
607 

Z u r  Elektronentheopk? der Metal&. I 
Vom L ot h ar No r dh e i m  

(Mit 11 Figuren) 

Q 1. Einleitung und Zusammenfassung 

Nachdem durch P a u l i  und Somnierfeld z, gezeigt 
worden war, dal3 durch die Einfiihrung der Fermistatistik 
die Schwierigkeiten der alten Elektronentheorie der Metalle 
weitgehend beseitigt werden, ist das Problem der modell- 
iniiBigen Berechnung der freien XTeglange der Elektronen 
von verschiedenen Butoren, insbesondere Houston3) ,  Bloch4)  
und Pe ier l s5)  in Angriff genommen worden. Wahrend nun 
der Mechanismus des Leitungsvorganges sls schon recht weit- 
gehend erfaBt angesehen werden kann, lassen sich gegen ver- 
schiedene Punkte der bisherigen Behandlungsweisen Bedenken 
erheben. Letztere erschweren es unter anderem, den zahlen- 
maiBigen Erfolg der Theorien zu beurteilen. Bei Hous ton ,  
der die umfassendsten numerischen Resultate gibt, wird eine 
fragliche Anleihe $us der Rontgenoptik zur Berechnung der 
Elektronenstreuung gemacht. AuBerdem verwendet er nicht 
die korrekte Fundamentalgleichung fur die Fermistatistik, 
was besonders fur tiefe Temperaturen unzulassig ist. Bei 
B loch  (und Pe ie r l s )  sind diese Punkte vollig klargestellt. 
Dagegen scheint mir bei ihm nicht immer ein einheitlicher Ge- 
sichtspunkt hinsichtlich der Approximationen festgehalten. 
Infolgedessen sind seine numerischen Werte etwas unbestimmt. 
Es  sol1 deshalb im folgenden versucht werden, den durch die ge- 
nannten Arbeiten eingeschlagenen Weg so konsequent wie 

1) W. P a u l i  jr., Ztschr. f. Phys. 41. S. 81. 1927. 
2).A. S o m m e r f c l d ,  Ztschr. f. Phys. 45. S. 1. 1928. 
3) W.V.Houston ,  Ztschr. f. Phys. 48. S. 449. 1926. 
4) F. Bloch ,  I. Ztschr. f. Phys. 62. S. 555. 1928; II., Ztschr. f. 

Phys. 59. S. 208. 1930. 
6)  R. P e i e r l s ,  Ann. d. Phys. 4. S. 121. 1930; 5. S. 244. 1930. 
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moglich zu Ende zu gehen. Dariiber hinaus gelang es, die 
Problenie des Widerstandes der Legierungen mit zu erfassen 
im Verfolg von Gedanken, die schon friiher vom Verf.I) an- 
gedeutet worden waren. 

Die corliegende Theorie sieht zuniichst recht kompliziert 
aus. Durch geeignete Anordnung der Bechnungen 1&Bt sich 
aber geniigende Durchsichtigkeit erzielen. Zu diesem Zwecke 
erschien es nicht uberfliissig, einen systematischen Gesamt- 
aufbau zu versuchen. Um den ganzen Gedankengang miig- 
lichst klar hervortreten zu lassen, niuBten dabei verschiedene 
schon bekannte Uberlegungen in modifizierter Form wiederholt 
werden. Ferner wurde von dem Aushilfsmittel, kritische Be- 
inerkungen und Spezialausfiihrungen in FuRnoten bzw. Anhiinge 
zu verqreisen, reichlich Gebrauch gemacht. Am Ende jeder 
Etappe der Rechnung sind die gewonnenen Ergebnisse, soweit 
sie in der Fortsetzung gebraucht werden, priizise formuliert. 

I n  Kap. I ivird in Verfolg des obigen Programnis durch 
Zusammenfassung bekannter Ergebnisse iiber die Mechanik 
von Elelrtronen in periodischen Kraftfeldern der physikalische 
Standpunkt festgelegt. Kap. I1 behandelt die statistische 
Fundamentalgleichung, die in1 AnschluB an 'ijberlegungen voii 
B o h r  auf eine miiglichst ubersichtliche und allgemeine Form 
gebracht wird, und es werden alle Folgerungen gezogen, die 
noch nicht ein Eingehen auf die spezielle Form Ton flber- 
gangswahrscheinlichkeiten erfordern. Letztere werden dann 
in Kap. I11 modellmiil3ig bestimmt. I n  Kap. IV werden die 
Leitfiihigkeiten wirklich ausgerechnet. Anhang I enthglt die 
Behandlung eines Sekundareffektes, und im Anhang I1 a erden 
einige vie1 benutzte Formeln kurz abgeleitet. Er bringt 
zugleich einige wesentliche Vereinfachungen gegeniiber den 
8 om m e r f e 1 d schen Rechnungen. 

Wir haben uns ferner bemiiht, die Theorie soweit durch- 
zufiihren, als es ohne numerische Integrationen zur Bestiminung 
con Eigenfunktionen mijglich erscheint. 

Die Hauptresultate der vorliegenden Untersuchung sincl 
kurz zusanimengefilBt die folgenden : 

1) Lothar N o r d h e i m ,  Naturwiss. 16. S. 1048. 1928. 
2) Niels B o  h r ,  Studier over Metallernes Elektrontheorie, Diss. 

Kopenhagen 1911. 
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I. Fur  gute Leitsr stellen freie Elektronen eine auch 
physikalisch befriedigende Naherung an die wirklichen Ver- 
haltnisse dar (5 2). 

11. Die thermodynamischen Beziehungen fur die Thermo- 
elektrizitat werden als ganz allgemeine Folgerungen aus der 
kinetischen Theorie nachgewieseu ($5 3 und 10). 

111. Fur  hohe Temperaturen werden die So  mmer fe ld -  
schen Ansatze weitgehend gerechtfertigt. Es la& sich in 
seinem Sinne eine f r e i e  Weglange fiir die Elektronen einfiihren. 
Demzufolge gilt fur  gute Leiter auch das W i e d e m a n n -  
Franzsche Gesetz mit seinem Wert der Konstantenl) (55 6 
und 11). 

IV. Die Temperaturabhangigkeit des elektrischen Wider- 
standes wird befriedigend wiedergegeben. [Hier haben wir 
keine Resultate, die iiber die von Bloch  hinausgehen (5 T).] 

V. Der absolute Wert des elektrischen Widerstandes 
kommt gro8enordnungsmaDig ohne wesentliche Hypothesen 
ad hoc heraus. Da alle Vernachlassigungen in dem Sinne 
des Ubergangs zu moglichst locker gebundenen Elektronen 
liegen, ist es verstandlich, daB der berechnete Widerstand 
eher zu klein wird. Bei den Alkalien liegt der beobachtete 
Wert noch innerhalb der Grenzen, die sich aus unserer 
Unkenntnis der genauen Potentialverteilung im Metal1 ergeben. 
Bei anderen Metallen, z. B. Gold, wird er zu klein, wie zu 
erwarten, da die Voraussetzungen fur sie nicht mehr so gut 
erfullt sind (5 7). 

TI. Das Verhalten von Legierungen findet seine volle 
Aufklarung. Die Matthiessensche Regel der Additivitat des 
Zusatz- und des gewohnlichen Widerstandes ist eine sinn- 
gemaBe erste Naherung. Der in der ldassischen Elektronentheorie 
nicht erklarbare Zusatzwiderstand fur feste Lijsungen wird 
gedeutet als ein Interferenzeffekt der Elektronenwellen. Seine 
Abhangigkeit von dem Mischungsverhaltnis und seine absolute 

1) Fur tiefe Temperaturen, d. h. solche, die unterhalb der D e b y e -  
schen charakteristischen Temperatur 0 des Materials liegen , gilt dies 
keineswegs mehr. Es sind dort Abweichungen von der S om me r f e l  d - 
schen Theorie zu erwarten. Sie sind von P e  i e r l  s qualitativ diskutiert 
worden. Es ist bis jetzt jedoch nicht gelungen, das Problem der 
Warmeleitfahigkeit fur tiefe Temperaturen systematisch zu behandeln. 

Annalen der Physik. 5. Folge. 9. 40 
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GroBe ergeben sich in guter nbereinstimmung mit der Er- 
fahrnng. Das Verhalten von Kristallitgemengen und Metall- 
verbindungen ist zum mindesten qualitativ vorauszusehen (5 8). 

Kapitel I 
2. Die physikalischen Voraussetsungen 

Die Behandlung der elektrischen und thermischen Leit- 
fahigkeit der Metalle wiirde streng genommen die Losung 
eines allgemeineren Problems, namlich das der Natur des 
metallischen Kristallaufbnus (Kohasion) voraussetzen. Da in 
dieser Richtung bis jetzt so gut wie nichts bekannt ist, mug 
man sich mit einer sinngemafien Naherung begniigen. Als 
eine solche bietet sich zwanglos die folgende dar. Betrachten 
wir den Kristall als Games, so 1aBt sich offensichtlich in 
einer ahnlichen Naherung wie der des H a r t  r e e schen ,,self 
consistent field" fur htome sagen, daB sich jedes Elektron 
in einem stationaren Zustand im Kraftfeld der Ionen und der 
iibrigen Elektronen befinden muB. Dabei ist das Paul ische 
Prinzip zu beriicksichtigen, daB ein jeder solcher Zustand nur 
zwei (wegen des Spins) Elektronen aufnehmen kann. Dieses 
self consistent field ist naturlich in Strenge dreifach periodisch. 
Wie B loch  gezeigt hat, kommt (bei Annahme der natur- 
gemaiBen Randbeclingung der Zyklizitat) den stationiiren 
Zustanden eines solchen Feldes ein Strom zu (vgl. weiter unten). 
Sie entsprechen daher in gewissem Sinne ,,freien" Elektronen, 
und ein idealer Kristall wiirde eine unendliche Leitfahigkeit 
besitzen.l) Infolge von stets vorhandenen Storungen (Teil 111) 
kommen jedoch Ubergangsprozesse vor, die einen endlichen 
Widerstand hervorrufen. 

Bei diesem Bild ist also die Wechselwirkung der Elek- 
tronen untereinander nur sehr summarisch beriicksichtigt, 

1) Fur  Nichtleiter, insbesondere Ionenkristalle, wie die Alkalihalo- 
genide, scheint allerdings eine solche Beschreibung nicht mehr m6glich 
zu sein. Dies zeigt schon die Existenz scharfer AbsorptionsIinien, die 
an Elektronenubergange zwischen ganz bestimmten Ionen geknupft sind. 
(R. H i l s c h  und R. W. P o h l ,  Ztschr. f.Phys. 59. S. 812. 1930). Man 
kann qualitativ leicht verstehen, warum beim Vorhandensein sehr tiefer 
Potentialmulden die Zuordnung der Elektronen zu bestimmten Platzen 
im Kristall eine bessere Beschreibung als die I310 c h  schen Eigen- 
funktionen liefert, jedoch sei hier nicht naher darauf eingegangen. 
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namlich (lurch die Abschirmung und das Pauliprinzip. Dagegen 
werden Austauschwirkungen und StoBe untereinander nicht 
mitgenommen.') Hierin liegt die Hauptunvollkommenheit der 
Theorie, und es diirfte hierauf beruhen, daB die Supraleitfahig- 
keit durch sie nicht erklart werden kann. Die Rechtfertigung 
dieser Vernachlassigungen liegt daher eigentlich nur in dem 
grgument, dab eine Beriicksichtigung dieser Effekte auger- 
ordentliche Schwierigkeiten zu bieten scheint.2) 

Wir nehmen also an, daB das Kraftfeld fur ein einzelnes Elek- 
tron in nullter Naherung dreifach periodisch sei mit der Gitter- 
konstanten a. Der ganzeKristal1 enthalte G3Elementarwiirfel, habe 
also die Seitenlange K = a G . ( f i r  beschranken uns auf kubische 
Symmetrie.) Die Randbedingungen seien die der Zyklizitat. 
Es gelte daher fur die Eigenfunktionen der Elektronen z. B. 

nber  sie ist noch folgendes als streng giiltig bekannt: Sie 
lassen sich stets als modulierte ebene Wellen darstellen 
(Bloch) ,  d. h. 

(1 r) 
('701) ? , ! J k z k y k , = e  U k , h y k ,  = e UF, 

wo die uf dreifach periodisch (Periode a )  sind. Die Energie 
ist eine Summe von Funktionen der Quadrate der drei Lauf- 
zahlen (Quantenzahlen) kz ,  kv ,  kz [Norse3)] 

Es gilt ferner die D e  Brogliesche Beziehung zwischen 
Gruppengeschwindigkeit v, Strom s und Energie E [Peierls*)] 

(2 ,OO) w(z + K )  = y ( z ) ,  us--. 

? x i  - Sni g (X k.v + y k,  + z kz) 

(2,02) E(k,, ky, kz) = Eo(kz2) + E"(3Cy21 + EO(kZZ) .  

(2703) 
Mit der Eigenwertverteilung ist also auch der Strom bekmnt,. 

1) DaB letztere keinen ubermlBigen EinfluB haben, trotzdem die 
Krafte grob sind, ist allerdings nach dem L o r  e n  t z  schen Argument 
plausibel, dab bei ihnen ja keine Stromanderung stattfindet (Impulssatz). 

2) Versuche in dieser Richtung sind von F. B l o c h  unternommen 
worden. Vgl. seinen Aufsatz: ,,Uber die Wechselwirkung der Metall- 
elektronen", Leipziger Vortrage 1930. 

3) P. M. M o r s e ,  Phys. Rev. 36. S. 1310. 1930. Diese Arbeit ent- 
hiilt auch einen aussichtsreichen Weg zur genaueren numerischen Be- 
stimmung der Eigenfunktionen. 

4) R. P e i e r l s ,  Ztschr. f. Phys. 63. S. 255. 1929. In aeiner 
Formel (6) fehlt ein Faktor h' auf der rechten Seite. 

40* 
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Uber erstere kf3t sich folgendes aussagen (Morse):  
Im eindimensionalen Fall folgt aus der Theorie der M a t h i e u -  

schen Funktionen, daB alle Eigenwerte in Streifen liegen, die fiir 
kleine Energien sehr schmal sind, fur gr6Bere breiter. In Pig. 1 

sind zu dem gezeichneten pe- 
riodischen Potential V die ent- 
sprechenden Zonen durch Schraf- 
fierung markiert. Auch fur hohe 
Energiewerte haben diese Streifen 
einen endlichen energetischen Ab- 
stand. In jedem Streifen liegen 
G Eigenwerte 

(- $<I;-;+ -- :I 
Fig. 1 Im dreidimensionalen Fall besteht 

eine solche Zerlegung f u r  die 
Komponenten der Bewegung nach 

den Hauptacbsen f5r sich. Wir kiinnen eine Ubersicht durch Fig. 2 
gewinnen, die den zweidimensionalen Fall darstellt. Ein Punkt der 
Ebene bedeute einen Bewegnngszustand, dessen Energie durch das 

Quadrat der Lange des 
Vektors vom Ursprung, 
und dessen Richtung 
durch die Richtung 
dieses Vektors gegeben 
ist. Dann sind nur Zu- 
stande innerhalb der 
schraffierten Kechtecke 
mSglich, und zwar ge- 
h6ren zu jedem gerade 
G2 Eigenwerte. Fur  
drei Dimensionen hatten 
wir statt dessen natiir- 
licb Parallelepipede mit 
je G3 Eigenwerten. 

Genauere Auskunft 
kann man fur die Grenz- 
falle sehr tiefer und 
sehr hoher Terme durch 
Sttjrungsrechnung er- 
halten. Fur tiefe Terme 

( B l o c h )  sind die Eigenwerte beina,he die einer einzelnen Potential- 
mulde. Ein jeder solcher ist in G3Terme aufgespalten wegen der Ent- 
artung des Vorhandenseins von Gs gleichen derartigen Mulden. Diese 
bilden gerade eines der oben erwahnten Streifen (Parallelepipede). 
Die Energieverteilung in einem solchen ist gegeben durch 

Fig. 2 
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p! ist das Resonanzintegral 

(p = Eigenfunktion einer einzigen Potentialmulde; T = d z  d y  dz). Die 
Breite des Streifens, und nach (2,03) daher auch der Strom eines 
Zustandes, ist daher um so kleiner, j e  tiefer der betreffende Eigenwert 
liegt. Fur  die unteren abgeschlossenen Schalen der Ionen, bei denen 
jeder Term mit so vie1 Elektronen besetzt ist, als sein Entartungsgrad 
betragt , sind im Kristall auch alle Platze der entsprechenden Streifen 
besetzt, so daE diese Elektronen nicht am Leitungsvorgang teilnehmen 
konnen. Man braucht sie also nicht mit zu beriicksichtigen. 

Die Frage nach dem Besetzungsgad der obersten Streifen durfte 
wesentlich sein fur das Verstandnis des Ubergangs zn Halb- und-Nicht- 
leitern. Erfullen e. B. die am lockersten gebundenen Elektronen gerade 
ganz einen solchen Streifen, und besteht dabei eine merkliche energetische 
Differene bis eu dem nachsten, so wird ein solcher Kristall unter 
norrnalen Umstiinden uberhaupt nicht leiten kSnnen. Wird aber ein 
Elektron kunstlich (z. R. durch den inneren photoelektrischen Effekt) in 
einen der hSheren Zustande gebracht, so kann es sich frei bewegen, 
wie es aus der Erfahrung bekannt ist. F u r  Kichtleiter durften aber 
normalerweise auch die aders ten  Elektronen sich noch anf solchen 
Zustanden befinden, die wesentlich unter der maximalen Potential- 
differenz zwischen den Ionen liegen (vgl. Fig. l), nnd deren Strom daher 
so klein ist, daS auch aus diesem Grunde keine merkliche Leitfiihigkeit 
zustande kommen kann. Jedenfalls sind diese Verhaltnisse schon recht 
verwickelt. 

Fur  die Leitfahigkeit am wichtigsten ist daher der Fall hoher 
Terme. Hier sind als ungestarte Eigenfunktionen einfache ebene Wellen 
zu nehmen, d. h. 

c'2,05) 

la2 
(2,06) 2 m K 2  
Bei einem periodischen StSrungspotential (Pe ier l s )  

E, = w (kZ2 + k: + k:) ; GJ = ___ . 

( n r )  an i- 
v = r v n e  a , (n s%, ?$, n, = 0 ,  f 1, 2,  ...) 

I1 

sind nur solche Matrixelemente 

von Null verschieden, bei denen 
(2,071 t - f ' = n G  
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ist fur irgendeinen Wert von n. Hieraus folgt, daB sowohl die Eigen- 
wertsstorungen, als auch die Abweichung von den Eigenfunktionen (2,05) 
gering sind, aul3er wenn fur zwei Zustande t, f', die einer Bedingung (2,07) 
genugen, gerade E,, sehr nahe gleich Ef ist. Da nur die Werte von t 
in der Nahe der Ahfallstelle der Fermiverteilung in Betracht kommen, 

also z. B. fur einwertige Metalle Werte von I f I - - z) genugt es z. B., ( 
den Fall k, naherungsweise gleich kd -t G 

und k,  = k;, k, = k i  zu betrachten, da dieser (sowie naturlich die aus 
ihm durch Vertauschung von LT mit y oder z hervorgehenden) allein 
allen obigen Bedingungen genugt. Man hat dann das Sakularproblem 
der entarteten (oder beinahe entarteten) Eigenfunktionen w (kz) und 
y~ (k, - G) zu losen. Das Resultat ist nach P e i e r l s  eine Eigenwert- 
aufspaltung __ ~ 

@,8) s = +  +-xf,)2+ IVrr12. 

Man erhalt also eine Dispersion der Energieverteilung, wie in Fig. 3 
angedeutet (fur eine Komponente der Bewegung). Die Parabel stellt die 
ungestorte Verteilung (2,OS) dar. Um den Wert k, = - ergibt sich 
eine Auseinanderbiegung der Energiewerte entsprechend den beiden Vor- 
zeichen in (2,OS). Man findet also auch hier die Zerlegung des Eigen- 
wertspektrums in Streifen wieder. Der Abstand dieser Streifen ist 
gleich der Energiedifferenz der beiden Zustande, die aus der Losung 

des Siikularproblems fiir kz = + - und k,' = - - hervorgehen, also 

(da fur sie 3, = E!,) gleich 3 I V, f, I = 2 I Vl 1 fur den untersten Streifen, 
und entsprechend 2 1 Vn 1 fiir die h6heren. Die Eigenfunktiouen in der 
Nahe dieser Stellen werden dabei stehende Wellen ohne Strom. Die 
physikalische Bedeutung dieoes Verhaltens erhellt daraus, daB (2,O'i) ge- 
rade die Bedingung fur Laueinterferenzen ist (ganzzahlige Differenz der 
Wellenzahlen bei gleicher Energie!) , und die verbotenen Zonen be- 
sagen, daB bei einem Versuch der Herstellung von Elektronenbahnen 
solcher Energie, etwa durch BeschieBung mit Elektronen entsprechender 
Energie von auBen, eine starke Reflexion (Zuruckbeugung) auftreten muB. 

Es ist nun zu fragen, ob dieses Verhalten die Berechnung der Leit- 
fahigkeit merklich beeinflussen kann. Dies hangt offensichtlich davon ab, 
welche relative Lage die Obedache der Fermiverteilung (d. h. die Fliiche 
E (t) = const), deren Inhalt gerade gleich halben Elektronenzahl ist (fur 
einwertige Metalle also gleich 4 G3) und die Grenzflachen 

G 
2 

G G 
2 2 

im f-Raum besitzen. F u r  niiherungsweise freie Elektronen hangt dies a b  
von dem Besetzungsgrad der einzelnen Elementarzellen (man hat eventuell 
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anzunehmen, daB die Eigenfunktionen auger der Spinentartung noch 
weitere Entartungen aufweisen). Bei einwertigen Metallen ware er 
gleich 2 .  Fur  diesen Fall wurden sich die beiden Flachen gerade nicht 

derEnergie- 

storung durch das Potentialfeld gegenuber freien Elektronen kann dies 
dennoch eintreten. Es wird dabei aber die Anzahl der Elektronen, die 
aus diesem Grunde ein abweiehendes Verhalten zeigen, d. h. derjenigen, 
deren Eigenfunktionen stehende Wellen sind , klein sein gegeniiber 
dem Rest, und zwar werden sich diese Anzahlen verhalten wie die 
Oberflache eines Streifens der Breite E um das Schnittgebilde der beiden 

k 
9 

9 
2 

Fig. 3 Fig. 4 

Flachen zu der Gesamtoberflache der Fermiverteilung. (Vgl. Fig. 4.) Es 
ist daher gerechtfertigt, von diesem Effekt abzusehen. 

Eine weitere Komplikation kommt dadurch hinzu, daB die Eigenwert- 
verteilung infolge der Dispersion (2,08) [und noch mehr bei stark gebnn- 
denen Elektronen nach (2,04)] nicht mehr kugelsymmetrisch im f-Raum, 
sondern nnr zentrisch symmetrisch ist. Dies erschwert die statistische Be- 
handlung aui3erordentlich l), SO daS wir davon absehen mussen. Diese Ver- 
nachlassigung ist wieder gerechtfertigt fur beinahe freie Elektronen, fur die 
die Abweichungen gering sind, und vielleicht fur Polykristalle, bei denen 
eine Mittelung uber alle Richtungen moglich ware, die naturlich wieder 
die Kugelsymmetrie herstellen wurde. Bemerkbar machen konnte sich 
eine solche Deformation der Eigenwertverteilung vielleicht auch in dem 
Anteil der Elektronen zu den spezifischen Warmen. Um zu entscheiden, 

1) Eine qualitative Diskussion fur eine nicht kugelsymmetrische 
Verteilung gibt A. J. R u t g e r  s in seinen Untersuchnngen zum Bridgman- 
effekt, Diss. Leiden 1930. Dagegen erscheint ein Versuch von H o u s t o n ,  
a. a. O., ale nicht einwandfrei. 
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ob ein solcher Effekt experimentell feststellbar ist, mu&e aber erst eine 
theoretische Durchrechnung fur eine solche Energieverteilung vor- 
genommen werden. 

Urn die Bedeutung der hier zusammengestellten Ergebnisse 
fiir die Theorie der Leitfahigkeit zu iibersehen, miissen wir 
noch klarstellen, worauf es bei der letzteren wesentlich an- 
kommen wird. Da nur die Elektronen in der Nahe der Fermi- 
oberflache mitwirken, ist dies in erster Linie die Dichte der 
Eigenwertverteilung in ihrer Umgebung. Letztere ist sowohl 
fur  das thermische Verhalten, als auch nach (2,03) fur  den 
Strom der einzelnen Eigenfunktionen mal3gebend. Ferner ist 
naturlich noch der kinetische Anteil der Elektronenenergie, 
d. h. die Differenz zwischen dem Mittelwert des periodischen 
Potentials und der tatsachlichen Energie der dbfallstelle, d. h. 
die Fermische maximale Nullpunktsenergie, von Belang. Da- 
gegen haben keine Bedeutung die Eigenwertverteilung fur 
kleine Energien, sowie etwa eine GriiBe wie die ,,Gesamtzahl der 
freien ElektronenC6, die gar nicht rationell definiert werden kann. 
Im  Falle eines ebenen Potentialfeldes liefert allerdings die 
Anzahl der Valenzelektronen einen Zusammenhang zwischen 
den obengenannten wesentlichen Grofien, den man zu ihrer 
numerischen Abschitzung verwenden kann. Es sol1 im folgenden 
danach zunachst immer in den Endformeln gerade die Ab-  
hangigkeit von den genannten Bestimmungsstiicken zum Sus-  
druck gebracht werden, da zu hoffen ist, daB diese spater 
direkt mit geniigender Genauigkeit bestimmt werden konnen. 1) 
Erst ganz zum SchluB werden wir dann die Formeln fur freie 
Elektronen einf iihren, urn numerische Resultate zu erzielen. 

Urn nicht zuviel ofi'en lassen zu miissen, nehmen wir, wie 
iiblich, speziell an, daB die Eigenwertverteilung in der Uni- 
gebung der Fermiabfallstelle die Form 

(2,09) E t = E k z ~ g f i z = ~ / f l B ~  wlksc ,"+3Cy2+kZ(2  

1) Eine prinzipielle Bestimmungsm6glichkeit fur die Nullpunkts . 
energie ist z. B. durch Messung des Brechungsindex fur Elektronen- 
wellen gegeben (vgl. unten) und fur die Dichte der Eigenwertverteilung 
durch den Anteil der spezifischen Warmen der Elektronen. Naturlich 
sind diese Daten bis jetzt erst vie1 zu ungenau bekannt, um sie ver- 
werten zu k h n e n .  
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Fiir freie Elektronen ist speziell 

(2 , l l )  

Die Rechnung ware wohl auch durchfiihrbar niit E als einer 
beliebigen Funktion von 

(a,l2) 

die eventuell durch Raummittelung aus der wahren Eigenwert- 
verteilung herzustellen ware, 

Diese Naherung wird um so besser sein, je angenaherter 
sich die in Betracht kommenden Elektronen wie frei verhalten. 
Dies scheint, fur gute Leiter wenigstens, ziemlich weitgehend 
gewahrleistet zu sein. Fur  freie Elektronen wird die kritische 
Nullpunktsenergie nach S ommerfeld 

wo ~ 7 ,  die Zahl der freien Elektronen pro Kubikzentimeter ist 
(d. h. fiir K = 1 em\. Eo ist aber, wie schon gesagt, als Differenz 
der gesamten Potentialdifferenz zwischen Metallinnern und 
-8uBern (aus dem Brechungsindex bestimmbar) und der An- 
trittsarbeit f iir Thermionen bzw. den Photoeffekt, im Prinzip 
meBbar, und, soweit man sehen kann, mit dem Wert (2,14) in 
guter nbereinstimmung. l) 

Der EinfluB eines periodischen Kraftfeldes auf den kri- 
tischen Wert E,, der Energie l&Bt sich iibrigens qualitativ 
leicht iibersehen. Es bewirkt nach (2,04) bzw. nach (2 ,OS)  stets 
eine Zusanmendrangung der Eigenwertverteilung , d. h. eine 
Verkleinerung von E,, und zwar um so starker, je groljer seine 
Amplitude ist. Ein gutes Stimmen von (2,14) bedeutet daher 
sehr locker gebundene Elektronen. 

1) Uberbaupt sprechen alle Emissionseffekte sebr zugunsten des 
Wertes (2,14). Vgl. d. Bericht d. Verf., Phys. Ztschr. 30. S. 177.  1929. 
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Als Endergebnis durfen wir wohl behaupten, dd3 der 
dnsatz (2,09) fiir gute Leiter weitgehend gerechtfertigt sein 
diirfte. Ohne eine sehr miihsame numerische Berechnung der 
Eigenwerte und Eigenfunktionen durfte sich kaum eine bessere 
Naherung gewinnen lassen. 

Kapitel I1 
8 3. Die statistiache Fundamentalgleichung 

und die thermoelektr iechen Phiinomene 

Die Eigenwerte und der Strom der zugehorigen Eigen- 
funktionen seien durch (2,09) und (2,lO) gegeben. Dabei sind 
die Quantenzahlen IC, ,  k,, kZ reine Zahlen. Jedes Tripe1 gibt 
eine Elementarzelle im Phasenraum, die wegen des Spins 
doppelt besetzt werden kann. In  Abwesenheit auBerer Storungen 
haben wir dann fur die Gesamtheit aller Elektronen die Fermi- 
verteilung l) auf die Elementarzellen KT d k,  d ky d kz  der Fak- 

tor 2 ruhrt vom Spin her; K3 (= 1 /Volumen des Kristalls) 

dient zur Normierung auf die Volumeneinheit 

( 
2 

1 

wobei fur  starke Entartung naherungsweise 

Hier ist p, und damit die kritische Energie Eo = p in erster 
Naherung temperaturunabhangig. 

Wir setzen in bekannter Weise die gestorte Verteilung an : 

(3,021 f = f o  +f, 9 tf, <f& 
und es werden der spezifische elektrische und Warmestrom in 
der z-Richtung [unter Benutzung von (2,10)] 

1) Die in (3,OO) auftretende Bol tzmannsche  Konstante ist natiir- 
lich zu unterscheiden Ton dem Betrag k des Quantenzahlvektors. Da 
erstere immer in der Verbindung k T (bzw. spater k 8) auftritt, ist eine 
Verwechslung kaum zu befurehten, und wir haben darum davon ab- 
gesehen, von den gebrguchlichen Bezeichnungen abzugehen. Dasselbe 
gilt fur  den Winkel 0 und der Debyeschen Temperatur 8. 
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Fur f besteht die verallgemeinerte Boltzmannsche 
Pundamentalgleichung 

(3,051 d t  

Hier enthalt die linke Seite den EinfluB auBerer Felder, bzw. 
eines Temperaturgradienten, die rechte die stoBartigen Wechsel- 
wirkungen (b = Anzahl der in Zeiteinheit in ein Element des 
Phasenraumes hineingeworfenen, a = der Anzahl der heraus- 

geworfenen Elektronen). 1d3t sich in vollkommener Ana- 

logie zu der klassischen Theorie berechnen.') Beschrankt man 
sich auf Variabilitat in der s-Richtung, so erhalt man 

h d k , + h a s '  (3,06) dt = - 

Hier stellt der erste Term [nach Bloch, G1. (4811 das Stromen 
der Verteilung unter EinfluB eines elektrischen Feldes in der 
S-Richtung dar, und der zweite die Diffusion infolge der 
Inhomogenifat von f selbst (z. B. bei Bestehen eines Temperatur- 
gefalles). Fur  die Diffusionsgeschwindigkeit ist naturlich die 
Gruppengeschwindigkeit nach (3, lO) zu nehmen. 

Da fi <f,, fur kleine Storungen, la& es sich in (3,06) ver- 
nachlassigen, im Gegensatz zum StoBterm b - a ,  der fur  f, ver- 
schwindet. Letzteres ist auch als Funktion yon x vermittels 
von A und T aufzufassen. Mit der allgemeinen Amahme*) 

- = b - a .  d f  

e F K  a f  ~ O K  a f  a f  -___ d f  a f  + v __ = h a k ,  x a x  

(3,071 
E 

f, = g ( A L  =) , 
1) S. Kikuchi  u. L. Kordheim, Ztschr. f. Phys. 60. S. 662. 1930. 

E - '- 
2) Hier kann .9 eine beliebige Funktion des Arguments A e  k T  

sein, so daB alle drei Statistiken(Boltzmann, Fermi-Dirac ,  E in-  
s te in-Bose)  als Spezialfalle in (3,07) enthalten sind. 
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und (2,09) und (2,lO) erhalt man 

also 

(3,091 ist fur alle drei Statistiken richtig. 
Zur Berechnung des StoBtermes (b -. a) nehmen wir vor- 

laufig nur an, daB eine gewisseElementarwahrscheinlichkeit2l3 (f f') 
clafur bestehe, da8 in der Zeiteinheit ein Elektronensprung € -+ f' 
stattfindet. Ihre 
Natur braucht erst spater (Teil 111) untersucht zu werden. 

Um die Gesamtzahl der vorkommenden Prozesse f ---t E' 
zu bekommen, hat man die Z3 (f f') noch niit der ,,8nzahl" der 
Elektronen im Anfangszustand also mit f (f) zu multipliziereii, 
sowie mit den fur die Fermistatistik charakteristischen Fak- 
toren (1 - f (t')) ? d. h. der Wahrscheinlichkeit, den Endplatz 
frei xu finden, da, falls er besetzt ist, nach dem Pauliprinzip 
kein Ubergang miiglich ist. Fur die Einstein-Bose-Statistik 
ware der entsprechende Faktor natiirlich 1 +f (f'), fur die 
Boltzmannstatistik einfach 1. 

Die GesamtHnderung, die die Verteilungsfunktion infolge 
dieser Prozesse erfahrt, ist also 

ZunHchst mag dabei 233 (f t') + 233 (f' 'E) sein. 

Die erste Halfte des Integrals gibt die Zahl der aus einem 
Element d k, d ky d kz hinausgeworfenen, die zweite Halfte die 
der aus allen Elenienten d k,' d ky' dkS' hineingeworfenen Elek- 
tronen. Der Kurze halber ist f (f) mit f ,  f (t') mit f '  be- 
zeichnet. 
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Fehlen die auBeren Einflusse, so ist die Stationaritiits- 
bedingung 

a - b = O .  

Damit sie durch unser f, befriedigt wird, mu6 der Integrand 
von (3,lO) verschwinden, also B((ff') und !@(€€) die Rezipro- 
zifatsbeziehung 

(391 1) .a(€€).fO(l - . f o ' )  = rn(cr'€)j,'(1 -f,) 
erfiillen, d. h. nach (3,OO) 

E _ _  E - _  
'B((Ef') e k T  = 23 (E '€)e  k T  . 

(Die Einstein-Bose- und die Boltzmannstatistik fuhren auf 
dieselbe Bedingung.) Sie besagt, daB 

43,12) 
eine in f und f' symmetrische Funktion sein mu8.1) 

Dies fuhren wir  in (3,lO) ein und entwickeln gleichzeitig 
nach f, (3,02). Dabei fallen die von f,, f,' allein abhangigen 
Glieder nach (3,ll) automatisch heraus, und bei Vernach- 
lassigung der in der Storfunktion f, quadratischen Glieder er- 
halten wir: 

W (I E') = eE'lk T 23 (f f') = e@k T (t' €) 

1) Es werde hier davon abgesehen, daB sich die Ubergangswahr- 
scheinlichkeiten beim FlieBen eines elektrischen Stromes ilndern k6nnten. 
Dies ist z.B. nach P e i e r l s  (a. a. 0.) dann der Fall, wenn durch einen 
solchen die Verteilung der thermischen Gitterschwingungen beeinflufit 
wird. Man hat d a m  23 = Bo + 2Bl anzusetzen, wo nur 8, der obigeri 
Bedingung geniigt, und dann noch eine zweite Integralgleichung fur  die 
Verteilung der Gitterschwingungen anfzustellen. Da wir jedoch glauben, 
daB fur  alle praktisch vorkommenden Fiille dieser Effekt keine gofie  
Rolle spielt, wollen wir diese Komplikation nicht beriicksichtigen. Vgl. 
such die Anmerkung zu (5,05) $ 6. 
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Nach (3,OO) wird 

also 

Vergleicht man diesen StoBzahlansatz mit dem entsprechenden 
fur die Boltzmannstatistik (auch unter Beriicksichtigung 
von (3,12)) : 

so sieht man, daB in der benutzten Naherung (Vernachlassigung 
der in f, quadratischen Glieder), die Fermifaktoren einfach 
bewirken, daB alle ProzeBanzahlen 8--t f' mit dem Faktor 

(3714) 
( E -  E')  fn' e-ks. 

f o  
multipliziert werden. Da dieser Ausdruck fur die Boltzmann- 

statistik 1 ergibt ifo = A e kT ) und er auch, wie man leicht 
mchrechnet, fur die Einstein-Bose-Statistik 

E -- 

richtig bleibt, gilt die Form (3,13) des StoBterms wieder 
allgemein. 

Nine weitere Vereinfachung ist nurmehr unter gewisser 
Spezialisation von W moglich. Setzen wir voraus, daB unser 
Material isotrop sei jsphiirische Symmetrie), so kann W auBer 
von den Betragen k bzw. k' der Vektoren f und f' nur von 
dem von ihnen eingeschlossenen Winkel 8 abhangen, d. h. 
ihrer relativen Orientierung, jedoch nicht von der absoluten 
Lage in1 Raum.') Dies ermijglicht, wie gleich gezeigt wird, den 

1) Die genannte Voraussetzung trifft also nicht zu, wenn die 
Energie als Funktion von f nicht mehr als kugelsymmetrisch angesehen 
werden kann. 
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Lorentzschen Ansatz fur die Richtungsabhangigkeit von f ,? 

niimlich 

(3,151 f, = k z x x 4  ? 

wo x nur mehr von dem Betrag k und nicht mehr der Richtung 
von € abhangt, Er findet seine 
Rechtfertigung darin, daB er tat- 
sachlich eine Auflosung der Inte- 
gralgleichung fur f, ermoglicht.') 

Aus dern spharischen Drei- /& 
eck (Fig. 5) der Winkel des Drei- 
beins der x-Achse, der €- und der 

d' 
X 

€-Richtung ergeben sich die Be- 
ziehungen 

( V 7 )  

Hiermit erhalten wir 

Fig. 5 

k,  = k cos 9; k,' = k,' cos 1 7 ,  

cos 8' = cos 6 cos 19 + sin 6 sin B cos a 
a k,' a kYr a kzi = kf 2 sin e a K d 8 a a . 

E' . { ~ r I d ( c o s 6 c o s 9  + sin6sini?cosu)--,e fo -= 
f o  

E 

- k cos i ~ + f O ' e -  t 2 t sin 8 a e a. 
frJ 

DerWinkel a, zwischen der x - €- und der f - f'-Ebene, tritt nur 
in cosa auf. Die Integration iiber u lafit sich also ausfiihren: 

1) Nach dem Vorgang von B o h r  kann man den Ansatz (3,15) ver- 
meiden, indem man als zu bestimmende Funktion den Gesamtimpuls 
allsr Elektronen mit einem I t I zwischen k und k f d k einfuhrt, also 

k t d k  

(3,16) @(k) = J' ~ ~ t f l  k 2 s i n B d 1 4 d r p d k .  

k 6 9 ,  

Die Rechnung ist jedoch auch nur unter denselben Voraussetzungen 
wie im Text durchfuhrbar und liefert genau die gleichen Resultate. Es 
ist eben belanglos, ob man die Raumintegration (3,16) zu Anfang oder 
zu Ende der Gesamtrechnung durchfuhrt. Da ersteres aber eher um- 
standlieher ist, benutzen mir die iibliche Methode. 
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b - u = k cos 8 2 %  Jj- k' 2 I T '  
k' 0 

E' 
fo -- - g} sin d a d  dI;G 

(3?18) I 
Dieser Ausdruck enthalt cos 8 als Faktor. Bei Bildung 
cler rollen Fundamentalsgleichung nach (3,05), (3,09j und (3,18 
laBt sich daher kz = k cos 9. herausheben, womit der Ansatz (3,15 
seine Rechtfertigung findet. Wir erhalten 

k T  a A  

Die linke Seite legt noch den Ansatz 

(3,201 x = - - a f , W ( k ) ;  dE d.h. f , = - k z ~ 2 X  

nahe. 

(3,21) 

erhalten wir schlie6lich als endgultige Form 

Nit der, auch fur  alle Statistiken gultigen, Beziehung 

a f o  fn2 - - ___ k T 
d E  A k T  

?& [ - e F  + (- ~ + - __ A d x  T d x  
k T  ad 

Wir schreiben dies 

(3,233 L = R ,  

wo L und R die linke, bzw. die rechte Seite von (3,22) be- 
deuten. Es ist also 

(3724) b - u = - kx R . 
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In  (3,22) haben wir eine Integralgleichung fur  911 (k),  und zwar 
ist sie (nach Multiplikation mit k4)  symmetrisch, da ja W in k 
und k' symmetrisch ist. Sie ist gultig fur  alle drei Statistiken, 
fiir die man nur die entsprechenden Funktionen f, einzusetzen 
hiitte. Die charakteristischen Fermi-Dirac-, bzw. Einstein-Bose- 
Faktoren stecken in den Ausdrucken f, f,'/A k T.  

Dank des Umstandes , daB unsere Integralgleichung eine 
solche mit symmetrischem Kern ist, gelingt nun der allgemeine 
Kachweis, daB die Theorie die thermodynamischen Gesetze der 
Thermoelektrizitat 1iefert.I) Die symmetrische Integralgleichung 
fur  ~ ( x )  

(3,251 f (z) = y (z) - S T  (z:,h-(z z'}d 2' 

Ti (II; 2') = K (II;' 2) 

besitzt nach F r e d h o l m  eine Auflosung der Forin 

(3,26) 9n ($1 = f ($1 + 1 f (2') s tz 5') a 2' . 
W o  der ,,losende Kern" S (x 2') nuy mehr Ton K (x x') abhiingt, 
und gleichzeitig mit letzterem symmetrisch ist. Daraus folgt 
fur eine allgemeine Integralgleichung der Form 

(3,2T) F (k)  = 9~~1 ( k )  H ( 3 ~ )  - J at (iq K ( 3 ~  k') a v, 

y =!uc1/K 
die durch die Substitution 

anf (3,25) zuruckgefiihrt wird, die Auflosung 

(3,28) F 
H H H '  

%? (k)  = - + J+ S (k V) d k'. 

Hierin ist nach (3,22) [es ist dabei mit k4 zu multiplizieren] 

I) Dieser Beweis ist dem von B o h r , a. a. O . ,  fiir die klassische 
Xtatistik ganz analog. 

Annalen der Physik. 5. Folge. 9. 41 
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und es wird also 

Bildet man nun nach (3,031, (3,041, (3,20) und (3,30) unter 
Rerucksichtigung von 

den ejektrischen und Warmestrom, so findet man 
ii cos 8; d kz a k, a kZ= k2a ii sin r~ a i+ a cF 

(3,34) 

I)aB die Koeffizienten K2 in (3,31) und (3,32) identisch sind, 
folgt dabei am der in (3,34) zum Ausdruck gebrachten Symmetrie- 
beziehung. Es ist hierfiir wesentlich, dafi schon die Integral- 
gleichung (3,22) symmetrisch ist. 
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Ans (3,31) und (3,32) folgen nun in bekannter Weise die 
Formeln fur die Leitf iihigkeiten und die thermoelektrischen 
Erscheinungen. Sie sind im Anhang I1 kurz abgeleitet und 
zusammengestellt. 

Die thermoelektrischen Gesetze kommen also ohne weitere 
Vernachlassigung heraus, also jedenfalls fur denselben Bereich, 
in dem die Integralgleichung (3,22) die Verhaltnisse wiedergibt. 
Nur fur so starke Felder, bei denen auf der linken Seite nicht 
mehr f, neben f,, oder auf der rechten f I 2  gegen f, vernach- 
lassigt werden diirfte, fiir die also auch das Ohmsche Gesetz 
nicht mehr richtig ware, konnten Abweichungen eintreten. In  
diesem Falle sind aber auch die thermodynamischen Ableitungen 
nicht mehr stichhaltig. 

Zur tatsachlichen Ausrechnung der Leitfahigkeiten ist 
natiirlich die obige Auflosung nicht gut brauchbar, da die 
bekannten Reihenentwicklungen fur den losenden Kern zu 
kompliziert werden, als daB sich die lntegrationen zur Be- 
rechnung der I<,, durchfuhren lieBen. Wir werden daher 
uns mit aus der Natur der Probleme entspringenden Naherungs- 
losungen zufriedengeben miissen. Dazu sind aber vorher die 
Gbergangswahrscheinlichkeiten W bzw. 2.B zu bestimmen. 

Kapitel I11 

§ 4. Die tfbergangswahrscheinlichkeiten 

In1 8 2 hatten wir gesehen, da8 in einem rein periodischen 
Kraftfeld die Eigenfunktionen der Elektronen einen Strom 
besitzen. Demnaeh wurde fiir einen idealen Kristall eine 
unendliche Leitfahigkeit herauakommen. Bestehen aber Ab- 
weichungen vo; der vollkommenen Periodizitat, so sind Qber- 
gangsprozesse moglich, die den durch ein auBeres Feld er- 
zeugten Strom abzubremsen vermogen. Jede Abweichung von 
der strengen Periodizitit ruft dementsprechend einen Widerstand 
hervor, und umgekehrt deutet jeder Widerstand auf eine Ab- 
weichung von der Periodizitat hin.l) Als Ursachen fiir salche 
Storungen sind folgende Mbglichkeiten vorhanden. 

. I  

1) Dies gilt naturlich nur fur gute Leiter, fur die die in 
sprochenen Eigenheiten der Eigenmertverteilung keine Bolle spielen. 

2 be- 

41 
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I. Die Warmebewegung der Ionengitter. die ja nicht zu 
beseitigen ist. Sie gibt Anla5 zu eineni stark temperatur- 
abhangigen Widerstand, eben den normalen Widerstand in 
reinen, vollkommenen Kristallen. 

11. Verzerrungen des Gitters, also z. B. UnregelmaiBigkeit 
cles mikrokristallinen Gefiiges, elastische Deformationen und 
dergleichen. 

111. Legierungsbildung. Haben n ir eine Mischung von 
zwei oder mehr Komponenten, so ist der Fall der festen 
Losung dadurch charakterisiert , daB die einzelnen Gitter- 
punkte von verschiedenen Ionenarten besetxt sein werden, 
und zwar im idealen Fall in ganz unregelniii5iger statistischer 
Verteilung. Dies wird sich als Hauptursache des Zusatzwider- 
standes der Legierungen herausstellen. Im allgemeinen wircl 
natiirlich meistens eine Kombination mit dem Effekt I1 bestehen. 
11 und I11 sind im Gegensatz zu der dgnamischen Storung I 
rein statischer Natur. Infolgedessen werden die Zusatzwider- 
stande temperaturunabhangig werden. 

Um diese Effekte zu behandeln, niiissen wir zunachst die 
Beschreibung des liristallzustandes durch Hinzunahme der 
Bestimmungsstiicke der Warmebewegung vervollstandigen. Da 
fiir nicht zu hohe Temperaturen die langsamen Schwingungen 
die Hauptrolle spielen, reicht es aus, hierfiir das Debyesche 
Modell zu verwenden. Die Temperaturbewegung besteht da- 
nach in der flberlagerung der voneinander unabhangigen ela- 
stischen Eigenschwingungen des Kristalls, deren Anzahl infolge 
der atomistischen Struktur endlich, und zwar gleich 3 G 3  ist 
(Anzahl der Freiheitsgrade). 

Eine jede Eigenschwingung IaBt sich demnach durch einen 
Verschiebungsvektor 

2 n i J E  
(4,001 Uf j@ Y x t )  = af jn f je  = ; (f = qf,+ Yf,+ Zf,) 

beschreiben.l) 
Hier gibt das Indextripel 

1) In Ubereinstimmung mit den verwandten Randbedingungen 
(Zyklizitat) der Elektronenwellen behandeln wir aucli die elastischen 
Verschiebungen als laufende Wellen. 
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die Wellenzahl an. Der Index j markiert die Polarisation. 
Zu jedem f gibt es eine longitudinale und zwei transversale 
X7ellen. nf ist der Einheitsvektor in Richtung der Verschiebung 
(a. h. 1 zur MTellenebene (fr) = const im longitudinalen, in 
dieser Ebene im transversalen Fall). Die Amplituden afj sind 
natiirlich zu quanteln. Dabei werden aus ihnen die bekannten 
Xatriselemente des Oszillators, also { S, fur die Ubergange N - t N  - 1 , 

- N + . l  1 ,  ,r 1 ,  N - + N f l ,  h 
(4?02) I af j  8 n 2  M v f  

sonst. 

Hierin ist Jl die Gesamtmasse cles Kristalls, 

clie entsprechende Schwingungszahl, c die Schallgeschwindigkeit l), 
und Nfj die (mittlere) Anzahl der Quanten des Oszillators fj. 
Im thermischen Gleichgewicht ist 

Die Xatrixelemente af j  sind nur fur die in (4,02) angegebenen 
fjbergange + 0 (Auswahlregel des Oszillators). Energie und 
Iinpuls einer Eigenschwingung sind 

(A++, 
(4,05) E,= (Nf+ a) h v f ;  P,= -. 

C 

Die groBte vorkommende Frequenz v, ist verkniipft mit der 
D e b y e schen charakteristischen Temperatur 13 durch die Be- 
ziehung 

(4,061 hvm= k 0  = h c  ( - 4: )’!” 
ocler, da clie Gitterpunktanzahl n = G3, und das Volurnen V =  K 3  
ist, 

(4,071 

I) Wir nehmen sie der Einfachheit der Rechnung halber als kou- 
stant an. Bei den iibrigen groSen Vernachlassigungen hatte die an sich 
moglichg Beriicksichtigung des feineren Effekts der Dispersion nicht 
vie1 Zweck. 



630 L. Nordheim 

Die Gesamtverschiebung u ist einfach die oberlagerung der 
Verschiebungen (4,00), also 

Alle diese Beziehungen sind aus der Theorie der festen 
Iiorper wohlbekannt. Deshalb ist es .soh1 unnotig, sie hier 
eingehender zu erlautern. Zur vollstiindigen Beschreibung des 
Kristallzustands ist jedenfalls neben der Verteilungsfunktion 
fur die Elektronen noch diejenige fur die TViirmeschv iugungen 
[also (4,0411 erforderlich. 

Auch die Beschreibung des Potentialfeldes im Kristall 
ist noch fur die Beriicksichtigung der Einfliisse I1 und I11 
zu vervollstiindigen. Wir denken uns zuniichst das dreifach 
periodische Kraftfeld des idealen liristalls in der Gitter- 
po ten tialforrn 

77. 

dargestellt, was bekanntlich stets moglicli ist. Das Index- 
tripe1 n markiert die einzelnen Gitterpunkte, und die Ge- 
samtwirkung ist in die Summe der Wirkung der einzelnen 
Ionen zerlegt. D. h. es ist F(r )  das Potential eines Ions an 
dem Gitterpuiikt n = 0, wobei jedoch die Bbschirmung durch 
die Verteilung der freien Elektronen als init hineingezogen zu 
denken ist. 

Den Storungseffekten I, 11, I11 wird nun in folgender 
IVeise Rechnung getragen. Nach (4,03) ist zunachst jeder 
Gitterpunkt urn u(n) verschoben, d. h. den Wert yon LI an der 
Stelle r = a i t .  Den Zerrungseffekt I1 bekommen wir cladurch, 
daW wir noch eine Verschiebung uni einen Vektor A,, ( K o ~ I -  
ponenten &,,, S, ", as,,) hinzufugen. Halren wir schliefilich 
Legierungen iiach 111, so sind die Gitterpotentiale selbst nicht 
inehr an jedeni Gitterpunkt dieselben. Wir haben also auch 
an sie einen Index n anzuhangen. E', hangt also davon ab. 
welche Ionengattung gerade im Gitterpunkt n sitzt. Wir 
werden annehmen, daB wir I - Atomsorten haben iiiit den 
relativen dnzahlen pl ,  p,,  . . . pL. Es ist also z. B. die Wahr- 
scheinlichkeit bei ganz unregelniiiDige~ Verteilung. dd3 am 
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Punkt n gerade ein Atom der Art s sitzt gleich p a  usw., und 
aaturlich 
\'410) XP,= 1 .  

S 

Unter Beriicksichtigung dieser Einfliisse ist also das 
Potential f iir die Elektronenbewegung nicht mehr durch (4.09, 
gegeben, sondern durch 
(41 1) V = ~ F , ( r - - a n - u ,  - A,,). 

Im Sinne des 8 2 fassen wir nun die Abweichung von (4,lli 
von der reinen Periodizitat als Storpotential auf. 1) Vermittels 
clieses Storpotentials sind die Elektronenzustande untereinander 
und mit den Warmeschwingungen gekoppelt. Die hierdurch 
induzierten fjbergange werden in bekannter Weise dadurch 
ausgerechnet , daS man zunachst die zugehorigen Natrix- 
eleniente der Storungsenergie T'f ft N.:v, bestimmt. Die ober- 
gangswahrscheinlichkeiten 2, fur den Ubergang L --f E' des Elek- 
tronenzustandes und N-> N' des Schwingungszustandes sind 
ciann 

n 

Hierbei sind E und E* die Energien des Gesamtsystems vor 
und nach dem ProzeB. Diese Wahrscheinlichkeiten haben wir 
dnnn spater in die Fundamentalgleichung (3,22) einzusetzen. 

Da wir A,  und un als klein gegeniiber der Gitterkonstante a 
annehmen konnen, werden wir (4,111 nacli ihnen entwickeln und 
beim ersten Glied abbrechen: 
(4,131 V = C { ~ n ( r - ~ n ) - [ ( d n  + u , ) g r a d P  ( c -an ) ] ) .  

n 

1) Was hierbei als rein periodischer Anteil im Legierungsfall an- 
zusehen ist, wird sich von selbst herausstellen. 

2) Vgl. e. B. M. Born u. P. J o r d a n ,  Elementare Quantenmechmik. 
Berlin 1930. 3 65. Dort wird sunachst die Wahrscheinlichkeit @ fur 
einen bestimmten Endzustand zu einer beliebigen Zeit ausgerechnet. Die 

a @ -  a @  
a t  a t  

Cbergangswahrscheinlichkeit in der Zeit A t ist also - A t ,  also ~ 

f i r  1 Sek. Hierdurch kommt die Differentiation nach t in den obigen 
Ausdruck hinein. Sie ist aber erst nach der Summation iiber die be- 
lrachbarten Endzustande wirklich auszufiihren, genau wie in der Strah- 
lnngstheorie, mit der die folgenden Rechnungen iiberhaupt groBe Ahn- 
lichkeit zeigen. 
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(Der zweite Teil ist hierbei ein skalares Produkt). Die aus(4,13) 
entspringenden Natrixelemente zerfallen nun in zwei Elassen, 
niimlich in solche , bei denen sich der Schwingungszustand 
iindert, oder nicht. Wir behandeln zunachst die letzteren, fragen 
also nach den obergangen, bei denen zwar ein Obergang f-t f' 
stattfindet, wiiihrend die Oszillatoren im selben Zustand verbleiben. 

Da die Diagonalelemente der Matrizen der Oszillatoren 
verschwinden, kommen fur diese 'ijbergange nur die Anteile 
von (4,13) in Betracht, die von den Oszillatoramplituden afj 
frei sind, und wir erhalten nach der bekannten Regel 

Diesen Susdruck suchen wir SO umzuformen, daB in jedem 
Sumnienglied die Funktionen F ,  bzw. grad F ,  an denselben 
Stellen (d. h. n = 0) zu nehmen sind. Dies gelingt wie folgt. Die 
Eigenfunktionen haben nach (2,Ol) die Periodizitatseigenschaft 

(415) 

a n  i 2 

l)a nun F als Gitterpotential eines Ions nur in einem kleinen 
Bereich (von der GroBenordnung a3 eines Elementarwiirfels) 
iuerklich + 0 ist, konnen wir die Integrationsgrenzen ohne 
merklichen Fehler urn a n  verschieben, da nur der Bereich, 
in dem F endlich ist, zum Wert des Integrals beitragt. Das 
letzte Integral geht dann iiber in 

K + -  2 I ? ; l . i t t - f ' ) n a  r 
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wo F,  ff das gewohnliche Matrixelement fiir ein einzelnes Gitter- 
potential ist. Damit wird aus (4,141 in leicht verstandlicher Be- 
zeichnungsweise 

ri >' 
n m  

- (Fn*t!+dn gradPnrr.) fFmfr-t- dm gradFmrt , ) -  
Dieser Ausdruck hangt mit von der zufalligen Verteilung 

der A,, und der Atomarten auf die Gitterpunkte ab, die nach 
unserer Annahme ganz unregelmaBig ist. Haben wir einen ge- 
niigend groBen Kristall, so andert sich diese Verteilung von 
Ort zu Ort. Es interessiert also nicht die obige GrOBe selbst 
fiir eine bestimmte Verteilung, sondern nur ihr Nittelwert iiber 
alle Verteilungen, da letzterer allein beobachtbar ist. W-ir er- 
halten ihn wie folgt. l )  

Wir bezeichnen die Mittelbildung durch einen geschweiften 
Querstrich. Die Werte der schwankenden GrijBen seien fur 
verschiedene Gitterpunkte statistisch unabhangig voneinander, 
d. h. es sol1 z. B. fur den Gitterpunkt n + 1 nichts ausmachen, 
welchen Wert die entsprechende GroBe am Gitterpunkt n be- 
sitzt. Dann konnen wir definieren: 

(3~.,19) Zn2 = 4 2 ;  in= 0; A , A ,  = o (falls n + m). -- 
In einzelne Komponenten zerlegt ware 

Fur den Mittelwert von Fnff, erhalten wir nach der De- 
finition des Mittelwertes unter Berucksichtigung von (4,lO) 

(4721 p n t t t  = x~~Fsj18f,, 

was natiirlich nicht mehr von n abhiingt, und damit wegen der 
statistischen Unabhangigkeit der verschiedenen Gitterpunkte 

- 
S 

1) Vgl. die analoge Uberlegung fur die Rontgenoptik bei M.v.Laue, 
Ann. d. Phys. M S. 497. 1916. 
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und damit aus (4,18) 

C 2‘ bedeutet dabei in iiblicher Reise Summation unter Fort- 

lassung der Diagonalglieder m = n. Es findet also eine addi- 
tive Zerlegung in die ,Anteile der Zerrungen und der Legie- 
rnngsunregelmafiigkeit statt, d. h. 

11 m 

(3!24) I V w l Z =  [ J 5 f ~ l ; + l % Y l ; .  

Die einfache 2’ bedeutet nur Multiplikation mit der h i -  

zahl der Gitterpunkte, also mit G 3 ,  da ja alle Summanden nach 
der Mittelung gleich sind. Also wird 

n 

(4,251 I Vftr  I ; = G3 2 ps 4,’ 1 grad Fat f, I*. 
S 

Das mittlere Verschiebungsquadrat A,2 kann noch von der 
Stomsorte abhangen. Wir haben deshalb noch den Index s 
hinzugefiigt. 

Bei dem Legierungseffekt erganzen wir die C‘ durch die 
Diagonalglieder und ziehen sie wieder ab. Damit mird 

n m 

Das letzte Glied gibt den EinfluB des rein periodischen Anteils 
des Potentials wieder, der sich in erster Linie in den friiher 
besprochenen Laueinterferenzen aufiert. Nach den Ausfuhrungen 
des 5 2 ist er wegzulassen, als schon in der Annahme der Eigen- 
funktionen nullter Naherung enthalten. Es komrnt also nur auf 
das Schwankungsglied an, das sich wie folgt umschreiben la6t: 

a t  

wo 
12 

(4?28) j E: - pt I :tt = i J (p6 - F,) vf T~~ d t 1 
das Matrixeleinent der Differenz der Potentiale Fs und F, 
(genommen an ein und demselben Gitterpunkt) ist. Man be- 
stiitigt (4,2i) unter Benutzung vou (4,lO) wie folgt: 
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8 s t  

I n  (4,27) komrnt zuniichst die Abhangigkeit von der Kon- 
zentration klar zum Ausdruck. Fur  ein Gemisch von nur zwei 
Atomsorten, deren Konzentrationen dann p ,  = p bzw. p ,  = 1 - p 
sind, erhalt man z. B. Proportionalitat mit --p (1 -p).  

Wir behandeln jetzt auf analoge Weise die obergange mit 
&derung des Schwingungszustandes. Fur  sie ist der Teil der 
Storungsenergie (4,13) wirksam, der die Amplituden der Oszil- 
latoren enthalt, also (nach 4,08) 

1 
2 

fj n 
Da die Anteile der verschiedenen Oszillatoren hierin additiv 
sind, gelten ganz entsprechende Auswahlregeln wie fiir ein 
elektrisches Strahlungsfeld. Es finden nur obergange statt, 
bei denen ein einzelner Oszillator allejn beteiligt ist und nicht 
mehrere zugleich. Dabei kann sich seine Quantenzahl nach (4,02) 
auch nur urn 4 1 andern. Es gibt also nur die folgenden 
Matrixelemente 

rrobei afi  die entsprechenden Werte aus (4,02) annimmt. Der 
obige dusdruck liiBt sich auf genau dieselbe Weise umformen 
und mitteln wie (4,14), und inan erhiilt mit der Abkiirzung 

(4,31) L, = 

analog zu (4,26) 

(nij grad F n  (r)) vf q t r  d t ; = 2 p ,  L8 
S 

d I p % t ' N f N + 1  I * =  I af j I2  

Dieser Ausdruck zerfallt wieder in zwei Teile. Der erste kommt 
nur durch die Legierungsunregelmafiigkeit zustande und ver- 



636 L. Nordheinz 

schwindet fur  reine Metalle. Wir werden ihn im Anhang I 
untersuchen und zeigen, daB der durch ihn erzeugte Wider- 
stand stets klein ist gegeniiber dem durch die Matrixelemente 
(497) hervorgerufenen, d. h. dem gewohnlichen Zusatzwiderstand. 
Der wesentliche Snteil ist also der zweite. 

Nun ist in der Summe 

n 97z nv 71. 

Jedes Glieci eine Potenz der G-ten Einheitswurzel. Die Summen 
verschwinden also, auBer wenn die Interferenzbedingung 

oder in Komponenten 

mit ganzzahligen Werten fur die Vektorkomponenten lX, ly, 1, 
erfiillt ist. Fur  gewohnliche Verhaltnisse kommen nur die 
nbergange mit 2 = 0 in Betracht.l) Fur sie bedeutet im 

(4733) 

(4734) 

E - f '  + f = ZG, 

kX - kx' + f x  = ZxG usw. (1, = 0, +- 1, f 2 ,  ...) 

1) Dies lafit sich folgendermaBen einsehen. \Vie sich spater zeigen 
wird, tritt bei Summierung uber alle Endzustande zu der Interferenz- 
bedingung (4,32) noch der Energiesatz hinzu. Von einem gegebenen f 
sind daher nur Qbergange in solche Y moglich, die innerhalb der Kugel- 
schale im f-Raum (GJ ke ist die Energie eines Elektronenzustandes) 

liegen, wobei h < o k2 ist, da nur die Werte von k in der M h e  der 
Abfallstelle der Fermiverteilung in Betracht kommen (z. B. fiir einwertige 

Metalle k, = 3 I". Fur  die Ubergange mit I = 0 sind auch alle 

Endzustande in diesem Bereich moglich. Suchen wir aber ein t', bei 
dem z. B. I ,  = 1, also k, - k,' s G , so sehen wir, daB nur solche End- 
zusttinde innerhalb der obigen' Schale liegen, bei denen sich die Rich- 
tung von €, d. h. der Bewegung, ungefahr umkehrt (deshalb nennt sie 
P e i e r l  s ,,Umklapprozesse"). Sie erfiillen aber nur einen beschrankten 
Bereich der Schale, d. h. die Anzahl der entsprechenden Ubergange ist 
wesentlich kleiuer als die derjenigen mit I = 0, so daB sie vernacblassigt 
werden konnen. Dies gilt erst recht fur den Fall, daB mehr als eine Kom- 
ponente von E =/= 0, oder daB eine solche einen gr6Beren Wert als 1 hat. 
P e i e r l s  meint jedoch, daB trotzdem fur tiefe Temperaturen die Umklapp- 
prozesse wesentlich werden kiinnen , da unter gewissen Umstiinden 
(ungenugender Ausgleich der Gitterschwingungen durch die eigentliche 
Kristallwlrmeleitung gegenuber der Beeinflussung durch die Elektronen- 
ubergange) die normalen Ubergange nicht zur Abbremsung eines Stromes 
fuhren kijnnen. 

k2 - h V , / O  < 12' 5 k 2  -+ h V , / O  

i n )  
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Spezialfall freier Elektronen (4,321 die Erlialtung des Im- 

pulses, da der Elektronenimpuls nach (2,l l)  p = -, und 

derjenige der elastischenT47ellen ’$ = - = ~ ist (nach 4,03). 
Beriicksichtigt man noch den Energiesatz, der spater {§ 5) 
hinzukommen wird, so kann man Ieicht zeigen, dab die 
mijglichen Prozesse beschrieben werden konnen als eine 
Braggsche Reflexion der De Brogliewellen der Elektronen an 
den elastischen Schallwellen. Die Energieubertragung kommt 
dadurch zustande, das letztere ja auch fortlaufend und nicht 
stehend sind. Sie entspricht ganz dem Dopplereffekt bei 
Reflexion an einem bewegten Spiegel. 

Das fur  die obergange mesentliche Quadrat der Matrix- 
elemente wird nun nach (4,31-4,331 (mit 1 = 0) 

h t  
K 

h v  h f  
K 

(4,351 I. vNf Nf l’~z = ~6 1 af 12 /J(nfj grad 3) yClr qp t 12 7 

wo fiir der Wert nach (4,21) einzusetzen ware. Wir lassen 
der Einfachheit halber das Mittelwertzeichen im folgenden fort. 

Zur Diskussion von (4,35) sind noch die auch in (4,25) 
auftretenden Matrixelemente von grad F zu untersuchen. 
Zuniiichst erhalt man durch partielle Integration wegen der 
Periodizifat der yt 

(4,36) s ( n f j  grad F, yr .S;V d t = - J F  (nfj grad yf Vtt) d t  . 

Wir erhalten also zwei Anteile. Der erste enthalt die ge- 
wohnlichen Matrixelemente von F, d. h. des Patentials eines 
Gitterpunktes. Fur die Abschatzung des zweiten kommt 
wieder der Umstand zu Hilfe, dab F nur in einer kleinen 
Umgebung des Nullpunktes + 0 ist. In dieser ist die 
Exponentialfunktion nierklich gleich 1 .l) Wegen der Periodi- 
zitiit der u, mit a ist ferner 

G 1) Es ist K = a G ; 1 t - f‘ I = f I 5 7 . Die obige Vernach- 
l%ssigung bedeutet, daB im Bereicbe eines einzelnen Ions die Amplitude 
der elastischen Verschiebung nicht merklich variiert, d. h. die Wellen- 
lange grofi ist gegenuber dem Tonenradius. Wenn die Ionen als Ganzes 
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G3 F (q grad uf tif! d t = Z S F  (r - a n) grad ufafI d r s n 

= s V g r a d  uf a f , d t .  

Fur  diese GrijBe hat B loch  [a. a. O., Formel (64a), es ist 
dort versehentlich ein Faktor 2 weggelassen, und sein C ent- 
spricht bei uns G3 C] den Naherungsausdruck 

Die Integration ist iiber einen Iiubus a3 zu erstrecken, und 
es ist angenommen, daB die uf und ut, nicht merklich von- 
einander verschieden sind, so daB in (4,39) der Index fort- 
gelassen werden kann. Dies ist berechtigt, da die Betriige 
k und k' sehr nahe gleich sind, 

Als Gesamtresultat erhalten wir also 

wo Hfft nur eine Abkiirzung fur  die Hammer ist. Wesentlich 
ist vor allem die Proportionalitat des ganzen Ausdrucks mit 
f - f'. Da fur freie Elektronen ur konstant ist, verschwindet 
fur  sie der zweite Teil (C) von (4,40). In  der Blochschen 
Kechnung kommt gerade nur dieser letztere Tor. Da seine 
iibrigen Vernachlassigungen aber auch auf einen flbergang zu 
freien Elektronen herauslaufen, erscheint dies als nicht ganz 
konsequent. Wir werden zunachst den vollen Ausdruck mit- 
nehmen. 

Mit dem Resultat (4,40) lBBt sich nun das skalare Produkt 
in  (4,35) auswerten. n f j  war der Einheitsvektor in der Ver- 
schiebungsrichtung der betreffenden elastischen Welle. Fiir 

ohne Deformation durch die Schwingungen mitgefuhrt warden, be- 
stiinde sie sogar streng zu Recht, was in der Formel nicht klar zum 
Ausdruck kommt, da in ihr die elastischen Schwingungen als die eines 
Kontinuums behandelt werden. 
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gegebene Wellenzahl f ist der Einheitsvektor der Wellen- 
normale nach (4,OO) gleich f / f ,  d. h. nach (4,33) (mit 2 = 0)  
auch gleich (f - €‘)/f, d. h. es ist f 11 € - €‘. Fur  transversale 
Wellen, d. h. Verschiebung I zur Normalen verschwindet also 
cias skalare Produkt nij (f -- €‘) . Sie geben in dieser Naherung 
daher keinen Beitrag zum elektrischen Widerstand. Es 
kommen also nur die longitudinalen Schallschwingungen in 
Betracht, und wir  konnen daher den Polarisationsindex j weg- 
lassen. Fur  letztere ist nf I /  f - €‘, also nach (4,03) 

h‘ V/ 
ni (f .- €’) = I f  - € 1  = I f l  = -* c 

Wir erhalten als Endresultat nach (4,35), (4,40) unter Beriick- 
sichtigung von (4,OZ) 

liVf + 1 fur N;= N ,  + 1 
fiir Nf‘  = N ,  - 1 

l o  const. 
(4,41) I ‘ V r t y  N f r  l 2  = - h v f  IG3Hrfrj2 N f  2 M c  

Wir fassen noch einmal unsere Endresultate iiber die 
verschiedenen ~bergangswahrscheinlichlieiten zusammen. Ein 
Elektronensprung von dem Zustand f in den Zustand €‘ kann 
(lurch die Kopplungswirkung eines ganz bestimmten, durch 
die Interferenzbedingung (4,33) (mit 1 = 0) festgelegten Oszillators 
einer longitudinalen Schallschwingung hervorgerufen werden, 
und zwar unter Emission oder Absorption eines einzigen 
Quants. Die zugehorigen Matrixelemente sind [in leichter 
Verallgemeinerung von (4,41) fur den Legierungsfall] 

Durch die festen Unregelmafiigkeiten konnen ebenfalls nber- 
gange induziert werden, die jedoch nicht von Oszillatorspriingen 
begleitet sind. Man erhalt fiir die Zerrungen nach (4,25) und (4,40) 

8 

und fur  die Legierungen nach (4,27) 
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Diese drei Effekte sind in unserer Xaherung [Entwicklung 
yon (4,ll) nach (4,13)] voneinander unabhangig. Die ent- 
sprechenden Bbergangswahrscheinlichkeiten sind nach (412) 
auszurechnen. 

Es seien zum SchluB noch die Bedeutungen der in diesen AUS- 
drucken auftretenden Symbole zusammengestellt. 

t bzw. f’ = die Quantenzahlen fur den Elektronenzustand, 
f = die Wellenzahlen der elnstischen Schwingungen, 

Es sind 

c l f i  vi = __ = die Schwingungszahlen, K 
c = die Schallgeschwindigkeit, 

a = die Gitterkonstante, 
G3 = die Anzahl der Gitterpunkte im Kristall, 

K = a G = die Kantenlange des Kristalls, 
1M = die Masse des Kristalls, 

Frequenz v, 
= die Aneahl der Quanten des Oszillators der 1 

,RT - 1 
n;= h v  

-. 

p s  = der Atombruchteil der Atomsorte s, 
6,2 i das mittlere Verschiebungsquadrat der Atom- 

€7‘ y+ pf, d r = dasMatrixelement fiir ein einzelnes Ionenpotential 

sorte s bei Zerrungen, 

Fst t, = 

C = S i &  dzc d r ,  

U’ 
= der dreifach periodische Faktor der Eigen- 

funktion vt. (&hZu$ fotgt.) 

(Eingegangen 28. Februar 1931) 


