the averaging function over frequencies. Use of an identity 

a 
xe -iPx = i-,-iPX, 

ap 

integration by parts, and integrations over x and x’ lead to the expression 

.f~Pmu(Pm++ ~~(P;x)~(P;x)-~(P;x)~(P;x)). (4.19) 

In connection with (4.19) we define a generalized Poisson bracket 

(4.20) 

Upon application of the above procedure to each side of Eqs. (4.13) and (4.14) and 
subtraction of the equations from one another, one finds a so-called generalized 
Boltzmann equation (see the properties of the functions, Appendix D) 

[Re(G-I)+, iG$] - [Es, Re G+] = G<Z> - G>C<. (4.2 1) 

For the sake of clarity we have omitted the variables (p;X). Implicitly, to each side 
of (4.21) an averaging is applied over a range of frequencies large in comparison with 
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the rate of change of the functions. However, the range of averaging in frequencies 
must be small in comparison with characteristic energies in the system, so the 
equation can be closed. A connection between (4.21) and (4.3) may be seen when one 
notices that 

Re(G-‘)+(p,o;R, T)=w-p’/2m-ReC’(p,w;R, T), (4.22) 

and applies (4.20) to the first term at the r.h.s. of (4.21). 
In the above derivation, we have obtained the generalized Boltzmann equation by 

retaining the lowest terms in a certain expansion. The role of a small parameter in the 
expansion is played by (characteristic time of variations))‘/e, where e corresponds 
to characteristic energies. When a system is away from equilibrium, or when we ask 
about deviations from equilibrium, the rate of variations from the Boltzmann 
equation is of the order of r. (The magnitude of r may even be considered a lower 
bound for the rate of temporal changes, because nonhomogeneity of the system or the 
presence of an external potential in the self-energy may enforce higher rates.) A 
different situation occurs when we consider the evolution of a local equilibrium, but 
we postpone the discussion of that case until the end of the subsection.’ According to 
the above, on obtaining the generalized Boltzmann equation, terms of second order in 
r/e are omitted. Consequently one can disregard such terms in Eq. (4.21), which 
otherwise consists of the first-order terms. Of second order is the second term at the 
1.h.s. of (4.21). Further, the Green’s functions appearing in Eq. (4.21) and used in 
construction of self-energies can be taken in the zeroth order. When establishing a 
zeroth order, one should cautiously deal with Re C+; there occur situations when 
Re Ct * r, e.g., for long-range interactions (problem considered in the T-matrix 
approximation at the end of Appendix F), further when Re Zf contains an external 
potential or for fermions close to zero temperature. For a strong short-range 
potential, when special effects due to Pauli principle are absent, we may expect 
ReZt -r. In the latter case, the zeroth-order equation for the Green’s function is 
(from (4.13) and (4.19)) 

(III - p2/2m) Gs(p, o; R, T> = 0, (4.23) 

which together with (2.13) and (2.9) gives 

iG>(p, w; R, r> = 27~40 - w,)( 1 f f(p; R, T)), 

‘f iG< (p, OJ; R, T) = 27rS(w - mp) f(p; R, r), 

(4.24a) 

(4.24b) 

with wp = p2/2m. Upon insertion of the functions (4.24) into Eq. (4.21) and 
integration over w, one finds Eq. (4.4). 

’ The author is grateful to Professor G. Baym for pointing out the two cases. 
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If Re Zt >> r, it may be necessary to retain Re Z+ in the zeroth-order equation for 
Green’s functions 

(co - p2/2m - Re Ct (p, co; R, T)) Gg(p, co; R, T) = 0. (4.25) 

If one can ignore the dependence of Re Z+ on u, Re Z+ (p, o; R, T) = 
ReZ’+(p; R, 7’), then from (4.25) follow the forms of Green’s functions (4.24) with 
wp = p*/2m + Re Zt (p; R, 7’). Upon insertion of the functions into (4.2 l), one finds 

c 
-&+;.g+ 

aReJl+(p;R, 7’) 8 aRe,?Y’(p;R,Z’) 8 .-- 
aP aR CYR . ap 

1 
f(p;R, r) 

= Pi) C<(P, y,; R, T)(l T f(p; R, T)) - iP(p, oP; R, T’>S(p; R, T). (4.26) 

An equation of this form, written for fermions close to zero temperature, for momenta 
close to the Fermi surface, is known as a Landau-Silin equation. A Vlasov equation 
emerges from (4.26), when one neglects the r.h.s., and for the self-energy takes the 
Hartree term, independent of p. 

In the case when it is not possible to ignore the dependence of Re Zt on w, but r 
is small around Re(G-‘)’ = 0, we may introduce an occupation number 
corresponding to the zero of Re(G-I)+, and obtain a kinetic equation for the 
number. We parametrize the behaviour of Gs in o, around a solution w,, of 
Re(G-‘)+ = 0, with 

and 

TiG<(p, w; R, T) = 2nd(Re(G-‘)‘(p, co; R, T)) n(p; R, T) 

= Z(p; R, T) 27d(w - w,,) n(p; R, 7’), (4.27) 

iG>(p, w; R, T) = Z(p; R, T) 2n6((u - w,)( 1 T n(p; R, T)), (4.28) 

where 

Z-‘(p; R, T)= 1 - 
aReC+(p,w;R,T) 

ao w=wp 
(4.29) 

We rely in this parametrization on the equality G> - G< = Gt - G- (see 
Appendix D) and the forms of G* following from (3.11) and (4.19) in the zeroth 
order with respect to r/e 

G*(p,w;R, T)= 
1 

w-p2/2m-Re~t(p,w;R,T)+iE’ 
(4.30) 

We insert the function G< into (4.21), in the form given by the first of equalities in 
(4.27), so the d-function can be removed from under the Poisson bracket. In subse- 
quent steps we exploit the fact that with 

e(p, o; R, r> = p2/2m + Re Zt (p, o; R, T), 
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and x = p, R, T, we have 

am, ae(p, w; R r> 
f3X aw W=Wp 

Upon integration over frequencies we find the equation 

-g+$&+ 
i3ReZ+(p,w,;R,T) a .-- BRez+(p,w,;R,T) a 

ap aR aR 

x ~CP; R T> 

= Z(P; R Tl (T i) E<(p, upi R, T)(l f  4~; R 13) 

- Z(P; R, T) ix’@, up; R, T) n(p; R, T)). (4.3 1) 

Let us now turn to the evolution of local equilibrium. The rates of temporal 
variations of the Green’s functions will be set by a scale of nonhomogeneities in a 
system and may be arbitrarily small. The Fourier-transformed Eqs. (4.13), (4.14), 
(3.1 l), expanded according to Eq. (4.19), provide us (Eq. (4.21)) with the conditions 
for a local equilibrium and the form of the functions (see Appendix E). Apart from 
the limitations on the rate of temporal variations inherent to the ordinary Boltzmann 
equation (next subsection and Appendix G), it follows that the rate must be much 
smaller than lY (Note that since r now does not fix the rates of macroscopic 
variations, there is no need for r being small.) Depending on the smoothness of the 
expected equilibrium functions and the rates of macroscopic variations, the averaging 
in (4.17) may be lifted. As far as the evolution is concerned, the following occurs. 
The forms of the local equilibrium functions depend on a few parameters, which can 
be determined from the local particle, momentum, and energy densities. Although the 
evolution can be studied by using the kinetic equations, it is more convenient to use 
the local conservation laws, the hydrodynamic equations. These equations may be 
deduced from Eqs. (3.35) and (3.37), and in the momentum and energy cases the 
derivation involves an expansion of G, over the interaction range (cf. Refs. [ 18, 191). 
The G, in the equations (in the pressure) can then be perturbatively expressed in 
terms of the l-particle equilibrium Green’s functions. Apart from the case of the 
ordinary Boltzmann equation, the derivation of the conservation laws from a kinetic 
equation may be quite involved, especially in case of a full generalized Boltzmann 
equation (4.21). One has to trace down the correspondence between Eqs. (4.13), 
(4.14), and (3.35), (3.37), in the procedure leading to the kinetic equation. The effort 
is not necessarily rewarding, because in general the part of the pressure explicitly 
depending on the interaction cannot be directly expressed in terms of the actual G 
and Z. 
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4.3. Conditions Leading to the Boltzmann Equation 

From the derivation of the Boltzmann equation and analysis of the rejected terms, 
it follows that use of the Boltzmann equation in a homogeneous medium is 
conditioned by a weak sensitivity of the Boltzmann equation dynamics to uncer- 
tainties in energies of the order of r. In a nonhomogeneous medium, with r setting 
also the rates of spatial variations, use of the Boltzmann equation would be 
additionally conditioned by weak sensitivity of the dynamics to uncertainties in 
momenta of the order of Tm/p. 

The Boltzmann equation limit can be directly seen when considering a disturbance 
of an equilibrium, by an addition or removal of particles of a momentum p. For a 
uniform disturbance, it follows from the Kadanoff-Baym equations that 

riaG<(p;t,t’)=G’(p;t-O)@(p;T=O)G-(p;O-t’). (4.32) 

Equation (4.32) Fourier-transformed in microscopic and macroscopic times reads 
(see (E.4)) 

ridG<(p, o; 0) 

=@(p;T=O)G+(p,otQ/2)G-(p,w-Q/2) 

= &(P; T= O)(G-(p, w - Q/2) - G + (p, o t Q/2)) 

1 

’ (G+)-‘(p,w+Q/2)-(G-)-‘(p,w-a/2) 

=df(p; T=O) 
1 

u - fl/2 - p2/2m - Re Z’(p, w - R/2) - iT(p, w - Q/2)/2 

1 
- co + Q/2 - p2/2m - Re Ct (p, w t Q/2) + iT(p, w  t G/2)/2 

1 

’ lLReZ+(p ,w+Q/2)+ReCt(p,w-a/2)’ 
(4.33) 

+ i(T(p, 0 + R/2) + r(p, 0 - 0/2))/2 

If details in the w-dependence of 6G’ within the range of r are not important, and 
the self-energies vary weakly within that range, we can approximate the r.h.s. of 
(4.33) with 

Z(p) 2mqo - 0 ) 
@-(P, T= 0) 

p r(p, up) - iz-‘(p)n ’ 
(4.34) 

in the most involved case of Re Z ‘. Equation (4.34) occurs to represent a solution to 
the kinetic equation (4.31) (with an adequate boundary condition). For the simpler 
cases of Re C’, proper approximations to (4.33) represent solutions to Eqs. (4.26) or 
(4.4). 
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If r is comparable with particle energies in a given system, the dynamics may not 
be described with the Boltzmann equation. This is to be attributed to the time-energy 
uncertainty principle because of the appearance of 21 in the comparison of particle 
energies with the time of variations in a system. A situation like that occurs in high- 
energy nuclear collisions which are the topic of a following paper of the series. Let us 
mention that in the low-density limit l-z iC> and hT-’ constitutes a mean time 
between successive particle-particle collisions. In the Born or T-matrix approx- 
imations to the self-energies, fir-’ is of the order of l/(nav), where n is a density of 
particles; (J, an average total particle-particle cross section; and v, an average particle 
velocity. 

In judging the applicability of the Boltzmann equation to a given system, one has 
not only to take into account the magnitude of particle energies. The possibility of 
describing a system with the Boltzmann equation can be further limited by the 
properties of an interaction. In Appendix G we examine values of microscopic 
variables that give dominant contributions to integrals (4.17) of Green’s functions 
with self-energies. The values of variables correspond to energy and momentum 
dependence of self-energies. The values of variables correspond to energy and 
momentum dependence of self-energies. The analysis of Appendix G is performed for 
a system in thermodynamic equilibrium with self-energies in the Born approximation. 
Below, we analyze the equation of motion for the Wigner function, Fourier- 
transformed in macroscopic time. 

Equation (4. I), with the self-energies in the Born approximation, Fourier- 
transformed in the macroscopic time, yields the following equation for the momentum 
distribution in a homogeneous system: 

x [(V(P - P’))‘F V(P - P’) UP - Pl)J 

x F(P, PI 9 P’, P; 9 w; a), (4.35) 

with the auxiliary function 

~(p,p,,p’,p~,~;~)=~~(p,~;~~~~(~,,~;T)~~~~l~--t;T)~~~~l~--t~~~ 

- G<(p, t; 7J G<(p,, t; 7) G>(p;, --t; ?“) G>(p;, --t; T). 

(4.36) 

Proceeding toward the Boltzmann equation we approximate the function F with 

F(p, pl, p’, pi, o; T) = h4o - de) F(P, ply P’, PI ; T), (4.37) 
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where 

F(P9 Pl) P’Y PI ; T) = (1 f f(Pi T))(l T f(Pli T))f(P’; T)f(PI ; v 

-f(P; T)f(pl; TN1 r .OP’; T))U F f(~; ; T)), (4.38) 

and 

de = co; + co;, - co;, - 0;;. (4.39) 

We shall look under what circumstances we can ignore the Q/2 terms in the 
denominators at the r.h.s. of (4.35), and replace the respective expression in the 
bracket with 2n6(o). (The r.h.s. of (4.35) corresponds then to the r.h.s. of Eq. (4.21); 
the first-order terms in the Jzs from denominators correspond to the terms at the 1.h.s. 
of (4.2 l).) With B - r, the accuracy of the approximation will reveal the accuracy of 
the Boltzmann equation (the frequency structure of the function F, Eq. (4.37), will be 
valid with an accuracy of the order r). With (4.37) we may rewrite the r.h.s. of (4.35) 
into 

j dP1 j dP’ j dPl ( . . 
(2n)3 (2x>” m Ae+i/2+ic - de-Tf/Z-ic 

j 

x Pn13 4P + Pl -P’ - PX(V(P - P’)’ f VP - P’) VP - Pl)) 

x F(P, ~1, P’, P; ; 0). (4.40) 

The dependence of the remaining part of (4.40) on de will be decisive in replacing the 
difference in the bracket by 2d(Ae). The dependence will be set by properties of the 
particle distribution and properties of the potential. From (4.40), it follows that for 
the Boltzmann equation we must have pAp/m 9 r, with p a characteristic particle 
momentum and Ap a scale of variation of the particle distribution in momentum. The 
same condition must also be satisfied when Ap is taken as the scale of variation of the 
potential with the momentum transfer. For a potential with a spatial range q, the 
condition reduces to p/ym 9 I-. The condition states that the interaction time, 
evaluated as the time of flight through the potential range, must be much smaller than 
the time between the collisions. The condition related to the potential is classical, as 
opposed to the condition related to the particle distribution. 

In Appendix F we present an analysis similar to the above, for self-energies in the 
T-matrix approximation. Conditions for the Boltzmann equation, related to the 
interaction, read pAp/m P r and Aw $ r, with Ap and Act, scales of variation of the 
scattering matrix with momentum transfer and energy, respectively. 

5. DYNAMICS FOR A CORRELATED INITIAL STATE 

The perturbation expansion and Green’s function equations of motion, outlined in 
Sections 2 and 3, apply to initial states that admit a Wick decomposition. This is a 
considerable limitation when the evolution starts at a finite time. If one wanted, e.g., 
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to include a strong repulsion in the nuclear interaction at small distances, then the 
thus far obtained results would be of a little use. In Appendix H we present a pertur- 
bation expansion and Green’s function equations of motion for a completely general 
initial state. Below we shall discuss a practical method of switching on the 
correlations in the initial state. 

A correlated initial state may be prepared from a noncorrelated state through an 
imaginary-time evolution. The technique is applicable when the initial state can be 
defined as a lowest eigenvalue state of certain operator 2 (also when the initial state 
is defined with the equilibrium density operator). In contrast to the perturbation 
expansion of Appendix H, the resulting perturbation expansion will not contain 
correlation matrices Gi. It should be noted that, when the noncorrelated state is a 
nondegenerate lowest eigenvalue state of an operator 2’, and when the imaginary- 
time evolution lasts infinitely long, then the Goldstone expansion may be obtained for 
the correlated state. Implementation of the imaginary-time evolution into the none- 
quilibrium Green’s function 
Ref. [21]. 

method has been suggested in Ref. [ 201: see also 

Let us take a certain state 
operator 2 

/ @) and expand it in a basis of eigenstates iy,,i of an 

Then 

(5.1) 

(5.2) 

where {E,} are the eigenvalues of 2, and 1 Y) is the normalized projection of / @) 
onto the lowest eigenvalue subspace onto which the projection does not vanish. 
According to (5.2), a projecting out of the lowest eigenvalue state corresponds to an 
imaginary-time evolution from it = ice to iz = 0. On assigning the resulting state to a 
system at a time t, we put it = t - t,. When evaluating an expectation value at a 
time t, 

(5.3) 

we deal with an evolution running along a contour from Fig. 4. When evaluating 
expectation values of Heisenberg picture operators at t, > t,, we deal with the 
evolution contour extended along the real time axis (Fig. 5). If the pure state expec- 
tation values at the r.h.s. of (5.3) are replaced by those with respect to a general 
density operator, then the imaginary-time evolution occurs to project out, similarly as 
for a pure state, a part of the density operator within a subspace of a lowest E,. An 
initial state of a real evolution, specified with an equilibrium density operator of a 
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FIG. 4. Contour in the complex time plane corresponding to the evaluation of an operator expec- 
tation value with respect to a state of a lowest F,,. 

temperature T = (k, p)-‘, corresponds to an imaginary evolution that starts from a 
unity operator 1 

(5.4) 

Because of a cyclic property of the trace, it is not important how the imaginary 
evolution interval is positioned with respect to the real time axis: contours 
corresponding to (5.4) and to an expectation value of a Heisenberg picture operator 
are presented in Fig. 6. In the zero-temperature limit b--+ co, one obtains, starting 
from the operator 1, a projection operator onto the &’ lowest eigenvalue subspace. 
This procedure is more slowly convergent than starting with an imaginary evolution 
from an adequately chosen state, e.g., a lowest eigenvalue state of a l-particle 
operator 2’. In the numerical calculation of the next paper of the series we start 

Im t 
A 

t0 t1 Re’i 

I t 
FIG. 5. Contour corresponding to the evaluation of an expectation value of a Heisenberg picture 

operator at I, > t,. 
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Im t 

t 

FIG. 6. Contours corresponding to the evaluation of expectation values with respect to the 
equilibrium density operator. 

from such a state, and the imaginary evolution lasts a finite time. The contours from 
Fig. 7 correspond to the finite time imaginary evolution. 

We shall now find a Green’s function perturbation expansion. We begin with a 
consideration of the expectation value of an operator with one time argument. The 
operator expectation value, with respect to a state obtained at t, through an 
imaginary evolution, will be denoted by ((6,(t))). We have 

where the Schriidinger picture evolution operator 

ir,tt, tt) = e-idtr-t,)v 
(5.6) 

From the method of preparation of the state at t,, it follows that 

((6,(l))) = (Qo - iTo, to> ir,(t,, @OS& to) ri,(t,, to + iTo)) 
(u,(t, - iso, lo + iTo)) 

(5.7) 

Im 1 

f 

0 

to+179 

I 

t0 

+==- 

Re t 

to-IT0 

b 

FIG. 7. Contours corresponding to the evaluation of the operator expectation values, for a finite 
time of the imaginary evolution. 

595/152/l-? 
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(one might eventually introduce at once the limit r,, -+ co). The evolution operator for 
imaginary times is 

ir,ct, tt) = e-i+%-t’). 
(5-8) 

The expectation values (s) in (5.7) are taken with respect to a state from which the 
imaginary evolution starts. With a notation 

f?(t) = 2 for imaginary times, 

=fi for real times, 
(5.9) 

the evolution operator on a contour from Fig. 7b is 

O,(t, t’) = T [exp c-i{, dt, II(r, (5.10) 

with the integral running along the contour interval from t’ to t. The expectation 
value (5.7) may be written as 

(5.11) 

We write the index S at the 6 operator to stress that this is a Schrodinger picture 
operator-most often independent of time. The time argument of the operator 
determines the position in the operator product, where the operator is to be placed by 
the time-ordering operator on the contour. We may generalize the expectation value 
of an d operator at a time t, ((b(t))), t o imaginary times, by defining the expectation 
value with a r.h.s. of (5.11). 

We shall assume a partition of fi(t) 

z?(t) = AO(t) + P(t), 

with I?‘(t) a l-particle operator. The free evolution operator is 

(5.12) 

. (5.13) 

There holds 

[ 0 
f 

os(t, t’) = T C?‘(t, I’) exp -i dt, Z?k(t,) 
“I’ 

= o”(t, t’) + (-i),f dt, o’(t, t,) fi’(t,) o’(t,, t’) 
1’ 

+ (-i)‘,f dr,f” dt, o”(t, tl) A’(t,) C?“(t,, t2) Z?‘(t,) C?‘(fZ, t’) + ... . 
1’ t’ 

(5.14) 
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Equation (5.14) may be verified by ascertaining that the r.h.s. of (5.14) satisfies the 
same differential equation on a contour as (5.10), with the same boundary condition 
at t = t’. Accordingly we have, for an expectation value defined with the r.h.s. of 
(5.11), 

((6@))) = (W(r, - iTo, 1, + iz,) exp(-i j dt, rii(t,)) 6,(t))]) 
(T[v(t, - iro, to + ir,) exp(-i j dt, Hi(t,))]) * 

(5.15) 

We shall assume that the operator 2 and a density operator of the initial state of 
the imaginary evolution both commute with a particle-number operator. Further, we 
shall assume that the initial state of the imaginary evolution admits the Wick decom- 
position; i.e., we shall assume that noninteracting many-particle Green’s functions 
(defined by expectation values of the type ((.)) with Z?‘(t) = 0) factorize into l- 
particle Green’s functions 

iG’(1, 1’) = ((T[$(l) t,C+(l’)]))” 

= Plwto -jr,, to + ito) v&(l) 9sf(l’>l> 
(u”(t, - ir,, to + iso)) ’ 

(5.16) 

The problem of the Wick decomposition within the imaginary-time evolution is 
discussed in Appendix A. 

If both 2’ and A’ are the same 2-body potential interaction, and the difference 
between the evolution generators in real and imaginary times lies only in the l- 
particle parts of the generators, then the Feynman rules for evaluating the Green’s 
function 

iG(L 1’) = ((T[@(l) 9’(1’)1)) 

(5.17) 

are such as in Section 2. The time integrals are carried along the contour from 
Fig. 7b. The contour must extend above the largest of the real times of the evaluated 
Green’s function. A reduction of a contour may occur only for real times, and a 
minimal contour is the one from Fig. 7a. The disconnected diagrams do not now 
vanish, but are cancelled by the denominator in (5.17). With 

fi”(t)=~dx,jdx,,t,G+(x1)h(x,,x,4)~(x,J. (5.18) 

and the function h for real times 

&1,x,,; 0: t)=-y$qxl -x,*), (5.19) 
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the Green’s function equations of motion on the contour have a form 

i$G(l. l’)-~dx,h(x,,x,;t,)G(x,,t,. 1’) 
1 

= S(1, 1’) +@2Z(l, 2) G(2, l’), (5.20a) 

-i&G(l, lr)-jdx,G(l,x~,tli)h(x~,x,,;~~r) 
I’ 

= 6(1, 1’) +@2 G(l,2) C(2, 1’). (5.20b) 

The function S(1, 1’) = s(t,, t,,) 6(x, - x, ,), and the function s(t,, t, ,) is defined on a 
contour in the complex time plane 

!f . dt,, s(t,, t, 8) F(t, ,) = F(t,). (5.21) 

For real times, the Kadanoff-Baym equations have forms similar to those of (3.6) 
and (3.7), but they contain extra contributions from imaginary parts of a contour. An 
equation for G< (1, 1’), where t, is real, has, e.g., the form 

+ j” d2P(l, 2) G<(2, 1’) lot ire 

+ f’ d2C<(l, 2) G’(2, 1’) 
ti 

+i 

lo-ire 

d2L<(l, 2) G>(2, 1’). (5.22) 
‘I’ 

In Ref. [2] the Kadanoff-Baym equations have been derived for an initial state of 
a real evolution specified with an equilibrium density operator (Fig. 6). A nontrivial 
evolution for the real times has been achieved by disturbing the system with an 
external potential. 

6. FINAL REMARK 

The investigation of the Green’s function methods in this paper has lead to several 
new results. We have clarified the transition from the Green’s function equations to 
the kinetic equations, and the analysis of the thermodynamic equilibrium on the basis 
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of the Green’s function equations of motion. We developed the Green’s function 
methods on a contour in the complex time plane, and the perturbation expansion and 
Green’s function equations for a general initial state. The results should be of use in 
problems of nuclear physics, as well as in other branches of physics. 

APPENDIX A: WICK DECOMPOSITION 

The consideration will be confined to initial states specified by density operators 
commuting with a particle-number operator. For such states, an expectation value of 
a field-operator product vanishes, if the product contains a different number of the I,? 
operators from a number of I$+. 

A state admitting the Wick decomposition is a state for which expectation values 
of products of the interaction-picture field-operators (many-particle Green’s 
functions) factorize into expectation values of pairs of operators (l-particle Green’s 
functions) 

(‘&j . . . jy)=~~B’ . . . p.,g.. +A.B,. . . . 8.2.. + . . . 

= sum over all possible contracted products, (A-1) 

where the contraction 

(A.21 

For the fermion operators, when one rearranges the order of the operators in a given 
term of (A.l), with intention to bring a contracted pair of operators next to one 
another, the term is to be multiplied by the sign of the performed permutation. In 
Eq. (A.2) the operators are in the same order as they appear in (A.l). When deriving 
Feynman diagrams, one applies the Wick decomposition to operators which are in a 
specific time-order at the 1.h.s. of (A.l). 

We shall show that states specified by density operators of the form 

p^ = exp(d), (A-3) 

with 2 being a l-particle operator, admit the Wick decomposition. The 1.h.s. of Eq. 
(A.l) will satisfy the same differential evolution equations in every field-operator 
argument, as the r.h.s. Therefore the consideration of the factorization (A.l) may be 
limited to a one set of times, e.g., when all the interaction-picture operators are taken 
at the initial time t,. 

We have 

(A.41 

with -5 real and 6; being creation operators of the I-particle basis, that 
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diagonalizes d. Let us expand p^ in a basis of the Hartree-Fock states 1 {nj}), the 
states that arise from applications to the vacuum of sets of l-particle creation 
operators 

We have 

and 

G4.6) 

In the boson case, in order that the state gives a finite particle-number expectation 
value, we must have S$ < 0. Let us note that an unoccupied l-particle state j, 
corresponds to 40 --) -co. The vacuum corresponds to all -5 + --co. For fermions, a 
projection operator onto the Hartree-Fock state may be obtained from b/Tr(p”) in the 
limit of J$ + --co for the unoccupied states j, and S$ + fco for the occupied states. 
For fermions 

with (c;i’c;i) = (e-““j + 1)-i. 
We shall prove that for a density operator (A.3) and a set of annihilation and 

creation operators ci,, 6, ,..., c$,, 8,, there holds 

Tr(@Q 6, . . . 8,(;,) Tr(bdai,8,) Tr($$ ... a,&,) 
Tr(p^) = Tr(p”) T@) 

Tr(pi,S,) Tr(&,&, ... &,oi,) 

’ TrV) 
+ 

Tr(p^) “* 

Tr(p”&,t?,) Tr(&,di, ... a,) 

’ TM) Tr(i? ’ 
(A.7) 

The subsequent applications of (A.7) lead to Eq. (A.l) for the annihilation and 
creation operators. The latter implies Eq. (A.l) for the field operators, since these are 
linear combinations of annihilation and creation operators. We have 

where 5, = &a, at ifB,=a^,,andi,=e-,“aif~~=a,. 
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Let us take 

and for fermions let us anticommute, and for bosons commute, the operator 8, to the 
right. Upon application of (A.8) we find 

(A.9) 

where [. , .I+ denotes an anticommutator, and [. , . ] ~, a commutator. For two 
operators (A.9) takes form 

Tr(p^ri, dib) [4,41* 
WB) = l*C, . 

(A.lO) 

A combination of (A.9) and (A.10) yields (A.7). 
Upon arriving at (A.l) or (A.7), one may take limits of J$ -+ -co, and in the 

fermion case 4 + +oo, proving thereby the Wick decomposition for the limiting 
forms of b/Tr(p^). It should be pointed out, however, that for the vacuum state, or the 
fermion Hartree-Fock states, a more direct proof of the Wick decomposition may be 
obtained through the introduction of an operator normal-product and an application 
of the Wick’s theorem [3]. 

Now we shall show that all states which admit the Wick decomposition are 
described by the density operators of the form (A.3), involving eventually the limiting 
forms of p/Tr(p”) with J$ + fco. Let us take a state that admits the Wick decom- 
position and is described by a density operatorp^‘. We want to show that there exists 
a density operator of the form (A.3) such that 

p^‘/Tr(p^‘) = b/Tr(p^). (A.1 1) 

When taking expectation values of arbitrary field-operator products from the sides of 
Eq. (A. 1 l), we have by assumption the Wick decompositions for the both sides. In 
order to prove (A. 11) it is sufficient to show that there exists an operator b, of the 
form (A.3), such that the expectation values of pairs of the operators agree with those 
from p^‘. The l-particle density matrix (tj+(x’) I,?(X)) = Tr(p^‘rj+(x’) $(x))/Tr(p^‘) is 
hermitian and may be diagonalized. Generally 

(A.12) 
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where (ii are annihilation operators of a basis of states with wavefunctions qj(x). For 
a basis that diagonalizes (A.12), (&;,Lij) = (i]j’c;j) SjCj. For fermions (G]cij) < 1, which 
holds for any state of the system and any l-particle state, as can be seen by 
expanding the density operator in a Hartree-Fock basis. We construct the operator 
.d, Eqs. (A.3) and (A.4), using the operators of the basis that diagonalizes (A.12), 
with 

(A.13) 

The case of (ZiLij) = 0 is to be understood as -$- -co, and (dJTLjj) = 1 for fermions 
as -5 + +co. With Eq. (A.13), the expectation values of the pairs of the field 
operators, obtained from 6, agree with those from p”‘, and this completes the proof. 

Let us now discuss a Wick decomposition in connection with an imaginary-time 
evolution (Section 5). In that case a Wick decomposition will stand for a 
factorization of a noninteracting expectation value of a field-operator product: 

((AB * * * fq)“= p.2.. tA.8.. . . . f.2.. + . . . 

= sum over all possible contracted products 

with the contradiction 

(A. 14) 

‘4.B. = ((AB))O. (A.15) 

The operators at the 1.h.s. of (A.14) are to be ordered according to the time- 
arguments from a counter in the complex time plane. The contour may be arbitrarily 
deformed along the real axis (but not along the imaginary axis), running back and 
forth, as is, in fact, generally occurring with an evolution contour appropriate for the 
1.h.s. of Eq. (A.l). When all operators have real time-arguments, then Eqs. (A.14) 
and (A.15) reduce to Eqs. (A.l) and (A.2). Expectation values in (A.l) and (A.2) are 
to be taken with respect to the density operator 

$=e -‘.#-pe-“.a, (A.16) 

where 2” is the generator and r the duration of the imaginary evolution, and b 
specifies the initial state of the imaginary evolution. The real-evolution part of an 
operator ir” from (A.14) and (A.15), remaining upon extraction of the imaginary 
part into (A. 16), corresponds to the interaction picture of the operators in (A. 1) and 
(A.2). 

The 1.h.s. of Eq. (A.14) will satisfy the same differential evolution equations on a 
contour, in every field-operator argument as the r.h.s. A consideration of the 
factorization may therefore be limited to one set of times, and we shall take for 
convenience all operators at an initial time of the real evolution to. From the previous 
discussion it follows that the density operator (A.16) must be of the form (A.3) with 
(A.4). Equation (A. 16) and the Baker-Campbell-Hausdorff (BCH) formula 122 1, 
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imply then that p” must also be of the form (A.3). With (A.16) and (A.3) for p”, the 
BCH formula will express the density operator p” as an exponential of an infinite 
series of commutators of S? and 2”. With S? and 2’ being l-particle operators, the 
series will consist of l-particle operators. Let 

with 

p” = exp@), p  ̂= exp(,d), 

$9 = 1 q’,c :̂c ,̂, 

and in a basis that diagonalizes 2” 

Then, on studying matrix elements of p  ̂between l-particle states, one finds that the 
matrix Sp equals 

..d = log 
i 
eeTchm+ hJ s cf,maI*ee(P~ . 

I ) 

The logarithm of a matrix in the bracket is well-defined, because the matrix is 
hermitian and positive definite. 

APPENDIX B: VARIATIONAL DERIVATION OF THE 
PERTURBATION EXPANSION 

We introduce a Green’s function in the presence of an external potential 

P.1) 

where 

9, = exp i_i,,l~~ U(1”) l&(1”) Ql”)). (‘3.2) 

Here 1 s (xi,ti), ,jdl =jdt,Idx,. When a given expression will be varied with 
respect to the potential U, we shall assume that U is different on each branch of the 
contour. In the final results the potential U is to be put equal to 0. 
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It can be shown (see Eqs. (3.14), (3.15), (3.35), and (3.36)) that the Green’s 
function (B. 1) satisfies the equation 

i-&+2- U(1) G(l, 1’),=6(1, 1’) f i,fd2 V(1,2)G,(l, 2; I’, 2’),, (B.3) 
1 i 

with the 2-particle Green’s function 

i’G,( 1,2; 1’) 2’)U = (T[vMl) G,(2) vzd2’) VW) %I) 
PISEll) 

Here S(1, 1’)~6(x,-x,,)6(t,,t,,), V(1, I’>= V(~r-x,,)6(t,,t,~). 
Next we introduce a noninteracting Green’s function 

iGo(l 3 1,) I,’ = (T[9,(1> 9W) f%l) 
PJSII) ’ 

where 

2?, = exp (-ifdl” U(1”) tj,(l”) @:(l”)). 

The noninteracting Green’s function satisfies the equation 

i&+2- ~(1)) GO(l, l’)c,=a(l, 1’). 
1 

Equations (B.3), (B.7), and the identity 

&G(l, l’),:=~(G,(1,2; 1’,2+),,-G(l, 1’)I,G(2,2+),.), 

imply an equation for the Green’s function 

G(l, I’)“= G’(1, l’),+i{dl”[d2 G’(1, l”)L, V(l”, 2) 

- G(l”, l’)o f G(l”, l’)c G(2, 2+)),: . 

P.4) 

(B.5) 

P-6) 

(B.7) 

P.8) 

(B-9) 

From (B.9) a perturbation expansion for G may be obtained. The first-order terms 
arise from replacement of G on r.h.s. with Go. The second-order terms emerge from 
insertion of the first-order terms into the r.h.s., and the procedure may be continued. 
In the first step a knowledge of 6G0/6U is necessary. Commonly one would conclude, 
from an equation following from (B.7) 

i&+2- U(1) & G’(1, l’)c,= S(l, 2) G’(2, l’),,; (B. 10) 
1 
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and Eq. (B.7), that 

-& G’(1, l’)r!= G’(1, 2)U G’(2, l’)t,. 

The subsequent insertions into Eq. (B.9) and use of Eq. (B.11) yield the perturbation 
expansion known from Section 2. 

Since we never referred to the properties of an initial state, the above would 
indicate that the perturbation expansion relies always on the noninteracting l-particle 
Green’s functions Go, independent of the properties. In fact an eventual error arises 
when one concludes Eq. (B.11) from Eq. (B.lO), and one ignores the possibility of 
adding a solution of the homogeneous differential equation. The presence of a 
homogenous equation solution is set by the initial conditions at to. From the 
definition (B.5) it follows that 

&Go@> l’ju= r(G;(1,2; l/,2+),,-G’(1, 1’)L,G0(2,2+),.), (B.12) 

and the higher variational derivatives of Go introduce the higher noninteracting 
many-particle Green’s functions into the expansion. The adoption of (B. 1 l), instead 
of the more general (B.12), corresponds to the assumption of the factorization of all 
initial many-particle Green’s functions. (The reading of Appendix H may clarify this 
aspect of the problem.) 

APPENDIX C: PERTURBATION THEORY RULES UPON SEPARATION 
OF THE CONTOUR INTO BRANCHES 

The rules serve for the evaluation of a specific Green’s function type: iG<, iG>, 
iG’, or iG”. (The rules may also be employed in evaluation of a specific type of self- 
energy or other functions.) 

1. Draw a line dividing the plane into two parts that will correspond to the two 
time-branches-chronological and antichronological. Place the points, corresponding 
to the function arguments, at one branch or the opposite branches, according to the 
type of the evaluated function. Draw all topologically distinct connected and directed 
diagrams. The diagrams, which are differently cut by the division line, are distinct. 
The division line may not pass through the potential. 

2. A particle line represents iGo’, iGo>, iGo’. or iGoa, depending on the line 
start and end positions. 

3. To an interaction line there corresponds a factor -iV(x, - x2) d(t, - tz). 

4. To an interaction line at the antichronological branch there corresponds a 
factor (- 1). 
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t D, 
3 D2 

FIG. 8. Diagrams that yield expressions which cancel with one another. 

5. To a single particle-line, that forms a closed loop or is linked by the same 
interaction line, there corresponds a function iGo’. 

6. For fermions attribute to a diagram a factor (-l)‘, where F is the number 
of particle loops. 

7. Integrate all internal vertices over a whole space, and in time from to to the 
maximum argument of the evaluated function. 

8. To every antichronological-side time-integration there corresponds a factor 

C-1). 

Jointly the rules 4 and 8 give a factor (-1) for every antichronological-branch 
interaction which gets both vertices integrated. Rule 7 necessitates a complement. Let 
the division line into branches be a dashed line and let us introduce a vertical time- 
axis (see Fig. 8). Then the diagrams from Fig 8 give expressions that differ only with 
a sign. Generally it is sufficient to carry the internal time-integrations in a given part 
of a diagram up to the maximum external time, because jointly the integrations above 
that time cancel out. 

APPENDIX D: FUNCTIONS ON A CONTOUR 

Let us take a contour with a top at a time tmax (see Fig. 9). The Green’s function 
on a contour possesses the following symmetry property: when t, > fz then 
G(xl, t,, ~2, tJ = G(x,, t:, x2, tz), where t{ has the same time-axis value as t,, but 
lies at the opposite side of the contour ((CT)’ = ti). The same occurs for the second 
argument of the Green’s function, when t, > t,. We shall use below the following 
notation: 1 s (xi, ti), lT E (xi, tf), k dl = / dt, i dx,, S(1, 1’) s 6(x, - x, ,) &t,, t, 0. 
If the functions F and C, that have no singularities for equal time-variables on the 
contour, possess the above symmetry, then the function 

E(l, 1') =@2F(l, 2) C(2, 1’) (D.1) 
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FIG. 9. Contour along the time axis. 

also possesses the symmetry. Only the time-integration is relevant here. Let, e.g., 
f, > t,,, then for t, > t,, P(1, 2) C(2, 1’) = F( 1, 2r) C(2r. 1’), and the sides of this 
equality enter the integral with opposite signs. The integration above I, cancels out. 
With F having no singularity, only the values of F for t, < 1, enter the integral, and 
from the symmetry of F follows the symmetry of E in t,. The value of E depends 
only on values of F and C for t < t, . Let us consider a possibility of singularities in F 
or C for equal time-variables on the contour. In order that E possesses the symmetry, 
the effect of a singularity must not depend on the side of the contour at which the 
singularity must not depend on the side of the contour at which the singularity is 
placed. Generally such singularities are of the form 

CD.21 

If both F and C possess singularities of this type, then the singularity of E is also the 
type (D.2). From the symmetry property of the functions, it follows that the 
considered functions are of the form 

~(l,2)=~S(l,2)+B(t,,t,)F~(1,2)+B(t,,t,)F~(1,2), CD.31 

with Fb the singular part of the function (of the type (D.2)), and with the functions 
fi defined on the time-axis. 

The space of the functions having the symmetry property, and supplemented with 
the form (D.2) of singularities, is closed with respect to the operation defined by 
(D.l). We assume that G has an inverse in that space 

fd2 G-‘&2) G(2. 1’) =/d2 G(l, 2) G-*(2, l’)= S(1, 1’). (D-4) 

From (D.4) and the symmetry of the functions, it follows that G-’ does not depend 
on the choice of contour (i.e., t,,,, Fig. 9) and that G-’ with time-arguments <t 
depends only on G with time-arguments ct. 

The inverse of Go, Eq. (2.30), is 

Go-‘(U)= ( i$+g) 41,2), 1 
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which follows from the equations of motion of the interaction-picture field-operators, 
and Eqs. (2.29) and (2.12). The (proper) self-energy will be defined by 

X(1, 2)= Go-‘(1, 2) - G-‘&2). P-6) 

From Eq. (2.27), it follows that under complex conjugation we have [iG( 1,2)] * = 
iG(2T, 1 ‘), and further 

[iG(l, 2)]+ = iG(lT, 2’). (D-7) 

For the functions iG$, Eqs. (2.3) and (2.10), we have [iGs(l, 2)]+=iG$(l, 2), i.e., 
the functions Gz are hermitian. Let us study the properties of G-’ under conjugation. 
Upon taking hermitian conjugates of the sides of Eq. (D.4), we find, with (D.7), 

!f d2 (-) G(lT, 2r)[G-‘(2, l’)]+= 6(1’, 1). 

We change the sequence of integration of the sides of the contour, i.e., in the 
functions we change the argument 2 into 2T, and simultaneously we change the 
overall sign, 

4 d2 G(lT, 2)[G-‘(2*, l’)]+= &l’, 1). 

Changing 1 and 1’ into 1’ and 1” and using 

S(l,l’)=J(l’, l)=-6(1T, l’T), P.8) 

we find 

!f d2 G(1,2)[-G-‘(2’, F)]+= &I, I’), 

which implies 

[iGp’(1, 2)]‘= iG-‘(lT, 2r), (D.9) 

cf. (D.7). 
We shall consider functions of the form (D.3), for which 

[iF(l, 2)]+=iF(lT, 2T). (D.lO) 

To this class belong the functions Go, G, Go-‘, G-‘, Z, and other functions with 
which we shall deal in this series. From Eqs. (D.lO), (D.3), (D.2) (D.8), and the 
equality B(t,, t,) = s(tr, t:), it follows that 

[F”(l, 2)]+ = P&2), [iFz(l, 2)]+= iP(l,2). (D.ll) 



F+(1,2)=FS(1,2)+(P(1,2)-FC(l,2))B(t,-t,), (D.12a) 

F-(l,2)=F~(1,2)-(F>(1,2)-I;<(l,2))B(t,-t,), (D. 12b) 

where the singular part is taken such as on the chronological branch. We have the 
relations 

Ff(1,2)-F-(l,2)=F>(1,2)-F<(l,2), (D.13) 

(D. 14) 

and 

We may define the hermitian functions 

ReFt(l,2)=+(F+(1,2)+F-(1,2)) 

=F6(1,2)+~E(t,-t,)(~>(1,2)-Fi( L2)), P 19 

ImFi(l,2)=-$~+(1,2)-F~(l,2))=-$F~(1,2)-F’(l,2)), (D.16) 
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We shall define, on the time-axis, the retarded and advanced functions 

where s(tr - tJ = O(t, - t2) - O(t, - ti). We have 

ReF+(1,2)=FS(1,2)+is(t,-ftz)ImFt(1,2). (D.17) 

We shall show that a Fourier-transform in relative variables, of a hermitian 
function, is real (see Eqs. (2.5), (2.8) (2.11)). We use a 4-dimensional notation 

H(p; X) = 1’ d4x eipx H(X + x/2, x - x/2). (D.18) 

We have 

H*(p;X)=jd”xe -ipxH*(X + x/2,X-x/2) 

= 
I 

d4x e-‘*“H+(X - x/2, X + x/2) 

= i d4x eC’*“H(X - x/2, X + x/2) = H(p; X). (D.19) 
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For the further purposes of the paper, we shall define the hermitian functions 

A(1,2)=-21mGt(l,2)=i(G>(1,2)-G’(1,2)), (D.20) 

r(l,2)=-21mZt(1,2)=i(Z>(1,2)-C<(1,2)). (D.21) 

From (2.12) follows 

I ~A(p,w;R,zJ= 1. (D.22) 

According to (D. 15), upon identification of the singular part of the self-energy 
(Section 3), 

APPENDIX E: THERMODYNAMIC EQUILIBRIUM 

We shall discuss a system that has achieved a uniform equilibrium. The functions 
G and C will depend only on differences of the arguments, and we may introduce 
Fourier transforms 

F(x - xf, t _ [,) =J zny eip(x-x’)e-iw(r-r’) qp, 0). (E.1) 

We write the Fourier-transformed functions Gs in the following way 

T G’ (p, 0) = f(p, w) A (P, w), (E.2a) 

iG> (p, w) = (1 f f(p, w>> A (P, w>> (E.2b) 

with A = i(G> - G<) (Eq. (D.20)), and we define with Eqs. (E.2) the function f. For 
a freely evolving system 

A’(p, w) = 2nd(w - p*/2m). 053) 

From the Fourier-transformed Eq. (3.11) (to --) -co) we obtain 

G*(P,w)= 
1 

u-p2/2m-C*(p,o)’ (E.4) 

and we find that A has a Lorentzian shape 

A(P, QJ) = 
TCPv 0) 

(w - p2/2m - Re E+(p, w))’ + (T(p, w)/2)’ (E.5) 
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(see the end of Appendix D). We have’ 

(E.7) 

The function A(p, w), the so-called spectral function, may be interpreted as a function 
weighting the frequencies w for a given momentum p. The total weight of A is equal 
to 1. With f iG< (p, w) and iG> (p, o) respectively distributions of particles and holes 
in momenta and energies, the function f(p, w) obtains an interpretation of the 
occupation of states (p, 0). 

A sum of the Born diagrams for the self-energy, Eqs. (3.33) and (3.34). gives in a 
stationary uniform system 

xA(p,,w,)A(p’,o’)A(pl,wl)(l rf(Pr,w,))f(P’,o’)f(PI.wI). 

(E.8a) 

iZ,‘(p,o)=.--f(p,, WA1 F f(P’, QJ’))(l r s(P; 3 wl)). (E.8b) 

In (E.8b) we do not write explicitly that part of the r.h.s. which is the same as in Eq. 
(E.8a). The expression (E.8a) accounts for scattering of particles (p’, w’) and 
(pi, wi) into states (p, w) and (pl, o,), with a Born-approximation scattering cross 
section. The function riZ,<(p, w) is seen as a scattering-in rate into (p, o) due to 
these processes. Equation (E.8b) accounts for the inverse processes, and describes the 
scattering-out rate from (p. w). See also the forms of self-energies in the T-matrix 
approximation, Eq. (F.22). 

On Fourier-transforming Eqs. (3.9) and (3.10), and subtracting the resulting 
equations from one another, one finds the detailed balance equation 

C<(P, ~1 G>(P, w) = C>(P, 0) G<(P, w). (E.9) 

2 In connection with convergence problems encountered in a nuclear application of the Green‘s 
function method in Ref. [23]. we would like to mention that there exists a normalization condition for 
the function r. The condition can be deduced from Eqs. (3.19) and (3.20). and the form of the current. 
The condition, relating the width-function r to the bare interaction and the particle-hole fluctuation- 
function, has a form I (dw/2n) T(p, w) = P, 7 P,(p). We shall quote here only the direct term. which 
may be written as P, = 1 (dp’/(2n)‘)(V(p’))2 D(p’) = 1 (dp’/(2n)j) !‘ (dw’/2a)(V(p’))’ D(p’, CO’). where 
D(1.2)=(&(1)&(2)), and i(l)=n^(l)-(r?(l)). (C om p are with Eq. (2.11) of Ref. 1241.) 
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Equation (E.9) expresses the equilibrium between the scattering-in of particles into 
(p, o) and the scattering-out from (p, w). The detailed balance equation will allow us 
to find a form of the function f(p, 0). We shall present below an argumentation 
which generalizes an argumentation given sometimes in considerations of the 
Boltzmann equation. 

The self-energy Z may be expressed solely in terms of the Green’s functions G, on 
using skeleton (irreducible) diagrams; see Ref. [25]. Examples of such diagrams are 
the Hartree-Fock and Born diagrams. Diagrams for -45, obtained according to 
Appendix C in the space-time representation, possess the following, important for the 
subsequent discussion, properties in the Fourier-transformed variables (the top of the 
contour is pulled to +03 before introducing the transforms): energy and momentum 
are conserved in the vertices, an interaction line corresponds to -iv(p), at an 
antichronological branch we have for a particle line iGa(p, o), for every interaction a 
factor (-l), for every internal interaction-vertex a factor (-1) (jointly a factor (-1) 
for every internal interaction), at a chronological branch a particle line corresponds 
to iG’(p, w), particle lines crossing the division line correspond to iGg(p, o), all 
independent momenta and energies are to be integrated over. From the relation 
[iGC( 1, 1 ‘)I’ = iG”( 1, 1’). follows [iGc(p, m)] * = iG’(p, w), according to 
Appendix D. 

Let us take a certain diagram that gives a contribution to -iZ<. From the fact that 
4‘27 is real (Appendix D), it follows that some other diagram gives to --iCc a 
conjugate contribution, which differs from the previous in a replacement of all iGa 
with iG’, iG’ with iG”, and -iV with iv, without affecting iG< and iG>. Let us 
analyze a conversion of -iZ’ into -iZ>. In a given contribution the conversion 
consists in replacement of all iG” with iG’ and iG’ with iG”, in change of signs in 
potentials (in principle excluding the extreme potentials, but there are exactly two of 
those in every diagram of -Es), and in replacement of all iG’ with iG>, and iG> 
with iG’. 

In every term of -iE<, the number of iG< is larger by one than the number of 
iG>, and an opposite holds in -CC>. The total momentum and energy carried 
through the division line are equal to (p, w) in every term of -iZz(p, o). Let us 
assume that we insert the expressions for the self-energies into the microscopic- 
balance equation. We shall have terms originating from various diagrams, differing in 
structure. However, it follows from the above discussion, that for each 1.h.s. term we 
shall have a respective r.h.s. term, that will differ only in the replacement of Gs 
with Gs. It seems natural that the equality should hold separately in every 
corresponding pair, and that a certain relation between G> and G< should be respon- 
sible for the equality. Upon separating-out integrations and factors containing G”, GC, 
and V, the postulated equalities have the forms 

G>(P, ~1 G’(P,, 4 ... G>(P,, w,,) G’(P’, 0’1 G<(P;, ml> +.. G’(P:,, 0;) 

= G<(P, ~1 G<(P,, wd ... G<(pn, 0”) G>(P’, ~‘1 G>(P;, 4) ... G’(P:,, w;), 

(E.lO) 
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while 

i.e., 

p’+pi+*.. fp~=PtP,t...+Pn, 
(E.ll) 

0.)’ + w; t ~~~$w:,=w+w,+~~~tw,. 

From (E.lO) it follows that G> and G< should be related by a factor, and with the 
conservation laws (E. 11) the most general form of the factor is 

where we readily use a conventional notation. From 

G>(p, W) = @(“-“P-“)G<(p, w) 

we find for the occupation 

(E.12) 

f (PY w> = 
1 

exp(P(u - VP -pu>> f 1 . 
(E.13) 

Results of the present appendix refer to a system whose noncorrelated initial state 
has been specified at t, + -co. For an equilibrium system, specified with a density 
operator p^ = exp(-/3(H - VP - ,&)), the form (E. 13) of the f function follows 
directly from the Green’s function definitions. The remaining results of the appendix 
may be obtained for such a system with an evolution-contour method in the complex 
time plane (Section 5). 

At the end, we would like to mention that a uniform equilibrium may not exist 
within the constraints put on the system. One encounters such a situation when one 
finds singularities in the retarded or advanced functions in regions where the 
functions should be analytic according to their definitions. 

APPENDIX F: T-MATRIX APPROXIMATION 

We shall formulate the T-matrix approximation to the self-energy starting from 
Eqs. (3.35), (3.36). On comparing (3.35) with (3.1), we find a relation 

--iE(l, I’)= +25dl”(-i) V(1, 2)i2G,(1, 2; l”, 2+)(-i) G-‘(I”, l’), (F.l) 

where V( 1,2) = Y(xr - x1) d(t, , t2). 
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FIG. 10. Ladder diagrams for the a-particle Green’s function. 

The rules for evaluating i*G, are essentially the same as the rules for iG. One needs 
only to make a sign change of the diagram in cases when the lines running between 
the end-points of a diagram cross. In the T-matrix approximation we sum for i*G, the 
ladder diagrams which correspond to repeated interactions between particles 
(Fig. 10). We define the T-matrix with the diagrams presented in Fig. 11 

-i(l, 21 TI l’, 2’) 

= -iV(l, 2) 6(1, 1’) 6(2,2’) +fdl”Jd2”(-i) V(1,2) 

x iG( 1, 1”) iG(2, 2”)(-i)( 1 “, 2” 1 T 1 1’) 2’) 

= -iV(l, 2) 41, 1’) 6(2, 2’) 

+jdlqd2”(-i)(l, 21 Tl l”, 2”) iG( 1”) 1’ ) iG(2”, 2/)(-i) V( 1 ‘, 2’), 

(F-2) 

q =- + m + pJ + . . . 

FIG. 11. Diagrams defining the T-matrix. 
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where we use the notation as in [2]. Then 

i*G,( 1,2; 1’) 2’) 

= iG(1, 1’) iG(2,2’) T iG(l,2’) iG(2, 1’) 

d2”‘(iG(l, I”) iG(2,2”) f iG(1, 2”) iG(2, 1”)) 

X (-i)(l”, 2”j TI l”‘, 2”‘) iG(l”‘, 1’) iG(2”‘, 2’), (F.3) 

and from (F.l) we find 

C(1, 1’) =/j%2/j%2’ iG(2’, 2)((1, 21 T/2’, 1’) ‘f (1, 21 Tj I’, 2’)), (F.4) 

cf. (3.18). 
The time arguments of the scattering matrix pairwise coincide for a potential 

interaction 

(13 21 T/ 1’3 2’) = qt,, f2) qt,,, t,,)(x,, x21 T/x,,, x2,). 

With the notation 

(F-5) 

(XI, ~~I’~(t~,f,‘)Ix,,,x~,)=iG(l, l’)G(x2,f,,x2,,t,,), (F.6) 

we have from (F.2) 

(XI, %I WI, f,O I?‘, x2,) 

= v-(x, -x*) 
I 
d(t,, t,,) 6(x, - Xl!) 6(x, - X2’) 

+/plqdx,..(x,, x*1 qt,, Cl,!) 1X1”, x2~j)(x1~~, X2”I r(tlJr, t,,) 1X1’, x2,) 1 

= cqt,,t,r)d(x, -x,~)6(x2-x2,) 

x (X1”, x,,,(F(t ,“, t,,)Ix,,,x,,) 1 V(x,r-xx,,). (F.7) 

With the definition 

[(Xl, x*I w*, ll,> I%,, X*Jl+= [(Xl,, %,I qt,,, Cl> 1x1, x*)1*, (F.8) 
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we have from (F.6) and (D.7) 

I’. DANIELEWICZ 

[i(x,, x21 v,, t,,> 1x1,. X2,)]+= i(x,, x*1 T(tT, t:‘J IX,‘, x*,). (F. 10) 

From (F.4) and (F.5) follows 

Z(1, l’)=jdx,jdx,,iG(x,.,t,.,x,,r,) 

x ((x 13 x*1 WI, t1r) IX*‘r q1)T (X1,X2I~(t,,t,‘)lX,‘,X*,)), (F.ll) 

and further 

Zz(l, l’)=jdx, jdx,,iC:(x,.,t,.,x,,r,) 

x ((x1, ~21 T%, tl0 Iqcr x,0 ‘f (~1, ~21 T%,, tl,> Ix,,, x2,)). (F.12) 

Proceeding similarly as in the case of the l-particle Green’s function equations of 
motion (Subsection 3.1), one finds from (F.7) the equations 

schematically Tp = KY + Ts + KY ST-, and 

(x13 ~21 T*(l,, tl,) 1x1,, ~20 

=V(x*-x2) G(t,-z,.)S(X~-x,,)6(x*-X~.)+j~~dl”jdX*.. 
[ 

x (x1,x21 ~*(t,,t,,,)Ix,,,,x,,,)(x,,,,x,,,I T*(t,,,,t,,)Ix,,,x,,) , 1 (F.14) 
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l schematically T* = V+ KY T *. From (F. 13) and (F. 14) it follows that Tz may be 
written in the form of a generalized optical theorem Tg = T+.LFzT-, i.e., 

=11:,~l//i’dx,..~~~dl”‘j’dx,.,, 

x 6 1, ~21 T+(f,, I,,,) Ix 1,,, X2,,)(XI,,, x2,,/ .@(t *,,, t, ,,#) Ix, “‘) X2”‘) 

x (x1 m, x*“’ ) T-(t,,u, r,,) Ix,,, x2,). (F.15) 

If we inserted (F. 15) into (F. 12), then with (F.6) we would obtain an expression for 
Zg similar to the sum of Eqs. (3.33) and (3.34) with the matrices T* instead of the 
respective potentials V. 

In below we shall use the Fourier-transformed 2-particle functions, which we 
introduce in the following way 

(sl QP, w; R, r) Is’> 

x 

!’ 

d[f((x, + x*) _ (x,, + x,,))1 ,-iP.((xltX~)-(Xl~t X2.)1/? 

where R = (xi + x2 + xi, + x2,)/4, and T = (t + t/)/2. From (F.lO) it follows for the 
Fourier-transformed T-matrices that 

[i(q I Tz(P, w; R, T) I q’)] * = i(q’ / Tz(P, w  R, T) Is), (F.17) 

and also 

[(ql T+(P, w; R, T) Is’)] * = (4’1 T-(P, w; R, r> 14). (F.18) 

Let us see what form the T-matrix approximation results take in a uniform 
equilibrium. For the self-energies, Eq. (F.12), we find 

(F.19) 
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From (F. 17) and the symmetry under the interchange of particles, it follows that the 
symmetrized matrices iT$ in (F.19) are real. Equation (F.19) may be understood in 
the following way. In the 2-particle Green’s function equation, the function T plays a 
somewhat similar role to Z in the l-particle Green’s function equation. We may 
expect that iT$ in (F. 19) constitute scattering-out and -in rates into noncorrelated 2- 
particle states. Then the integral and a Green’s function in (F. 19) are the summation 
over initial or final states of a remaining particle. The generalized optical theorem, 
Eq. (F.15), takes in the momentum-energy representation a form 

(PI T:(p,~)l~‘!=~~~$+,~l T+(P,w)lp,) 

x (~,l.@P’m)l~lX~ll T~(P,w)l~‘h (F.20) 

For the symmetrized matrices T occurring in (F.19), one finds from the optical 
theorem, with (F.6), 

Tz(p+p,,wtw,) I?) F (?I Tp(ptp,,wtw,) / v) 

. . dp’do’ 
=I 

1 
dp; dw; 

cw4 1 w4 
(27c)4 S(p + p1- p’ - PI) 6(w t WI - w’ - (4) 

P’ -PI 
T+(p+p,,m+w,) 2 I ) 

PI-P’ 2 
T+(p+p,,u+o,) -y-- I iI Gz(p’, w’) G”(p;, o;), (F.21) 

which confirms the conjecture concerning iT$. From (F.21) and (F. 19), with (E.2), 

fiC<(p, w) 

=j 
. dp, dw, dp’ dco’ dp; dco; 

cw4 I PN4 s P704 
w4 4P + PI -P’ -Pi) 

T+(p+p,,wfw,) 

x (1 rf(P,,w,))f(P’,w’)f(P:,ol). 

iC>(p, w) = ... f(p, 3 o,)(l F f(p’, w’)))(l F f(P;, wl)), 

cf. (E.8). 

(F.22a) 

(F.22b) 
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The T* matrices satisfy in an equilibrium system the equations, from (F.14), 

x(P,/~~*(P,~)IP~)(P~IT*(P~~)IP’). (F.23) 

Upon omitting the self-energies in the l-particle Green’s function in .%, Eqs. (F.23) 
become 

(PI T*(p,w)l~‘)= VP-p’)+j$$ UP-P,) 

x 1rf(P/2+P,)ff(P/2-p,)~p IT+(p,o)/pf) 

w - P2/4m - p:/m f ie 1 
(F24) . . 

Equation (F.24), with a factor 1 ?J f T f = (1 F f)( 1 + f) -fl, is in principle more 
general than the Bloch-de Dominicis equation [26] with a respective factor 
(1 T f)(l F f), by allowing for both intermediate particle-particle and hole-hole 
excitations. In the fermion zero-temperature limit Eq. (F.24) corresponds to the 
Galitskii [ 271 equation, while the Bloch-de Dominicis equation to the 
Bethe-Goldstone [ 281 equation. Differences between the equations have been 
discussed to an extent in the literature [29]. 

Let us now discuss the T-matrix approximation in connection with the Boltzmann 
equation. In the T-matrix approximation, the scattering-in rate in the Boltzmann 
equation would have a form 

TiI=<(p,oj;R, T)=jsl$,f$$ cw J(P + PI -P’ - PI) 

x s(u; + co;, - co;, - co;;, 

x(~~~(P~;R,T))~(P’;R,T)~(PI;R,T), (F.25) 

and the scattering-out rate an analogous form to (F.25). In the Boltzmann equation 
limit, we would demand that the scattering matrix T+ satisfies Eq. (F.24), with all 
functions in the equation referring to an (R, T) location in macroscopic variables. Let 
us see what must be the properties of the T-matrix, in order that the Kadanoff-Baym 
equations can be approximated with the Boltzmann equation. We take for simplicity 
a homogenous system, and proceed in an analogous manner to Subsection 4.3. 



294 P. DANIELEWICZ 

Equation (4. l), and Eqs. (F. 12), (F. 15) (to --) -co), yield an equation for the 
distribution function 

xi~!~i~i~2na(n-n/-Q’-n”‘-sa’“) 

xj~l~~~(2~)3d(P+Pi-Pf-Pi) 

xj!k(!+~ T+(p+p,,w’+(n”+Lq2;a”) v 
I ) 

x q T-(p+p,,o’-((8”+P”)/2;a’“) 
( I 

x (P(p, p,, 0 + 0’; a’) F<(p’, p;, w‘ + (a’” - a92; .“) 

- F<(~, p,, co + w’; ~2’) P(p’, p;, w’ + (a’” - W”),‘2; fl”)), (F.26) 

with the auxiliary functions 

@(p, ~1, t; r) = -@(P, t; T> @(P,, t; T>, 

for which we shall use 

@(p, pl, co; T) = F’<(p, p, ; T) 27d(w - 0; - co,“,), 

with 

P>(P, PI ; r> = (1 F f(Pi T))(l f f(P, ; T)), 

F’(P, ~1; V = .I-(P; T)f(p, ; i7. 

The Boltzmann equation follows from (F.26), when one ignores all the macroscopic- 
frequency contributions to the microscopic frequencies. The similar occurs for Eq. 
(F.24) and Eq. (F.14) written in the Fourier-transformed variables. The approx- 
imations are possible when pAp/m @ r holds both for Ap being a scale of variations 
of particle distribution in momentum, and for Ap being a scale of variation of T+ in a 
momentum transfer. Also Aw 9 r must hold, where Aw, a scale of variation of a T+ 
matrix in frequency, following from Eq. (F.24). These are the conditions for the 
Boltzmann equation, within the T-matrix approximation. 

On deriving the kinetic equations, we have considered the cases Re Z+ - Im .Z’ 
and Re Xc+ B Im Z+. We shall now examine Re Z+ and Im Zt in the T-matrix 
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approximation, in the low-density limit. From Eq. (F.16) written schematically as 
Zs = fiG><Tz, follows ReZ:+=fiG<ReT+fiReG+T<, and ImC+ = 
FiG< Im T+ f i Im Gt T<. In the low-density limit G< - II, T< - n’, and the Tt 
matrix becomes a free-scattering matrix. We shall discard the exchange term of the 
scattering matrix. On evaluating Z, we take a forward element of T matrix, which we 
shall denote in a simplified way as T(0). Taking the scattering matrix for a certain 
characteristic relative momentum p, we get the estimates in the low-density limit 
ReC+ % nRe T’(0) and ImC+ zz n Im T+ (0). Parametrizing the scattering matrix 
with a gaussian in the momentum transfer q 

T+(q)= T+(0)e-“2q2’4, 

we find from the optical theorem a condition for 1 Re Tt (O)l $ 1 Im Tf (O)l in the form 

142 811 -$T+(O)l (1 -e-2”‘pj. (F.27) 

The parameter r has a meaning of an interaction range, and I T+ (0)l of a full 
interaction strength. For a weak long-range interaction satisfying (F.27), 
ReC+ $lImZ+. 

APPENDIX G: THERMODYNAMIC EQUILIBRIUM ANALYSIS OF 
CONDITIONS FORTHE BOLTZMANN EQUATION 

The conditions for passing from the Kadanoff-Baym equations to the Boltzmann 
equation can be analyzed in some detail in a state of equilibrium, in the Boltzmann- 
statistics limit. As in Subsection 4.1 we shall assume well-defined free energies for 
particles. We shall examine the values of the microscopic variables entering the 
integrals of the self-energies Zs with the Green’s functions in Eq. (4.1) (see also 
(4.17)). The values of the microscopic variables, as compared with the scales of 
macroscopic variations in a system, determine the order of magnitude of the terms 
neglected in the Boltzmann equation. 

The equilibrium distribution function is of the form f(p) = exp(-/3(p’/2m -,u)), 
where ,L is the chemical potential, and /3 = Tp’, with T the temperature (k, = 1). The 
conditions for the Boltzmann equation which we shall find will be valid for 
distributions whose behaviour with momentum does not depart much from that of the 
equilibrium distribution. We shall use the direct Born approximation to the self- 
energies, in which approximation it is possible to obtain analytic expression for the 
self-energies. We have 

riG’(p, t) = e- 4(~~/2m-u)-i(p*/2m)t 
3 

iG > (p, t) = e -t(Pz/2m)ts 

(G.1) 

(G-2) 
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For a gaussian potential V(r) = V, exp(-r*/q*), one finds in the direct Born approx- 
imation 

I 
m2q4 

I 
312 

f  ixqp, t) = vi 
4(Pm2 + p’ + t’) 

x exp W -2m I 
p* 2Pt2 + p2miy2 + it(/lmq’ -/3’ + t’) 1 Pmrl*+P*+t* ’ 

(G.3) 

I m2q4 1 
3/2 

iZ,>,(p, t) = Vi 
4(/3mr* + t* + 2itj3) 

x exp I 
p* Pt’(pmr’ t t*) t it(2P2t2 t (pmq’ t t*)*) . (G 4) 

PP -2m (/?mq’ + t*)* t 4p2t2 I . 

Let us at first assume that the integrations over space coordinates are already 
completed in the integrals of the self-energies with Green’s functions in (4.1), and 
only the integrations over the microscopic times t’ remain. Our task will be the deter- 
mination of the values of t’ that enter the t’ integrations of Zs(p, -t’) Gf(p, t’). The 
values of t’ entering the integrations correspond to the frequency dependence of the 
self-energies, close to the energy shell, and simultaneously the values of t’ define the 
time in which the energy conservation is being realized in particle interactions. 

We have 

C,‘,(P, -t’) G<(P, t’) DC 
1 

(j?mq* t t’* - 2it’/?)‘/* 

I /3p’ t”(/3mq’ t t’*) + 2ij3t’” 
Xexp -- 

2m (/?mq’ + t’*)* + 4/3*t’* I ’ 
(G-5) 

C&(P, 4 G>(p, t’) cc 
1 

(j3mq’ t/l’ + t’2)3’2 

I /lp’ 2t’* t prnq’ + 2it’P 
Xexp -- 

2m pmq’ t/l’ t t’* I * VW 

For momenta p 5 (m/P)“*, the main contribution to the t’ integrals, both of (G.5) 
and (G.6), will come from the times 1 t’l 5 (pmv’ + p’)“*. The quantity r@?m)“’ 
corresponds to an average interaction time defined as a time of flight through an 
interaction range. The mean momentum in the system equals approximately 
WW/P)“*. (Th e mean kinetic energy equals 3/2p.) In the high-temperature limit 
defined with /3mq’ % p*, for momenta p 2 (m/b)“* (in case of (G.6) p < qm//?), the 
main contribution to the t’ integrals will come from the times 1 t’ 1 5 vm/p. In the 
opposite limit of temperatures, the analysis of the t’ integrations of (G.5) and (G.6) is 
hindered for large momenta by the oscillatory factors in (G.5) and (G.6). Upon 
putting /?mv* = 0, the author has performed an analysis of the integrals in the 
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complex time plane. One can estimate that for momenta 2/q % p % (m/P)“’ the main 
contribution to the t’ integral of (G.5) will come from the times It’/ 5 2m/p2, and for 
momenta p % 217 from the times 1 t’I5 ym/p. In the case of (G.6), for momenta p * 
tm/PY~ one finds that the times /t’I <p will always contribute to the integral. The 
analysis of the integrals of (G.5) and (G.6) may be summarized with a statement that 
the condition for the Boltzmann equation is a slow variation of the functions in 
macroscopic times, as compared with @m)“’ and /3 (more specifically as compared 
with (pmq’ + /3’)“‘). 

We may next study the values of microscopic spatial coordinates that enter the 
integrals of self-energies with Green’s functions. It is necessary to find the values of 
r - r’ and r’ that enter the integrals 

J 
dr e-iPr dr’ Z$,(r - r’, -t’) Gs(r’, t’), ((3.7) 

for the times t’, which we have determined earlier. The variables r - r’ entering the 
integral correspond to the momentum dependence of the self-energies, and the 
variables define the range in which the momentum conservation is being realized in 
particle interactions. The variables r’ entering the integrals correspond to the depen- 
dence of distribution functions on momentum, and indirectly also correspond to the 
dependence of self-energies on frequency. (To the variables r’ a meaning can be 
attributed, of a range in which a particle feels interaction.) The analysis of (G.7) is 
simplified by the fact that Green’s functions and self-energies, possessing gaussian 
forms in momentum, (G.l)-(G.4), posses also gaussian forms in spatial coordinates 

((3.9) iG>(r,t)= [&]“*exp [-%I, 

T iC,‘,(r, t) = Vi 
[ 

m3q4 

W2Pt2 + P*mq* + it(pmq’ -p’ + t2)) 1 
3/? 

(G. 10) 

’ exp 2pp - I 

mr* rCrnv* + p* + t* 
2 I 2pt* + @‘my* + i@mq* -/J* + t*) ’ 

[ 

m3q4 1 
3/* 

i-Z&Jr, t) = Vt 
W-4’ + it(bmq’ + t*)) 

/?rnr* + t’ + 2itj3 

I -/3t’ + it(pmq’ + t’) ’ 
(G.11) 

63.8) 

In the limit /3mq’ 4 p*, one rinds that for momenta p 2 (m//?)*‘* the main 
contribution to the integrals (G.7) comes from variables sr], while for small 
momenta (m/j3)1’2 2 p 2 g-i from variables Sqp(/3/m)“*. In the limit j3’ 4 /?mq’, the 
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main contribution to the integrals, for momenta p 5 (m/p)“‘, will come from 
variables N<(,@z)‘/~. For large momenta p * (r?~/~)‘/~, the main contribution to the 
integral (G.7) of functions Z< and G ’ will come from the variables Lpplm. In case 
of the integral of Z> and G<, the main contribution for momenta p 4 (m/P)“’ will 
come from values of the variables (r’I5 p/?/m and Ir - r’( 5 p-l. From the above 
analysis it follows that condition for the Boltzmann equation is the slow variation of 
the functions in macroscopic spatial coordinates, as compared with r] and p/?/m, 
where p corresponds to particle momenta in consideration (for p 5 (m//3)“2 a 
quantity fJ/m)“’ should be taken for comparison). 

The conditions, of small ~(/3m)“’ and q in comparison with macroscopic 
variations in a system, are classical, because these conditions do not involve h. The 
conditions will determine the possibility of describing the dynamics of a system with 
the Boltzmann equation in the limit /?my2 s p2, which is the limit of small interaction 
time and range inverses in comparison with variation of a particle distribution in 
momentum. The conditions, of small /3 and pplm in comparison with macroscopic 
variations in a system, are purely quantum. The quantities ,O and pplm are related 
solely to the particle distribution. 

The conditions of small p and p/3/m would have emerged independently of the 
approximation used for the self-energy. The value /? of a macroscopic time must 
appear in thermodynamic equilibrium for an arbitrary momentum, irrespective of the 
particle statistics, irrespective whether a problem is nonrelativistic or relativistic, 
whether particle production and annihilation is taken into consideration. This is a 
consequence of the relations between self-energies and Green’s functions in a state of 
thermodynamic equilibrium (see Appendix E: also a third paper of the series). Due to 
these relations the expressions corresponding to scattering-in and -out from a given 
momentum (such as (G.5) and (G.6)) are shifted in the complex time plane by i,LT 
The first moments of the expressions would differ by i/l. The statement concerning the 
value of a macroscopic time is subject to the fact that one of the processes can be 
ignored: e.g., scattering-in for large momenta, for fermions close to zero- 
temperature-the scattering-out below the Fermi surface, and scattering-in above the 
surface. 

APPENDIX H: 
PERTURBATION EXPANSION AND GREEN'S FUNCTION EQUATIONS 

OF MOTION FOR A GENERAL INITIAL STATE 

Perturbation theory rules for a general initial state have been outlined, without a 
full derivation, by Fujita in two papers [ 14, 151. The Green’s function equations of 
motion that follow from the Fujita’s perturbation expansion are different from the 
equations derived in the present appendix, and they are in contradiction with the 
general equation (3.35) for the Green’s functions (irrespective of the bulk limit 
assumed in Fujita’s derivation). Although the rules of Fujita utilize the same 



QUANTUM NONEQUILIBRIUM THEORY, I 299 

functions as the rules derived below, a detailed exposition of the differences appears 
unwarranted in view of the vagueness of the presentation in Refs. [ 14, 151. 

About the initial state we shall only assume that its density operator commutes 
with a particle number operator. For the Green’s function on a contour we have an 
equality (2.28). We define a time-ordered contraction of two operators a and B by 

/i.B. = T(H) - N(AB), W.1) 

where a normal operator-product N(.) is defined with respect to the vacuum. Upon 
writing an exponential in (2.28) in a form of a series, we apply the Wick theorem to 
every term of the series. 

We have 

If we were taking a vacuum expectation value of the time-ordered product, then only 
a sum over all combinations of contractions, of the fully contracted products, would 
remain at the r.h.s. of (H.2). If we take an expectation value with respect to a certain 
initial state, then the expectation values of’noncontracted operators in the normal 
products may be expressed through many-particle Green’s functions 

ikGi< (I,..., k; 1’ ,..., k’) = (fl)“(&k’) ... $:(l’) ij,(l) ... q?,(k)). (H.3) 

For a k-particle Green’s function we adopt a decomposition into products of l- 
particle Green’s functions and correlation matrices 

Go< = S(17G”< + 6°IZGo< + k 2 . . . + GI). (H-4) 

S is an operator symmetrizing Green’s function arguments according to particle 
statistics, and Eq. (H.4) defines a k-particle correlation matrix ei. For a 2-particle 
Green’s function, Eq. (H.4) has, e.g., a form 

G;‘(l, 2; l’, 2’) = G’<(l, 1’) G0<(2, 2’) T G’<(l, 2’) G’<(l’, 2) 

+ Q(l, 2; I’, 2’). (H-5) 

Upon applying the Wick’s theorem to every term of the series from (2.28) we express 
expectation values of noncontracted operators through functions ikGi<, and to the 
functions we apply (H.4). In the resulting decomposition, to every term in which a 
pair of operators @, and $f is contracted according to (H.l), there corresponds a 
term, in which a function iGo< with this pair of operators replaces the contraction. If 
we sum the corresponding terms with one another, we get a function iGo, Eq. (2.30), 
for the pair of operators. Upon consequent application of the procedure to all terms 
of the series, the only l-particle functions remaining in the decomposition are the 
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e f 

FIG. 12. First-order diagrams for a l-particle Green’s function. 

functions iGo. We may say that we dress the vacuum functions with a medium. The 
Feynman rules that follow are such as in Section 2-an additional rule reads: 

Each k vertices (k > 2), into which previously particle lines were running in, may 
be connected with k vertices, from which particle lines were running out, through a k- 
particle correlation matrix I G,. ‘k -’ For fermions, upon assigning specific correlation- 
matrix arguments to interaction vertices in a diagram, assign to the diagram a factor 
(-1Y, where F-a number of particle loops in the diagram. The number of loops 
evaluate by joining the correlation-matrix arguments with functions iGo, i.e., on 
having ikGk(l, 2 ,..., k; l’, 2’,..., k’) join 1’ with 1, 2’ with 2 ,..., k' with k. 

The connected l-order diagrams for iG(1, 1’) are now of the form presented in 
Fig. 12. The function i2c’t is denoted by a bubble with directed lines. Let us 
mention, that correlation matrices may not be directly connected with one another. 
From a way in which correlation matrices were defined, a value of a matrix does not 
depend on an assignment of the time-arguments to the branches of a contour. Due to 
this, when determining a maximum time for internal time-integrations in a 
subdiagram, there is no need to take into account arguments of correlations matrices 
connected to a subdiagram. Further if certain subdiagram is connected solely to 
correlation matrices, as in Figs. 12e or f, then the whole diagram vanishes, because 
internal time-integrations in a subdiagram may be reduced to to .3 If a diagram may 
be cut between the end-points in such a way that the cut passes only through 
correlation matrices, then the diagram does not depend upon assignment of the end- 
points to the branches of a contour. 

’ Let us mention, that for that reason. on reffering to ” l-particle correlation-matrices” iG”’ , a 
cancellation occurs for the f” terms in the Boltzmann collision integral. Analogous cancellations occur 
in collision integrals for emission and absorption of bosons-third paper of this series. 



QUANTUM NONEQUILIBRIUM THEORY, I 301 

In the above expansion we need to know the correlation matrices for all times 
larger than t,. There holds 

G&G 0 =! dy $(Y)($,(x> 4 3+(r) f G+(Y) v% 0). (H.6) 

which follows from the fact that the r.h.s. satisfies the same differential equation as 
the l.h.s., with the same boundary condition at t = t,. Equation (H.6) may be written 
as 

dr(x, t) = j dy $(y)(iG”(x, t, y, to) - iGo< (x. t, y, to)). (H.7) 

The hermitian conjugation of (H.7) yields 

@f(x, t) = j dy tj+(y)(iG”> (y, to, x, t) - iGo< (y, to, x, t)). W.8) 

From (H.5), (H.7) and (H.8), there follows 

i*~~(l, 2; l’, 2’) = j dx j‘dy j dx’ j dy’ i(G’> - G’<)(l, X, to) 

x i(G”’ - G0<)(2, y, to) i’Gi(x, t,. y, to; x’, t,, y’, to) 

x i(G’> - G’<)(x’, to, 1’) i(G’> - G’<)(y’. to, 27, (H.9) 

and analogous identities hold for higher correlation matrices. The correlation 
matrices in the existing rules may be replaced by the correlation matrices at to and 
the iGoz lines running to the correlation-matrix arguments at &,. A rule referring to 
correlation matrices may be now modified in the following way: 

Draw two horizontal marginal lines to’ and t,>, which correspond to the two ends 
of a time contour. At these lines mark the correlation matrices occuring in a diagram. 
Each matrix occurs simultaneously at to< and at to’. To particle lines running to t; 
and from t,f there correspond functions iGo<, and to lines running in the opposite 
direction functions iGo>. To a line running downward, iGo<, there corresponds an 
extra factor (-1). 

A diagram from Fig. 12d decomposes now into 24 diagrams, some of which are 
presented in Fig. 13. Changing the order of summation of diagrams we may dress the 
lines iGo running to and from t$. We have a possibility of introducing a self-energy. 

A self-energy will be defined diagrammatically as an irreducible part of the Green’s 
function. We single out a self-energy Z,, which begins with a correlation matrix and 
ends with a potential. The function Xc begins with a potential and ends with a 
correlation, while Z begins and ends with a potential. There exists no self-energy that 

595/152/2 5 
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FIG. 13. Some of the diagrams corresponding to the diagram from Fig. 12d. upon modification of 
the additional perturbation theory rule. 

would begin and end with a correlation, because respective diagrams vanish. A 
Dyson equation for the Green’s function is of the form 

G = Go + G°CCG + G’CG + Go&G, (H.lO) 

and we have on a contour 

w, 2) = Cdl, %)(WO>, b> - w, a> 
= -z#, x2) qt, - t*), (H.11) 

and 

w, 2) = (W,, to’> - @, 3 to’)> qx,, 2) 

= d(t, - to) F(x,, 2). (H-12) 

Upon applying Go- ’ to both sides of (H. 10) and exploiting Go-‘Go 5 = 0, we get 

Go-‘G= 1 +CG+C,G. (H.13) 

On restricting, at the 1.h.s. of (H.13), the variation of the function arguments to 
opposite branches of a contour, we obtain the following generalized Kadanoff-Baym 
equations 

(i-&+2) GP(l, l’)=jdx,C,,(x,,x,;t,)G~(x,,t,, 1’) 
I 

+ II’ d2(Z> -F)(l, 2) G5(2, 1’) 
to 

- ‘I d2(Zz + Z,)(l, 2)(G> - G<)(2, 1’). (H.14) 

Let us mention, that from the Green’s functions in the last terms of Eqs. (H.lO), 
(H. 13), and (H. 14), one should in principle exclude the parts of the functions that end 
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with a correlation. However, respective contributions from the functions at t,< and to’ 
cancel out. A procedure analogous to the above leads to a second pair of equations 

l-i$+~)G~(l,l’)=!m,G’(l,r,.t,~)~~~(x~.x~.:f,.) 
1’ 

+ 1” d2(G’ - G<)(l, 2)(Zz + Zc)(2, 1’) 
to 

- f”d2 Gg(1, 2)(Z> - Z<)(2, 1’). 
to 

(H.15) 

In the Kadanoff-Baym equations (3.6) and (3.7), for t, = t,, = t,, the 
Hartree-Fock energy yields a sole contribution to the Green’s function evolution. The 
correlations (scattering) built up only with time. In Eqs. (H.14) and (H.15), at t, = 
t,, = t,, the extra r.h.s. contributions come respectively from Cc and Zc. At an initial 
moment, from diagrams, 

which inserted into (H.14) yields a result that agrees with (3.35), as it should. 
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