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Zur Elektronentheorie der Metalle. T

VYVon Lothar Nordheim
(Mit 11 Figuren)

§1. Einleitung und Zusammenfassung

Nachdem durch Pauli!) und Sommerfeld? gezeigt
worden war, daB durch die Einfiihrung der Fermistatistik
die Schwierigkeiten der alten Elektronentheorie der Metalle
weitgehend beseitigt werden, ist das Problem der modell-
m#Bigen Berechnung der freien Weglinge der Elektronen
von verschiedenen Autoren, insbesondere Houston3), Bloch4)
und Peierls® in Angriff genommen worden. Wihrend nun
der Mechanismus des Leitungsvorganges als schon recht weit-
gehend erfaBt angesehen werden kann, lassen sich gegen ver-
schiedene Punkte der bisherigen Behandlungsweisen Bedenken
erheben. Letztere erschweren es unter anderem, den zahlen-
miaBigen Erfolg der Theorien zu beurteilen. Bei Houston,
der die umfassendsten numerischen Resultate gibt, wird eine
fragliche Anleihe aus der Roéntgenoptik zur Berechnung der
Elektronenstreuung gemacht. AuBerdem verwendet er nicht
die korrekte Fundamentalgleichung fiir die Fermistatistik,
was besonders fiir tiefe Temperaturen unzulissig ist. Bei
Bloch (und Peierls) sind diese Punkte vollig klargestellt.
Dagegen scheint mir bei ihm nicht immer ein einheitlicher Ge-
sichtspunkt hinsichtlich der Approximationen festgehalten.
Infolgedessen sind seine numerischen Werte etwas unbestimmt.
Es soll deshalb-im folgenden versucht werden, den durch die ge-
nannten Arbeiten eingeschlagenen Weg so konsequent wie

1) W. Pauli jr., Ztschr. f. Phys. 41. S. 81. 1927,

2)-A. Sommerfeld, Ztschr. f. Phys, 47. 8. 1. 1928,

3) W.V.Houston, Ztschr. f. Phys. 48. S. 449. 1928,

4) F.Bloch, I. Ztschr. f. Phys. 52. S. 555. 1928; II., Ztschr. f.

Phys. 59. S. 208. 1930.
5) R. Peierls, Ann. d. Phys. 4. S. 121, 1930; 5. S. 244. 1930.
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mdglich zu Ende zu gehen. Daritber hinaus gelang es, die
Probleme des Widerstandes der Legierungen mit zu erfassen
im Verfolg von Gedanken, die schon frither vom Verf.)) an-
gedeutet worden waren.

Die vorliegende Theorie sieht zunichst recht kompliziert
aus. Durch geeignete Anordnung der Rechnungen lafit sich
aber geniigende Durchsichtigkeit erzielen. Zu diesem Zwecke
erschien es nicht iuberfliissig, einen systematischen Gesamt-
aufban zu versuchen. Um den ganzen Gedankengang mog-
lichst klar hervortreten zu lassen, muBten dabei verschiedene
schon bekannte Uberlegungen in modifizierter Form wiederholt
werden. Ferner wurde von dem Aushilfsmittel, kritische Be-
merkungen und Spezialausfithrungen in Fufinoten bzw. Anhinge
zu verweisen, reichlich (Gebrauch gemacht. Am Ende jeder
Etappe der Rechnung sind die gewonnenen Krgebnisse, soweit
sie in der Fortsetzung gebraucht werden, prizise formuliert.

In Kap. I wird in Verfolg des obigen Programms durch
Zusammenfassung bekannter Ergebnisse iiber die Mechanik
von Elektronen in periodischen Kraftfeldern der physikalische
Standpunkt festgelegt. Kap. II behandelt die statistische
Fundamentalgleichung, die im AnschluB an Uberlegungen von
Bohr? auf eine miglichst iibersichtliche und allgemeine Form
gebracht wird, und es werden alle Folgerungen gezogen, die
noch nicht ein Eingehen auf die spezielle Form von Uber-
gangswahrscheinlichkeiten erfordern. Letsztere werden dann
in Kap. IIl modellméBig bestimmt. In Kap. IV werden die
Leitfahigkeiten wirklich ausgerechnet. Anhang 1 enthilt die
Behandlung eines Sekundireffektes, und im Anhang II werden
einige viel benutzte Formeln kurz abgeleitet. Kr bringt
zugleich einige wesentliche Vereinfachungen gegeniiber den
Sommerfeldschen Rechnungen.

Wir haben uns ferner bemiiht, die Theorie soweit durch-
zufithren, als es ohne numerische Integrationen zur Bestimmung
von Kigenfunktionen miglich erscheint.

Die Hauptresultate der vorliegenden Untersuchung sind
kurz zusammengefaft die folgenden:

1) Lothar Nordheim, Naturwiss. 16. 8. 1042, 1928,
2) Niels Bohr, Studier over Metallernes Elektrontheorie, Diss.
Kopenhagen 1911.
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I. Fir gute Leiter stellen freie Elektronen eine auch
physikalisch befriedigende Niherung an die wirklichen Ver-
hiltnisse dar (§ 2).

II. Die thermodynamischen Beziehungen fiir die Thermo-
elektrizitit werden als ganz allgemeine Folgerungen aus der
kinetischen Theorie nachgewiesen (§§ 3 und 10).

II1. Fir hohe Temperaturen werden die Sommerfeld-
schen Ansitze weitgehend gerechtfertigt. Ks 148t sich in
seinem Sinne eine freie Wegldnge fiir die Elektronen einfiihren.
Demzufolge gilt fiir gute Leiter auch das Wiedemann-
Franzsche Gesetz mit seinem Wert der Konstanten?) (8§ 6
und 11),

IV. Die Temperaturabhiingigkeit des elektrischen Wider-
standes wird befriedigend wiedergegeben. [Hier haben wir
keine Resultate, die iiber die von Bloch hinausgehen (§ 7).]

V. Der absolute Wert des elektrischen Widerstandes
kommt groBenordnungsmibBiz ohne wesentliche Hypothesen
ad hoc heraus. Da alle Vernachlissigungen in dem Sinne
des Ubergangs zu moglichst locker gebundenen Elektronen
liegen, ist es verstindlich, daB der berechnete Widerstand
eher zu klein wird. Bei den Alkalien liegt der beobachtete
Wert noch innerhalb der Grenzen, die sich aus unserer
Unkenntnis der genauen Potentialverteilung im Metall ergeben.
Bei anderen Metallen, z. B. Gold, wird er zu klein, wie zu
erwarten, da die Voraussetzungen fiir sie nicht mehr so gut
erfitllt sind (§ 7).

V1. Das Verhalten von Legierungen findet seine volle
Aufklarung. Die Matthiessensche Regel der Additivitiat des
Zusatz- und des gewdhnlichen Widerstandes ist eine sinn-
gemiBe erste Naherung, Der in der klassischen Elektronentheorie
nicht erklirbare Zusatzwiderstand fiir feste Losungen wird
gedeutet als ein Interferenzeffekt der Elektronenwellen. Seine
Abhingigkeit von dem Mischungsverhiltnis und seine absolute

1) Fiir tiefe Temperaturen, d. h. solche, die unterhalb der Debye-
schen charakteristischen Temperatur 6 des Materials liegen, gilt dies
keineswegs mehr. Es sind dort Abweichungen von der Sommerfeld-
schen Theorie zu erwarten. Sie sind von Peierls qualitativ diskutiert
worden. Es ist bis jetzt jedoch nicht gelungen, das Problem der
Wiirmeleitfihigkeit fiir tiefe Temperaturen systematisch zu behandeln.

Annalen der Physik. 5. Folge. 9. 40
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GrioBe ergeben sich in guter Ubereinstimmung mit der Fr-
fahrung. Das Verhalten von XKristallitgemengen und Metall-
verbindungen ist zum mindesten qualitativ vorauszusehen (§ 8).

Kapitel 1
§ 2. Die physikalischen Voraussetzungen

Die Behandlung der elektrischen und thermischen Leit-
tahigkeit der Metalle wiirde streng genommen die Losung
eines allgemeineren Problems, namlich das der Natur des
metallischen Kristallanfbans (Koh#sion) voraussetzen. Da in
dieser Richtung bis jetzt so gut wie nichts bekannt ist, muB
man sich mit einer sinngemifen Niherung begniigen. Als
eine solche hietet sich zwanglos die folgende dar. Betrachten
wir den Kristall als Ganzes, so 1aBt sich offensichtlich in
einer #hnlichen Niherung wie der des Hartreeschen ,self
consistent field* fiir Atome sagen, daB sich jedes Elektron
in einem stationéren Zustand im Kraftfeld der Tonen und der
ibrigen Elektronen befinder muB. Dabei ist das Paunlische
Prinzip zu beriicksichtigen, daB ein jeder solcher Zustand nur
zwel (wegen des Spins) Elektronen aufnehmen kann. Dieses
self consistent field ist natiirlich in Strenge dreifach periodisch.
Wie Bloch gezeigt hat, kommt (bei Annahme der natur-
gemiflen Randbedingung der Zyklizitit) den stationiren
Zustanden eines solchen Feldes ein Strom zn (vgl. weiter unten).
Sie entsprechen daher in gewissem Sinne ,freien“ Elektronen,
und ein idealer Kristall wiirde eine unendliche Leitfahigkeit
besitzen.!) Infolge von stets vorhandemen Stérungen (Teil III)
kommen jedoch Ubergangsprozesse vor, die einen endlichen
‘Widerstand hervorrufen.

Bei diesem Bild ist also die Wechselwirkung der Elek-
tronen untereinander nur sehr summarisch beriicksichtigt,

1) Fir Nichtleiter, insbesondere Ionenkristalle, wie die Alkalihalo-
genide, scheint allerdings eine solche Beschreibung nicht mehr mdaglich
zu sein. Dies zeigt schon die Existenz scharfer Absorptionslinien, die
an Elektroneniibergiinge zwischen ganz bestimmten Tonen gekniipft sind.
(R. Hilsch und R. W.Pohl, Ztschr. f. Phys. 59. S.812. 1930). Man
kann qualitativ leicht verstehen, warum beim Vorhandensein sehr tiefer
Potentialmulden die Zuordnung der Elektronen zu bestimmten Plitzen
im Kristall eine bessere Beschreibung als die Blochschen Eigen-
funktionen liefert, jedoch sei hier nicht niher darauf eingegangen.
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namlich durch die Abschirmung und das Pauliprinzip. Dagegen
werden Austauschwirkungen und Sté8e untereinander nicht
mitgenommen.l) Hierin liegt die Hauptunvollkommenheit der
Theorie, und es diirfte hierauf beruhen, dafl die Supraleitf#hig-
keit durch sie nicht erklirt werden kann. Die Rechtfertigung
dieser Vernachlassigungen liegt daher eigentlich nur in dem
Argument, daB eine Beriicksichtigung dieser Effekte auBer-
ordentliche Schwierigkeiten zu bieten scheint.?)

Wir nehmen also an, da das Kraftfeld fiir ein einzelnes Elek-
tron in nullter Niherung dreifach periodisch sel mit der Gitter-
konstanten a. Der ganze Kristall enthalte G Elementarwiirfel, habe
also die Seitenlinge K =aG. (Wir beschrinken uns auf kubische
Symmetrie.) Die Randbedingungen seien die der Zyklizitit.
Es gelte daher fiir die BEigenfunktionen der Elektronen z. B.
(2,00) Yz + K) = y¢(x), usw.

Uber sie ist noch folgendes als streng giiltig bekannt: Sie
lassen sich stets als modulierte ebene Wellen darstellen
(Bloch), d. h.

”

LA AN
(2,01) Vigryk, =€ & - Uiyieyr, =€ & ru[,

wo die u¢ dreifach periodisch (Periode @) sind. Die Energie
ist eine Summe von Funktionen der Quadrate der drei Lauf-
zahlen (Quantenzahlen) k_, k , k, [Morse?)]

y? Tz
202 Bk, k, k) = B, @3 + B, (k2 + E, (k3.
Es gilt ferner die De Brogliesche Beziehung zwischen
Gruppengeschwindigkeit v, Strom s und Energie £ [Peierls#)]
ek OF
(2,03) Sz = evm = T -‘é‘E
Mit der Eigenwertverteilung ist also auch der Strom bekannt.

1) DaB letztere keinen iiberm#Bigen Einfluf haben, trotzdem die
Krifte grof sind, ist allerdings nach dem Lorentzschen Argument
plausibel, daB bei ihnen ja keine Strominderung stattfindet (Impulssatz).

2) Versuche in dieser Richtung sind von F. Bloch unternommen
worden. Vgl seinen Aufsatz: ,,Uber die Wechselwirkung der Metall-
elektronen®, Leipziger Vortrige 1930.

3) P. M. Morse, Phys. Rev. 35. S. 1310. 1930. Diese Arbeit ent-
hilt auch einen aussichtsreichen Weg zur genaueren numerischen Be-
stimmung der Eigenfunktionen. ‘

4) R. Peierls, Ztschr. f. Phys. 53. S. 255. 1929. In seiner
Formel '(6) fehlt ein Faktor A auf der rechten Seite.

40*
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Uber erstere 14Bt sich folgendes aussagen (Morse):

Im eindimensionalen Fall folgt aus der Theorie der Mathieu-
schen Funktionen, daf alle Eigenwerte in Streifen liegen, die fiir
kleine Energien sehr schmal sind, fiir groBere breiter. In Tig. 1

sind zu dem gezeichneten pe-

£ riodischen Potential V die ent-
T sprechenden Zonen durch Schraf-
AP IS SIS fierung markiert. Auch fiir hohe
- AR A 7// Energiewerte haben diese Streifen
\ / \ [ einen endlichen energetischen Ab-
stand. In jedem Streifen liegen

\ 7 X 2l P, :
. igenwerte
R
(——2—<k§+—2‘—)

Fig. 1 Im dreidimensionalen Fall besteht

eine solche Zerlegung fiir die

Komponenten der Bewegung nach

den Hauptachsen fir sich. Wir konnen eine Ubersicht durch Fig. 2
gewinnen, die den zweidimensionalen Fall darstellt. Ein Punkt der
Ebene bedeute einen Bewegungszustand, dessen Energie durch das
_ Quadrat der Linge des
ny Vektors vom Ursprung,
- H o und dessen Richtung
,/ f 7 durch die Richtung
A 4 dieses Vektors gegeben
< a ist. Dann sind nur Zu-

0 B Az Fehratfrton Techtecke

Lhd

mdglich, und zwar ge-
| VA v . ) wavavs | | ot | ;
VE. G* Eigenwerte. Fir
T g

drei Dimensionen hiitten
- - lich Parallelepipede mit

y ,/ je G*® Eigenwerten.
7 / / Genauvere Auskunft

7 7/
[ fille sehr tiefer und
- sehr hoher Terme durch
Fig. 2

halten. Fiir tiefe Terme
(Bloeh) sind die Eigenwerte beinahe die einer einzelnen Potential-
artung des Vorhandenseins von G*® gleichen derartigen Mulden. Diese
bilden gerade ecines der oben erwihnten Streifen (Parallelepipede).

héren zu jedem gerade

Ej wir statt dessen natiir-

4 fa kann man fiir die Grenz-

Storungsrechnung  er-

mulde. Ein jeder solcher ist in G® Terme aufgespalten wegen der Ent-
Die Energieverteilung in einem solchen ist gegeben durch
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G + co G + cos G

«2,04) E=E0—25(003 27[7»} S?ﬂky 271]9:)7

g ist das Resonanzintegral
g = fw(x)Vw(r +a)dz.

(y = Eigenfunktion einer einzigen Potentialmulde; t = da dy dz). Die
Breite des Streifens, und nach (2,03) daher auch der Strom eines
Zustandes, ist daher um so kleiner, je tiefer der betreffende Eigenwert
liegt. Fiir die unteren abgeschlossenen Schalen der Ionen, bei denen
jeder Term mit so viel Elektronen besetzt ist, als sein Entartungsgrad
betrigt, sind im Kristall auch alle Plitze der entsprechenden Streifen
besetzt, so daB diese Elektronen nicht am Leitungsvorgang teilnehmen
kénpen. Man braucht sie also nicht mit zu beriicksichtigen.

Die Frage nach dem Besetzungsgrad der obersten Streifen diirfte
wesentlich sein fiir das Verstindnis des Ubergangs zu Halb- und Nicht-
leitern. Erfiilllen z. B. die am lockersten gebundenen Elektronen gerade
ganz einen solchen Streifen, und besteht dabei eine merkliche energetische
Differenz bis zu dem nichsten, so wird ein solcher Kristall unter
normalen Umstiinden i{iberhaupt nicht leiten kémnen. Wird aber ein
Elektron kiingtlich (z. B. durch den inneren photoelektrischen Effekt) in
einen der hoheren Zustinde gebracht, so kann es sich frei bewegen,
wie es aus der Erfahrung bekannt ist. Fiir Nichtleiter diirften aber
normalerweise auch die HduBersten Elektronen sich noch auf solchen
Zustinden befinden, die wesentlich unter der maximalen Potential-
differenz zwischen den Ionen liegen (vgl. Fig. 1), und deren Strom daher
so klein ist, daB auch aus diesem Grunde keine merkliche Leitfihigkeit
zustande kommen kann. Jedenfalls sind diese Verhiltnisse schon recht
verwickelt.

Fiir die Leitfihigkeit am wichtigsten ist daher der Fall hoher
Terme. Hier sind als ungestérte Eigenfunktionen einfache ebene Wellen
zu nehmen, d. h.

. (k)

- —L_> e?:z D
VE®
(2,06) E=ok+k*+k); o=

(2,05) Ys )
h?
2mK®
Bei einem periodischen Stdrungspotential (Peierls)
L(nn
t

2z
V= E, V,e ¢, m=ag,n,n=0,+1,+2,.)
n

sind nur solche Matrixelemente
2 i

e nG+t-¥)r
'}f,=f E V,e dz
n

von Null verschieden, bei denen
(2,07 t—¥=n@
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ist fiir irgendeinen Wert von n. Hieraus folgt, da sowohl die Figen-
wertsstérungen, als auch die Abweichung von den Eigenfunktionen (2,05)
gering sind, auller wenn fiir zwei Zustéinde ¥, ¥, die einer Bedingung (2,07)
geniigen, gerade Ej, sehr nahe gleich E; ist. Da nur die Werte von t
in der Nihe der Abfallstelle der Fermiverteilung in Betracht kommen,
(also z. B. fiir einwertige Metalle Werte von | | ~ %) geniigt es z. B.,
den Fall %, niherungsweise gleich &,/ + &
G , G

(48 ke~ s kO~ )
und k, = k,/, k. = k/ zu betrachten, da dieser (sowie natiirlich die aus
ihm durch Vertauschung von x mit y oder z hervorgehenden) allein
allen obigen Bedingungen geniigt. Man hat dann das Sikularproblem
der entarteten (oder beinahe entarteten) Eigenfunktionen  (k,) und
v (k. — @) zu losen. Das Resultat ist nach Peierls eine Eigenwert-
aufspaltung

i_____,u__. U
(218) & = i ‘/‘Z (Ef - Ef/)2+ IVt [ 2 .

Man erhilt also eine Dispersion der Energieverteilung, wie in Fig. 3
angedeutet (fiir eine Komponente der Bewegung). Die Parabel stellt die

ungestorte Verteilung (2,06) dar. Um den Wert %, = %— ergibt sich

eine Auseinanderbiegung der Energiewerte entsprechend den beiden Vor-
" zeichen in (2,08). Man findet also auch hier die Zerlegung des Eigen-
wertspektrums in Streifen wieder. Der Abstand dieser Streifen ist
gleich der Energiedifferenz der beiden Zustinde, die aus der Ldsung
des Siikularproblems fir k, = + g und k) =— ?G hervorgehen, also
(da fiir sie Ky = E,) gleich 2 | Vyp | = 2|V, | fir den untersten Streifen,
und entsprechend 2| Vi | fiir die hoheren. Die Eigenfunktionen in der
Nihe dieser Stellen werden dabei stehende Wellen ohne Strom. Die
physikalische Bedeutung dieses Verhaltens erhellt daraus, dall (2,07) ge-
rade die Bedingung fiir Laueinterferenzen ist (ganzzahlige Differenz der
Wellenzahlen bei gleicher Energie!), und die verbotenen Zonen be-
sagen, dall bei einem Versuch der Herstellung von Elektronenbahnen
solcher Energie, etiwa durch BeschieBung mit Elektronen entsprechender
Energie von auflen, eine starke Reflexion (Zuriickbeugung) auftreten mu8.

Es ist nun zu fragen, ob dieses Verhalten die Berechnung der Leit-
fihigkeit merklich beeinflussen kann. Dies hiingt offensichtlich davon ab,
welche relative Lage die Oberfliche der Fermiverteilung (d. h. die Fliche
E (f) = const), deren Inhalt gerade gleich halben Elektronenzahl ist (fiir
einwertige Metalle also gleich 1G?®) und die Grenzflichen

k -z G
r, Y, 2 - 2

im f-Raum besitzen. Fiir niherungsweise freie Elektronen hingt dies ab
von dem Besetzungsgrad der einzelnen Elementarzellen (man hat eventuell
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anzunehmen, daB die Eigenfunktionen aufler der Spinentartung noch
weitere Entartungen aufweisen). Bei einwertigen Metallen wire er
gleich 2. Fiir diesen Fall wiirden sich die beiden Flichen gerade nicht

mehr schneiden {Inhalt des Grenzflichenkubus G¥; Radius einer Kugel
3)‘/3 G G

<_
2 2

GS
des Inhalts 5 gleich (;
storung durch das Potentialfeld gegeniiber freien Elektronen kann dies
dennoch eintreten. Es wird dabei aber die Anzahl der Elektronen, die
ans diesem Grunde ein abweichendes Verhalten zeigen, d. h. derjenigen,
deren Eigenfunktionen stehende Wellen sind, klein sein gegeniiber
dem Rest, und zwar werden sich diese Anzahlen verhalten wie die
Oberfliche eines Streifens der Breite ¢ um das Schnittgebilde der beiden

) . Bei Beriicksichtigung der Energie-

Fig. 3 Fig. 4

Flichen zu der Gesamtoberfiiche der Fermiverteilung. (Vgl. Fig. 4.) Es
ist daher gerechtfertigt, von diesem Effekt abzusehen.

Eine weitere Komplikation kommt dadurch hinzu, da8 die Eigenwert-
verteilung infolge der Dispersion (2,08) [und noch mehr bei stark gebun-
denen Elektronen nach (2,04)]) nicht mehr kugelsymmetrisch im f-Raum,
sondern nur zentrisch symmetrisch ist. Dies erschwert die statistische Be-
handlung auBerordentlich ¥), so daB wir davon absehen miissen. Diese Ver-
nachlissigung ist wieder gerechtfertigt fiir beinahe freie Elektronen, fiir die
die Abweichungen gering sind, und vielleicht fiir Polykristalle, bei denen
eine Mittelung iiber alle Richtungen mdéglich wiire, die natiirlich wieder
die Kugelsymmetrie herstellen wiirde. Bemerkbar machen kénnte sich
eine solche Deformation der Eigenwertverteilung vielleicht auch in dem
Anteil der Elektronen zu den spezifischen Wirmen. Um zu entscheiden,

1) Eine qualitative Diskussion fiir eine nicht kugelsymmetrische
Verteilung gibt A.J. Rutgers in seinen Untersuchungen zum Bridgman-
effekt, Diss. Leiden 1930, Dagegen erscheint ein Versuch von Houston,
a. a. 0., als nicht einwandfrei.
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ob ein solcher Effekt experimentell feststellbar ist, miiBte aber erst eine
theoretische Durchrechnung fiir eine solche Energieverteilung vor-
genommen werden.

Um die Bedeutung der hier zusammengestellten Ergebnisse
fiir die Theorie der Leitfahigkeit zu iibersehen, miissen wir
noch klarstellen, worauf es bei der letzteren wesentlich an-
kommen wird. Da nur die Elektronen in der Nihe der Fermi-
oberfliche mitwirken, ist dies in erster Linie die Dichte der
Eigenwertverteilung in ihrer Umgebung. Letztere ist sowohl
fiir das thermische Verhalten, als auch nach (2,03) fiir den
Strom der einzelnen Eigenfunktionen malBgebend. Ferner ist
natiirlich noch der kinetische Anteil der Klektronenenergie,
d. h. die Differenz zwischen dem Mittelwert des periodischen
Potentials und der tatsiichlichen Energie der Abfallstelle, d. h.
die Fermische maximale Nullpunktsenergie, von Belang. Da-
gegen haben keine Bedeutung die Eigenwertverteilung fiir
kleine Energien, sowie etwa eine Grifle wie die ,,Gesamtzahl der
freien Elektronen®, die gar nicht rationell definiert werden kann.
Im Falle eines ebenen Potentialfeldes liefert allerdings die
Anzabl der Valenzelektronen einen Zusammenhang zwischen
den obengenannten wesentlichen GroBen, den man zu ihrer
numerischen Abschétzung verwenden kann. Es soll im folgenden
danach zunichst immer in den Endformeln gerade die Ab-
hingigkeit von den genannten Bestimmungsstiicken zum Aus-
druck gebracht werden, da zu hoffen ist, daB diese spiiter
direkt mit geniigender Genanigkeit bestimmt werden kionnen.?)
Erst ganz zum SchluB werden wir dann die Formeln fir freie
Elektronen einfiihren, um numerische Resultate zu erzielen.

Um nicht zuviel offen lassen zu miissen, nehmen wir, wie
iiblich, speziell an, daBl die Eigenwertverteilung in der Um-
gebung der Fermiabfallstelle die Form

(2,09) E£=Ekmkykz=wlf12=wlkzz'—l—kyz—*‘kz‘z

1) Eine prinzipielle Bestimmungsmdoglichkeit fiir die Nullpunkts-
energie ist z. B. dureh Messung des Brechungsindex fiir Elektronen-
wellen gegeben (vgl. unten) und fiir die Dichte der Eigenwertverteilung
durch den Anteil der spezifischen Wirmen der Elektronen. Natiirlich
sind diese Daten bis jetzt erst viel zu ungenau bekannt, um sie ver-
werten zu kénnen.
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besitzt. Daraus folgt nach (2,03)

s, K 8E _ 20K
(2,10) =t = = R

Fiir freie Elektronen ist speziell

) R )
(3,11) mo————w; pz—_-i:isz:_sz'
Die Rechnung wire wohl auch durchfiithrbar mit E als einer
beliebigen Funktion von
(2,12) k=1t =Vk +k>+ k2,
die eventuell durch Raummittelung aus der wahren Eigenwert-
verteilung herzustellen wire,

Diese Naherung wird um so besser sein, je angeniherter
sich die in Betracht kommenden Elektronen wie frei verhalten.
Dies scheint, fiir gute Leiter wenigstens, ziemlich weitgehend

gewihrleistet zu sein. Fiir freie Elektronen wird die kritische
Nullpunktsenergie nach Sommerfeld

o5 4 1
(2,13) By =w k2 —-kt=5m,
¢ h? 3 23
214 B, = g ()"

wo n die Zahl der freien Elektronen pro Kubikzentimeter ist
(d. h.fir A = 1 ecm\. E, ist aber, wie schon gesagt, als Differenz
der gesamten Potentialdifferenz zwischen Metallinnern und
-dubern (aus dem Brechungsindex bestimmbar) und der An-
trittsarbeit fiir Thermionen bzw. den Photoeffekt, im Prinzip
meBbar, und, soweit man sehen kann, mit dem Wert (2 14) in
guter Uberemstlmmung Y

Der Einfluf eines periodischen Kraftfeldes auf den kri-
tischen Wert E, der Energie laBit sich iibrigens qualitativ
leicht iibersehen. Es bewirkt nach (2,04) bzw. nach (2,08) stets
eine Zusammendringung der Kigenwertverteilung, d. h. eine
Verkleinerung von E;, und zwar um so stirker, je grofler seine
Amplitude ist. Ein gutes Stimmen von (2,14) bedeutet daher
sehr locker gebundene ¥lektronen.

1) Uberhaupt sprechen alle Emissionseffekte sehr zugunsten des
Wertes (2,14). Vgl. d. Bericht d. Verf., Phys. Ztschr. 30. S. 177. 1929,
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Als Endergebnis diirfen wir wohl behaupten, dafi der
Ansatz (2,09) fiir gute Leiter weitgehend gerechtfertigt sein
diirfte. Ohne eine sehr mithsame numerische Berechnung der
Eigenwerte und Eigenfunktionen diirfte sich kaum eine bessere
Niherung gewinnen lassen.

Kapitel 1I
§ 3. Die statistische Fundamentalgleichung
und die thermoelektrischen Phénomene
Die Eigenwerte und der Strom der zugehorigen Eigen-
funktionen seien durch (2,09) und (2,10} gegeben. Dabei sind
die Quantenzahlen k,, % , k, reine Zahlen. Jedes Tripel gibt
eine Klementarzelle im Phasenraum, die wegen des Spins
doppelt besetzt werden kann. In Abwesenheit duBerer Storungen
haben wir dann fiir die Gesamtheit aller Elektronen die Fermi-

verteilung!) auf die Elementarzellen 7?7 dk,dk, dk, (der Fak-
tor 2 rithrt vom Spin her; % (= 1/Volumen des Kristalls)

dient zur Normierung auf die Volumeneinheit)

1
oo =T
A
wobel fiir starke Entartung niherungsweise
s B
(3,01) Ad=c *T—¢ *T,

Hier ist u, und damit die kritische Energie E, = y in erster
Niherung temperaturunabhiingig.
Wir setzen in bekannter Weise die gestorte Verteilung an:

(3,02) f=fo +f1’ (fl <fo),

und es werden der spezifische elektrische und Wirmestrom in
der z-Richtung [unter Benutzung von (2,10)]

1) Die in (3,00) auftretende Boltzmannsche Konstante ist natiir-
lich zu unterscheiden von dem Betrag & des Quantenzahlvektors. Da
erstere immer in der Verbindung k7T (bzw. spiter & 6) auftritt, ist eine
Verwechslung kaum zu befiirchten, und wir haben darum davon ab-
gesehen, von den gebriuchlichen Bezeichnungen abzugehen. Dasselbe
gilt fiir den Winkel 6 und der Debyeschen Temperatur 6.
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(3,03) | %=%%fff%ﬂdhd@d@
] =%%Qﬂffhﬂd@d@d@,

w,= 5 [ [ [ B, dk, dk, ax,
.%%fff@Emdhd@d@.

Fir f besteht die verallgemeinerte Boltzmannsche
Fundamentalgleichung

(3,08) Al —b—a.

Hier enthalt die linke Seite den KinfluB duBerer Felder, bzw.
eines Temperaturgradienten, die rechte die stoBartigen Wechsel-
wirkungen (b = Anzahl der in Zeiteinheit in ein Element des
Phasenraumes hineingeworfenen, a = der Anzahl der heraus-

(3,04)

geworfenen Elektronen), %—f 1aBt sich in vollkommener Ana-

logie zu der klassischen Theorie berechnen.l) Beschrinkt man
sich auf Variabilitit in der z-Richtung, so erhilt man

0 eFK 0 oK 9

) FE""”Q%:" ) B—I{;_{_ 2 ’a-;‘
Hier stellt der erste Term [nach Bloch, Gl. (48)] das Strémen
der Verteilung unter EinfluB eines elektrischen Feldes in der
z-Richtung dar, und der zweite die Diffusion infolge der
Inhomogenitit von f selbst (z. B. bel Bestehen eines Temperatur-
gefalles). Fiir die Diffusionsgeschwindigkeit ist natiirlich die
Gruppengeschwindigkeit nach (2,10) zu nehmen.

Da f, <f, fir kleine Storungen, 1iBt es sich in (3,06) ver-
nachlissigen, im Gegensatz zum StoBterm b — a, der fir f, ver-
schwindet. Letzteres ist auch als Funktion von z vermitiels
von 4 und T aufzufassen. Mit der allgemeinen Annahme?)

(3,07) fo=19 (A ¢ %) ,

1) 8. Kikuechi u. L. Nordheim, Ztschr. . Phys. 60. 8. 652. 1930.

E_

2) Hier kann ¢ eine beliebige Funktion des Arguments de 7

sein, so daf alle drei Statistiken (Boltzmann, Fermi-Dirae¢, Ein-
stein-Bose) als Spezialfille in (3,07) enthalten sind. :
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und (2,09) und (2,10) erhilt man

8f, _ 9f OE _ os
Iat—ﬁ i =20k g
E E \
8fo _ |~ w7 04 —wr _E 8T
308) 1 g =91 = tde o 690)
_ 8f, (kT 84 Eﬂ)
=~ (4t T 50)
also
af ~ 4ty _ 20K df, ET 04 EoT
B09) G =4r =~ "% aEkz[ 3F+(76_5+Ta_§”’

(3,09) ist fiir alle drei Statistiken richtig.

Zur Berechnung des Stoftermes (b — @) nehmen wir vor-
laufig nur an, daB eine gewisse Elementarwahrscheinlichkeit 8 (£ 1)
dafiir bestehe, daf in der Zeiteinheit ein Elektronensprung f —»t’
stattfindet. Zunichst mag dabei W(EL) F WKL) sein. Thre
Natur braucht erst spiter (Teil III) untersucht zu werden.

Um die Gesamtzahl der vorkommenden Prozesse f—»
zu bekommen, hat man die W (ff) noch mit der ,Anzahl“ der
Elektronen im Anfangszustand also mit f (f) zu multiplizieren,
sowie mit den fiir die Fermistatistik charakteristischen Fak-
toren (1 — f(¥)), d. h. der Wahrscheinlichkeit, den Endplatz
frei zu finden, da, falls er besetzt ist, nach dem Pauliprinzip
kein Ubergang moglich ist. Fir die Einstein-Bose-Statistik
wire der entsprechende Faktor natiirlich 1 + f(f), fir die
Boltzmannstatistik einfach 1.

Die Gesamtinderung, die die Verteilungsfunktion infolge
dieser Prozesse erfahrt, ist also

(3,10) { —b+ta= "fff O 1)

~WEHS (L =Ny dk, dk dk, .

Die erste Halfte des Integrals gibt die Zahl der aus einem
Element dk, dk, dk, hinausgeworfenen, die zweite Hilfte die
der aus allen Elementen dk/dk,/ dk' hineingeworfenen Elek-
tronen. Der Kirze halber ist f ® mit f, f (F) mit f' be-
zeichnet.
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Fehlen die #uBeren Einfliisse, so ist die Stationaritits-
bedingung
a—b=0,
Damit sie durch unser f, befriedigt wird, muB der Integrand
von (3,10) verschwinden, also () und W (¥ f) die Rezipro-
zitiatsbeziehung

(8,11) %(ff/)fo(l —fol)‘_—_%(f’f)fo’(l '—fo)
erfillen, d. h. nach (3,00)

W) e T W hHe
(Die Einstein-Bose- und die Boltzmannstatistik fithren auf
dieselbe Bedingung) Sie besagt, daf
(3,12) W{EE) =eZrT W) = 24T W'Y

eine in f und ¥ symmetrische Funktion sein mu8.?)

Dies fithren wir in (3,10) ein und entwickeln gleichzeitig
nach f, (3,02). Dabei fallen die von f,, f,/ allein abhingigen
Glieder nach (3,11) automatisch heraus, und hei Vernach-
lassigung der in der Storfunktion f, quadratischen Glieder er-
halten wir:

-
KT

b—a =fffW(ff’) {9——;%[f1’(1 - fo) —fo'flj
LF = £ = fo b1} ARk dke
_SSTwendsla— gy ¢ 5,0 72

E

- fl [(1 - fO')e—— T + fOI 6_ k‘f} } dkz/dky,dkzl’

- E
—e¢ k

1) Es werde hier davon abgesehen, daB sich die Ubergangswahr-
scheinlichkeiten beim FlieBen eines elektrischen Stromes #ndern kénnten.
Dies ist z. B. nach Peierls (a. a. 0. dann der Fall, wenn durch einen
golchen die Verteilung der thermischen Gitterschwingungen beeinflufit
wird, Man hat dann B = B, + W, anzusetzen, wo nur W, der obigen
Bedingung geniigt, und dann noch eine zweite Integralgleichung fiir die
Verteilung der Gitterschwingungen aufzustellen. Da wir jedoch glauben,
daf fiir alle praktisch vorkommenden Fille dieser Effekt keine groBe
Rolle spielt, wollen wir diese Komplikation nicht beriicksichtigen. Vgl.
auch die Anmerkung zu (5,05) § 5.
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Nach (3,00) wird

__E __E _E
(1+fo>e kTTi_foe kT:';:Te kT,
also
b—a= W ()
(3,13) l fff _E . _E
| ,{fffo,_e e f IR }dk’dk’dk’.
lfo ! fO * Y :

Vergleicht man diesen StoBzahlansatz mit dem entsprechenden
fir die Boltzmannstatistik (auch unter Beriicksichtigung
von (3,12)):

E &
b—a= fffW(ff’){fl'e KT fle~—ﬁ} ak/dk/ dk/,
so sieht man, daB in der benutzten Niherung (Vernachlissigung

der in f, quadratischen Glieder), die Fermifaktoren einfach
bewirken, daB alle ProzeBanzahlen f—>¥ mit dem Faktor

fr —E=ED
(3,14) fLo e kT
multipliziert werden. Da dieser Ausdruck fiir die Boltzmann-

B
statistik 1 ergibt ( fo=4de W) und er auch, wie man leicht
nachrechnet, fiir die Einstein-Bose-Statistik

1
)

richtig bleibt, gilt die Form (3,183) des StoBterms wieder
allgemein,

Kine weitere Vereinfachung ist nurmehr unter gewisser
Spezialisation von W moglich. Setzen wir voraus, daB unser
Material isotrop sei (sphirische Symmetrie), so kann W auBer
von den Betrigen &k bzw. k' der Vektoren f und ¥ nur von
dem von ihnen eingeschlossenen Winkel 6 abhingen, d. h.
ihrer relativen Orientierung, jedoch nicht von der absoluten
Lage im Raum.!) Dies erméglicht, wie gleich gezeigt wird, den

1) Die genannte Voraussetzung trifft also nicht zu, wenn die
Energie als Funktion von ¥ nicht mehr als kugelsymmetrisch angesehen
werden kann.
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Lorentzschen Ansatz fir die Richtungsabhangigkeit von f,,
namlich
(3,15) fl = z}((k) ’

wo y nur mehr von dem Betrag k und nicht mehr der Richtung

von f abhingt. Er findet seine

Rechtfertigung darin, daf er tat- )

sichlich eine Auflosung der Inte-

gralgleichung fiir f, ermdglicht.}) e
Aus dem spharischen Drei- ®

eck (Fig. 5) der Winkel des Drei- 2

beins der z-Achse, der f- und der X

f-Richtung ergeben sich die Be-

ziehungen
( k,=kcos &; k' =1Fkcos ¥,

(3,17 { cos ¥ = cos 6 cos ¢ + sin O sin ¢ cos ¢,
dk/dk/dk/ =Fk*?sin 6dk df de.

Hiermit erhalten wir

b_a=fffW(k,k'0)

¥ 6 a

Fig. b

7

. {Z' k (cos 6 cos & + sin @ sin +F cos a)%’,—e- T
r __E '

—xkcos 912 kT}k’de’sin(idOda.
o

Der Winkel e, zwischen der # — f- und der f — ¥'-Ebene, tritt nur
in cose auf. Die Integration fiber ¢ it sich also ausfiihren:

1) Nach dem Vorgang von Bohr kann man den Ansatz (3,15) ver-
meiden, indem man als zu bestimmende Funkiion den Gesamtimpuls
aller Elektronen mit einem || zwischen % und k + d% einfiibrt, also

k+ak
3,16) @(k)=f fffflkﬂsinsdswdk.
k 4 @

Die Rechnung ist jedoch auch nur unter demselben Voraussetzungen
wie im Text durchfiihrbar und liefert genau die gleichen Resultate. Es
ist eben belanglos, ob man die Raumintegration (3,16) zu Anfang oder
zu Ende der Gesamtrechnung durchfiihrt. Da ersteres aber eher um-
stéindlicher ist, benutzen wir die iibliche Methode.
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[ b—a=kcosf}2nffk’2W

(8,18) ‘o
l {;{ kcosO;‘Le ET ;(’;2 }sm()dﬁdk
o 0
Dieser Ausdruck enthélt cos ¢ als Faktor. Bei Bildung
der vollen Fundamentalsgleichung nach (3,05), (3,09) und (3,18
148t sich daher k, = k cos ¢ herausheben, womit der Ansatz (3,15
seine Rechtfertigung findet. Wir erhalten

20K df, kT 94 , E 8T
T Th aE[_ F+(A ?x“‘TW)J

E
s o T T i 4
=y |kK22e *T2q | WsinOdodk
(3,19) kf fo J

4 _i’—
_f,,/_k_ki %,e *T2m [Wcos Bsin 646K,
.’ [4

Die linke Seite legt noch den Ansatz

of 0 fo
(3,20) r=— ol mE); db fi=—k ol
nahe. Mit der, auch fiir alle Statistiken giiltizen, Beziehung
3,20 323 = AfIZT o

erhalten wir schlieBlich als endgiiltige Form

20K 8f0[ F-{—(kT 8A+E HT)}

h 0E Gz 7T §a
_ap (L g . ,
(3,22) —9Jifmk22nﬁfwsmadadk
l _fw'%—I%;iQWé[TVcosﬁsinf)d()dk’,
k(

Wir schreiben dies

(3,28) L=R,

wo L und R die linke, bzw. die rechte Seite von (3,22) be-
deuten. Es ist also . :

{3,24) b——a—_-—sz.
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In (3,22) haben wir eine Integralgleichung fiir 9 (k), und zwar
ist sie (nach Multiplikation mit k%) symmetrisch, da ja Win k
und K’ symmetrisch ist. Sie ist giiltig fiir alle drei Statistiken,
fir die man nur die entsprechenden Funktionen f, einzusetzen
hitte. Die charakteristischen Fermi-Dirac-, bzw. Einstein-Bose-
Faktoren stecken in den Ausdriicken f, f/'/4k T.

Dank des Umstandes, daBl unsere Integralgleichung eine
solche mit symmetrischem Kern ist, gelingt nun der allgemeine
Nachweis, dal die Theorie die thermodynamischen Gesetze der
Thermoelektrizitit liefert.!) Die symmetrische Integralgleichung
fir ¢(x)

(8.25) f@) =¢@— [¢ga)E@a)da
K(za)= K(z 2

besitzt nach Fredholm eine Auflosung der Form

(3,26) @ (2) z)+ [f@)S@a)da’.

Wo der ,lésende hern“ S(xm) nur mehr von K (z ') abhingt,
und gleichzeitig mit letzterem symmetrisch ist. Daraus folgt
fiir eine allgemeine Integralgleichung der Form

(3,27) Fk)y=MEHE — [ME)E EE)AE,
die durch die Substitution

=MVH
auf (3,25) zuriickgefiithrt wird, die Auflésung
F >
D, k = — k ; d
(3,28) M (k) H+jVHH, EkK)dk

Hierin ist nach (3,22) [es ist dabel mit k* zu multiplizieren]

2K ar, kT 84  E 8T
Py =- =5 k*';[ 8F+(A T T T am)]

Hk) = f“f° k”zk*2ans1n0d0dk
74

{3,29) - AET

Kkk) = Ll i 3k32an005081n0d0

1) Dieser Beweis ist dem von Bohr, a a. O., fir die klass:sche
Statistik ganz analog.

Anualen der Physik. 5. Folge. 9. 41
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und es wird also

20 K KT 84
I“’R=“;:‘{(—6F+“A“ o)
, 1 1 afo 6fo ‘S(kk,) ’
(3,30) {l .[-7{_ c E +jaE VHH k}
1 8T [E af, ,Of, SUK) ..
[ + 7 am[’ﬁﬁ+f TE VHh dk]}'

Bildet man nun nach (3,03), (3,04), (3,20) und (3,30) unter
Beriicksichtigang von '

k,=kcos&; dk, dk, dk=kdksinddddg
den elektrischen und Wirmestrom, so findet man

, . KT 84 eK, 8T
3,31) i=e K, (eF—T .d_m)_ R L
ET 04 K, T
332)  w,= K, (F~T M)~,T__é_x__
mit
K 321w fo
K= 5wr fk4 3E
3,33) k- 8f of, Skk)
{‘IT —B—E"i'fk Rl dk}dk,
k"
_ R2net 2 07
[ K,= SKK fEk EN
k* afn v 4 af:;, S(kk,) ,
.{F Lt [k TE T dk}dk
. x
(3,34) _32ae? £, 80
T WK OE
Ek 8f s O Skl o
{II 0+f iy VHH ”"} ak,
_ 32ne® afo
Ey= 3y fEM
(3,35)
Ek 8 fa s 81 S(kk)
{—‘ﬁ_ fE ey o E dk}ik.

Dab die Koeffizienten K, in (8,31) und (3,32) identisch sind,
folgt dabei aus der in (3,34) zum Ausdruck gebrachten Symmetrie-
beziehung. Es ist hierfiir wesentlich, daB schon die Integral-
gleichung (3,22) symmetrisch ist.
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Aus (3,31) und (3,32) folgen nun in bekannter Weise die
Formeln fiir die Leitfihigkeiten und die thermoelektrischen
Erscheinungen. Sie sind im Anhang Il kurz abgeleitet und
zusammengestellt.

Die thermoelektrischen Gesetze kommen also ohne weitere
Vernachlissigung heraus, also jedenfalls fiir denselben Bereich,
in dem die Integralgleichung (3,22) die Verhiltnisse wiedergibt.
Nur fiir so starke Felder, bei denen auf der linken Seite nicht
mehr f, neben f, oder auf der rechten f,2 gegen f, vernach-
lassigt werden dirfte, fiir die also auch das Ohmsche Gesetz
nicht mehr richtig wire, konnten Abweichungen eintreten. In
diesem Falle sind aber anch die thermodynamischen Ableitungen
nicht mehr stichhaltig.

Zur tatsichlichen Ausrechnung der Leitfihigkeiten ist
natiirlich die obige Auflosung nicht gut brauchbar, da die
bekannten Reihenentwicklungen fiir den lésenden Kern zu
kompliziert werden, als daB sich die Integrationen zur Be-
rechnung der K, durchfiihren lieBen. Wir werden daher
uns mit aus der Natur der Probleme entspringenden Niherungs-
losungen zufriedengeben miissen. Dazu sind aber vorher die
Ubergangswahrscheinlichkeiten W bzw. ¥ zu bestimmen.

Kapitel III
§ 4. Die Ubergangswahrscheinlichkeiten

Im §2 hatten wir gesehen, daf in einem rein periodischen
Kraftfeld die Eigenfunktionen der Elektronen einen Strom
besitzen. Demnach wiirde fiir einen idealen Kristall eine
unendliche Leitfahigkeit herauskommen. Bestehen aber Ab-
weichungen von der vollkommenen Periodizitit, so sind Uber-
gangsprozesse moglich, die den durch ein #uBeres Feld er-
zeugten Strom abzubremsen vermidgen. Jede Abweichung von
der strengen Periodizitit ruft dementsprechend einen Widerstand
hervor, und umgekehrt deutet jeder Widerstand auf eine Ab-
weichung von der Periodizitat hin.?) Als Ursachen fir solche
Storungen sind folgende Moglichkeiten vorhanden.

. -
1) Dies gilt natiirlich nur fiir gute Leiter, fiir die die in § 2 be-
sprochenen Eigenheiten der Eigenwertverteilung keine Rolle spielen.
41*
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1. Die Warmebewegung der Ionengitter, die ja nicht zu
beseitigen ist. Sie gibt AnlaB zu einem stark temperatur-
abhiingigen Widerstand, eben den normalen Widerstand in
reinen, vollkommenen Kristallen.

1I. Verzerrungen des Gitters, also z. B. UnregelmiBigkeit
des mikrokristallinen Gefiiges, elastische Deformationen und
dergleichen.

IIl. Legierungsbildung. Haben wir eine Mischung von
zwei oder mehr Komponenten, so ist der Fall der festen
Losung dadurch charakterisiert, daB die einzelnen Gitter-
punkte von verschiedenen Ionenarten besetst sein werden,
und zwar im idealen Fall in ganz unregelmiBiger statistischer
Verteilung. Dies wird sich als Hauptursache des Zusatzwider-
standes der Legierungen herausstellen. Tm allgemeinen wird
natiirlich meistens eine Kombination mit dem Effekt IT bestehen.
II und IIT sind im Gegensatz zu der dynamischen Storung I
rein statischer Natur. Infolgedessen werden die Zusatzwider-
stinde temperaturunabhingig werden.

Um diese Effekte zu behandeln, miissen wir zuniichst die
Beschreibung des Kristallzustandes durch Hinzunahme der
Bestimmungsstiicke der Warmebewegung vervollstindigen. Da
fir nicht zu hohe Temperaturen die langsamen Schwingungen
die Hauptrolle spielen, reicht es aus, hierfiir das Debyesche
Modell zu verwenden. Die Temperaturbewegung besteht da-
nach in der Uberlagerung der voneinander unabhiingigen ela-
stischen Eigenschwingungen des Kristalls, deren Anzahl infolge
der atomistischen Struktur endlich, und zwar gleich 3G3 ist
(Anzahl der Freiheitsgrade).

Eine jede Eigenschwingung 158t sich demnach durch einen

Verschiebungsvektor
. (o

. 2 a1 —
400) uy(ryzt) =aymne X5 Fr=2of+yf,+2f)
beschreiben.?) |
Hier gibt das Indextripel

4O0  F=(fofp L — S = fpf=+ S 0=

1) In Ubereinstimmung mit den verwandten Randbedingungen
(Zyklizitat) der Elektroneriwellen- behandeln wir auch die elastischen
Verschiebungen als laufende Wellen.
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die Wellenzahl an. Der Index j markiert die Polarisation.
Zu jedem f gibt es eine longitudinale und zwei transversale
Wellen. 1;; ist der Einheitsvektor in Richtung der Verschiebung
(d.h. + zur Wellenebene (fr)= const im longitudinalen, in
dieser Ebene im transversalen Fall). Die Amplituden a;; sind
natirlich zu quanteln. Dabei werden aus ihnen die bekannten
Matrixelemente des Oszillators, also

, N fir die Ubergiinge N—>N — 1,
(4?02) l ai] IHNN/—_——' W - N+ 1 ' s ’» N> N + 1 ,
0 sonst.

Hievin ist 3 die Gesamtmasse des Kristalls,
[ 32 £ o . L2 4

(4,03) V= Viz+ fi+1r = 0

die entsprechende Schwingungszahl, ¢die Schallgeschwindigkeit?),

und N;; die (mittlere) Anzahl der Quanten des Oszillators fj.

Im thermischen Gleichgewicht ist

1

eltv/kl_ 1

Die Matrixelemente ¢;; sind nur fir die in (4,02) angegebenen

Ubergiinge == 0 (Auswahlregel des Oszillators). Knergie und
Impuls einer Eigenschwingung sind

&

1
e (3+)w
(4,05) E,— (Af-}- 7) Wy Pe= A2
Die groBte vorkommende Frequenz »  ist verknipft mit der
Debyeschen charakteristischen Temperatur 6 durch die Be-
ziehung

(4,06) ho,=k0=ho( % )

b

oder, da die Gitterpunktanzahl n = (3, und das Volumen V = K3
ist,

. ¢ G 3\ ¢ 3\
(%07) =% (o) = =(&)"

1) Wir nehmen sie der Einfachheit der Rechnung halber als kon-
stant an. Bei den iibrigen groBen Vernachlissigungen hitte die an sich
moégliche Beriicksichtigung des feineren Effekts der Dispersion nicht
viel Zweck.
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Die Gesamtverschiebung u ist einfach die Uberlagerung der
Verschiebungen (4,00), also

o, {for
(4,08) u = 2’ a; e K
ij

Alle diese Beziehungen sind aus der Theorie der festen
Korper wohlbekannt. Deshalb ist es wohl unnétig, sie hier
eingehender zu erliutern. Zur vollstindigen Beschreibung des
Kristallzustands ist jedenfalls neben der Verteilungsfunktion
fir die Klektronen noch diejenige fiir die Wiirmeschwingungen
[also (4,04)] erforderlich. ’

Auch die Beschreibung des Potentialfeldes im Kristall
ist moch fur die Beriicksichtigung der Einfliisse II und I
zu vervollstindigen. Wir denken uns zunichst das dreifach
periodische Kraftfeld des idealen Kristalls in der Gitter-
potentialform

(4,09 V = 2 Fi—an); (n=mn, n,, n,))

dargestellt, was bekanntlich stets mdglich ist. Das Index-
tripel 1 markiert die einzelnen Gitterpunkte, und die Ge-
samtwirkung ist in die Summe der Wirkung der einzelnen
Yonen zerlegt. D. h. es ist F(r) das Potential eines Ions an
dem Gitterpunkt n = 0, wobei jedoch die Abschirmung durch
die Verteilung der freien Elektronen als mit hineingezogen zu
denken ist.

Den Storungseffekten I, II, III wird nun in folgender
Weise Rechnung getragen. Nach (4,03) ist zunichst jeder
Gitterpunkt um u(n) verschoben, d. h. den Wert von u an der
Stelle t =an. Den Zerrungseffekt 11 bekommen wir dadurch,
daB wir noch eine Verschiebung um einen Vektor 4, (Kom-
ponenten J,y, dyn, O,y hinzufiigen. Haben wir schlieBlich
Legierungen nach III, so sind die Gitterpotentiale selbst nicht
mehr an jedem Gitterpunkt dieselben. Wir haben also auch
an sie einen Index n anzuhingen. I hingt also davon ab.
welche Ionengattung gerade im Gitterpunkt n sitzt. Wir
werden annehmen, daB wir ! - Atomsorten haben mit den
relativen Anzahlen p,, p,,...p,. Es ist also 2. B. die Wahr-
scheinlichkeit bei ganz unregelmiBiger Verteilung. daB am
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Punkt n gerade ein Atom der Art s sitzt gleich p, usw., und
natiirlich
(4,10) Sip, = 1.

e
$

Unter Berficksichtigung dieser Einflisse ist also das
Potential fiir die Elektronenbewegung nicht mehr durch (4.09
gegeben, sondern durch

4,11) V=F,r—an—u, — 4.

Im Sinne des § 2 fassen wir nun die Abweichung von (4,11)
von der reinen Periodizitit als Storpotential auf.l) Vermittels
dieses Stdrpotentials sind die Elektronenzustinde untereinander
und mit den Wiarmeschwingungen gekoppelt. Die hierdurch
induzierten Uberginge werden in bekannter Weise dadurch
ausgerechnet, daB man zuniichst die zugehorigen Matrix-
elemente der Storungsenergie Viy yy bestimmt. Die Uber-
gangswahrscheinlichkeiten?) fiir den Ubergang —» ¥ des Elek-
tronenzustandes und N-—> N" des Schwingungszustandes sind
dann .
!2 P 4s1n2-,—L—(E—E’*)t
at (E— E*p?
Hierbei sind £ und E* die Energien des Gesamtsystems vor
und nach dem ProzeB. Diese Wahrscheinlichkeiten haben wir
dann spiter in die Fundamentalgleichung (3,22) einzusetzen.
Da wir 4, und u, als klein gegeniiber der Gitterkonstante a
annehmen konnen, werden wir (4,11) nach ihnen entwickeln und
beim ersten Glied abbrechen:

418) V= {Fuv—an)—[(dy +u) grad F (r —amn)]}.

$H12) WEYNN) = |Vivyw

1) Was hierbei als rein periodischer Anteil im Legierungsfall an-
zusehen ist, wird sich von selbst herausstellen,

2) Vgl. z. B. M. Bornu. P. Jordan, Elementare Quantenmechanik.
Berlin 1930. § 65. Dort wird zunsichst die Wahrscheinlichkeit @ fiir
einen bestimmten Endzustand zu einer beliebigen Zeit ausgerechnet. Die
Ubergangswahrscheinlichkeit in der Zeit 4¢ ist also %—?—At, also aa(tp
fiir 1 8ek. Hierdurch kommt die Differentiation nach ¢ in den obigen
Ausdruck hinein. Sie ist aber erst nach der Summation tiber die be-
nachbarten Endzustinde wirklich auszufiithren, genau wie in der Strah-
lungstheorie, mit der die folgenden Rechnungen iiberhaupt groBe Ahn-
lichkeit zeigen.
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(Der zweite Teil ist hierbei ein skalares Produkt). Die aus(4,13)
entspringenden Matrixelemente zerfallen nun in zwei Klassen,
néimlich in solche, bei denen sich der Schwingungszustand
indert, oder nicht. Wir behandeln zunichst die letzteren, fragen
also nach den Ubergingen, bei denen zwar ein Ubergang f—> ¢
stattfindet, withrend die Oszillatoren im selben Zustand verbleiben.

Da die Diagonalelemente der Matrizen der Oszillatoren
verschwinden, kommen fir diese Uberginge nur die Anteile
von {4,13) in Betracht, die von den Oszillatoramplituden «
frei sind, und wir erhalten nach der bekannten Regel

(4,14) {Vw= Zf (t—an)— 4, grad Fy(t — am))

“Yryrdz.
Diesen Ausdruck suchen wir so umzuformen, daf in jedem

Summenglied die Funktionen F, bzw. grad 'y an denselben
Stellen (d. h. 1 = 0) zu nehmen sind. Dies gelingt wie folgt. Die
Eigenfunktionen haben nach (2,01) die Periodizititseigenschaft

1j

Qxi{tn)a
(+15) yvi=e £ ayu(r 4 an).
Es ist daher :
K K
+ 5 + ~2——an

fF(r—- an) qpf@ydr=fF(r)1p Yyrx+an)dz

(+16) ’

+—--an

#E},‘,f ine
fF 'lpg 1}’{/ dr.

| , - X e

Da nun F als Gitterpotential eines Jons nur in einem kleinen
Bereich (von der GréBenordnung a® eines Elementarwiirfels)
merklich 4= 0 ist, kénnen wir die Integrationsgrenzen ohne
merklichen Fehler um an verschieben, da nur der Bereich,
in dem F' endlich ist, zum Wert des Integrals beitrigt. Das

letzte Integral geht dann iiber in

K
+ 5

2zid-Mna Ymif—tina

(4:17) e £ F’lpg’l?lf'd‘f:e K . Ff!’;

L;|N
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wo Fyyp das gewbhnliche Matrixelement fiir ein einzelnes Gitter-
potential ist. Damit wird aus (4,14) in leicht verstindlicher Be-
zeichnungsweise

2xi (§-F) (n— m)

18 | [Tl = S’e “

'Fnrr"*'A grad F . j {F m:sis'+ 4, grad mff'}

Dieser Ausdruck hiingt mit von der zufilligen Verteilung
der 4, und der Atomarten auf die Gitterpunkte ab, die nach
unserer Annalime ganz unregelmiBig ist. Haben wir einen ge-
niigend groBen Kristall, so #ndert sich diese Verteilung von
Ort zu Ort. Es interessiert also nicht die obige GroBe selbst
fir eine bestimmte Verteilung, sondern nur ihr Msttelwert iiber
alle Verteilungen, da letzterer allein beobachtbar ist. Wir er-
halten ihn wie folgt.%)

Wir bezeichnen die Mittelbildung durch einen geschweiften
Querstrich. Die Werte der schwankenden GriBen seien fiir
verschiedene Gitterpunkte statistisch unabhingig voneinander,
d. h. es soll z. B. fiir den Gitterpunkt n 4 1 nichts ausmachen,
welchen Wert die entsprechende GriBe am Gitterpunkt n be-
sitzt. Dann konnen wir definieren:

1419) A2 = 42 d,=0; 2:2!:1 = 0 (falls n 4= m).
)

In einzelne Komponenten zerlegt wire

(4,20) { b:n=0; ‘%n=a§11=§gn=62; gay =0,
A% =02+ d‘yz + 0,2 = 30"
Fir den Mittelwert von Fn”, erhalten wir nach der De-
finition des Mittelwertes unter Beriicksichtigung von (4,10)
(4,21 F“!V=2fp8stl”

was natiirlich nicht mehr von n abhiingt, und damit wegen der
statistischen Unabhingigkeit der verschiedenen Gitterpunkte

Il'nff’mef' = Epapt st['ﬁtf p firmm
| Fre =3n|l.,,

1) Vgl. die analoge Uberlegung fiir die Rontgenoptik bei M.v.Laue,
Ann. d. Phys. 56. 8. 497, 1918.

2

(4,22) [ Fuyy Py = )
l fir n = m,




634 L. Nordheim

und damit aus (4,18)
Vw2 = > Z P, Agzi grad Fs”,lz
n

(4,23) 2rid-t)(-ma o~
+ 2 ]Fw + 2 ﬁ'e & Fyy Fyy.
> S bedeutet dabei in tiblicher Weise Summation unter Fort-
n m

lassung der Diagonalglieder m = n. Es findet also eine addi-
tive Zerlegung in die Anteile der Zerrungen und der Legie-
rungsunregelmaBigkeit statt, d. h.

(4,24) | Viv P = Vivlz+ | VivlL-
Die einfache > bedeutet nur Multiplikation mit der An-
i

zahl der Gitterpunkte, also mit G3, da ja alle Summanden nach
der Mittelung gleich sind. Also wird

(4:,25) ‘Iffyl% = G3 2’_}78 Aazl grad st E,IQ.

Das mittlere Verschiebungsquadrat 4.2 kann noch von der
Atomsorte abhiingen. Wir haben deshalb noch den Index s
hinzugefigt.

Bei dem Legierungseffekt ergénzen wir die >’ durch die
Diagonalglieder und ziehen sie wieder ab. Damit wird

e - -~ 2ai(i-¥) (n-m)a
(426) |Veeli =G |TFP— | P4 |F P D e *
nm

Das letzte Glied gibt den KinfluB des rein periodischen Anteils
des Potentials wieder, der sich in erster Linie in den friiher
besprochenen Laueinterferenzen duBert. Nach den Ausfithrungen
des § 2 ist er wegzulassen, als schon in der Annahme der Eigen-
funktionen nullter Niherung enthalten. Es kommt also nur auf
das Schwankungsglied an, das sich wie folgt umschreiben la6t:

1
(4,27) [Viv]} = @ Zpapt\F —~F, |2,
wo
\ | _ E
(4,28) tt,:@f(Fs_Ft)wfwf,dr,

das Matrixelement der Differenz der Potentiale ¥, und F,
(genommen an ein und demselben Gitterpunkt) ist. Man be-
stitigt (4,27) unter Benutzung von (4,10) wie folgt:
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1 . 1 . = T
?zpapt]Fa_Ft42=—2“2pspz{IFs]z + |Ft12‘“Fth—FaF:}
st

st
= 2 p, | F 2 — ;‘p,PtFﬁ - FE-F

In {4,27) kommt zunichst die Abhingigkeit von der Kon-
zentration klar zum Ausdruck. Fir ein Gemisch von nur zwei
Atomsorten, deren Konzentrationen dann p, = p bzw. p,=1—1p

el

sind, erhélt man z. B. Proportionalitit mit %p(l—p).

Wir behandeln jetzt auf analoge Weise die Uberginge mit
Anderung des Schwingungszustandes. Fiir sie ist der Teil der
Storungsenergie (4,13) wirksam, der die Amplituden der Oszil-
latoren enthilt, also (nach 4,08)

2ai(fna

4,29 V =— 2 2 a; e K (n,; grad F'(r— an)).
fi n

Da die Anteile der verschiedenen Oszillatoren hierin additiv
sind, gelten ganz entsprechende Auswahlregeln wie fiir ein
elektrisches Strahlungsfeld. Es finden nur Uberginge statt,
bei denen ein einzelner Oszillator allein beteiligt ist und nicht
mehrere zugleich. Dabei kann sich seine Quantenzahl nach (4,02)
auch nur um 4+ 1 &ndern. Es gibt also nur die folgenden
Matrixelemente

(4’30)J];7ff’Nfoil=afj26 K [(nij grad F“(r—an)
n . .
-y dr,
wobei a;, die entsprechenden Werte aus (4,02) annimmt. Der

obige Ausdruck 1aBt sich auf genan dieselbe Weise umformen
pnd mitteln wie (4,14), und man erhilt mit der Abkfirzung

(431) Ly = [ (ny grad Fuw) weivde; L= D' p,L,
analog zu (4,26)

ﬁmﬂz =l
“ ST i ]

Dieser Ausdruck zerfillt wieder in zwei Teile. Der erste kommt
nur durch die LegierungsunregelmifBigkeit zustande und ver-

2rit-Vifma |2

S x

n
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schwindet fiir reine Metalle. Wir werden ihn im Anhang I
untersuchen und zeigen, daB der durch ihn erzeugte Wider-
stand stets klein ist gegeniiber dem durch die Matrixelemente
4,27y hervorgerufenen, d.h. dem gewdhnlichen Zusatzwiderstand.
Der wesentliche Anteil ist also der zweite.

Nun ist in der Summe

.,nr(f—f’+f,y‘ 27 i (k. .~—k;/+fr) Ry

S - 3 3.
Jedes Glied eine Potenz der G-ten Einheitswurzel. Dle Summen
verschwinden also, auler wenn die Interferenzbedingung

{4,33) ‘ -+ f=1G,

oder in Komponenten

(4,34) k,—k +f, =1G usw. l,=0,+1,4+2,..)
mit ganzzahligen Werten fiir die Vektorkomponenten 1,1,

erfillt ist. Fir gewdhnliche Verhiltnisse kommen nur die
Ubergénge mit 1= 0 in Betracht.!) Fir sie bedeutet im

1) Dies ldBt sich folgendermaflen einsehen. Wie sich spiter zeigen
wird, tritt bei Summierung {iber alle Endzustinde zn der Interferenz-
bedingung (4,32) noch der Energiesatz hinzu. Von einem gegebenen
sind daher nur Uberginge in solche ¥ moglich, die innerhalb der Kugel-
schale im f-Raum (@ %? ist die Energie eines Elektronenzustandes)

B —hvpjo<W:=k+hv,/o
liegen, wobei A, < w k? ist, da nur die Werte von % in der Nihe der
Abfallstelle der Fermiverteilung in Betracht kommen (z. B. fiir einwertige
1

Metalle %, = % (%) /s. Fiir die Ubergiinge mit I = 0 sind auch alle
Endzustinde in diesem Bereich moglich. Suchen wir aber ein ¥, bei
dem z.B. I, =1, also k, — k= @G, so sehen wir, daB nur solche End-
zustinde innerhalb der obigen® Schale liegen, bei denen sich die Rich-
tung von f, d. h. der Bewegung, ungefihr umkehrt (deshalb nennt sie
Peierls ,,Umklapprozesse). Sie erfiillen aber nur einen beschrinkten
Bereich der Schale, d. h. die Anzahl der entsprechenden Ubergiinge ist
wesentlich kleiner als die derjenigen mit = 0, so daB sie vernachlissigt
werden kénnen. Dies gilt erst recht fiir den Fall, dafl mehr als eine Kom-
ponente von I=£ 0, oder dab eine solche einen groBeren Wert als 1 hat.
Peierls meint jedoch, daB trotzdem fiir tiefe Temperaturen die Umklapp-
prozesse wesentlich werden konnen, da unter gewissen Umstinden
(ungeniigender Ausgleich der Gitterschwingungen durch die eigentliche
Kristallwirmeleitung gegeniiber der Beeinflussung durch die Elektronen-
iiberginge) die normalen Uberginge nicht zur Abbremsung eines Stromes
fiihren konnen.
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Spezialfall freier Elektronen (4,32) die Erhaltung des Im-
pulses, da der Elektronenimpuls nach (2,11) p = llKi und

’

derjenige der elastischen Wellen P8 = % = % ist (nach 4,03).
Beriicksichtigt man noch den Energiesatz, der spiter (§ 5)
hinzukommen wird, so kann man leicht zeigen, daB die
moglichen Prozesse beschrieben werden kionnen als eine
Braggsche Reflexion der De Brogliewellen der Elektronen an
den elastischen Schallwellen. Die Energieiibertragung kommt
dadurch zustande, das letztere ja auch fortlaufend und nicht
stehend sind. Sie entspricht ganz dem Dopplereffekt bei
Reflexion an einem bewegten Spiegel.

Das fiir die Ubergiinge wesentliche Quadrat der Matrix-
elemente wird nun nach (4,31—4,33) (mit ! = 0)

— 5 o . 2
@35 [V merlt= 0o, 2| [(ny; grad F) yeipe dz |

wo firr F der Wert nach (4,21) einzusetzen wire. Wir lassen
der Einfachheit halber das Mittelwertzeichen im folgenden fort.

Zur Diskussion von (4,35) sind noch die auch in (4,25)
auftretenden Matrixelemente von grad F zu untersuchen.

Zun#chst erhdlt man durch partielle Integration wegen der
Periodizitat der

(4,36) f(nfj grad Fyyy Py dv = —-fF (ny; grad s Py)dr.
Nun ist nach (2,01)

Qi —1) ALt th

(4,37) grad g Py = —F Py + e K grad ug iy .

Wir erhalten also zwei Anteile. Der erste enthilt die ge-
wohnlichen Matrixelemente von F, d. h. des Potentials eines
Gitterpunktes. Far die Abschitzung des zweiten kommt
wieder der Umstand zu Hilfe, da F nur in einer kleinen
Umgebung des Nullpunktes = 0 ist. In dieser ist die
Exponentialfunktion merklich gleich 1.}) Wegen der Periodi-
zitit der u; mit @ ist ferner

HEsist K=aG; |t—t]= [f[s—czi. Die obige Vernach-
lissigung bedeutet, daB im Bereiche eines einzelnen Ions die Amplitude
der elastischen Verschiebung nicht merklich variiert, d. h. die Wellen-
linge grof} ist gegeniiber dem Ionenradius. Wenn die fonen uls Ganzes
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G3fF () grad wpap dv = ZIF(r —an) grad ugap d ¢
n

=ngrad U Gy d T

Fiir diese GroBe hat Bloch [a. a. O., Formel (64a), es ist
dort versehentlich ein Faktor 2 weggelassen, und sein C ent-
spricht bei uns G2 (] den Niherungsausdruck

4,38) f Vgrad wyar dv = 4;{{ £ — f')—@— c

8 n?m

abgeleitet, wo

4,39) C=f)%»zdr.

Die Integration ist iiber einen Kubus a® zn erstrecken, und
es ist angenommen, daB die u; und wp nicht merklich von-
einander verschieden sind, so daB in (4,39) der Index fort-
gelassen werden kann. Dies ist berechtigt, da die Betrige
I und %' sehr nahe gleich sind,

Als Gesamtresultat erhalten wir also

— 2ni ’ Ch?
fgrade,zpydr=— IT;.,L (f—'f)G3{Fﬂ'+m}

2

(4,40)

1? (£ — )G Hyy

wo Hyy nur eine Abkiirzung fir die Klammer ist. Wesentlich
ist vor allem die Proportionalitit des ganzen Ausdrucks mit
f—7¥. Da fir freie Elektronen uy konstant ist, verschwindet
fir sie der zweite Teil (C) von (4,40). In der Blochschen
Rechnung kommt gerade nur dieser letztere vor. Da seine
iibrigen Vernachlissigungen aber auch auf einen Ubergang zu
freien Elektronen herauslaufen, erscheint dies als nicht ganz
konsequent. Wir werden zunichst den vollen Ausdruck mit-
nehmen.

Mit dem Resultat (4,40) 148t sich nun das skalare Produkt
in (4,35) auswerten. n;; war der Einheitsvektor in der Ver-
schiebungsrichtung der betreffenden elastischen Welle. Fir

ohne Deformation durch die Schwingungen mitgefiihrt wiirden, be-
stinde sie sogar streng zu Recht, was in der Formel nicht klar zum
Ausdruck kommt, da in ihr dje elastischen Schwinguungen als die eines
Kontipuums behandelt werden,
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gegebene Wellenzahl f ist der Einheitsvektor der Wellen-
normale nach (4,00) gleich {/f, d.h. nach (4,38) (mit I = 0)
auch gleich (f—t)/f, d. h. es ist f||/f —¥. Fir transversale
Wellen, d. h. Verschiebung | zur Normalen verschwindet also
das skalare Produkt n;;(f —¥). Sie geben in dieser Niherung
daher keinen Beitrag zum elektrischen Widerstand. Es
kommen also nur die longitudinalen Schallschwingungen in
Betracht, und wir kénnen daher den Polarisationsindex § weg-
lassen. Fiir letztere ist m;||f — ¥, also nach (4,03)

w(E—1) = [E—F] = |f| = 222

Wir erhalten als Endresultat nach (4,35), (4,40) unter Beriick-
sichtigung von (4,02)
N, +1fir N'=N +1
(441 | Vip sy | = 5o | GO Hyy 1) N fir N/ = N, — 1
'O const.

Wir fassen noch einmal unsere Endresultate iiber die
verschiedenen Ubergangswahrscheinlichkeiten zusammen. Ein
Elektronensprung von dem Zustand f in den Zustand ¥ kann
durch die Kopplungswirkung eines ganz bestimmten, durch
die Interferenzbedingung (4,33) (mit ! = 0) festgelegten Oszillators
einer longitudinalen Schallschwingung hervorgerufen werden,
und zwar unter Kmission oder Absorption eines einzigen
Quants. Die zugehdrigen Matrixelemente sind [in leichter
Verallgemeinerung von (4,41) fiir den Legierungsfall]

’ Vfl'Nfo+ 1 iZ

h,,, lGSEP | N+ 1 fur N/=N,+ 1
¢ 8”' N, fuir N/= N, —1.

Durch die festen Unregelmaﬁlgkelten konnen ebenfalls Uber-

ginge induziert werden, die jedoch nicht von Oszillatorspriingen
begleitet sind. Man erhalt fiir die Zerrungen nach (4,25) und (4,40)

(443) | Vs l2=G32P8A24” E—¥|2|H, P,

(+,42)

sy |

und fir die Legierungen nach (4,27)
1 2
(4)44) ‘ Vf |4 IL & = 22’3 pt ey tf v [ .
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Diese drei Effekte sind in unserer Niherung [Entwicklung
von (4,11) nach (4,13)] voneinander unabhingig. Die ent-
sprechenden Ubergangswahrscheinlichkeiten sind nach (4,12)
auszurechnen.

Es seien zum Schluf noch die Bedeutungen der in diesen Aus-
driicken auftretenden Symbole zusammengestellt. Es sind

t bzw. I’ = die Quantenzahlen fiir den Elektronenzustand,
f = die Wellenzahlen der elastischen Schwingungen,

i

V= C-l[{f !

= die Schwingungszahlen,

¢ = die Schallgeschwindigkeit,
G* = die Anzahl der Gitterpunkte im Kristall,
a = die Gitterkonstante,
K = ¢ G = die Kantenlinge des Kristalls,
M = die Masse des Kristalls,
1

;= —5;—— = die Anzahl der Quanten des Oszillators der
BT Frequenz »,

= der Atombruchteil der Atomsorte s,

= das mittlere Verschiebungsquadrat der Atom-
sorte s bei Zerrungen,

-1
Ds
43

Fopp= f F, 9, Py, dt = dasMatrizxelement fiir ein einzelnes Ionenpotential

Che
Hopw = Far + o
ou |?
C'—‘f}"a—x— d‘t,

u = der dreifach periodische Faktor der Eigen-
funktion ,. (Schiuf folgt.)

(Eingegangen 28. Februar 1931)



