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relation connecting the imaginary part of the d-elect-

susceptibility has been derived in an indirect way.
relation is given by the diagrammatic method.
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Fig. 6. The vertex part between parallel spin electrons. I'y
(w1, w2 @5, ®s). The shaded square represents the down
spin closed loops including up spin closed loops interacting
with them.

parallel spin, as shown in Fig. 6.%
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we have derived Egs. (2) and (3).
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