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Abstract-A transport theory of non-ohmic conductivity in semiconductors is developed in a form 
which is closely related to Kohn-Luttinger theory of ohmic conductivity. The theory is limited to 
a very simple case in which the energy surfaces are spherically symmetric and the conduction 
electron is scattered by acoustic vibrations. The interaction between the conduction electron and the 
lattice vibration is considered in the lowest order of the coupling constant. The density matrix of 
the system is expanded by a power series of the intensity of the external field F, and an equation is 
derived for each order of F. By solving these equations we find that the quantum transport equation 
is equivalent to the Boltzmann transport equation in any order of F. 

1. INTRODUCTION 

THE PROBLEM of electrical conductivity is usually 
treated on the basis of a transport equation. Re- 
cently, the foundation of the equation has been 
thoroughly investigated by many authors from a 
quantum theoretical point of view, and the nature 
of the approximations is well understood, as long 
as ohmic conductivity is concerned. On the other 
hand, a study of a non-ohmic current in semi- 
conductors is one of the subject of active research 
in semiconductor physics, and many experimental 
and theoretical works have been published on this 
subject. In a pioneer work on hot electron phen- 
omena in semiconductors, Shockley developed 
a theory of the hot electron on the basis of a ndive 
energy balance’condition on the electron system, 
and this approach was afterwards developed by 
several investigators. Another approach based on 
the Boltzmann transport equation was also de- 
veloped and the theoretical results seem to be in 
reasonable agreement with experiments. How- 
ever, the transport equation used in non-ohmic 
problems was derived by a formal extension of the 
ohmic one, so that the foundation of the equation 
is still ambiguous. Therefore, our next problem 
is to examine a transport equation of the non- 
ohmic conductivity from the quantum theoretical 
point of view. The purpose of the present paper 
is to investigate the foundation of the Boltzmann 

transport equation of hot electron problems on the 
basis of the quantum theory. We shall, however, 
confine ourselves to treat a very simple case in 
order to illustrate a possibility that the usual 
transport equation is still applicable to some non- 
ohmic problems as it can be applied to many 
transport phenomena in the ohmic region. 

2. MODELS AND ASSUMPTIONS 

In the following we shall develop a transport 
theory of non-ohmic conductivity in semicon- 
ductors in a form which is closely related to the 
Kohn-Luttinger theory(l) of ohmic conductivity. 
We assume that the density of conduction eiec- 
trons is so low that we can safely neglect the effect 
of the Coulomb interaction between the conduc- 
tion electrons. Then every electron may be treated 
as completely independent of all other electrons. 
We assume also that the structure of a conduction 
band is so simple that the relation between the 
energy, E, and the wave number, k, of a conduc- 
tion electron is given by E = &‘k2/2m, where m is 
the effective mass of a conduction electron. The 
conduction electrons are scattered by the inter- 
action with lattice vibrations of acoustic types. We 
introduce a parameter ;\, which measures the 
strength of the interaction causing collisions. In 
the following we shall make two assumptions: 
one is that the interaction is so weak that we may 

875 



876 A. HASEGAWA and J. YAMASHITA 

consider only the terms of the lowest order in h; approximation, we have 
the other is -that the lattice is always in thermal 
equilibrium with the outer world and the expecta- 
tion value of phonon numbers is determined by 
the usual Planck law with temperature T. This 
assumption means that the amount of energy 
which is transferred to the lattice from the con- 
duction electrons per unit time is quite small, so 
that the disturbance to the lattice through the in- 
teraction with the electrons is negligibly small. In 
fact, experiments on hot electrons are usually per- 
formed under conditions that keep the lattice tem- 
perature practically equal to the original one 
during the time of measurement. 

3. MATHBMATICAL FORMULATION OF THB 
PROBLEM 

The total Hamiltonian, Ht, for each electron in 
our problem may be written as 

Ht = He+Hl+Hint+HF, (1) 

where He is the Hamiltonian of the free electron, 
Ht is the Hamiltonian of the lattice, Hint is the in- 
teraction with the lattice and HF is the interaction 
with the external field. The explicit expressions 
are as follows : 

He = p2/2m, (2) 

f&+/b = E&k, (7) 
where Ek = Pk2/2m. Then the electron wave 
function #k is determined as 

#k = exp(&)/V1’2, (8) 

where V is the volume of the crystal. Here, let us 
introduce the density matrix of the total system 
Pt, which varies with time according to 

i&&/at) = [&al. (9) 

We shall choose the representation for which 
H,+ Ht is diagonal. In this representation the 
matrix element of Pt is expressed as 

(k,NJ&‘N’), (10) 

where the N representation is used for the phonon 
system. For the sake of brevity, we shall use a 
simplified notation for a diagonal element of a 
matrix, for example, 

,@N) = (k,Nlptlk,N). (11) 

We expand the density matrix by a power series 
of F: 

pt = pa+ ~Pn, (12) 
n=l 

Hz= _” c( 
a2 1 .---+- Mu2X2 (3) 

where ps is a density matrix of the total system in 

2M aXi 2 q ’ thermal equilibrium when there is no external 
Q field, and pn is a component of the density matrix 

and of the system which is proportional to Fn. Insert- 

Hint = iC(fi/2MV)1’a 1 - q Jaq [aq exp(tqr) 

ing (12) into (9) we have: 

a 
-ifit (p1+p2+ . ..) 

-aXexp(-WI, (4) = bo+pl+pz+ . . . . H+HF], (13) 

where C is the coupling constant between the con- where His defined by 
duction electron and the lattice vibration, M is the 
mass of the ion and uq is the angular frequency of H = He+Hz+Hi,t. w 

the vibration of a wave vector Q. Finally, HF is 
given by 

Equating the terms of the same power of Fin both 
sides of (13) we have a set of coupled equations : 

HF = -eF,x,. (5) 
- ihap~/at = ~o,HF] + iid], (15-1) 

Following KOHN and LUTTINGER,(~) we assume that 
-ifi+@ = [PI,&] + l&&i, (15-2) 

F, = Fz exp(st), (6) . . . . . . . . . . . 

where s is a very small parameter. In this - ifi&%& = [pn_l, HF] -I- bn, H]. (15-n) 
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In the following, we shall derive a set of equations 
which must be satisfied by the diagonal elements 
of the density matrix pla, because only the diagonal 
elements are necessary for calculation of the 
electrical conductivity. 

4. OHMIC CONDUCTIVITY 

In this Section, we shall treat the equation of 
the lowest order of F. Following KOHN and 
LUTTINGER,(~ we put 

~1 = & exp(4, (16) 

and then we have 

- 2% ,$l = 01) + [,$I, H], (17) 

where 
(18) 

After some elementary calculations, equation (17) 
is reduced to the following equations: 

tt(wlIK’+wNN’-iS)(KNIE11K’N’) = (KN(C(ulk’N’) 

+&(~N)-&(~‘N’)} (W&tlk’N) 

+ 2’ 2’ {(kNI~lIk”N”)(K”N”[Hl,tlk’N’) 
k” N” 

-(kN(Hi,t~k”N”)(k”N”I~~~k’N’)), 

(19-1) 

where k # k’ and N # N’. Here the prime in the 
summations means to exclude the cases k = k”, 
k’ = k”, N = N” and N’ = N”, and further 
&J~E’ = Ek- Ekl and fiw~~~ = EN- ENI. On the 
other hand, the diagonal element of [l(kN) is 
given by 

--ifis &(kN) = C’lJ(kN) 

+ C’C’ {(kNl~l;lklN,)(k’N1lHi,tlKN) 
, I 

-(~~~,t,k’N’)(~~l~~,kN)~. (19-2) 

Here we introduce approximations. Since the 
principle of the approximation is to retain only the 
terms of the lowest order in A, we use the following 
approximate formula for C(l): 

(kN(C(1)jK’N’) 

Further, the matrix element of ps is reduced to 

(kNlpo(&+H#N) = fm(&)*P(N) (21) 

because of the assumption that the lattice is 
always in thermal equilibrium. Here the function 
fm(Ek) is the Maxwell distribution function for 
electrons and P(N) represents the probability that 
the lattice is in the state 1 N) : 

P(N) = exp( -EN/kT)/ c exp( -EN*/kT). (22) 
N’ 

In this approximation, (kNIC(l)lk’N’) is given by 

(kNjC(l)jk’N’) 

= ieF2 
afg) 

- 
%z 

P(N) ’ &k&N’. (23) 

Following Kohn and Luttinger we estimate the 
order of the magnitude of the matrix elements as 
follows: &(kN) N h-2 and 

(kNl&lk’N’) 

(kNIHi,lk’N’) 

= fi(wkk* + WNN’ - is) 
{h(kN) - &(k’N’)} a., x-1. 

By using these relations we eliminate the non- 
diagonal matrix elements from (19-2) and then 
we have: 

-ih.&(kN) = W(kN) 

+ 2’2’ I(kNIHint[K’N’)12{E1(kN)--h(k’N’)} 
k’ N’ 

1 1 
X 

h(wkk’+ WW’-~S) - fi(wkk,+ wNN,+is) 
’ 

(24) 

Considering the limit of s + 0 we have 

C(l)(kN)+2ni 2’1’ ~(kN~H&z’N’)~2 
k’ k’ 

X WW - t@‘N’)P( COkk’+CONN’) = 0. (25) 

Because of the assumption mentioned previously 
we may write the function &(kN) as a product 

WN) = f;l’W) , (26) 
a 

= ieFiTk- (kNlpo(H,+H~)l~N’)EikkfsNN’. (20) 
where fil’ is an abbreviation of the matrix ele- 

a ment (RI f(l)lk). Inserting (23) and (26) into (25) we 
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have a following equation: (15-l), so that we expect that we are able to derive 
the equations of the similar type as equation (27). 
First, we put eF2 af&) 

- -7+ L[f’kl’] = 0, 
h a 

(27) 

where 

x {fk#p(N’> -fkp(N)}. w 
Following the standard procedures we can easily 
evaluate the function L[$)] as follows : 

WC2 
L[f$ = - cc q2 

MV N 
4 

* G 

Further, by using the relations 

c (~4+W(Nq) = n,+l 

and 

where n, is defined as ne = l/[exp(tiw,/KT)- l] 
we have a familiar expression: 

Xtf&[(‘Q+ l)+%+,-Ek+fiwp) 

+ @(&+, - & - fiwg)] -f~‘[fQ~(&+q- & + fiwp) 

+(ng+ l)&%+p-&-~wp)]}. (30) 

Thus, we see that equation (27) is identical to a 
usual Boltzmann transport equation.(s) 

5. WARM ELECTRON 

In this Section we shall solve equations (15-2) 
and (15-3) and discuss the warm-electron prob- 
lem. As seen from equation (15), the structure of 
these two equations is the same as that of equation 

~2 = 52exp(W 

and then equation (15-2) becomes 

(31) 

where 
- i2shtJ2 = Co+ [52,11], 

G’(s) = -eF~[&,x,]. 

(32) 

(33) 

In the representation for which H,+Hz is diag- 
onal, the matrix element of G’(s) is evaluated as 

(KivjPIK’N’) 

= ice ($+$-) @NISrIk’N’), (34) 

and 

af;? 
CT’@) = ieFz --$ &(kN) = ieFz , ak ---P(N). (35) 

a OL 

Next, we must write down the equations which 
correspond to equations (19-1) and (19-2). These 
equations are easily obtained by replacing ih in 
(19) by 2ih.v and [r by 5;. Since these equations are 
quite similar to equation (19), we write here only 
one of them explicitly: 

- 2ih &(kiV) = 02)(kN) 

+ 2’ 2’ {(kNlhlk’N’)(k’N’IHintlklv> 
k’ N’ 

-(kNIHintlk’N’)(k’N’I521kN)). (36) 

Next, let us estimate the order of the magnitude 
of various matrix elements in (36). From (35) and 
the knowledge about the order of the magnitude 
of the matrix elements of 51 we can easily deter- 
mine the order of the magnitude of the matrix 
elements of Cc2): 

CP(kN) - h-2 and (kNJ@)lk’N’) h A-1 

If we assume that the order of the magnitude of 
&(kN) is of h-4, then the order of the magnitude 
of (kN~~2~k’N’) is estimated as h-s. Therefore, we 
may express the nondiagonal elements of 5s by the 
diagonal elements of 5s as in the case of .&: 

(kNl.&lk’IV’) = 
(kN(Hi,tlK’N’) 

h( CO&k’ + CONN’ - 2is) 

x G2W) - 52(K’N’)}. (37) 
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We see that this matrix element has the same form 
as before. 
Inserting (37) into (36) we have: 

2i&-2(kN) = C(O(kN)+ 2’ 1’ I(kW%ntlk’W12 
k' N' 

1 1 

x h(wkk’+wNN*-22iS) - fi(t.Okkt+wNN,+2i$) 

(38) 
Since the matrix element G)(kN) has the order 
of the magnitude X-s, we justify the previous 
assumption that the order of the magnitude of 
&(kN) is of h-4. Putting &(kN) = f2)P(IV) and 
after some elementary calculations, we have a 
following equation for $a) : 

o= (3% 

where the operator L was defined by (28). Next, 
we proceed to the third-order equation. The 
method of deduction is quite similar as before. 
Putting ps = 5s exp(3st) and defining C’(s) by 

0s) = -eF,o[&,], (40) 

we see easily that the order of the magnitude of 
the matrix elements of C(s): 

03)(kN) = ieFE f &(kN) N Ad4 
a 

and 

(kN/ 031 K’N’) 

= ice (-&+--$j (kNl&#‘N’) w Am3, 

respectively. Further, if we assume that the order 
of the magnitude of (3 is of X-s and repeat the 
similar calculation as before, we finally obtain the 
following equation which gives the distribution 
function f F’ : 

eFz afg) a=--- A ak +wj&% 
cl 

(41) 

where we put 

f3(kN) = f$=(N). (42) 

Thus, we see that the quantum transport equation 
in the order of F2 and Fs are equivalent to the 
Boltzmann transport equation, as long as we con- 
sider only the lowest order of h. 

Let us investigate the general character of the 
distribution functions which are determined by 
the transport equations (27), (39) and (41), re- 
spectively. As is usually done, we expand each 
of the distribution functions by spherical har- 
monics : 

ff’ = cfpP,(cos e>. 
n 

Since fm(k) is spherically symmetric, equation (27) 
tells that fi$ is proportional to Pr(cos 0). Then, 

from equation (39) we see that f(k2) contains the 
terms which are proportional to PO(B) and Ps(B), 
respectively. We see also that ff) consists of 
terms which are proportional to PI(B) and Ps(O), 
respectively. Therefore, if we can show that the 
term proportional to Ps (or Ps) is very small as 
compared with the term proportional to PO 
(or PI), then the correction to the spherically 
symmetric part of the distribution function is pro- 
portional to F2, and the correction to the ohmic 
current is proportional to Fs. If the structure of 
the conduction band is complicated as in Ge and 
Si, the situation is not so simple as stated pre- 
viously. The correction to the ohmic current is 
still proportional to Fs, but the non-ohmic 
current shows anisotropy. 

From the theory developed previously, we find 
that the distribution function fr) is proportional 
to (X-sF)n. The parameter h has been assumed to 
be infinitesimally small in order that only the 
terms of the lowest order of X are taken into account. 
In practice, however, we may choose some quantity 
of real importance as a parameter, although it is 
not always very small. Since the mobility of the 
conduction electron is proportional to h-s, we may 
say that ff) is proportional to (pF)n. In the pre- 
vious paper,(s) we developed a theory of hot 
electrons in semiconductors on the basis of the 
Boltzmann approach. We introduced there a non- 
dimensional parameter which is defined by 
p = 3rrp2F2/16c2, where c is the velocity of sound 
and ~1 is the mobility, and we found that fr) is 
proportional to pni2. Thus, we see that the para- 
meter p may be regarded as a parameter which 
is used here instead of (ksF)s. When p is much 
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smaller than 1, the correction to the ohmic con- 
ductivity is sufficiently small and we are able to 
disregard the terms higher than 3’4. Then, we 
conclude that the usual transport equation is 
applicable to the warm electron problem, just as 
the usual transport equation is applicable to the 
ohmic conductivity in semiconductors. 

6. HOT ELECTRON 

In this Section we shall treat the equations 

for any n. From the discussions mentioned in the 
previous Sections, the general characters of the 
equations are almost certain. Following the 
method developed in the previous Sections we 
may prove that f(kn) is proportional to (A-sF>“. 
Therefore, we may determine the distribution 
function by solving these equations successively. 
There remains, however, a question concerning 
convergence of the series 

f(k) = cfg 
12 

because the value of the parameter p is usuaIly 
much larger than 1 in hot-electron problems. Un- 
fortunately, it is very difficult to test the con- 
vergence of the series in general. We have, how- 
ever, a special example which may be mentioned. 
In the previous paper, (3) we showed that, when the 
scattering of conduction electrons is caused only 
by the interaction with the acoustic vibration, the 
transport equation was solved with good accuracy 
and the convergence of the series was easily 
proved, Here we mention only the main results. 
If we expand the distribution function by a power 
series of F 

m = fo(w” kg(E) cos s+k%(E)P2(q+ . . . . (44) 

where 

and 

fo(E) = 2 %(EP (45) 

g(E) = 2 ,&(EP, h(E) = 2 P@V’? . . . (46) 

The coefficient cts@) is determined as 

Thus, the distribution function Jo(E) is 

fo(E) = 2 a21(~V7~~ 

z=o 

(48) 
Since j92z+1(E) is connected with as&E) by a rela- 
tion 

&t+1(E)F = (const)F 
1 dazr 

&E 
(49 

the distribution function g(E) is determined as 

1 d 
g(E) = (const)F- - 

1/E dE n=evena.FI1 c 

(50) 

Further, we are able to show that R(E) terms are 
quite small as compared witifs( Thus, we see 
that we have a distribution function as a closed 
form in this simple example. In fact, we have de- 
rived a differential equation which is satisfied by 
the function (48) in a previous paper.@) The 
differential equation was, however, derived from 
the transport equation by a rather intuitive pro- 
cedure. In the present paper we have justified 
such a procedure from a more fundamental point 
of view. 

The theoretical treatment developed here will 
be extended to the case in which the conduction 
electron is scattered by a set of fixed impurities 
distributed at random throughout the lattice. In 
other cases we have not yet succeeded to prove the 
convergence of the series 

Cf,* 
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