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Abstract—A transport theory of non-ohmic conductivity in semiconductors is developed in a form
which is closely related to Kohn-Luttinger theory of ohmic conductivity. The theory is limited to
a very simple case in which the energy surfaces are spherically symmetric and the conduction
electron is scattered by acoustic vibrations. The interaction between the conduction electron and the
lattice vibration is considered in the lowest order of the coupling constant. The density matrix of
the system is expanded by a power series of the intensity of the external field F, and an equation is
derived for each order of F. By solving these equations we find that the quantum transport equation
is equivalent to the Boltzmann transport equation in any order of F.

1. INTRODUCTION
THE PROBLEM of electrical conductivity is usually
treated on the basis of a transport equation. Re-
cently, the foundation of the equation has been
thoroughly investigated by many authors from a
quantum theoretical point of view, and the nature
of the approximations is well understood, as long
as ohmic conductivity is concerned. On the other
hand, a study of a non-ohmic current in semi-
conductors is one of the subject of active research
in semiconductor physics, and many experimental
and theoretical works have been published on this
subject. In a pioneer work on hot electron phen-
omena in semiconductors, Shockley developed
a theory of the hot electron on the basis of a naive
energy balance condition on the electron system,
and this approach was afterwards developed by
several investigators. Another approach based on
the Boltzmann transport equation was also de-
veloped and the theoretical results seem to be in
reasonable agreement with experiments. How-
ever, the transport equation used in non-ohmic
problems was derived by a formal extension of the
ohmic one, so that the foundation of the equation
is still ambiguous. Therefore, our next problem
is to examine a transport equation of the non-
ohmic conductivity from the quantum theoretical
point of view. The purpose of the present paper
is to investigate the foundation of the Boltzmann
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transport equation of hot electron problems on the
basis of the quantum theory. We shall, however,
confine ourselves to treat a very simple case in
order to illustrate a possibility that the usual
transport equation is still applicable to some non-
ohmic problems as it can be applied to many
transport phenomena in the ohmic region.

2. MODELS AND ASSUMPTIONS

In the following we shall develop a transport
theory of non-ohmic conductivity in semicon-
ductors in a form which is closely related to the
Kohn-Luttinger theory®) of ohmic conductivity.
We assume that the density of conduction elec-
trons is so low that we can safely neglect the effect
of the Coulomb interaction between the conduc-
tion electrons. Then every electron may be treated
as completely independent of all other electrons.
We assume also that the structure of a conduction
band is so simple that the relation between the
energy, E, and the wave number, &, of a conduc-
tion electron is given by E = #2k2/2m, where m is
the effective mass of a conduction electron. The
conduction electrons are scattered by the inter-
action with lattice vibrations of acoustic types. We
introduce a parameter A, which measures the
strength of the interaction causing collisions. In
the following we shall make two assumptions:
one is that the interaction is so weak that we may
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consider only the terms of the lowest order in A;
the other is that the lattice is always in thermal
equilibrium with the outer world and the expecta-
tion value of phonon numbers is determined by
the usual Planck law with temperature T. This
assumption means that the amount of energy
which is transferred to the lattice from the con-
duction electrons per unit time is quite small, so
that the disturbance to the lattice through the in-
teraction with the electrons is negligibly small. In
fact, experiments on hot electrons are usually per-
formed under conditions that keep the lattice tem-
perature practically equal to the original one
during the time of measurement.

3. MATHEMATICAL FORMULATION OF THE
PROBLEM

The total Hamiltonian, H;, for each electron in
our problem may be written as

H; = H,+H;+ Hip+ Hp, ¢))

where H, is the Hamiltonian of the free electron,
H; is the Hamiltonian of the lattice, Hipt is the in-
teraction with the lattice and Hp is the interaction
with the external field. The explicit expressions
are as follows:

H, = p2[2m, (2)

" 2 62+1M 2X2) 3
‘—Z( 2M oxE 2T

and
Hiny = iC([2MV!12 qZ jwq [aq expligr)
—a? exp(—ign)], *)

where C is the coupling constant between the con-
duction electron and the lattice vibration, M is the
mass of the ion and wy is the angular frequency of
the vibration of a wave vector ¢. Finally, Hp is
given by

Hp = —eF x,. (5)

Following Ko~ and LUTTINGER, 1) we assume that

(6

where s is a very small parameter. In this

F, = FJexp(st),
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approximation, we have
Hyly = Exir, (7)

where Ep = k2k2[2m. Then the electron wave
function i is determined as

i = exp(ikr)/ V172, ©)

where V is the volume of the crystal. Here, let us
introduce the density matrix of the total system
pt, which varies with time according to

iH(2pu/o8) = [Hope]- 9)

We shall choose the representation for which
H,+H; is diagonal. In this representation the
matrix element of p; is expressed as

(k.Nlpi|K',V), (10)

where the N representation is used for the phonon
system. For the sake of brevity, we shall use a
simplified notation for a diagonal element of a
matrix, for example,

pi(kN) = (R, N]pd|2,N). (11)

We expand the density matrix by a power series
of F:

o0
pt = pot+ 2, pns

n=1

(12)

where pg is a density matrix of the total system in
thermal equilibrium when there is no external
field, and p, is a component of the density matrix
of the system which is proportional to F=. Insert-
ing (12) into (9) we have:

P
—th—(p1+p2+ ...
" (prtp2t ...)

= [P0+P1+P2+ caey H+HF]7 (13)
where H is defined by
H = H,+ Hi+ Hiny. (14)

Equating the terms of the same power of F in both
sides of (13) we have a set of coupled equations:

—1thop1/ot = [po,Hr]+ [p1,H], (15-1)
—ihopa/ot = [p1,Hr]+ [p2.H], (15-2)

— ih0pa/0t = [put, Hpl+[pw H].  (15-0)
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In the following, we shall derive a set of equations
which must be satisfied by the diagonal elements
of the density matrix p,, because only the diagonal
elements are necessary for calculation of the
electrical conductivity.

4. OHMIC CONDUCTIVITY
In this Section, we shall treat the equation of
the lowest order of F. Following KoHN and
LuTTINGER, 1) we put

p1 = &1 exp(st), (16)
and then we have
—ihs {1 = CW4[6, H], a7
where
CO = —eFy[po, %,]. (18)

After some elementary calculations, equation (17)
is reduced to the following equations:

Wwgrk' + wny —i5) (kN|&|K'N') = (RN|CO|FN’)
+{1(kN)— &1(R' N")} (kN|Hint|K'N")
+ Zl zl {(kN,fllk”N”)(k”N”[Hint]k,Nl)
N

— (N | Hynel K" N")(&"N" &1 KN')},
(19-1)

where k # &’ and N # N'. Here the prime in the
summations means to exclude the cases &k = &”,
K =F', N=N" and N' = N", and further
’iwkk’ = Ek—Ek' and finN’ = EN—EN’. On the
other hand, the diagonal element of £:1(EN) is
given by

—ihs §1(kN) = CW(kN)
+ 5" {(RN|&:|K' N) ¥ N'| Hi| RN)
k* N’

— (AN |Hut K N')EN'|e1|ENY}. (19-2)

Here we introduce approximations. Since the
principle of the approximation is to retain only the
terms of the lowest order in A, we use the following
approximate formula for C:

(kN|CO[KN')

2
= ich?z;— (EN|po(H,+ Hy)| k' N*)or-8wn+. (20)
o

Further, the matrix element of pg is reduced to
(kN|po(He+ Hy)|kN) = fu(Ex)- P(N)  (21)

because of the assumption that the lattice is
always in thermal equilibrium. Here the function
Jm(Ex) is the Maxwell distribution function for
electrons and P(NV) represents the probability that
the lattice is in the state | N):

P(N) = exp(—Ex/RT)] >, exp(—Ex-[KT). (22)
Nl
In this approximation, (AN|CD)|k'N’) is given by
(RN|CO|E'N")

of®
ok,

= ieF? P(N)- 8xx8nn-- (23)

Following Kohn and Luttinger we estimate the
order of the magnitude of the matrix elements as
follows: £&1(RN) ~ A2 and

(RN|&|R'NY)
(AN |Hint|F'N')

T —

{E1(RN)— E(K'N")} ~ XL,

By using these relations we eliminate the non-
diagonal matrix elements from (19-2) and then
we have:

—ihséy(RN) = CO(kN)
+ 33 (RN Hintl K N')[2{a(kN) — E1(K'N')}
& N

1 1

X - .

( Bowe+ ony'—15)  Blogr + ony +15) )

(24)

Considering the limit of s — 0 we have
CORN)+2mi >S5 |(BN|Hint| K’ N')|2
Pz
x {£1(AN)— £1(K'N")}3(ewrz- + wnn’) = 0. (25)

Because of the assumption mentioned previously
we may write the function £,(kN) as a product

£&(kN) = fiPP(N), (26)

where f;cl) is an abbreviation of the matrix ele-
ment (k| f®Y&). Inserting (23) and (26) into (25) we
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have a following equation:

eFy ofm(k)

%, +L[fP] =0, 27)
where
w5y,
X |(RN|Hini|#'N')|28(wrr + wyn-)
x {frP(N')~ fi P(N)}. (28)

Following the standard procedures we can easily
evaluate the function L[ f(”] as follows:

L{fP] = ——2 Z

x{Ndlf, (l’qP(N o= 1) —f " P(N)18(Ex— Eipiq
+hwg)+ (Ng+ D[ fi2 P(Ng+ 1)~ f;"P(N)]
X 8(Ex— Ex_g— fiwg)}. (29)
Further, by using the relations
z (Ng+1)P(Ng) = ng+1
and
z NgP(Ng) = ngq,

where 74 is defined as ng = 1/[exp(fiwg/kRT)—1]
we have a familiar expression:

2
L) = W -

* {2 [(g+1)8(E+q— B+ havg)
+148(Eiet g~ Ex — hiwg)] — [P [13(Bie+g— B + icwg)
+(ng+1)3(Briq— Ex—hwg)]}.  (30)

Thus, we see that equation (27) is identical to a
usual Boltzmann transport equation. @

5. WARM ELECTRON
In this Section we shall solve equations (15-2)
and (15-3) and discuss the warm-electron prob-
lem. As seen from equation (15), the structure of
these two equations is the same as that of equation
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(15-1), so that we expect that we are able to derive
the equations of the similar type as equation (27).
First, we put

pa = &2 exp(25t) (31)
and then equation (15-2) becomes
—1i2shép = CO+[£3,H], (32)
where
C® = —eFy[£1,%,]. (33)

In the representation for which H.+ Hj is diag-
onal, the matrix element of C'® is evaluated as

(kN|C®|K'N')

= ieF° o L.° EN|&|E'N' 34
-zea(ﬁ;w;)( RN, (34)

and
F: (1)
ieFy —%

o

Cc® = ieFS—;k—gl(kN) = P(N). (35)
Next, we must write down the equations which
correspond to equations (19-1) and (19-2). These
equations are easily obtained by replacing /s in
(19) by 2¢ks and £1 by &s. Since these equations are
quite similar to equation (19), we write here only
one of them explicitly:

—2ihs £3(kN) = C(kN)
+ 3" 5" {(kN|éo| k' N'Y(¥' N'| Hingl kN)
k'’ N’

—(kN|Himg| KN')E'N')&o)kN)}.  (36)

Next, let us estimate the order of the magnitude
of various matrix elements in (36). From (35) and
the knowledge about the order of the magnitude
of the matrix elements of ¢ we can easily deter-
mine the order of the magnitude of the matrix
elements of C(@:

C®(kN) ~ A2 and (EN|CE|E'N') ~ A1

. If we assume that the order of the magnitude of

£3(RN) is of X174, then the order of the magnitude
of (kN|&2|k'N’) is estimated as A-3. Therefore, we
may express the nondiagonal elements of &; by the
diagonal elements of &; as in the case of £;:

(AN|Hynt|K'N")
A wir' + wn N — 2is)

x {€2(RN)—&2(R'N')}.

(RN|&|KN') =

(37)
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We see that this matrix element has the same form
as before.
Inserting (37) into (36) we have:

2ifista(kN) = CARN)+ 3 > |(kN|Hin|k'N')|2
k’ N’

x {§o(kN)—£o(K'N")}

1 1
< _
(h(wkk’ +wyn—2is) Ao +oyN+ ZiS))
(38)

Since the matrix element C®(RN) has the order
of the magnitude A2, we justify the previous
assumptlon that the order of the magnitude of
£(kN) is of X4, Putting £2(kN) = f®P(N) and
after some elementary calculations, we have a
following equation for f ;f) :

2 oY

+ L (2)
PRTS [f'ls
where the operator L was defined by (28). Next,
we proceed to the third-order equation. The
method of deduction is quite similar as before.
Putting ps = £3 exp(3st) and defining C® by

C® = —eFYéax,], (40)

we see easily that the order of the magnitude of
the matrix elements of C®):

(39

é
CO(kN) = ieFy = £o(kN) ~ X1
and
(N|C®|K'N")
o a)kalk’N A3
= ieFy (—+— ) ~ A3,
* <6ka o) (BNIElRN

respectively. Further, if we assume that the order
of the magnitude of £3 is of A8 and repeat the
similar calculation as before, we finally obtain the
following equation which gives the distribution
function f;f):

= ol Eﬁ+Ll’f‘3)] 41)
ko ok, k2
where we put
&(kN) = fi'P(N)- (#2)
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Thus, we see that the quantum transport equation
in the order of F2 and F3 are equivalent to the
Boltzmann transport equation, as long as we con-
sider only the lowest order of A.

Let us investigate the general character of the
distribution functions which are determined by
the transport equations (27), (39) and (41), re-
spectively. As is usually done, we expand each
of the distribution functions by spherical har-
monics:

P =3 fPy(cos 6).
n

Since f(k) is spherically symmetric, equation (27)
tells that fi) is proportional to Py(cos §). Then,
from equation (39) we see that f(z) contains the
terms which are proportional to Po(O) and Py(6),
respectively. We see also that f{ consists of
terms which are proportional to Py(8) and P(6),
respectively. Therefore, if we can show that the
term proportional to Py (or Ps) is very small as
compared with the term proportional to Pp
(or Py), then the correction to the spherically
symmetric part of the distribution function is pro-
portional to F2, and the correction to the ohmic
current is proportional to F3. If the structure of
the conduction band is complicated as in Ge and
Si, the situation is not so simple as stated pre-
viously. The correction to the ohmic current is
still proportional to F3, but the non-ohmic
current shows anisotropy.

From the theory developed previously, we find
that the distribution function f‘,:‘) is proportional
to (A"2F)n. The parameter A has been assumed to
be infinitesimally small in order that only the
terms of the lowest order of Aare taken into account.
In practice, however, we may choose some quantity
of real importance as a parameter, although it is
not always very small. Since the mobility of the
conduction electron is proportional to A-2, we may
say that f () js proportional to (uF)». In the pre-
vious paper @) we developed a theory of hot
electrons in semiconductors on the basis of the
Boltzmann approach. We introduced there a non-
dimensional parameter which is defined by
p = 37plF2[16¢2, where ¢ is the velocity of sound
and p is the mobility, and we found that f‘]:’) is
proportional to p7/2, Thus, we see that the para-
meter p may be regarded as a parameter which
is used here instead of (A-2F)2, When p is much
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smaller than 1, the correction to the ohmic con-
ductivity is sufficiently small and we are able to
disregard the terms higher than F4, Then, we
conclude that the usual transport equation is
applicable to the warm electron problem, just as
the usual transport equation is applicable to the
ohmic conductivity in semiconductors.

6. HOT ELECTRON
In this Section we shall treat the equations

... OPn
—h ke {pn—1, Hr]+ [pn, H]

for any n. From the discussions mentioned in the
previous Sections, the general characters of the
equations are almost certain. Following the
methed developed in the previous Sections we
may prove that f‘") is proportional to (A-2F)%,
Therefore, we may determine the distribution
function by solving these equations successively.
There remains, however, a question concerning
convergence of the series

fiRy = 2. fP

because the value of the parameter p is usually
much larger than 1 in hot-electron problems. Un-
fortunately, it is very difficult to test the con-
vergence of the series in general. We have, how-
ever, a special example which may be mentioned.
In the previous paper,®) we showed that, when the
scattering of conduction electrons is caused only
by the interaction with the acoustic vibration, the
transport equation was solved with good accuracy
and the convergence of the series was easily
proved. Here we mention only the main results.
If we expand the distribution function by a power
series of F

f(k) = fo(E)+kg(E) cos 8-+ Rh(E)Po(0)+ ..., (44)
where
Jo(E) = 3 an(E)F? (45)
and
g(E) = 2 Bu(EYFm, WE) = 3 ya(E)F*,... (46)
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The coeflicient ag(E) is determined as

s VPR — (7'71”{ (—%:-FP)T%(E)- #7)

Thus, the distribution function f5(E) is

) = S (B = (ﬁ.,.,,)” (—;T-)

1=0

(48)
Since Ber+1(E) is connected with agi(E) by a rela-
tion
Ban(E)F = (consyF — 2% (49
con: —_——
2141 s VE iE' )
the distribution function g(E) is determined as
1
g(E) = (const)F—~——-~ anFn
VE dE L
1 4
— (consyf—— P, (50)
VE dE

Further, we are able to show that A(E) terms are
quite small as compared with fy(E). Thus, we see
that we have a distribution function as a closed
form in this simple example. In fact, we have de-
rived a differential equation which is satisfied by
the function (48) in a previous paper.¥ The
differential equation was, however, derived from
the transport equation by a rather intuitive pro-
cedure. In the present paper we have justified
such a procedure from a more fundamental point
of view.

The theoretical treatment developed here will
be extended to the case in which the conduction
electron is scattered by a set of fixed impurities
distributed at random throughout the lattice. In
other cases we have not yet succeeded to prove the
convergence of the series
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