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Estimation of the Variance of a Stationary
Gaussian Random Process by Periodic Sampling

By J. C. DALE

(Manuseript received February 14, 1967)

I. INTRODUCTION

This paper* applies previous work® on estimation of the mean of a
stationary random process by periodic sampling to estimation of the
variance with the added restriction that the process under considera-
tion be Gaussian with known mean.

The samples are taken from a sample function of the random proe-
ess, in a closed interval (0, T') and are in general correlated. The esti-
mator used is the average of equally-weighted squared samples. The
variance of this estimator is derived and its behavior is predicted as a
function of the number of samples and length of record.

II. THEORY

2.1 General

Let x(t) be a sample function from a stationary, Gaussian random
process {x(t)} with known mean.f
An unbiased estimator of the variance is given by

a1 ("’—T)
U:—N_I_IZ'E N/ (l)

k=0

where T'/N is the sampling period.
By invoking the Gaussian assumption, the variance of this estimator
follows directly and is given by

i 2 ‘V(_|k|)z(@)
V&I(g:)_N+1k;\rl N+1R3N’

* This work was supported by the U.S. Navy, Bureau of Ships under Contract
N00 600-67-C0O549.

tSo long as the mean of {x(¢)} is assumed known, no generality of the deriva-
tion is lost by letting it be zero.
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or in an equivalent form (2)

var (#9) = i - gursm R T a(f _ %,Z) dr.
Gvsr/myo(r) is the triangular weighting function (See Ref. 1) and R.(r)
is the autocorrelation function of {xz(t)}.

By comparing the var (¢2) to (3) in the previous paper’ it is seen
that (2) gives the variance of the sample mean of a stationary random
process {z’(f)}, whose autocovariance function is given by 2R(r).
The spectrum of {z*(f)} is 28.(w) * S.(w).

At this point the previous theory' applies directly. Using the same
notation, the spectrum of the squared samples can be written as

92 ® 2 —jwr 3 k
Gw) = N+1 f_m quvsmr(T)R(7)e kEm 6(T - FT) dr,

which is equivalent to (3)

G(w) _y i F(w— kg%q)

k=—w

In this case

Fw) = Q) * 2[8.() * S.(w)], 4)
and Q(w) is the transform of the weighting function.

G (w) can be interpreted as F (), shifted by integral multiples of the
sampling frequency, 2=N/T. As before to obtain the variance of the
estimate we need only be concerned with the value of G'(0) at o = 0.
To minimize the variance of the estimate, the sampling frequency
should be high enough to prevent overlapping of the sideband at v = 0.
Satisfying this condition results in

var (&) = % FO).1 ®)

To answer the question of how many samples to take in time T to
obtain minimum variance, consider (4). Q(w) is approximately zero for

t Equation (5) is not quite true when both end points of the time record are in-
cluded as samples. This is because (N /T') F(0) is a function of N namely,

sin y(N + 1/2N)T:|’d
y(N + 1/2N)T :

Increasing N beyond the value given in (8) actually results in a higher variance on
the estimate. This is apparent in the two examples, particularly for 7' small. This
same effect was discussed in Ref. 1.

1 -0
(N/T)F(0) = — f 2[8:(y) * Sz(y)][
2r Jo
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lo| = @r/T)IN/(N + 1)]. If S.(w) is zero for |w| = 2xB, then
S.(w) * S.(w) will be zero for |w| = 4B and F(w) will be approximately

0 for
}w|§21r|:23+%(N{V'_1)j|' ®)

Therefore, choosing the sampling frequency so that

2rN 1{ N
oo+ 1 (5] v

results in (5) being satisfied.
Solving (7) for N yields the required number of samples taken in
time T to approximately minimize the variance of the estimate, namely

1+ V1 + 2/BT]_
2

N = QBT[ (8)

For BT >> 1, N is approximately equal to 2BT. Thus, twice the num-
ber of samples are required to obtain a minimum variance estimate
of the variance than was previously shown to obtain a minimum vari-
ance estimate of the mean.

2.2 Variance For Large T

If T is allowed to become large  (w) will approach a delta function,

limit Q) = }—\,% 5(w). ©)
This results in
) = o | S8 - v dy. (10)

If S;(w) is zero for | @ | = 2#B, and the sampling frequency satisfies
(7), then the minimum value of variance of the estimate is given by

vor @) lw = PO = e | S0, a

T large

~ [ S dy.

This is the same value obtained by continuous sampling.
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III. EXAMPLES

The variance of the estimate of variance as a function of number of
samples (N+1) and length of record (T') has been computed for two
examples.

The computation was done using an expression equivalent to (2).

3.1 Rectangular Spectrum

. %; —2r<w < 27";
S,(w) = {0; elsewhere. 1

Fig. 1 shows var (42) plotted against number of samples. Each curve
represents a different length of record as indicated by the values shown
on the figure. It should be noted that the minimum value of var (47)
occurs at the number of samples predicted by (8). Also for small values
of T the var (¢°) reaches a minimum and then increases as more samples
are taken. This is due to including both end points of the time record
as samples.
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Fig. 1 — Variance of the sample variance as a function of the number of sam-
ples and length of record for a process with rectangular spectral density.
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Fig. 2 — Varianee of the sample variance as a function of the number of sam-
ples and length of record for a process with Markoff spectral density.

3.2 Markoff Spectrum

2

Siw) = e (13)
This sample shows a nonbandlimited spectrum. The results are shown
in Fig. 2.

IV. CONCLUSION

By making the assumption that the random process {x(t)} was
Gaussian, it was possible to express var (¢2) into an array of terms
containing R2(kT/N), (2). In this form it is possible to apply the theory
developed in the work on estimation of the mean.' The interesting result
from this derivation was that when BT 3> 1, the variance of the sample
variance is essentially minimized when 2BT samples are taken. This
is in contrast to the BT samples required to minimize the variance of
sample mean.
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A Floating Gate and Its Application
to Memory Devices

By D. KAHNG and S. M. SZE

(Mannuscript received May 16, 1967)

A structure has been proposed and fabricated in which semi-
permanent charge storage is possible. A floating gate is placed a small
distance from an electron source. When an appropriately high field
is applied through an outer gate, the floating gate charges up. The
charges are stored even after the removal of the charging field due
to much lower back transport probability. Stored-charge density of
the order of 10!*/cm? has been achieved and detected by a structure
similar to an metal-insulator-semiconductor (MIS) field effect transis-
tor. Such a device functions as a bistable memory with nondestructive
read-out features. The memory holding time observed was longer than
one hour. These preliminary results are in fair agreement with a simple
analysis.

Tt has been recognized for some time that a field-effect device, such
as that described by Shockley and Pearson,* can be made bistable
utilizing switchable permanent displacement charges on ferroelectric
material.2 Subsequent studies of ferroelectric material have revealed,’
however, that the inherent speed capability of a device incorporating
a ferroelectric material is limited by domain motion, whose highest
speed is limited by the acoustic velocity. In the absence of highly
ordered, near-ideal thin film ferroelectric material, the speed eapability
of a bistable device, therefore, is in the microsecond range at best.* In
addition, many ferroelectric materials suffer from irreversible mechani-
cal disorder after many cycles of polarization switching? rendering
some uncertainty on the long term device reliability aspect.

An alternative to a ferroelectric gate is a floating gate chargeable by
field emission, which hopefully circumvents the above mentioned diffi-
culties. Consider a sandwich structure, metal M (1), insulator I(1),
metal M (2), insulator I(2), and finally metal M (3). (See Fig. 1). If
the thickness of I(1) is small enough so that a field-controlled electron
transport mechanism such as tunneling or internal tunnel-hopping
are possible, a positive bias on M (3) with respect to M (1) with M (2)
floating [M(2) is called the floating gate henceforth], would cause
electron accumulation in the floating gate, provided electron transport
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Fig. 1 — Energy band diagram of a floating gate structure with a semiconductor-
insulator-metal-insulator-metal sandwich. For calculation of the stored charge, the
semiconductor is replaced by a metal M (1). (a) When a positive voltage step is
applied to the outer gate. (b) When the voltage is removed. The stored charge
Q) causes an inversion of the semiconductor surface.

across I(2) is small. These conditions can be met by choosing I(1)
and I(2) such that the ratio of dielectric permittivity e /es is small
and/or the barrier height into I(1) is smaller than that into I(2). The
sandwich structure is somewhat similar to the tunnel emitter metal-
base transistor proposed by Mead?® in its structure but with the follow-
ing essential differences.

(i) M(2) is much thicker than the hot electron range, so that
emitted electrons are close to the Fermi-level of M (2) before
reaching I1(2).

() No carrier transport is allowed across I(2).

(#7) M (2) is floating.
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The stored charge @, as a function of time when a step voltage func-
tion with amplitude 17 is applied across the sandwich, is given by

Q) = fl jdt’ coul/em®. (1

When the emission is of Fowler-Nordheim tunneling type, then the
eurrent density, j, has the form

j = C.E exp (—Eo/B), (2a)

where €, and E, are constants in terms of effective mass and the barrier
height. (We have neglected the effects due to the image force lowering"
of the barrier, ete., but the essential feature is expected to be retained
even after detailed corrections are made). This type of current trans-
port occurs in Si0, and Al,Os.

When the field emission is of the internal Schottky or Frankel-Poole
type, as occurs in SiyNy,” then j follows the form

j = C.E exp [—q(® — Vqk/me)/kT], (2b)

where ¢, is a constant in terms of trapping density in the insulator, ®,
the barrier height in volts, ¢ the dynamic permittivity.

The electric field in I(1) at all times is a function of the applied
voltage V and @Q(t), and is obtainable from the displacement continuity
requirement, as

-l 3)
d, + de(él/fz) 6 + Ez(dl/dE) !
where d; and d» are the thickness of I(1) and I(2), respectively.
Fig. 2(a) shows the results of a theoretical computation using (1),
(2a), and (3) with the following parameters: d, = 50 A, eg =38 ¢ (for
8i0,), d» = 1000 &, &2 = 30 & (for Zr0.), and V = 50 volts. One notes
that the stored charge initially increases linearly with time and then
saturates. The current is almost constant for a short time and then
decreases rapidly. The field in I(1) decreases slightly as the time
increases. The above results ean be explained as follows: When a
voltage pulse is applied at ¢ = 0, the initial charge @ is zero, and the
initial electric field across I(1) has its maximum value, Enu =
V/[dy + (e/e2)ds]. As t increases, Q) will first increase linearly with
time. This is because of the fact that for small @ such that E remains
essentially the same, the current will in turn remain the same, so
Q = j(Eme) - t. Eventually, when @ is large enough to reduce the

E
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Fig. 2(a) — Theoretical results of the stored-charge density (@), the current
density (J), and the electrie field across /(1) as a funetion of time. V = 50 volts,
i = 50 A, erfes = 3.8 (for Si0.), . = 1000 A, e./es = 30 (for ZrO.). (b) The-
oretical results of the stored charge density as a function of time with
the same e and e as in (a), and d, = 10 A, d. = 100 A (solid lines),
oy = 30 A, d: = 300 A (dotted lines). (¢) Theoretical results of the stored density
as a function of time with &y = 20 A, e/ee = 60 (for SizN)), d= = 200 A,
e/en = 30 (for Zr0:) and various applied voltages.

value of E substantially, then the current will decrease rapidly with
time and € increases slowly.

Fig. 2(b) shows the stored charge as a funetion of time for the time
¢ and e but different d,, d., and 17, It is elear that for a given structure,
in order to store a given amount of charge, one can either increase
the applied voltage or inerease the charging time (pulse width) or both.
Fig. 2(c) shows the calculated stored charge for the current transport
deseribed by (2b). Here I(1) is a 20 A thick SizN, film. There are



