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Abstract

This thesis addresses the development of a new micro-scale interrupter
mechanism for a safe and arm device used in modern weapon systems. The interrupter
mechanism often consists of a physical barrier that prevents an initial source of energy, in
an explosive train, from being transferred to subsequent charges. In general, when the
physical barrier is removed, the weapon is considered armed, and the charge is allowed to
propagate. Several issues facing current safe and arm devices systems are the shrinking
industrial base for manufacturing these devices and the desire for modern safe and arm
devices to be compatible with next generation weapon systems that are generally
decreasing in size and increasing in complexity. The solution proposed here is to design,
fabricate, and test a conceptual interrupter mechanism using Microelectromechanical
Systems (MEMS) components. These components have inherent benefits over current
devices, such as smaller feature sizes and lower part counts, which have the capability to
improve performance and reliability. After an extensive review of existing micro-scale
safe and arm devices currently being developed, a preliminary design was fabricated in a
polysilicon surface micromachining process. The operating principle of this conceptual
interrupter mechanism is to have MEMS actuators slide four overlapping plates away
from each other to create an aperture, thus providing an unimpeded path for an initiating
energy source to propagate. Operation of the fabricated MEMS interrupter mechanism
was successfully demonstrated with an approximate aperture area of 1024 pum” being

created.
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MICROELECTROMECHANICAL SYSTEMS (MEMS)

INTERRUPTER FOR SAFE AND ARM DEVICES

1. Introduction

For the people that work around explosive weapons, safety is a vital concern that
affects all facets of a weapon’s life — from transportation, to storage, to maintenance, to
buildup, to upload, to flight, and to release. The potential for a major mishap, to include
both equipment and personnel, exists if a weapon is inadvertently armed during one of
these operations. To ensure that the weapon is in an “armed” condition only when
desired and in a “safe” condition at all other times is the function of the safe and arm

device [1], which is an integral part of the weapon’s fuze.

1.1 Safe and Arm Device Functional Description

The safe and arm (S&A) device is an element of the fuze, which is a critical
component of all munition items. The fuze is responsible for initiating the sequence of
steps that ultimately leads to weapon detonation. The method of initiation for a particular
fuze depends on the intended launch environment, or the desired effect upon detonation.
For example, fuzes can be designed to initiate the explosive train on impact, by sensing a
relative proximity to a target, or by sensing depth of penetration through a target. This
latter example applies to bunker busting-type weapons where it is desirable to penetrate

through various levels of dirt and/or concrete barriers before detonation. A critical
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requirement for fuzes is their high reliability standards that must be maintained
throughout years of storage, maintenance, and use in a variety of surroundings. For
instance, fuzes and their internal components need to endure extreme environmental
conditions that range anywhere from large temperature fluctuations during many years of
dormant storage to the high acceleration forces experienced both prior to and in the
launch environment [2], [3]. Figure 1-1 shows several pictures of fuzes currently used
for both air-to-air and air-to-ground munition systems. The S&A device is a component
within each of these fuzes.

The S&A device has the essential function of preventing a premature detonation

by eliminating the potential for energy to reach the main charge. This is accomplished by

Air-to-Air Fuzes Air-to-Ground Fuzes

Harm Missile Fuze Electronic Bomb Fuze

e

Sidewider Missile Fuze 'PrOX|m|ty Fuze

Figure 1-1. Fuzes currently being used in military weapons [4]. Safe and
arm devices are a critical component within each of these fuzes.



eliminating a continuous path for the energy to propagate through the explosive train.
Toward this objective, S&A devices often “interrupt” the explosive train by making use
of in-line mechanisms as a way to prevent inadvertent arming. Figure 1-2 shows a
schematic diagram of a generic explosive train that depicts the spatial relationship
between explosive charges and the S&A device. Another function of the S&A device,
equally important as preventing a continuous path, is allowing a continuous path. When
a predetermined set of conditions are satisfied, the physical mechanisms (within the S&A
device) that interrupt the explosive components are removed, thereby enabling the
explosive energy to propagate toward the main charge, ultimately resulting in weapon
detonation. In this case, an input energy source is detected by a detonator, which is a
very sensitive explosive element designed to amplify a weak initial signal. The next
explosive element is the lead charge, which represents the next stage of amplification.
The booster charge depicts the final stage of amplification that provides the necessary

explosive force to detonate the main charge [1]. To be effective, the device must remain

Increasing Output Energy

S&A
Device

Fuze

Increasing Sensitivity

Figure 1-2. Schematic diagram of a generic explosive train. The spatial relationship
between fuze, S&A device, and other charges is shown.
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in a safe configuration during most of its lifetime, thus preventing an armed condition
until the last possible instant. Additionally, the S&A device must be able to move very
rapidly, and accurately, into the armed condition since most munitions travel at high
velocities once launch has been initiated [5].

The “interruption” method used by manufacturers of S&A devices vary, but most
call the mechanism that performs this function the interrupter. Interruption can be
performed by misaligning the explosive components or by providing a physical barrier so
that the explosive components cannot propagate through the explosive train in the case of
an inadvertent initiation. Various levels of complexity can be designed into this
interrupter mechanism to ensure it remains safe; however, device complexity usually has
a direct impact on device reliability. More complex interrupter schemes have a greater
potential to introduce single-point failure modes into the explosive train, which can result
in a launched weapon that fails to detonate [6].

In order for the interrupter to move into the armed position, a specific sequence of
events (for which the S&A device is designed) must be detected to ensure a valid launch
command has occurred. This is typically achieved by ensuring at least two distinct
environmental conditions are satisfied, which indicate an intentional detonation sequence
has been initiated [7]. Care must be taken that the selected environmental stimuli will not
be experienced in the munition lifecycle except when the munition is in the proper launch
cycle. The launch cycle is defined as the period between when “the munition is
irreversibly committed to launch” and some relatively short time after it leaves the
weapon launch platform [7]. The launch platform could be an aircraft, ship, artillery

tube, or rifle.
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1.2 Problem Statement

One of the issues facing the munitions community in recent years is the age of
fuzes and their components in existing weapons systems. The reliability of these older
fuzes tend to decrease over time, and existing systems will require components to be
replenished in the coming years, either through product improvement or new
development programs [8], [9]. In addition to finding replacement components for older
weapons systems, new S&A devices need to be developed for munitions currently being
acquired. Many designs that exist today use mechanisms that were designed over two
decades ago and some designs are too complex and costly with respect to other
improvements being made to modern weapon systems [10]. Modern munition items tend
to be designed for more reliability and accuracy, and as such require a S&A device that
achieves an equal, if not better, level of performance to ensure both infallible safety and
lethal functionality.

Another problem, which compounds the issue of an aging stockpile, is that old
S&A designs are difficult to reproduce since the industrial base that manufactures these
devices is shrinking. From 1987 to 2001, the firms that produce electronic and
electromechanical fuzes shrunk by over 80 percent (from 31 to 6) [2]. Additionally, the
suppliers of Army fuzes have reduced in numbers from 20 to 5 since 1999 [11]. The
military downsizing that occurred in the 1990’s reduced the dollars available for
munitions expenditures, and as a result many manufacturers stopped producing fuzes

because it became less profitable [9], [11].



1.3 Proposed Solution

A common approach in designing modern weapon systems is to miniaturize
munitions, which places a ‘smaller is better’ requirement on all components that make up
a munition item, including the S&A device. Advances in solid-state fabrication
techniques have made it possible to create micrometer-scale mechanical systems, which
enable alternative design possibilities for fuze designers. Consequently, S&A devices
designed using micro-electro-mechanical systems (MEMS) concepts become an obvious
area to explore for potential exploitation. MEMS technology is based on the thoroughly
refined fabrication methods used in the integrated circuit community. The processes used
in fabricating integrated circuit devices using solid-state materials have been well proven
over the last 50 years. Starting with the first transistor developed in 1947 by engineers at
Bell Laboratories and the first integrated circuit demonstrated in 1958 by Texas
Instruments [12], tremendous advances have been made in the material research and
processing technologies that enable the complex electronic devices produced today.

The attractiveness of MEMS S&A devices for modern weapons systems is their
inherent benefits over current macro-scale devices. One example is that their smaller
feature size offers the advantage of decreased mass, which directly benefits enhanced
range and maneuverability requirements. This can be shown by considering the scale
factor, S, of an object. Mass is known to scale in relation to the volume of an object,
therefore, the scale factor for mass is S° [13]. For instance, consider a cube where the
length of each edge is one meter. If each edge length is reduced to one micrometer (107
meter), the mass of the cube will decrease by 1/10"® (S = 1/10%), or by a factor of 10'%.

On a more practical scale, consider the length of each edge scaling from one millimeter

1-6



(10 meter) to one micrometer (10" meter). Applying the mass scale factor of S’ to this
example, results in the mass decreasing by a factor of 10”.

Another example of the inherent benefits of MEMS devices is the higher
fabrication volumes, which typically contributes to lower costs over time. The decrease
in cost is a result of the capability to produce these devices in large volumes. This has
been irrefutably witnessed in the processes used to fabricate integrated circuits, which are
very similar to the processes used in MEMS fabrication. As a final example of inherent
MEMS benefits, the lower part counts, that are generally characteristic of these devices,
have a tendency to increase reliability over systems with a larger part count.

Clearly, if an S&A device, designed with components manufactured with MEMS
techniques, could be successfully demonstrated, it would allow more design flexibility
for the replenishment of fuze elements in current munitions, and enable additional
approaches in the design of modern weapon systems. Additionally, MEMS-based S&A
devices could be used for advanced munitions concepts, such as miniature weapons on

unmanned aerial vehicles (UAV) and ‘smart’ bullets.

1.4  Conclusion

This research effort will focus on an interrupter design concept created
completely in a MEMS fabrication process. The Multi-User MEMS Processes
(MUMPs") fabrication process was used for all four design iterations submitted as part of
this thesis. Each device uses polysilicon as the structural layers and hence the specific
process provided by MUMPs” is called PolyMUMPs™". The PolyMUMPs process is a
three-layer, general-purpose surface micromachining process that offers two releasable

polysilicon layers and one metal layer [14].



Chapter 2 of this thesis will discuss some basic concepts that must be considered
when designing a munition fuze, along with the forces typically encountered in military
weapons. In addition, several micro-scale S&A devices currently being investigated will
be presented. Chapter 3 will discuss some common devices used to initiate explosive
trains, along with a look at a specific detonator device that has been fabricated using
microelectronic fabrication techniques. Chapter 3 will conclude with some ideas on how
to integrate the MEMS interrupter concept proposed in this research with a
microdetonator device. Chapter 4 will discuss the theory involved in designing a MEMS
interrupter mechanism, and the motivation for selecting the individual components that
are incorporated into the final fabricated device. Chapter 5 will discuss the test results
used to characterize the performance of the individual actuation mechanisms, along with
the experimental results of the fabricated S&A interrupter device. Lastly, Chapter 6 will
discuss the conclusions reached based on these experimental results and present some

recommendations for future work in this area.
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